import React from "react"; import ReactDOM from 'react-dom'; import $ from "jquery"; import Filt from "../filt/filt.js"; import {Key} from "../utils.js"; import {Router, ToggleComponent} from "./common.js"; import {SettingsActions, FlowActions} from "../actions.js"; import {Query} from "../actions.js"; var FilterDocs = React.createClass({ statics: { xhr: false, doc: false }, componentWillMount: function () { if (!FilterDocs.doc) { FilterDocs.xhr = $.getJSON("/filter-help").done(function (doc) { FilterDocs.doc = doc; FilterDocs.xhr = false; }); } if (FilterDocs.xhr) { FilterDocs.xhr.done(function () { this.forceUpdate(); }.bind(this)); } }, render: function () { if (!FilterDocs.doc) { return ; } else { var commands = FilterDocs.doc.commands.map(function (c) { return {c[0].replace(" ", '\u00a0')} {c[1]} ; }); commands.push(   mitmproxy docs ); return {commands}
; } } }); var FilterInput = React.createClass({ contextTypes: { returnFocus: React.PropTypes.func }, getInitialState: function () { // Consider both focus and mouseover for showing/hiding the tooltip, // because onBlur of the input is triggered before the click on the tooltip // finalized, hiding the tooltip just as the user clicks on it. return { value: this.props.value, focus: false, mousefocus: false }; }, componentWillReceiveProps: function (nextProps) { this.setState({value: nextProps.value}); }, onChange: function (e) { var nextValue = e.target.value; this.setState({ value: nextValue }); // Only propagate valid filters upwards. if (this.isValid(nextValue)) { this.props.onChange(nextValue); } }, isValid: function (filt) { try { var str = filt || this.state.value; if(str){ Filt.parse(filt || this.state.value); } return true; } catch (e) { return false; } }, getDesc: function () { if(this.state.value) { try { return Filt.parse(this.state.value).desc; } catch (e) { return "" + e; } } return ; }, onFocus: function () { this.setState({focus: true}); }, onBlur: function () { this.setState({focus: false}); }, onMouseEnter: function () { this.setState({mousefocus: true}); }, onMouseLeave: function () { this.setState({mousefocus: false}); }, onKeyDown: function (e) { if (e.keyCode === Key.ESC || e.keyCode === Key.ENTER) { this.blur(); // If closed using ESC/ENTER, hide the tooltip. this.setState({mousefocus: false}); } e.stopPropagation(); }, blur: function () { ReactDOM.findDOMNode(this.refs.input).blur(); this.context.returnFocus(); }, select: function () { ReactDOM.findDOMNode(this.refs.input).select(); }, render: function () { var isValid = this.isValid(); var icon = "fa fa-fw fa-" + this.props.type; var groupClassName = "filter-input input-group" + (isValid ? "" : " has-error"); var popover; if (this.state.focus || this.state.mousefocus) { popover = (
{this.getDesc()}
); } return (
{popover}
); } }); export var MainMenu = React.createClass({ mixins: [Router], propTypes: { settings: React.PropTypes.object.isRequired, }, statics: { title: "Start", route: "flows" }, onSearchChange: function (val) { var d = {}; d[Query.SEARCH] = val; this.updateLocation(undefined, d); }, onHighlightChange: function (val) { var d = {}; d[Query.HIGHLIGHT] = val; this.updateLocation(undefined, d); }, onInterceptChange: function (val) { SettingsActions.update({intercept: val}); }, render: function () { var search = this.getQuery()[Query.SEARCH] || ""; var highlight = this.getQuery()[Query.HIGHLIGHT] || ""; var intercept = this.props.settings.intercept || ""; return (
); } }); var ViewMenu = React.createClass({ statics: { title: "View", route: "flows" }, mixins: [Router], toggleEventLog: function () { var d = {}; if (this.getQuery()[Query.SHOW_EVENTLOG]) { d[Query.SHOW_EVENTLOG] = undefined; } else { d[Query.SHOW_EVENTLOG] = "t"; // any non-false value will do it, keep it short } this.updateLocation(undefined, d); console.log('toggleevent'); }, render: function () { var showEventLog = this.getQuery()[Query.SHOW_EVENTLOG]; return (
); } }); class OptionMenu extends React.Component{ static title = "Options"; constructor(props){ super(props); this.state = { options : [ {name: "--host", checked: true}, {name: "--no-upstream-cert", checked: false}, {name: "--http2", checked: false}, {name: "--anticache", checked: false}, {name: "--anticomp", checked: false}, {name: "--stickycookie", checked: true}, {name: "--stickyauth", checked: false}, {name: "--stream", checked: false} ] } } setOption(entry){ console.log(entry.name);//TODO: get options from outside and remove state entry.checked = !entry.checked; this.setState({options: this.state.options}); } render() { return (
{this.state.options.map((entry, i) => { return ( this.setOption(entry)}/> ); })}
); } } var ReportsMenu = React.createClass({ statics: { title: "Visualization", route: "reports" }, render: function () { return
Reports Menu
; } }); var FileMenu = React.createClass({ getInitialState: function () { return { showFileMenu: false }; }, handleFileClick: function (e) { e.preventDefault(); if (!this.state.showFileMenu) { var close = function () { this.setState({showFileMenu: false}); document.removeEventListener("click", close); }.bind(this); document.addEventListener("click", close); this.setState({ showFileMenu: true }); } }, handleNewClick: function (e) { e.preventDefault(); if (confirm("Delete all flows?")) { FlowActions.clear(); } }, handleOpenClick: function (e) { e.preventDefault(); console.error("unimplemented: handleOpenClick"); }, handleSaveClick: function (e) { e.preventDefault(); console.error("unimplemented: handleSaveClick"); }, handleShutdownClick: function (e) { e.preventDefault(); console.error("unimplemented: handleShutdownClick"); }, render: function () { var fileMenuClass = "dropdown pull-left" + (this.state.showFileMenu ? " open" : ""); return (
mitmproxy
); } }); var header_entries = [MainMenu, ViewMenu, OptionMenu /*, ReportsMenu */]; export var Header = React.createClass({ mixins: [Router], propTypes: { settings: React.PropTypes.object.isRequired, }, getInitialState: function () { return { active: header_entries[0] }; }, handleClick: function (active, e) { e.preventDefault(); this.updateLocation(active.route); this.setState({active: active}); }, render: function () { var header = header_entries.map(function (entry, i) { var className; if (entry === this.state.active) { className = "active"; } else { className = ""; } return ( {entry.title} ); }.bind(this)); return (
); } }); 4'>324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Claire Xenia Wolf <claire@yosyshq.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

