aboutsummaryrefslogtreecommitdiffstats
path: root/usbdrv/usbdrvasm18-crc.inc
diff options
context:
space:
mode:
Diffstat (limited to 'usbdrv/usbdrvasm18-crc.inc')
-rw-r--r--usbdrv/usbdrvasm18-crc.inc707
1 files changed, 707 insertions, 0 deletions
diff --git a/usbdrv/usbdrvasm18-crc.inc b/usbdrv/usbdrvasm18-crc.inc
new file mode 100644
index 0000000..18d9ea2
--- /dev/null
+++ b/usbdrv/usbdrvasm18-crc.inc
@@ -0,0 +1,707 @@
+/* Name: usbdrvasm18.inc
+ * Project: AVR USB driver
+ * Author: Lukas Schrittwieser (based on 20 MHz usbdrvasm20.inc by Jeroen Benschop)
+ * Creation Date: 2009-01-20
+ * Tabsize: 4
+ * Copyright: (c) 2008 by Lukas Schrittwieser and OBJECTIVE DEVELOPMENT Software GmbH
+ * License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
+ * Revision: $Id$
+ */
+
+/* Do not link this file! Link usbdrvasm.S instead, which includes the
+ * appropriate implementation!
+ */
+
+/*
+General Description:
+This file is the 18 MHz version of the asssembler part of the USB driver. It
+requires a 18 MHz crystal (not a ceramic resonator and not a calibrated RC
+oscillator).
+
+See usbdrv.h for a description of the entire driver.
+
+Since almost all of this code is timing critical, don't change unless you
+really know what you are doing! Many parts require not only a maximum number
+of CPU cycles, but even an exact number of cycles!
+*/
+
+
+;max stack usage: [ret(2), YL, SREG, YH, [sofError], bitcnt(x5), shift, x1, x2, x3, x4, cnt, ZL, ZH] = 14 bytes
+;nominal frequency: 18 MHz -> 12 cycles per bit
+; Numbers in brackets are clocks counted from center of last sync bit
+; when instruction starts
+;register use in receive loop to receive the data bytes:
+; shift assembles the byte currently being received
+; x1 holds the D+ and D- line state
+; x2 holds the previous line state
+; cnt holds the number of bytes left in the receive buffer
+; x3 holds the higher crc byte (see algorithm below)
+; x4 is used as temporary register for the crc algorithm
+; x5 is used for unstuffing: when unstuffing the last received bit is inverted in shift (to prevent further
+; unstuffing calls. In the same time the corresponding bit in x5 is cleared to mark the bit as beening iverted
+; zl lower crc value and crc table index
+; zh used for crc table accesses
+
+;--------------------------------------------------------------------------------------------------------------
+; CRC mods:
+; table driven crc checker, Z points to table in prog space
+; ZL is the lower crc byte, x3 is the higher crc byte
+; x4 is used as temp register to store different results
+; the initialization of the crc register is not 0xFFFF but 0xFE54. This is because during the receipt of the
+; first data byte an virtual zero data byte is added to the crc register, this results in the correct initial
+; value of 0xFFFF at beginning of the second data byte before the first data byte is added to the crc
+; the magic number 0xFE54 results form the crc table: At tabH[0x54] = 0xFF = crcH (required) and
+; tabL[0x54] = 0x01 -> crcL = 0x01 xor 0xFE = 0xFF
+; bitcnt is renamed to x5 and is used for unstuffing purposes, the unstuffing works like in the 12MHz version
+;--------------------------------------------------------------------------------------------------------------
+; CRC algorithm:
+; The crc register is formed by x3 (higher byte) and ZL (lower byte). The algorithm uses a 'reversed' form
+; i.e. that it takes the least significant bit first and shifts to the right. So in fact the highest order
+; bit seen from the polynomial devision point of view is the lsb of ZL. (If this sounds strange to you i
+; propose a research on CRC :-) )
+; Each data byte received is xored to ZL, the lower crc byte. This byte now builds the crc
+; table index. Next the new high byte is loaded from the table and stored in x4 until we have space in x3
+; (its destination).
