/* LUFA Library Copyright (C) Dean Camera, 2017. dean [at] fourwalledcubicle [dot] com www.lufa-lib.org */ /* Copyright 2017 Dean Camera (dean [at] fourwalledcubicle [dot] com) Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that the copyright notice and this permission notice and warranty disclaimer appear in supporting documentation, and that the name of the author not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. The author disclaims all warranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall the author be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software. */ /** \file * * Main source file for the TemperatureDataLogger project. This file contains the main tasks of * the project and is responsible for the initial application hardware configuration. */ #include "TempDataLogger.h" /** LUFA Mass Storage Class driver interface configuration and state information. This structure is * passed to all Mass Storage Class driver functions, so that multiple instances of the same class * within a device can be differentiated from one another. */ USB_ClassInfo_MS_Device_t Disk_MS_Interface = { .Config = { .InterfaceNumber = INTERFACE_ID_MassStorage, .DataINEndpoint = { .Address = MASS_STORAGE_IN_EPADDR, .Size = MASS_STORAGE_IO_EPSIZE, .Banks = 1, }, .DataOUTEndpoint = { .Address = MASS_STORAGE_OUT_EPADDR, .Size = MASS_STORAGE_IO_EPSIZE, .Banks = 1, }, .TotalLUNs = 1, }, }; /** Buffer to hold the previously generated HID report, for comparison purposes inside the HID class driver. */ static uint8_t PrevHIDReportBuffer[GENERIC_REPORT_SIZE]; /** LUFA HID Class driver interface configuration and state information. This structure is * passed to all HID Class driver functions, so that multiple instances of the same class * within a device can be differentiated from one another. */ USB_ClassInfo_HID_Device_t Generic_HID_Interface = { .Config = { .InterfaceNumber = INTERFACE_ID_HID, .ReportINEndpoint = { .Address = GENERIC_IN_EPADDR, .Size = GENERIC_EPSIZE, .Banks = 1, }, .PrevReportINBuffer = PrevHIDReportBuffer, .PrevReportINBufferSize = sizeof(PrevHIDReportBuffer), }, }; /** Non-volatile Logging Interval value in EEPROM, stored as a number of 500ms ticks */ static uint8_t EEMEM LoggingInterval500MS_EEPROM = DEFAULT_LOG_INTERVAL; /** SRAM Logging Interval value fetched from EEPROM, stored as a number of 500ms ticks */ static uint8_t LoggingInterval500MS_SRAM; /** Total number of 500ms logging ticks elapsed since the last log value was recorded */ static uint16_t CurrentLoggingTicks; /** FAT Fs structure to hold the internal state of the FAT driver for the Dataflash contents. */ static FATFS DiskFATState; /** FAT Fs structure to hold a FAT file handle for the log data write destination. */ static FIL TempLogFile; /** ISR to handle the 500ms ticks for sampling and data logging */ ISR(TIMER1_COMPA_vect, ISR_BLOCK) { /* Signal a 500ms tick has elapsed to the RTC */ RTC_Tick500ms(); /* Check to see if the logging interval has expired */ if (++CurrentLoggingTicks < LoggingInterval500MS_SRAM) return; /* Reset log tick counter to prepare for next logging interval */ CurrentLoggingTicks = 0; uint8_t LEDMask = LEDs_GetLEDs(); LEDs_SetAllLEDs(LEDMASK_USB_BUSY); /* Only log when not connected to a USB host */ if (USB_DeviceState == DEVICE_STATE_Unattached) { TimeDate_t CurrentTimeDate; RTC_GetTimeDate(&CurrentTimeDate); char LineBuffer[100]; uint16_t BytesWritten; BytesWritten = sprintf(LineBuffer, "%02d/%02d/20%02d, %02d:%02d:%02d, %d Degrees\r\n", CurrentTimeDate.Day, CurrentTimeDate.Month, CurrentTimeDate.Year, CurrentTimeDate.Hour, CurrentTimeDate.Minute, CurrentTimeDate.Second, Temperature_GetTemperature()); f_write(&TempLogFile, LineBuffer, BytesWritten, &BytesWritten); f_sync(&TempLogFile); } LEDs_SetAllLEDs(LEDMask); } /** Main program entry point. This routine contains the overall program flow, including initial * setup of all components and the main program loop. */ int main(void) { SetupHardware(); /* Fetch logging interval from EEPROM */ LoggingInterval500MS_SRAM = eeprom_read_byte(&LoggingInterval500MS_EEPROM); /* Check if the logging interval is invalid (0xFF) indicating that the EEPROM is blank */ if (LoggingInterval500MS_SRAM == 0xFF) LoggingInterval500MS_SRAM = DEFAULT_LOG_INTERVAL; /* Mount and open the log file on the Dataflash FAT partition */ OpenLogFile(); LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY); GlobalInterruptEnable(); for (;;) { MS_Device_USBTask(&Disk_MS_Interface); HID_Device_USBTask(&Generic_HID_Interface); USB_USBTask(); } } /** Opens the log file on the Dataflash's FAT formatted partition according to the current date */ void OpenLogFile(void) { char LogFileName[12]; /* Get the current date for the filename as "DDMMYY.csv" */ TimeDate_t CurrentTimeDate; RTC_GetTimeDate(&CurrentTimeDate); sprintf(LogFileName, "%02d%02d%02d.csv", CurrentTimeDate.Day, CurrentTimeDate.Month, CurrentTimeDate.Year); /* Mount the storage device, open the file */ f_mount(0, &DiskFATState); f_open(&TempLogFile, LogFileName, FA_OPEN_ALWAYS | FA_WRITE); f_lseek(&TempLogFile, TempLogFile.fsize); } /** Closes