aboutsummaryrefslogtreecommitdiffstats
path: root/testhal/STM32/STM32F1xx/SPI/main.c
blob: 1c510fef04f4e0af75d9ed7a8469e914e6070f7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*
    ChibiOS - Copyright (C) 2006..2016 Giovanni Di Sirio

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#include "ch.h"
#include "hal.h"

/*
 * Maximum speed SPI configuration (18MHz, CPHA=0, CPOL=0, MSb first).
 */
static const SPIConfig hs_spicfg = {
  NULL,
  GPIOA,
  GPIOA_SPI1NSS,
  0,
  0
};

/*
 * Low speed SPI configuration (281.250kHz, CPHA=0, CPOL=0, MSb first).
 */
static const SPIConfig ls_spicfg = {
  NULL,
  GPIOA,
  GPIOA_SPI1NSS,
  SPI_CR1_BR_2 | SPI_CR1_BR_1,
  0
};

/*
 * SPI TX and RX buffers.
 */
static uint8_t txbuf[512];
static uint8_t rxbuf[512];

/*
 * SPI bus contender 1.
 */
static THD_WORKING_AREA(spi_thread_1_wa, 256);
static THD_FUNCTION(spi_thread_1, p) {

  (void)p;

  chRegSetThreadName("SPI thread 1");
  while (true) {
    spiAcquireBus(&SPID1);              /* Acquire ownership of the bus.    */
    palClearPad(IOPORT3, GPIOC_LED);    /* LED ON.                          */
    spiStart(&SPID1, &hs_spicfg);       /* Setup transfer parameters.       */
    spiSelect(&SPID1);                  /* Slave Select assertion.          */
    spiExchange(&SPID1, 512,
                txbuf, rxbuf);          /* Atomic transfer operations.      */
    spiUnselect(&SPID1);                /* Slave Select de-assertion.       */
    spiReleaseBus(&SPID1);              /* Ownership release.               */
  }
}

/*
 * SPI bus contender 2.
 */
static THD_WORKING_AREA(spi_thread_2_wa, 256);
static THD_FUNCTION(spi_thread_2, p) {

  (void)p;

  chRegSetThreadName("SPI thread 2");
  while (true) {
    spiAcquireBus(&SPID1);              /* Acquire ownership of the bus.    */
    palSetPad(IOPORT3, GPIOC_LED);      /* LED OFF.                         */
    spiStart(&SPID1, &ls_spicfg);       /* Setup transfer parameters.       */
    spiSelect(&SPID1);                  /* Slave Select assertion.          */
    spiExchange(&SPID1, 512,
                txbuf, rxbuf);          /* Atomic transfer operations.      */
    spiUnselect(&SPID1);                /* Slave Select de-assertion.       */
    spiReleaseBus(&SPID1);              /* Ownership release.               */
  }
}

/*
 * Application entry point.
 */
int main(void) {
  unsigned i;

  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
  halInit();
  chSysInit();

  /*
   * SPI1 I/O pins setup.
   */
  palSetPadMode(IOPORT1, 5, PAL_MODE_STM32_ALTERNATE_PUSHPULL);     /* SCK. */
  palSetPadMode(IOPORT1, 6, PAL_MODE_STM32_ALTERNATE_PUSHPULL);     /* MISO.*/
  palSetPadMode(IOPORT1, 7, PAL_MODE_STM32_ALTERNATE_PUSHPULL);     /* MOSI.*/
  palSetPadMode(IOPORT1, GPIOA_SPI1NSS, PAL_MODE_OUTPUT_PUSHPULL);
  palSetPad(IOPORT1, GPIOA_SPI1NSS);

  /*
   * Prepare transmit pattern.
   */
  for (i = 0; i < sizeof(txbuf); i++)
    txbuf[i] = (uint8_t)i;

  /*
   * Starting the transmitter and receiver threads.
   */
  chThdCreateStatic(spi_thread_1_wa, sizeof(spi_thread_1_wa),
                    NORMALPRIO + 1, spi_thread_1, NULL);
  chThdCreateStatic(spi_thread_2_wa, sizeof(spi_thread_2_wa),
                    NORMALPRIO + 1, spi_thread_2, NULL);