+; Afterwards the lower table is loaded from the table and stored in ZL (the old index is overwritten as
+; we don't need it anymore. In fact this is a right shift by 8 bits.) Now the old crc high value is xored
+; to ZL, this is the second shift of the old crc value. Now x4 (the temp reg) is moved to x3 and the crc
+; calculation is done.
+; Prior to the first byte the two CRC register have to be initialized to 0xFFFF (as defined in usb spec)
+; however the crc engine also runs during the receipt of the first byte, therefore x3 and zl are initialized
+; to a magic number which results in a crc value of 0xFFFF after the first complete byte.
+;
+; This algorithm is split into the extra cycles of the different bits:
+; bit7: XOR the received byte to ZL
+; bit5: load the new high byte to x4
+; bit6: load the lower xor byte from the table, xor zl and x3, store result in zl (=the new crc low value)
+; move x4 (the new high byte) to x3, the crc value is ready
+;
+
+
+macro POP_STANDARD ; 18 cycles
+ pop ZH
+ pop ZL
+ pop cnt
+ pop x5
+ pop x3
+ pop x2
+ pop x1
+ pop shift
+ pop x4
+ endm
+macro POP_RETI ; 7 cycles
+ pop YH
+ pop YL
+ out SREG, YL
+ pop YL
+ endm
+
+macro CRC_CLEANUP_AND_CHECK
+ ; the last byte has already been xored with the lower crc byte, we have to do the table lookup and xor
+ ; x3 is the higher crc byte, zl the lower one
+ ldi ZH, hi8(usbCrcTableHigh);[+1] get the new high byte from the table
+ lpm x2, Z ;[+2][+3][+4]
+ ldi ZH, hi8(usbCrcTableLow);[+5] get the new low xor byte from the table
+ lpm ZL, Z ;[+6][+7][+8]
+ eor ZL, x3 ;[+7] xor the old high byte with the value from the table, x2:ZL now holds the crc value
+ cpi ZL, 0x01 ;[+8] if the crc is ok we have a fixed remainder value of 0xb001 in x2:ZL (see usb spec)
+ brne ignorePacket ;[+9] detected a crc fault -> paket is ignored and retransmitted by the host
+ cpi x2, 0xb0 ;[+10]
+ brne ignorePacket ;[+11] detected a crc fault -> paket is ignored and retransmitted by the host
+ endm
+
+
+USB_INTR_VECTOR:
+;order of registers pushed: YL, SREG, YH, [sofError], x4, shift, x1, x2, x3, x5, cnt, ZL, ZH
+ push YL ;[-28] push only what is necessary to sync with edge ASAP
+ in YL, SREG ;[-26]
+ push YL ;[-25]
+ push YH ;[-23]
+;----------------------------------------------------------------------------
+; Synchronize with sync pattern:
+;----------------------------------------------------------------------------
+;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
+;sync up with J to K edge during sync pattern -- use fastest possible loops
+;The first part waits at most 1 bit long since we must be in sync pattern.
+;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to
+;waitForJ, ensure that this prerequisite is met.
+waitForJ:
+ inc YL
+ sbis USBIN, USBMINUS
+ brne waitForJ ; just make sure we have ANY timeout
+waitForK:
+;The following code results in a sampling window of < 1/4 bit which meets the spec.