the open data log file on the Dataflash's FAT formatted partition */ void CloseLogFile(void) { /* Sync any data waiting to be written, unmount the storage device */ f_sync(&TempLogFile); f_close(&TempLogFile); } /** Configures the board hardware and chip peripherals for the demo's functionality. */ void SetupHardware(void) { #if (ARCH == ARCH_AVR8) /* Disable watchdog if enabled by bootloader/fuses */ MCUSR &= ~(1 << WDRF); wdt_disable(); /* Disable clock division */ clock_prescale_set(clock_div_1); #endif /* Hardware Initialization */ LEDs_Init(); ADC_Init(ADC_FREE_RUNNING | ADC_PRESCALE_128); Temperature_Init(); Dataflash_Init(); USB_Init(); TWI_Init(TWI_BIT_PRESCALE_4, TWI_BITLENGTH_FROM_FREQ(4, 50000)); RTC_Init(); /* 500ms logging interval timer configuration */ OCR1A = (((F_CPU / 256) / 2) - 1); TCCR1B = (1 << WGM12) | (1 << CS12); TIMSK1 = (1 << OCIE1A); /* Check if the Dataflash is working, abort if not */ if (!(DataflashManager_CheckDataflashOperation())) { LEDs_SetAllLEDs(LEDMASK_USB_ERROR); for(;;); } /* Clear Dataflash sector protections, if enabled */ DataflashManager_ResetDataflashProtections(); } /** Event handler for the library USB Connection event. */ void EVENT_USB_Device_Connect(void) { LEDs_SetAllLEDs(LEDMASK_USB_ENUMERATING); /* Close the log file so that the host has exclusive file system access */ CloseLogFile(); } /** Event handler for the library USB Disconnection event. */ void EVENT_USB_Device_Disconnect(void) { LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY); /* Mount and open the log file on the Dataflash FAT partition */ OpenLogFile(); } /** Event handler for the library USB Configuration Changed event. */ void EVENT_USB_Device_ConfigurationChanged(void) { bool ConfigSuccess = true; ConfigSuccess &= HID_Device_ConfigureEndpoints(&Generic_HID_Interface); ConfigSuccess &= MS_Device_ConfigureEndpoints(&Disk_MS_Interface); LEDs_SetAllLEDs(ConfigSuccess ? LEDMASK_USB_READY : LEDMASK_USB_ERROR); } /** Event handler for the library USB Control Request reception event. */ void EVENT_USB_Device_ControlRequest(void) { MS_Device_ProcessControlRequest(&Disk_MS_Interface); HID_Device_ProcessControlRequest(&Generic_HID_Interface); } /** Mass Storage class driver callback function the reception of SCSI commands from the host, which must be processed. * * \param[in] MSInterfaceInfo Pointer to the Mass Storage class interface configuration structure being referenced */ bool CALLBACK_MS_Device_SCSICommandReceived(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo) { bool CommandSuccess; LEDs_SetAllLEDs(LEDMASK_USB_BUSY); CommandSuccess = SCSI_DecodeSCSICommand(MSInterfaceInfo); LEDs_SetAllLEDs(LEDMASK_USB_READY); return CommandSuccess; } /** HID class driver callback function for the creation of HID reports to the host. * * \param[in] HIDInterfaceInfo Pointer to the HID class interface configuration structure being referenced * \param[in,out] ReportID Report ID requested by the host if non-zero, otherwise callback should set to the generated report ID * \param[in] ReportType Type of the report to create, either HID_REPORT_ITEM_In or HID_REPORT_ITEM_Feature * \param[out] ReportData Pointer to a buffer where the created report should be stored * \param[out] ReportSize Number of bytes written in the report (or zero if no report is to be sent) * * \return Boolean \c true to force the sending of the report, \c false to let the library determine if it needs to be sent */ bool CALLBACK_HID_Device_CreateHIDReport(USB_ClassInfo_HID_Device_t* const HIDInterfaceInfo, uint8_t* const ReportID, const uint8_t ReportType, void* ReportData, uint16_t* const ReportSize) { Device_Report_t* ReportParams = (Device_Report_t*)ReportData; RTC_GetTimeDate(&ReportParams->TimeDate); ReportParams->LogInterval500MS = LoggingInterval500MS_SRAM; *ReportSize = sizeof(Device_Report_t); return true; } /** HID class driver callback function for the processing of HID reports from the host. * * \param[in] HIDInterfaceInfo Pointer to the HID class interface configuration structure being referenced * \param[in] ReportID Report ID of the received report from the host * \param[in] ReportType The type of report that the host has sent, either HID_REPORT_ITEM_Out or HID_REPORT_ITEM_Feature * \param[in] ReportData Pointer to a buffer where the received report has been stored * \param[in] ReportSize Size in bytes of the received HID report */ void CALLBACK_HID_Device_ProcessHIDReport(USB_ClassInfo_HID_Device_t* const HIDInterfaceInfo, const uint8_t ReportID, const uint8_t ReportType, const void* ReportData, const uint16_t ReportSize) { Device_Report_t* ReportParams = (Device_Report_t*)ReportData; RTC_SetTimeDate(&ReportParams->TimeDate); /* If the logging interval has changed from its current value, write it to EEPROM */ if (LoggingInterval500MS_SRAM != ReportParams->LogInterval500MS) { LoggingInterval500MS_SRAM = ReportParams->LogInterval500MS; eeprom_update_byte(&LoggingInterval500MS_EEPROM, LoggingInterval500MS_SRAM); } } 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/*
             LUFA Library
     Copyright (C) Dean Camera, 2017.