// [[CITE]] Power-Modulus Algorithm
// Schneier, Bruce (1996). Applied Cryptography: Protocols, Algorithms, and Source Code in C,
// Second Edition (2nd ed.). Wiley. ISBN 978-0-471-11709-4, page 244

#include "kernel/yosys.h"
#include "libs/bigint/BigIntegerLibrary.hh"

YOSYS_NAMESPACE_BEGIN

static void extend_u0(RTLIL::Const &arg, int width, bool is_signed)
{
	RTLIL::State padding = RTLIL::State::S0;

	if (arg.bits.size() > 0 && is_signed)
		padding = arg.bits.back();

	while (int(arg.bits.size()) < width)
		arg.bits.push_back(padding);

	arg.bits.resize(width);
}

static BigInteger const2big(const RTLIL::Const &val, bool as_signed, int &undef_bit_pos)
{
	BigUnsigned mag;

	BigInteger::Sign sign = BigInteger::positive;
	State inv_sign_bit = RTLIL::State::S1;
	size_t num_bits = val.bits.size();

	if (as_signed && num_bits && val.bits[num_bits-1] == RTLIL::State::S1) {
		inv_sign_bit = RTLIL::State::S0;
		sign = BigInteger::negative;
		num_bits--;
	}

	for (size_t i = 0; i < num_bits; i++)
		if (val.bits[i] == RTLIL::State::S0 || val.bits[i] == RTLIL::State::S1)
			mag.setBit(i, val.bits[i] == inv_sign_bit);
		else if (undef_bit_pos < 0)
			undef_bit_pos = i;

	if (sign == BigInteger::negative)
		mag += 1;

	return BigInteger(mag, sign);
}

static RTLIL::Const big2const(const BigInteger &val, int result_len, int undef_bit_pos)
{
	if (undef_bit_pos >= 0)
		return RTLIL::Const(RTLIL::State::Sx, result_len);