+ sbis USBIN, USBMINUS ;[-17]
+ rjmp foundK ;[-16]
+ sbis USBIN, USBMINUS
+ rjmp foundK
+ sbis USBIN, USBMINUS
+ rjmp foundK
+ sbis USBIN, USBMINUS
+ rjmp foundK
+ sbis USBIN, USBMINUS
+ rjmp foundK
+ sbis USBIN, USBMINUS
+ rjmp foundK
+ sbis USBIN, USBMINUS
+ rjmp foundK
+ sbis USBIN, USBMINUS
+ rjmp foundK
+ sbis USBIN, USBMINUS
+ rjmp foundK
+#if USB_COUNT_SOF
+ lds YL, usbSofCount
+ inc YL
+ sts usbSofCount, YL
+#endif /* USB_COUNT_SOF */
+#ifdef USB_SOF_HOOK
+ USB_SOF_HOOK
+#endif
+ rjmp sofError
+foundK: ;[-15]
+;{3, 5} after falling D- edge, average delay: 4 cycles
+;bit0 should be at 30 (2.5 bits) for center sampling. Currently at 4 so 26 cylces till bit 0 sample
+;use 1 bit time for setup purposes, then sample again. Numbers in brackets
+;are cycles from center of first sync (double K) bit after the instruction
+ push x4 ;[-14]
+; [---] ;[-13]
+ lds YL, usbInputBufOffset;[-12] used to toggle the two usb receive buffers
+; [---] ;[-11]
+ clr YH ;[-10]
+ subi YL, lo8(-(usbRxBuf));[-9] [rx loop init]
+ sbci YH, hi8(-(usbRxBuf));[-8] [rx loop init]
+ push shift ;[-7]
+; [---] ;[-6]
+ ldi shift, 0x80 ;[-5] the last bit is the end of byte marker for the pid receiver loop
+ clc ;[-4] the carry has to be clear for receipt of pid bit 0
+ sbis USBIN, USBMINUS ;[-3] we want two bits K (sample 3 cycles too early)
+ rjmp haveTwoBitsK ;[-2]
+ pop shift ;[-1] undo the push from before
+ pop x4 ;[1]
+ rjmp waitForK ;[3] this was not the end of sync, retry
+; The entire loop from waitForK until rjmp waitForK above must not exceed two
+; bit times (= 24 cycles).
+
+;----------------------------------------------------------------------------
+; push more registers and initialize values while we sample the first bits:
+;----------------------------------------------------------------------------
+haveTwoBitsK:
+ push x1 ;[0]
+ push x2 ;[2]
+ push x3 ;[4] crc high byte
+ ldi x2, 1<<USBPLUS ;[6] [rx loop init] current line state is K state. D+=="1", D-=="0"
+ push x5 ;[7]
+ push cnt ;[9]
+ ldi cnt, USB_BUFSIZE ;[11]
+
+
+;--------------------------------------------------------------------------------------------------------------
+; receives the pid byte
+; there is no real unstuffing algorithm implemented here as a stuffing bit is impossible in the pid byte.
+; That's because the last four bits of the byte are the inverted of the first four bits. If we detect a
+; unstuffing condition something went wrong and we abort
+; shift has to be initialized to 0x80
+;--------------------------------------------------------------------------------------------------------------
+
+; pid bit 0 - used for even more register saving (we need the z pointer)
+ in x1, USBIN ;[0] sample line state
+ andi x1, USBMASK ;[1] filter only D+ and D- bits
+ eor x2, x1 ;[2] generate inverted of actual bit
+ sbrc x2, USBMINUS ;[3] if the bit is set we received a zero
+ sec ;[4]
+ ror shift ;[5] we perform no unstuffing check here as this is the first bit
+ mov x2, x1 ;[6]
+ push ZL ;[7]
+ ;[8]
+ push ZH ;[9]
+ ;[10]
+ ldi x3, 0xFE ;[11] x3 is the high order crc value
+
+
+bitloopPid:
+ in x1, USBIN ;[0] sample line state
+ andi x1, USBMASK ;[1] filter only D+ and D- bits
+ breq nse0 ;[2] both lines are low so handle se0
+ eor x2, x1 ;[3] generate inverted of actual bit
+ sbrc x2, USBMINUS ;[4] set the carry if we received a zero
+ sec ;[5]
+ ror shift ;[6]
+ ldi ZL, 0x54 ;[7] ZL is the low order crc value
+ ser x4 ;[8] the is no bit stuffing check here as the pid bit can't be stuffed. if so
+ ; some error occured. In this case the paket is discarded later on anyway.