  dean [at] fourwalledcubicle [dot] com
           www.lufa-lib.org
*/

/*
  Copyright 2017  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, distribute, and sell this
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaims all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  XPROG Protocol handler, to process V2 Protocol wrapped XPROG commands used in Atmel programmer devices.
 */

#define  INCLUDE_FROM_XPROGPROTOCOL_C
#include "XPROGProtocol.h"

#if defined(ENABLE_XPROG_PROTOCOL) || defined(__DOXYGEN__)
/** Base absolute address for the target's NVM controller for PDI programming */
uint32_t XPROG_Param_NVMBase       = 0x010001C0;

/** Size in bytes of the target's EEPROM page */
uint16_t XPROG_Param_EEPageSize    = 32;

/** Address of the TPI device's NVMCMD register for TPI programming */
uint8_t  XPROG_Param_NVMCMDRegAddr = 0x33;

/** Address of the TPI device's NVMCSR register for TPI programming */
uint8_t  XPROG_Param_NVMCSRRegAddr = 0x32;

/** Currently selected XPROG programming protocol */
uint8_t  XPROG_SelectedProtocol    = XPROG_PROTOCOL_PDI;

/** Handler for the CMD_XPROG_SETMODE command, which sets the programmer-to-target protocol used for PDI/TPI
 *  programming.
 */
void XPROGProtocol_SetMode(void)
{
	struct
	{
		uint8_t Protocol;
	} SetMode_XPROG_Params;