  /*
   * Normal main() thread activity, in this demo it does nothing.
   */
  while (true) {
    chThdSleepMilliseconds(500);
  }
  return 0;
}
ware, including all implied warranties of merchantability and fitness. In no event shall the author be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software. */ #include "TestAndMeasurement.h" /** Contains the (usually static) capabilities of the TMC device. This table is requested by the * host upon enumeration to give it information on what features of the Test and Measurement USB * Class the device supports. */ TMC_Capabilities_t Capabilities = { .Status = TMC_STATUS_SUCCESS, .TMCVersion = VERSION_BCD(1.00), .Interface = { .ListenOnly = false, .TalkOnly = false, .PulseIndicateSupported = false, }, .Device = { .SupportsAbortINOnMatch = false, }, }; /** Current TMC control request that is being processed */ static uint8_t RequestInProgress = 0; /** Stream callback abort flag for bulk IN data */ static bool IsTMCBulkINReset = false; /** Stream callback abort flag for bulk OUT data */ static bool IsTMCBulkOUTReset = false; /** Last used tag value for data transfers */ static uint8_t CurrentTransferTag = 0; /** Length of last data transfer, for reporting to the host in case an in-progress transfer is aborted */ static uint16_t LastTransferLength = 0; /** Buffer to hold the next message to sent to the TMC host */ static uint8_t NextResponseBuffer[64]; /** Indicates the length of the next response to send */ static uint8_t NextResponseLen; /** Main program entry point. This routine contains the overall program flow, including initial * setup of all components and the main program loop. */ int main(void) { SetupHardware(); LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY); GlobalInterruptEnable(); for (;;) { TMC_Task(); USB_USBTask(); } } /** Configures the board hardware and chip peripherals for the demo's functionality. */ void SetupHardware(void) { #if (ARCH == ARCH_AVR8) /* Disable watchdog if enabled by bootloader/fuses */ MCUSR &= ~(1 << WDRF); wdt_disable(); /* Disable clock division */ clock_prescale_set(clock_div_1); #elif (ARCH == ARCH_XMEGA) /* Start the PLL to multiply the 2MHz RC oscillator to 32MHz and switch the CPU core to run from it */ XMEGACLK_StartPLL(CLOCK_SRC_INT_RC2MHZ, 2000000, F_CPU); XMEGACLK_SetCPUClockSource(CLOCK_SRC_PLL); /* Start the 32MHz internal RC oscillator and start the DFLL to increase it to 48MHz using the USB SOF as a reference */ XMEGACLK_StartInternalOscillator(CLOCK_SRC_INT_RC32MHZ); XMEGACLK_StartDFLL(CLOCK_SRC_INT_RC32MHZ, DFLL_REF_INT_USBSOF, F_USB); PMIC.CTRL = PMIC_LOLVLEN_bm | PMIC_MEDLVLEN_bm | PMIC_HILVLEN_bm; #endif /* Hardware Initialization */ LEDs_Init(); USB_Init(); } /** Event handler for the USB_Connect event. This indicates that the device is enumerating via the status LEDs and * starts the library USB task to begin the enumeration and USB management process. */ void EVENT_USB_Device_Connect(void) { LEDs_SetAllLEDs(LEDMASK_USB_ENUMERATING); } /** Event handler for the USB_Disconnect event. This indicates that the device is no longer connected to a host via * the status LEDs and stops the USB management and CDC management tasks. */ void EVENT_USB_Device_Disconnect(void) { LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY); } /** Event handler for the USB_ConfigurationChanged event. This is fired when the host set the current configuration * of the USB device after enumeration - the device endpoints are configured and the CDC management task started. */ void EVENT_USB_Device_ConfigurationChanged(void) { bool ConfigSuccess = true; /* Setup TMC In, Out and Notification Endpoints */ ConfigSuccess &= Endpoint_ConfigureEndpoint(TMC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT, TMC_IO_EPSIZE, 1); ConfigSuccess &= Endpoint_ConfigureEndpoint(TMC_IN_EPADDR, EP_TYPE_BULK, TMC_IO_EPSIZE, 1); ConfigSuccess &= Endpoint_ConfigureEndpoint(TMC_OUT_EPADDR, EP_TYPE_BULK, TMC_IO_EPSIZE, 1); /* Indicate endpoint configuration success or failure */ LEDs_SetAllLEDs(ConfigSuccess ? LEDMASK_USB_READY : LEDMASK_USB_ERROR); } /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to * the device from