+ mov x2, x1 ;[9] prepare for the next cycle
+ brcc bitloopPid ;[10] while 0s drop out of shift we get the next bit
+ eor x4, shift ;[11] invert all bits in shift and store result in x4
+
+;--------------------------------------------------------------------------------------------------------------
+; receives data bytes and calculates the crc
+; the last USBIN state has to be in x2
+; this is only the first half, due to branch distanc limitations the second half of the loop is near the end
+; of this asm file
+;--------------------------------------------------------------------------------------------------------------
+
+rxDataStart:
+ in x1, USBIN ;[0] sample line state (note: a se0 check is not useful due to bit dribbling)
+ ser x5 ;[1] prepare the unstuff marker register
+ eor x2, x1 ;[2] generates the inverted of the actual bit
+ bst x2, USBMINUS ;[3] copy the bit from x2
+ bld shift, 0 ;[4] and store it in shift
+ mov x2, shift ;[5] make a copy of shift for unstuffing check
+ andi x2, 0xF9 ;[6] mask the last six bits, if we got six zeros (which are six ones in fact)
+ breq unstuff0 ;[7] then Z is set now and we branch to the unstuffing handler
+didunstuff0:
+ subi cnt, 1 ;[8] cannot use dec because it doesn't affect the carry flag
+ brcs nOverflow ;[9] Too many bytes received. Ignore packet
+ st Y+, x4 ;[10] store the last received byte
+ ;[11] st needs two cycles
+
+; bit1
+ in x2, USBIN ;[0] sample line state
+ andi x1, USBMASK ;[1] check for se0 during bit 0
+ breq nse0 ;[2]
+ andi x2, USBMASK ;[3] check se0 during bit 1
+ breq nse0 ;[4]
+ eor x1, x2 ;[5]
+ bst x1, USBMINUS ;[6]
+ bld shift, 1 ;[7]
+ mov x1, shift ;[8]
+ andi x1, 0xF3 ;[9]
+ breq unstuff1 ;[10]
+didunstuff1:
+ nop ;[11]
+
+; bit2
+ in x1, USBIN ;[0] sample line state
+ andi x1, USBMASK ;[1] check for se0 (as there is nothing else to do here
+ breq nOverflow ;[2]
+ eor x2, x1 ;[3] generates the inverted of the actual bit
+ bst x2, USBMINUS ;[4]
+ bld shift, 2 ;[5] store the bit
+ mov x2, shift ;[6]
+ andi x2, 0xE7 ;[7] if we have six zeros here (which means six 1 in the stream)
+ breq unstuff2 ;[8] the next bit is a stuffing bit
+didunstuff2:
+ nop2 ;[9]
+ ;[10]
+ nop ;[11]
+
+; bit3
+ in x2, USBIN ;[0] sample line state
+ andi x2, USBMASK ;[1] check for se0
+ breq nOverflow ;[2]
+ eor x1, x2 ;[3]
+ bst x1, USBMINUS ;[4]
+ bld shift, 3 ;[5]
+ mov x1, shift ;[6]
+ andi x1, 0xCF ;[7]
+ breq unstuff3 ;[8]
+didunstuff3:
+ nop ;[9]
+ rjmp rxDataBit4 ;[10]
+ ;[11]
+
+; the avr branch instructions allow an offset of +63 insturction only, so we need this
+; 'local copy' of se0
+nse0:
+ rjmp se0 ;[4]
+ ;[5]
+; the same same as for se0 is needed for overflow and StuffErr
+nOverflow:
+stuffErr:
+ rjmp overflow
+
+
+unstuff0: ;[8] this is the branch delay of breq unstuffX
+ andi x1, USBMASK ;[9] do an se0 check here (if the last crc byte ends with 5 one's we might end up here
+ breq didunstuff0 ;[10] event tough the message is complete -> jump back and store the byte
+ ori shift, 0x01 ;[11] invert the last received bit to prevent furhter unstuffing
+ in x2, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
+ andi x5, 0xFE ;[1] mark this bit as inverted (will be corrected before storing shift)
+ eor x1, x2 ;[2] x1 and x2 have to be different because the stuff bit is always a zero
+ andi x1, USBMASK ;[3] mask the interesting bits
+ breq stuffErr ;[4] if the stuff bit is a 1-bit something went wrong