	Endpoint_Read_Stream_LE(&SetMode_XPROG_Params, sizeof(SetMode_XPROG_Params), NULL);

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	XPROG_SelectedProtocol = SetMode_XPROG_Params.Protocol;

	Endpoint_Write_8(CMD_XPROG_SETMODE);
	Endpoint_Write_8((SetMode_XPROG_Params.Protocol != XPROG_PROTOCOL_JTAG) ? STATUS_CMD_OK : STATUS_CMD_FAILED);
	Endpoint_ClearIN();
}

/** Handler for the CMD_XPROG command, which wraps up XPROG commands in a V2 wrapper which need to be
 *  removed and processed so that the underlying XPROG command can be handled.
 */
void XPROGProtocol_Command(void)
{
	uint8_t XPROGCommand = Endpoint_Read_8();

	switch (XPROGCommand)
	{
		case XPROG_CMD_ENTER_PROGMODE:
			XPROGProtocol_EnterXPROGMode();
			break;
		case XPROG_CMD_LEAVE_PROGMODE:
			XPROGProtocol_LeaveXPROGMode();
			break;
		case XPROG_CMD_ERASE:
			XPROGProtocol_Erase();
			break;
		case XPROG_CMD_WRITE_MEM:
			XPROGProtocol_WriteMemory();
			break;
		case XPROG_CMD_READ_MEM:
			XPROGProtocol_ReadMemory();
			break;
		case XPROG_CMD_CRC:
			XPROGProtocol_ReadCRC();
			break;
		case XPROG_CMD_SET_PARAM:
			XPROGProtocol_SetParam();
			break;
	}
}

/** Handler for the XPROG ENTER_PROGMODE command to establish a connection with the attached device. */
static void XPROGProtocol_EnterXPROGMode(void)
{
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	bool NVMBusEnabled = false;

	if (XPROG_SelectedProtocol == XPROG_PROTOCOL_PDI)
	  NVMBusEnabled = XMEGANVM_EnablePDI();
	else if (XPROG_SelectedProtocol == XPROG_PROTOCOL_TPI)
	  NVMBusEnabled = TINYNVM_EnableTPI();

	Endpoint_Write_8(CMD_XPROG);
	Endpoint_Write_8(XPROG_CMD_ENTER_PROGMODE);
	Endpoint_Write_8(NVMBusEnabled ? XPROG_ERR_OK : XPROG_ERR_FAILED);
	Endpoint_ClearIN();
}

/** Handler for the XPROG LEAVE_PROGMODE command to terminate the PDI programming connection with
 *  the attached device.
 */
static void XPROGProtocol_LeaveXPROGMode(void)
{
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	if (XPROG_SelectedProtocol == XPROG_PROTOCOL_PDI)
	  XMEGANVM_DisablePDI();
	else
	  TINYNVM_DisableTPI();

	#if defined(XCK_RESCUE_CLOCK_ENABLE) && defined(ENABLE_ISP_PROTOCOL)
	/* If the XCK rescue clock option is enabled, we need to restart it once the
	 * XPROG mode has been exited, since the XPROG protocol stops it after use. */
	ISPTarget_ConfigureRescueClock();
	#endif

	Endpoint_Write_8(CMD_XPROG);
	Endpoint_Write_8(XPROG_CMD_LEAVE_PROGMODE);
	Endpoint_Write_8(XPROG_ERR_OK);
	Endpoint_ClearIN();
}

/** Handler for the XPRG ERASE command to erase a specific memory address space in the attached device. */
static void XPROGProtocol_Erase(void)
{
	uint8_t ReturnStatus = XPROG_ERR_OK;

	struct
	{
		uint8_t  MemoryType;
		uint32_t Address;
	} Erase_XPROG_Params;

	Endpoint_Read_Stream_LE(&Erase_XPROG_Params, sizeof(Erase_XPROG_Params), NULL);
	Erase_XPROG_Params.Address = SwapEndian_32(Erase_XPROG_Params.Address);

