# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import os import pytest from cryptography.hazmat.primitives.asymmetric import rsa from ...utils import load_pkcs1_vectors, load_vectors_from_file class TestRSA(object): @pytest.mark.parametrize( "pkcs1_example", load_vectors_from_file( os.path.join( "asymmetric", "RSA", "pkcs-1v2-1d2-vec", "pss-vect.txt"), load_pkcs1_vectors ) ) def test_load_pss_vect_example_keys(self, pkcs1_example): secret, public = pkcs1_example skey = rsa.RSAPrivateKey(**secret) pkey = rsa.RSAPublicKey(**public) pkey2 = skey.public_key() assert skey and pkey and pkey2 assert skey.modulus assert skey.modulus == pkey.modulus assert skey.modulus == skey.n assert skey.public_exponent == pkey.public_exponent assert skey.public_exponent == skey.e assert skey.private_exponent == skey.d assert pkey.modulus assert pkey.modulus == pkey2.modulus assert pkey.modulus == pkey.n assert pkey.public_exponent == pkey2.public_exponent assert pkey.public_exponent == pkey.e assert skey.key_size assert skey.key_size == pkey.key_size assert skey.key_size == pkey2.key_size assert skey.p * skey.q == skey.modulus def test_invalid_private_key_argument_types(self): with pytest.raises(TypeError): rsa.RSAPrivateKey(None, None, None, None, None) def test_invalid_public_key_argument_types(self): with pytest.raises(TypeError): rsa.RSAPublicKey(None, None) def test_invalid_private_key_argument_values(self): # Start with p=3, q=5, private_exponent=14, public_exponent=7, # modulus=15. Then change one value at a time to test the bounds. # Test a modulus < 3. with pytest.raises(ValueError): rsa.RSAPrivateKey( p=3, q=5, private_exponent=14, public_exponent=7, modulus=2 ) # Test a modulus != p * q. with pytest.raises(ValueError): rsa.RSAPrivateKey( p=3, q=5, private_exponent=14, public_exponent=7, modulus=16 ) # Test a p > modulus. with pytest.raises(ValueError): rsa.RSAPrivateKey( p=16, q=5, private_exponent=14, public_exponent=7, modulus=15 ) # Test a q > modulus. with pytest.raises(ValueError): rsa.RSAPrivateKey( p=3, q=16, private_exponent=14, public_exponent=7, modulus=15 ) # Test a private_exponent > modulus with pytest.raises(ValueError): rsa.RSAPrivateKey( p=3, q=5, private_exponent=16, public_exponent=7, modulus=15 ) # Test a public_exponent < 3 with pytest.raises(ValueError): rsa.RSAPrivateKey( p=3, q=5, private_exponent=14, public_exponent=1, modulus=15 ) # Test a public_exponent > modulus with pytest.raises(ValueError): rsa.RSAPrivateKey( p=3, q=5, private_exponent=14, public_exponent=17, modulus=15 ) # Test a public_exponent that is not odd. with pytest.raises(ValueError): rsa.RSAPrivateKey( p=3, q=5, private_exponent=14, public_exponent=6, modulus=15 ) def test_invalid_public_key_argument_values(self): # Start with public_exponent=7, modulus=15. Then change one value at a # time to test the bounds. # Test a modulus < 3. with pytest.raises(ValueError): rsa.RSAPublicKey(public_exponent=7, modulus=2) # Test a public_exponent < 3 with pytest.raises(ValueError): rsa.RSAPublicKey(public_exponent=1, modulus=15) # Test a public_exponent > modulus with pytest.raises(ValueError): rsa.RSAPublicKey(public_exponent=17, modulus=15) # Test a public_exponent that is not odd. with pytest.raises(ValueError): rsa.RSAPublicKey(public_exponent=6, modulus=15)