the USB host before passing along unhandled control requests to the library for processing * internally. */ void EVENT_USB_Device_ControlRequest(void) { uint8_t TMCRequestStatus = TMC_STATUS_SUCCESS; /* Process TMC specific control requests */ switch (USB_ControlRequest.bRequest) { case Req_InitiateAbortBulkOut: if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_ENDPOINT)) { /* Check that no split transaction is already in progress and the data transfer tag is valid */ if (RequestInProgress != 0) { TMCRequestStatus = TMC_STATUS_SPLIT_IN_PROGRESS; } else if (USB_ControlRequest.wValue != CurrentTransferTag) { TMCRequestStatus = TMC_STATUS_TRANSFER_NOT_IN_PROGRESS; } else { /* Indicate that all in-progress/pending data OUT requests should be aborted */ IsTMCBulkOUTReset = true; /* Save the split request for later checking when a new request is received */ RequestInProgress = Req_InitiateAbortBulkOut; } Endpoint_ClearSETUP(); /* Write the request response byte */ Endpoint_Write_8(TMCRequestStatus); Endpoint_ClearIN(); Endpoint_ClearStatusStage(); } break; case Req_CheckAbortBulkOutStatus: if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_ENDPOINT)) { /* Check that an ABORT BULK OUT transaction has been requested and that the request has completed */ if (RequestInProgress != Req_InitiateAbortBulkOut) TMCRequestStatus = TMC_STATUS_SPLIT_NOT_IN_PROGRESS; else if (IsTMCBulkOUTReset) TMCRequestStatus = TMC_STATUS_PENDING; else RequestInProgress = 0; Endpoint_ClearSETUP(); /* Write the request response bytes */ Endpoint_Write_8(TMCRequestStatus); Endpoint_Write_16_LE(0); Endpoint_Write_32_LE(LastTransferLength); Endpoint_ClearIN(); Endpoint_ClearStatusStage(); } break; case Req_InitiateAbortBulkIn: if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_ENDPOINT)) { /* Check that no split transaction is already in progress and the data transfer tag is valid */ if (RequestInProgress != 0) { TMCRequestStatus = TMC_STATUS_SPLIT_IN_PROGRESS; } else if (USB_ControlRequest.wValue != CurrentTransferTag) { TMCRequestStatus = TMC_STATUS_TRANSFER_NOT_IN_PROGRESS; } else { /* Indicate that all in-progress/pending data IN requests should be aborted */ IsTMCBulkINReset = true; /* Save the split request for later checking when a new request is received */ RequestInProgress = Req_InitiateAbortBulkIn; } Endpoint_ClearSETUP(); /* Write the request response bytes */ Endpoint_Write_8(TMCRequestStatus); Endpoint_Write_8(CurrentTransferTag); Endpoint_ClearIN(); Endpoint_ClearStatusStage(); } break; case Req_CheckAbortBulkInStatus: if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_ENDPOINT)) { /* Check that an ABORT BULK IN transaction has been requested and that the request has completed */ if (RequestInProgress != Req_InitiateAbortBulkIn) TMCRequestStatus = TMC_STATUS_SPLIT_NOT_IN_PROGRESS; else if (IsTMCBulkINReset) TMCRequestStatus = TMC_STATUS_PENDING; else RequestInProgress = 0; Endpoint_ClearSETUP(); /* Write the request response bytes */ Endpoint_Write_8(TMCRequestStatus); Endpoint_Write_16_LE(0); Endpoint_Write_32_LE(LastTransferLength); Endpoint_ClearIN(); Endpoint_ClearStatusStage(); } break; case Req_InitiateClear: if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE)) { /* Check that no split transaction is already in progress */ if (RequestInProgress != 0) { Endpoint_Write_8(TMC_STATUS_SPLIT_IN_PROGRESS); } else { /* Indicate that all in-progress/pending data IN and OUT requests should be aborted */ IsTMCBulkINReset = true; IsTMCBulkOUTReset = true; /* Save the split request for later checking when a new request is received */ RequestInProgress = Req_InitiateClear; } Endpoint_ClearSETUP(); /* Write the request response byte */ Endpoint_Write_8(TMCRequestStatus); Endpoint_ClearIN(); Endpoint_ClearStatusStage(); } break; case Req_CheckClearStatus: if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE)) { /* Check that a CLEAR transaction has been requested and that the request has completed */ if (RequestInProgress != Req_InitiateClear) TMCRequestStatus = TMC_STATUS_SPLIT_NOT_IN_PROGRESS; else if (IsTMCBulkINReset || IsTMCBulkOUTReset) TMCRequestStatus = TMC_STATUS_PENDING; else RequestInProgress = 0; Endpoint_ClearSETUP(); /* Write the request response bytes */ Endpoint_Write_8(TMCRequestStatus); Endpoint_Write_8(0); Endpoint_ClearIN(); Endpoint_ClearStatusStage(); } break; case Req_GetCapabilities: if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE)) { Endpoint_ClearSETUP(); /* Write the device capabilities to the control endpoint */ Endpoint_Write_Control_Stream_LE(&Capabilities, sizeof(TMC_Capabilities_t)); Endpoint_ClearOUT(); } break; } } void ProcessSentMessage(uint8_t* const Data, const uint8_t Length) { if (strncmp((char*)Data, "*IDN?", 5) == 0) strcpy((char*)NextResponseBuffer, "LUFA TMC DEMO"); NextResponseLen = strlen((char*)NextResponseBuffer); } uint8_t GetNextMessage(uint8_t* const Data) { strcpy((char*)NextResponseBuffer, "LUFA TMC DEMO"); NextResponseLen = strlen((char*)NextResponseBuffer); // --- uint8_t DataLen = MIN(NextResponseLen, 64); strlcpy((char*)Data, (char*)NextResponseBuffer, DataLen); return DataLen; } /** Function to manage TMC data transmission and reception to and from the host. */ void TMC_Task(void) { /* Device must be connected and configured for the task to run */ if (USB_DeviceState != DEVICE_STATE_Configured) return; TMC_MessageHeader_t MessageHeader; uint8_t MessagePayload[128]; /* Try to read in a TMC message from the interface, process if one is available */ if (ReadTMCHeader(&MessageHeader)) { /* Indicate busy */ LEDs_SetAllLEDs(LEDMASK_USB_BUSY); switch (MessageHeader.MessageID) { case TMC_MESSAGEID_DEV_DEP_MSG_OUT: LastTransferLength = 0; while (Endpoint_Read_Stream_LE(MessagePayload, MIN(MessageHeader.TransferSize, sizeof(MessagePayload)), &LastTransferLength) == ENDPOINT_RWSTREAM_IncompleteTransfer) { if (IsTMCBulkOUTReset) break; } Endpoint_ClearOUT(); ProcessSentMessage(MessagePayload, LastTransferLength); break; case TMC_MESSAGEID_DEV_DEP_MSG_IN: Endpoint_ClearOUT(); MessageHeader.TransferSize = GetNextMessage(MessagePayload); MessageHeader.MessageIDSpecific.DeviceOUT.LastMessageTransaction = true; WriteTMCHeader(&MessageHeader); LastTransferLength = 0; while (Endpoint_Write_Stream_LE(MessagePayload, MessageHeader.TransferSize, &LastTransferLength) == ENDPOINT_RWSTREAM_IncompleteTransfer) { if (IsTMCBulkINReset) break; } Endpoint_ClearIN(); break; default: Endpoint_StallTransaction(); break; } LEDs_SetAllLEDs(LEDMASK_USB_READY); } /* All pending data has been processed - reset the data abort flags */ IsTMCBulkINReset = false; IsTMCBulkOUTReset = false; } /** Attempts to read in the TMC message header from the TMC interface. * * \param[out] MessageHeader Pointer to a location where the read header (if any) should be stored * * \return Boolean \c true if a header was read, \c false otherwise */ bool ReadTMCHeader(TMC_MessageHeader_t* const MessageHeader) { uint16_t BytesTransferred; uint8_t ErrorCode; /* Select the Data Out endpoint */ Endpoint_SelectEndpoint(TMC_OUT_EPADDR); /* Abort if no command has been sent from the host */ if (!(Endpoint_IsOUTReceived())) return false; /* Read in the header of the command from the host */ BytesTransferred = 0; while ((ErrorCode = Endpoint_Read_Stream_LE(MessageHeader, sizeof(TMC_MessageHeader_t), &BytesTransferred)) == ENDPOINT_RWSTREAM_IncompleteTransfer) { if (IsTMCBulkOUTReset) break; } /* Store the new command tag value for later use */ CurrentTransferTag = MessageHeader->Tag; /* Indicate if the command has been aborted or not */ return (!(IsTMCBulkOUTReset) && (ErrorCode == ENDPOINT_RWSTREAM_NoError)); } bool WriteTMCHeader(TMC_MessageHeader_t* const MessageHeader) { uint16_t BytesTransferred; uint8_t ErrorCode; /* Set the message tag of the command header */ MessageHeader->Tag = CurrentTransferTag; MessageHeader->InverseTag = ~CurrentTransferTag; /* Select the Data In endpoint */ Endpoint_SelectEndpoint(TMC_IN_EPADDR); /* Send the command header to the host */ BytesTransferred = 0; while ((ErrorCode = Endpoint_Write_Stream_LE(MessageHeader, sizeof(TMC_MessageHeader_t), &BytesTransferred)) == ENDPOINT_RWSTREAM_IncompleteTransfer) { if (IsTMCBulkINReset) break; } /* Indicate if the command has been aborted or not */ return (!(IsTMCBulkINReset) && (ErrorCode == ENDPOINT_RWSTREAM_NoError)); }