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	uint8_t EraseCommand;

	if (XPROG_SelectedProtocol == XPROG_PROTOCOL_PDI)
	{
		/* Determine which NVM command to send to the device depending on the memory to erase */
		switch (Erase_XPROG_Params.MemoryType)
		{
			case XPROG_ERASE_CHIP:
				EraseCommand = XMEGA_NVM_CMD_CHIPERASE;
				break;
			case XPROG_ERASE_APP:
				EraseCommand = XMEGA_NVM_CMD_ERASEAPPSEC;
				break;
			case XPROG_ERASE_BOOT:
				EraseCommand = XMEGA_NVM_CMD_ERASEBOOTSEC;
				break;
			case XPROG_ERASE_EEPROM:
				EraseCommand = XMEGA_NVM_CMD_ERASEEEPROM;
				break;
			case XPROG_ERASE_APP_PAGE:
				EraseCommand = XMEGA_NVM_CMD_ERASEAPPSECPAGE;
				break;
			case XPROG_ERASE_BOOT_PAGE:
				EraseCommand = XMEGA_NVM_CMD_ERASEBOOTSECPAGE;
				break;
			case XPROG_ERASE_EEPROM_PAGE:
				EraseCommand = XMEGA_NVM_CMD_ERASEEEPROMPAGE;
				break;
			case XPROG_ERASE_USERSIG:
				EraseCommand = XMEGA_NVM_CMD_ERASEUSERSIG;
				break;
			default:
				EraseCommand = XMEGA_NVM_CMD_NOOP;
				break;
		}

		/* Erase the target memory, indicate timeout if occurred */
		if (!(XMEGANVM_EraseMemory(EraseCommand, Erase_XPROG_Params.Address)))
		  ReturnStatus = XPROG_ERR_TIMEOUT;
	}
	else
	{
		if (Erase_XPROG_Params.MemoryType == XPROG_ERASE_CHIP)
		  EraseCommand = TINY_NVM_CMD_CHIPERASE;
		else
		  EraseCommand = TINY_NVM_CMD_SECTIONERASE;

		/* Erase the target memory, indicate timeout if occurred */
		if (!(TINYNVM_EraseMemory(EraseCommand, Erase_XPROG_Params.Address)))
		  ReturnStatus = XPROG_ERR_TIMEOUT;
	}

	Endpoint_Write_8(CMD_XPROG);
	Endpoint_Write_8(XPROG_CMD_ERASE);
	Endpoint_Write_8(ReturnStatus);
	Endpoint_ClearIN();
}

/** Handler for the XPROG WRITE_MEMORY command to write to a specific memory space within the attached device. */
static void XPROGProtocol_WriteMemory(void)
{
	uint8_t ReturnStatus = XPROG_ERR_OK;

	struct
	{
		uint8_t  MemoryType;
		uint8_t  PageMode;
		uint32_t Address;
		uint16_t Length;
		uint8_t  ProgData[256];
	} WriteMemory_XPROG_Params;

	Endpoint_Read_Stream_LE(&WriteMemory_XPROG_Params, (sizeof(WriteMemory_XPROG_Params) -
	                                                    sizeof(WriteMemory_XPROG_Params).ProgData), NULL);
	WriteMemory_XPROG_Params.Address = SwapEndian_32(WriteMemory_XPROG_Params.Address);
	WriteMemory_XPROG_Params.Length  = SwapEndian_16(WriteMemory_XPROG_Params.Length);
	Endpoint_Read_Stream_LE(&WriteMemory_XPROG_Params.ProgData, WriteMemory_XPROG_Params.Length, NULL);

	// The driver will terminate transfers that are a round multiple of the endpoint bank in size with a ZLP, need
	// to catch this and discard it before continuing on with packet processing to prevent communication issues
	if (((sizeof(uint8_t) + sizeof(WriteMemory_XPROG_Params) - sizeof(WriteMemory_XPROG_Params.ProgData)) +
	    WriteMemory_XPROG_Params.Length) % AVRISP_DATA_EPSIZE == 0)
	{
		Endpoint_ClearOUT();
		Endpoint_WaitUntilReady();
	}