+ mov x1, x2 ;[5] the next bit expects the last state to be in x1
+ rjmp didunstuff0 ;[6]
+ ;[7] jump delay of rjmp didunstuffX
+
+unstuff1: ;[11] this is the jump delay of breq unstuffX
+ in x1, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
+ ori shift, 0x02 ;[1] invert the last received bit to prevent furhter unstuffing
+ andi x5, 0xFD ;[2] mark this bit as inverted (will be corrected before storing shift)
+ eor x2, x1 ;[3] x1 and x2 have to be different because the stuff bit is always a zero
+ andi x2, USBMASK ;[4] mask the interesting bits
+ breq stuffErr ;[5] if the stuff bit is a 1-bit something went wrong
+ mov x2, x1 ;[6] the next bit expects the last state to be in x2
+ nop2 ;[7]
+ ;[8]
+ rjmp didunstuff1 ;[9]
+ ;[10] jump delay of rjmp didunstuffX
+
+unstuff2: ;[9] this is the jump delay of breq unstuffX
+ ori shift, 0x04 ;[10] invert the last received bit to prevent furhter unstuffing
+ andi x5, 0xFB ;[11] mark this bit as inverted (will be corrected before storing shift)
+ in x2, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
+ eor x1, x2 ;[1] x1 and x2 have to be different because the stuff bit is always a zero
+ andi x1, USBMASK ;[2] mask the interesting bits
+ breq stuffErr ;[3] if the stuff bit is a 1-bit something went wrong
+ mov x1, x2 ;[4] the next bit expects the last state to be in x1
+ nop2 ;[5]
+ ;[6]
+ rjmp didunstuff2 ;[7]
+ ;[8] jump delay of rjmp didunstuffX
+
+unstuff3: ;[9] this is the jump delay of breq unstuffX
+ ori shift, 0x08 ;[10] invert the last received bit to prevent furhter unstuffing
+ andi x5, 0xF7 ;[11] mark this bit as inverted (will be corrected before storing shift)
+ in x1, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
+ eor x2, x1 ;[1] x1 and x2 have to be different because the stuff bit is always a zero
+ andi x2, USBMASK ;[2] mask the interesting bits
+ breq stuffErr ;[3] if the stuff bit is a 1-bit something went wrong
+ mov x2, x1 ;[4] the next bit expects the last state to be in x2
+ nop2 ;[5]
+ ;[6]
+ rjmp didunstuff3 ;[7]
+ ;[8] jump delay of rjmp didunstuffX
+
+
+
+; the include has to be here due to branch distance restirctions
+#define __USE_CRC__
+#include "asmcommon.inc"
+
+
+
+; USB spec says:
+; idle = J
+; J = (D+ = 0), (D- = 1)
+; K = (D+ = 1), (D- = 0)
+; Spec allows 7.5 bit times from EOP to SOP for replies
+; 7.5 bit times is 90 cycles. ...there is plenty of time
+
+
+sendNakAndReti:
+ ldi x3, USBPID_NAK ;[-18]
+ rjmp sendX3AndReti ;[-17]
+sendAckAndReti:
+ ldi cnt, USBPID_ACK ;[-17]
+sendCntAndReti:
+ mov x3, cnt ;[-16]
+sendX3AndReti:
+ ldi YL, 20 ;[-15] x3==r20 address is 20
+ ldi YH, 0 ;[-14]
+ ldi cnt, 2 ;[-13]
+; rjmp usbSendAndReti fallthrough
+
+;usbSend:
+;pointer to data in 'Y'
+;number of bytes in 'cnt' -- including sync byte [range 2 ... 12]
+;uses: x1...x4, btcnt, shift, cnt, Y
+;Numbers in brackets are time since first bit of sync pattern is sent
+
+usbSendAndReti: ; 12 cycles until SOP
+ in x2, USBDDR ;[-12]
+ ori x2, USBMASK ;[-11]
+ sbi USBOUT, USBMINUS;[-10] prepare idle state; D+ and D- must have been 0 (no pullups)
+ in x1, USBOUT ;[-8] port mirror for tx loop
+ out USBDDR, x2 ;[-6] <- acquire bus
+ ldi x2, 0 ;[-6] init x2 (bitstuff history) because sync starts with 0
+ ldi x4, USBMASK ;[-5] exor mask
+ ldi shift, 0x80 ;[-4] sync byte is first byte sent
+txByteLoop:
+ ldi bitcnt, 0x40 ;[-3]=[9] binary 01000000
+txBitLoop: ; the loop sends the first 7 bits of the byte