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	if (XPROG_SelectedProtocol == XPROG_PROTOCOL_PDI)
	{
		/* Assume FLASH page programming by default, as it is the common case */
		uint8_t WriteCommand     = XMEGA_NVM_CMD_WRITEFLASHPAGE;
		uint8_t WriteBuffCommand = XMEGA_NVM_CMD_LOADFLASHPAGEBUFF;
		uint8_t EraseBuffCommand = XMEGA_NVM_CMD_ERASEFLASHPAGEBUFF;
		bool    PagedMemory      = true;

		switch (WriteMemory_XPROG_Params.MemoryType)
		{
			case XPROG_MEM_TYPE_APPL:
				WriteCommand     = XMEGA_NVM_CMD_WRITEAPPSECPAGE;
				break;
			case XPROG_MEM_TYPE_BOOT:
				WriteCommand     = XMEGA_NVM_CMD_WRITEBOOTSECPAGE;
				break;
			case XPROG_MEM_TYPE_EEPROM:
				WriteCommand     = XMEGA_NVM_CMD_ERASEWRITEEEPROMPAGE;
				WriteBuffCommand = XMEGA_NVM_CMD_LOADEEPROMPAGEBUFF;
				EraseBuffCommand = XMEGA_NVM_CMD_ERASEEEPROMPAGEBUFF;
				break;
			case XPROG_MEM_TYPE_USERSIG:
				WriteCommand     = XMEGA_NVM_CMD_WRITEUSERSIG;
				break;
			case XPROG_MEM_TYPE_FUSE:
				WriteCommand     = XMEGA_NVM_CMD_WRITEFUSE;
				PagedMemory      = false;
				break;
			case XPROG_MEM_TYPE_LOCKBITS:
				WriteCommand     = XMEGA_NVM_CMD_WRITELOCK;
				PagedMemory      = false;
				break;
		}

		/* Send the appropriate memory write commands to the device, indicate timeout if occurred */
		if ((PagedMemory && !(XMEGANVM_WritePageMemory(WriteBuffCommand, EraseBuffCommand, WriteCommand,
													   WriteMemory_XPROG_Params.PageMode, WriteMemory_XPROG_Params.Address,
													   WriteMemory_XPROG_Params.ProgData, WriteMemory_XPROG_Params.Length))) ||
		   (!PagedMemory && !(XMEGANVM_WriteByteMemory(WriteCommand, WriteMemory_XPROG_Params.Address,
													   WriteMemory_XPROG_Params.ProgData[0]))))
		{
			ReturnStatus = XPROG_ERR_TIMEOUT;
		}
	}
	else
	{
		/* Send write command to the TPI device, indicate timeout if occurred */
		if (!(TINYNVM_WriteMemory(WriteMemory_XPROG_Params.Address, WriteMemory_XPROG_Params.ProgData,
		      WriteMemory_XPROG_Params.Length)))
		{
			ReturnStatus = XPROG_ERR_TIMEOUT;
		}
	}

	Endpoint_Write_8(CMD_XPROG);
	Endpoint_Write_8(XPROG_CMD_WRITE_MEM);
	Endpoint_Write_8(ReturnStatus);
	Endpoint_ClearIN();
}

/** Handler for the XPROG READ_MEMORY command to read data from a specific address space within the
 *  attached device.
 */
static void XPROGProtocol_ReadMemory(void)
{
	uint8_t ReturnStatus = XPROG_ERR_OK;

	struct
	{
		uint8_t  MemoryType;
		uint32_t Address;
		uint16_t Length;
	} ReadMemory_XPROG_Params;

	Endpoint_Read_Stream_LE(&ReadMemory_XPROG_Params, sizeof(ReadMemory_XPROG_Params), NULL);
	ReadMemory_XPROG_Params.Address = SwapEndian_32(ReadMemory_XPROG_Params.Address);
	ReadMemory_XPROG_Params.Length  = SwapEndian_16(ReadMemory_XPROG_Params.Length);

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	uint8_t ReadBuffer[256];

	if (XPROG_SelectedProtocol == XPROG_PROTOCOL_PDI)
	{
		/* Read the PDI target's memory, indicate timeout if occurred */
		if (!(XMEGANVM_ReadMemory(ReadMemory_XPROG_Params.Address, ReadBuffer, ReadMemory_XPROG_Params.Length)))
		  ReturnStatus = XPROG_ERR_TIMEOUT;
	}
	else
	{
		/* Read the TPI target's memory, indicate timeout if occurred */
		if (!(TINYNVM_ReadMemory(ReadMemory_XPROG_Params.Address, ReadBuffer, ReadMemory_XPROG_Params.Length)))
		  ReturnStatus = XPROG_ERR_TIMEOUT;
	}

	Endpoint_Write_8(CMD_XPROG);
	Endpoint_Write_8(XPROG_CMD_READ_MEM);
	Endpoint_Write_8(ReturnStatus);

	if (ReturnStatus == XPROG_ERR_OK)
	  Endpoint_Write_Stream_LE(ReadBuffer, ReadMemory_XPROG_Params.Length, NULL);

	Endpoint_ClearIN();
}

/** Handler for the XPROG CRC command to read a specific memory space's CRC value for comparison between the
 *  attached device's memory and a data set on the host.
 */
static void XPROGProtocol_ReadCRC(void)
{
	uint8_t ReturnStatus = XPROG_ERR_OK;

	struct
	{
		uint8_t CRCType;
	} ReadCRC_XPROG_Params;

	Endpoint_Read_Stream_LE(&ReadCRC_XPROG_Params, sizeof(ReadCRC_XPROG_Params), NULL);

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	uint32_t MemoryCRC;

	if (XPROG_SelectedProtocol == XPROG_PROTOCOL_PDI)
	{
		uint8_t CRCCommand;

		/* Determine which NVM command to send to the device depending on the memory to CRC */
		switch (ReadCRC_XPROG_Params.CRCType)
		{
			case XPROG_CRC_APP:
				CRCCommand = XMEGA_NVM_CMD_APPCRC;
				break;
			case XPROG_CRC_BOOT:
				CRCCommand = XMEGA_NVM_CMD_BOOTCRC;
				break;
			default:
				CRCCommand = XMEGA_NVM_CMD_FLASHCRC;
				break;
		}

		/* Perform and retrieve the memory CRC, indicate timeout if occurred */
		if (!(XMEGANVM_GetMemoryCRC(CRCCommand, &MemoryCRC)))
		  ReturnStatus = XPROG_ERR_TIMEOUT;
	}
	else
	{
		/* TPI does not support memory CRC */
		ReturnStatus = XPROG_ERR_FAILED;
	}

	Endpoint_Write_8(CMD_XPROG);
	Endpoint_Write_8(XPROG_CMD_CRC);
	Endpoint_Write_8(ReturnStatus);

	if (ReturnStatus == XPROG_ERR_OK)
	{
		Endpoint_Write_8(MemoryCRC >> 16);
		Endpoint_Write_16_LE(MemoryCRC & 0xFFFF);
	}

	Endpoint_ClearIN();
}

/** Handler for the XPROG SET_PARAM command to set a XPROG parameter for use when communicating with the
 *  attached device.
 */
static void XPROGProtocol_SetParam(void)
{
	uint8_t ReturnStatus = XPROG_ERR_OK;

	uint8_t XPROGParam = Endpoint_Read_8();

	/* Determine which parameter is being set, store the new parameter value */
	switch (XPROGParam)
	{
		case XPROG_PARAM_NVMBASE:
			XPROG_Param_NVMBase       = Endpoint_Read_32_BE();
			break;
		case XPROG_PARAM_EEPPAGESIZE:
			XPROG_Param_EEPageSize    = Endpoint_Read_16_BE();
			break;
		case XPROG_PARAM_NVMCMD_REG:
			XPROG_Param_NVMCMDRegAddr = Endpoint_Read_8();
			break;
		case XPROG_PARAM_NVMCSR_REG:
			XPROG_Param_NVMCSRRegAddr = Endpoint_Read_8();
			break;
		case XPROG_PARAM_UNKNOWN_1:
			/* TODO: Undocumented parameter added in AVRStudio 5.1, purpose unknown. Must ACK and discard or
			         the communication with AVRStudio 5.1 will fail.
			*/
			Endpoint_Discard_16();
			break;
		default:
			ReturnStatus = XPROG_ERR_FAILED;
			break;
	}

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	Endpoint_Write_8(CMD_XPROG);
	Endpoint_Write_8(XPROG_CMD_SET_PARAM);
	Endpoint_Write_8(ReturnStatus);
	Endpoint_ClearIN();
}

#endif