+ sbrs shift, 0 ;[-2]=[10] if we have to send a 1 don't change the line state
+ eor x1, x4 ;[-1]=[11]
+ out USBOUT, x1 ;[0]
+ ror shift ;[1]
+ ror x2 ;[2] transfers the last sent bit to the stuffing history
+didStuffN:
+ nop ;[3]
+ nop ;[4]
+ cpi x2, 0xfc ;[5] if we sent six consecutive ones
+ brcc bitstuffN ;[6]
+ lsr bitcnt ;[7]
+ brne txBitLoop ;[8] restart the loop while the 1 is still in the bitcount
+
+; transmit bit 7
+ sbrs shift, 0 ;[9]
+ eor x1, x4 ;[10]
+didStuff7:
+ ror shift ;[11]
+ out USBOUT, x1 ;[0] transfer bit 7 to the pins
+ ror x2 ;[1] move the bit into the stuffing history
+ cpi x2, 0xfc ;[2]
+ brcc bitstuff7 ;[3]
+ ld shift, y+ ;[4] get next byte to transmit
+ dec cnt ;[5] decrement byte counter
+ brne txByteLoop ;[7] if we have more bytes start next one
+ ;[8] branch delay
+
+;make SE0:
+ cbr x1, USBMASK ;[8] prepare SE0 [spec says EOP may be 25 to 30 cycles]
+ lds x2, usbNewDeviceAddr;[9]
+ lsl x2 ;[11] we compare with left shifted address
+ out USBOUT, x1 ;[0] <-- out SE0 -- from now 2 bits = 24 cycles until bus idle
+ subi YL, 20 + 2 ;[1] Only assign address on data packets, not ACK/NAK in x3
+ sbci YH, 0 ;[2]
+;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
+;set address only after data packet was sent, not after handshake
+ breq skipAddrAssign ;[3]
+ sts usbDeviceAddr, x2 ; if not skipped: SE0 is one cycle longer
+skipAddrAssign:
+;end of usbDeviceAddress transfer
+ ldi x2, 1<<USB_INTR_PENDING_BIT;[5] int0 occurred during TX -- clear pending flag
+ USB_STORE_PENDING(x2) ;[6]
+ ori x1, USBIDLE ;[7]
+ in x2, USBDDR ;[8]
+ cbr x2, USBMASK ;[9] set both pins to input
+ mov x3, x1 ;[10]
+ cbr x3, USBMASK ;[11] configure no pullup on both pins
+ ldi x4, 4 ;[12]
+se0Delay:
+ dec x4 ;[13] [16] [19] [22]
+ brne se0Delay ;[14] [17] [20] [23]
+ out USBOUT, x1 ;[24] <-- out J (idle) -- end of SE0 (EOP signal)
+ out USBDDR, x2 ;[25] <-- release bus now
+ out USBOUT, x3 ;[26] <-- ensure no pull-up resistors are active
+ rjmp doReturn
+
+bitstuffN:
+ eor x1, x4 ;[8] generate a zero
+ ldi x2, 0 ;[9] reset the bit stuffing history
+ nop2 ;[10]
+ out USBOUT, x1 ;[0] <-- send the stuffing bit
+ rjmp didStuffN ;[1]
+
+bitstuff7:
+ eor x1, x4 ;[5]
+ ldi x2, 0 ;[6] reset bit stuffing history
+ clc ;[7] fill a zero into the shift register
+ rol shift ;[8] compensate for ror shift at branch destination
+ rjmp didStuff7 ;[9]
+ ;[10] jump delay
+
+;--------------------------------------------------------------------------------------------------------------
+; receives data bytes and calculates the crc
+; second half of the data byte receiver loop
+; most parts of the crc algorithm are here
+;--------------------------------------------------------------------------------------------------------------
+
+nOverflow2:
+ rjmp overflow
+
+rxDataBit4:
+ in x1, USBIN ;[0] sample line state
+ andi x1, USBMASK ;[1] check for se0
+ breq nOverflow2 ;[2]
+ eor x2, x1 ;[3]
+ bst x2, USBMINUS ;[4]
+ bld shift, 4 ;[5]
+ mov x2, shift ;[6]
+ andi x2, 0x9F ;[7]
+ breq unstuff4 ;[8]
+didunstuff4:
+ nop2 ;[9][10]
+ nop ;[11]
+
+; bit5
+ in x2, USBIN ;[0] sample line state
+ ldi ZH, hi8(usbCrcTableHigh);[1] use the table for the higher byte
+ eor x1, x2 ;[2]
+ bst x1, USBMINUS ;[3]
+ bld shift, 5 ;[4]
+ mov x1, shift ;[5]
+ andi x1, 0x3F ;[6]
+ breq unstuff5 ;[7]
+didunstuff5:
+ lpm x4, Z ;[8] load the higher crc xor-byte and store it for later use
+ ;[9] lpm needs 3 cycles
+ ;[10]
+ ldi ZH, hi8(usbCrcTableLow);[11] load the lower crc xor byte adress
+
+; bit6
+ in x1, USBIN ;[0] sample line state
+ eor x2, x1 ;[1]
+ bst x2, USBMINUS ;[2]
+ bld shift, 6 ;[3]
+ mov x2, shift ;[4]
+ andi x2, 0x7E ;[5]
+ breq unstuff6 ;[6]
+didunstuff6:
+ lpm ZL, Z ;[7] load the lower xor crc byte
+ ;[8] lpm needs 3 cycles
+ ;[9]
+ eor ZL, x3 ;[10] xor the old high crc byte with the low xor-byte
+ mov x3, x4 ;[11] move the new high order crc value from temp to its destination
+
+; bit7
+ in x2, USBIN ;[0] sample line state
+ eor x1, x2 ;[1]
+ bst x1, USBMINUS ;[2]
+ bld shift, 7 ;[3] now shift holds the complete but inverted data byte
+ mov x1, shift ;[4]
+ andi x1, 0xFC ;[5]
+ breq unstuff7 ;[6]
+didunstuff7:
+ eor x5, shift ;[7] x5 marks all bits which have not been inverted by the unstuffing subs
+ mov x4, x5 ;[8] keep a copy of the data byte it will be stored during next bit0
+ eor ZL, x4 ;[9] feed the actual byte into the crc algorithm
+ rjmp rxDataStart ;[10] next byte
+ ;[11] during the reception of the next byte this one will be fed int the crc algorithm
+
+unstuff4: ;[9] this is the jump delay of rjmp unstuffX
+ ori shift, 0x10 ;[10] invert the last received bit to prevent furhter unstuffing
+ andi x5, 0xEF ;[11] mark this bit as inverted (will be corrected before storing shift)
+ in x2, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
+ eor x1, x2 ;[1] x1 and x2 have to be different because the stuff bit is always a zero
+ andi x1, USBMASK ;[2] mask the interesting bits
+ breq stuffErr2 ;[3] if the stuff bit is a 1-bit something went wrong
+ mov x1, x2 ;[4] the next bit expects the last state to be in x1
+ nop2 ;[5]
+ ;[6]
+ rjmp didunstuff4 ;[7]
+ ;[8] jump delay of rjmp didunstuffX
+
+unstuff5: ;[8] this is the jump delay of rjmp unstuffX
+ nop ;[9]
+ ori shift, 0x20 ;[10] invert the last received bit to prevent furhter unstuffing
+ andi x5, 0xDF ;[11] mark this bit as inverted (will be corrected before storing shift)
+ in x1, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
+ eor x2, x1 ;[1] x1 and x2 have to be different because the stuff bit is always a zero
+ andi x2, USBMASK ;[2] mask the interesting bits
+ breq stuffErr2 ;[3] if the stuff bit is a 1-bit something went wrong
+ mov x2, x1 ;[4] the next bit expects the last state to be in x2
+ nop ;[5]
+ rjmp didunstuff5 ;[6]
+ ;[7] jump delay of rjmp didunstuffX
+
+unstuff6: ;[7] this is the jump delay of rjmp unstuffX
+ nop2 ;[8]
+ ;[9]
+ ori shift, 0x40 ;[10] invert the last received bit to prevent furhter unstuffing
+ andi x5, 0xBF ;[11] mark this bit as inverted (will be corrected before storing shift)
+ in x2, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
+ eor x1, x2 ;[1] x1 and x2 have to be different because the stuff bit is always a zero
+ andi x1, USBMASK ;[2] mask the interesting bits
+ breq stuffErr2 ;[3] if the stuff bit is a 1-bit something went wrong
+ mov x1, x2 ;[4] the next bit expects the last state to be in x1
+ rjmp didunstuff6 ;[5]
+ ;[6] jump delay of rjmp didunstuffX
+
+unstuff7: ;[7] this is the jump delay of rjmp unstuffX
+ nop ;[8]
+ nop ;[9]
+ ori shift, 0x80 ;[10] invert the last received bit to prevent furhter unstuffing
+ andi x5, 0x7F ;[11] mark this bit as inverted (will be corrected before storing shift)
+ in x1, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
+ eor x2, x1 ;[1] x1 and x2 have to be different because the stuff bit is always a zero
+ andi x2, USBMASK ;[2] mask the interesting bits
+ breq stuffErr2 ;[3] if the stuff bit is a 1-bit something went wrong
+ mov x2, x1 ;[4] the next bit expects the last state to be in x2
+ rjmp didunstuff7 ;[5]
+ ;[6] jump delay of rjmp didunstuff7
+
+; local copy of the stuffErr desitnation for the second half of the receiver loop
+stuffErr2:
+ rjmp stuffErr
+
+;--------------------------------------------------------------------------------------------------------------
+; The crc table follows. It has to be aligned to enable a fast loading of the needed bytes.
+; There are two tables of 256 entries each, the low and the high byte table.
+; Table values were generated with the following C code:
+/*
+#include <stdio.h>
+int main (int argc, char **argv)
+{
+ int i, j;
+ for (i=0; i<512; i++){
+ unsigned short crc = i & 0xff;
+ for(j=0; j<8; j++) crc = (crc >> 1) ^ ((crc & 1) ? 0xa001 : 0);
+ if((i & 7) == 0) printf("\n.byte ");
+ printf("0x%02x, ", (i > 0xff ? (crc >> 8) : crc) & 0xff);
+ if(i == 255) printf("\n");
+ }
+ return 0;
+}
+
+// Use the following algorithm to compute CRC values:
+ushort computeCrc(uchar *msg, uchar msgLen)
+{
+ uchar i;
+ ushort crc = 0xffff;
+ for(i = 0; i < msgLen; i++)
+ crc = usbCrcTable16[lo8(crc) ^ msg[i]] ^ hi8(crc);
+ return crc;
+}
+*/
+
+.balign 256
+usbCrcTableLow:
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
+.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
+
+; .balign 256
+usbCrcTableHigh:
+.byte 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2
+.byte 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04
+.byte 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E
+.byte 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8
+.byte 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A
+.byte 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC
+.byte 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6
+.byte 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10
+.byte 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32
+.byte 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4
+.byte 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE
+.byte 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38
+.byte 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA
+.byte 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C
+.byte 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26
+.byte 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0
+.byte 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62
+.byte 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4
+.byte 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE
+.byte 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68
+.byte 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA
+.byte 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C
+.byte 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76
+.byte 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0
+.byte 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92
+.byte 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54
+.byte 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E
+.byte 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98
+.byte 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A
+.byte 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C
+.byte 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86
+.byte 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40
+