	BigUnsigned mag = val.getMagnitude();
	RTLIL::Const result(0, result_len);

	if (!mag.isZero())
	{
		if (val.getSign() < 0)
		{
			mag--;
			for (int i = 0; i < result_len; i++)
				result.bits[i] = mag.getBit(i) ? RTLIL::State::S0 : RTLIL::State::S1;
		}
		else
		{
			for (int i = 0; i < result_len; i++)
				result.bits[i] = mag.getBit(i) ? RTLIL::State::S1 : RTLIL::State::S0;
		}
	}

#if 0
	if (undef_bit_pos >= 0)
		for (int i = undef_bit_pos; i < result_len; i++)
			result.bits[i] = RTLIL::State::Sx;
#endif

	return result;
}

static RTLIL::State logic_and(RTLIL::State a, RTLIL::State b)
{
	if (a == RTLIL::State::S0) return RTLIL::State::S0;
	if (b == RTLIL::State::S0) return RTLIL::State::S0;
	if (a != RTLIL::State::S1) return RTLIL::State::Sx;
	if (b != RTLIL::State::S1) return RTLIL::State::Sx;
	return RTLIL::State::S1;
}

static RTLIL::State logic_or(RTLIL::State a, RTLIL::State b)
{
	if (a == RTLIL::State::S1) return RTLIL::State::S1;
	if (b == RTLIL::State::S1) return RTLIL::State::S1;
	if (a != RTLIL::State::S0) return RTLIL::State::Sx;
	if (b != RTLIL::State::S0) return RTLIL::State::Sx;
	return RTLIL::State::S0;
}

static RTLIL::State logic_xor(RTLIL::State a, RTLIL::State b)
{
	if (a != RTLIL::State::S0 && a != RTLIL::State::S1) return RTLIL::State::Sx;
	if (b != RTLIL::State::S0 && b != RTLIL::State::S1) return RTLIL::State::Sx;
	return a != b ? RTLIL::State::S1 : RTLIL::State::S0;
}

static RTLIL::State logic_xnor(RTLIL::State a, RTLIL::State b)
{
	if (a != RTLIL::State::S0 && a != RTLIL::State::S1) return RTLIL::State::Sx;
	if (b != RTLIL::State::S0 && b != RTLIL::State::S1) return RTLIL::State::Sx;
	return a == b ? RTLIL::State::S1 : RTLIL::State::S0;
}

RTLIL::Const RTLIL::const_not(const RTLIL::Const &arg1, const RTLIL::Const&, bool signed1, bool, int result_len)
{
	if (result_len < 0)
		result_len = arg1.bits.size();

	RTLIL::Const arg1_ext = arg1;
	extend_u0(arg1_ext, result_len, signed1);

	RTLIL::Const result(RTLIL::State::Sx, result_len);
	for (size_t i = 0; i < size_t(result_len); i++) {
		if (i >= arg1_ext.bits.size())
			result.bits[i] = RTLIL::State::S0;
		else if (arg1_ext.bits[i] == RTLIL::State::S0)
			result.bits[i] = RTLIL::State::S1;
		else if (arg1_ext.bits[i] == RTLIL::State::S1)
			result.bits[i] = RTLIL::State::S0;
	}

	return result;
}

static RTLIL::Const logic_wrapper(RTLIL::State(*logic_func)(RTLIL::State, RTLIL::State),
		RTLIL::Const arg1, RTLIL::Const arg2, bool signed1, bool signed2, int result_len = -1)
{
	if (result_len < 0)
		result_len = max(arg1.bits.size(), arg2.bits.size());

	extend_u0(arg1, result_len, signed1);
	extend_u0(arg2, result_len, signed2);

	RTLIL::Const result(RTLIL::State::Sx, result_len);
	for (size_t i = 0; i < size_t(result_len); i++) {
		RTLIL::State a = i < arg1.bits.size() ? arg1.bits[i] : RTLIL::State::S0;
		RTLIL::State b = i < arg2.bits.size() ? arg2.bits[i] : RTLIL::State::S0;
		result.bits[i] = logic_func(a, b);
	}

	return result;
}

RTLIL::Const RTLIL::const_and(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	return logic_wrapper(logic_and, arg1, arg2, signed1, signed2, result_len);
}

RTLIL::Const RTLIL::const_or(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	return logic_wrapper(logic_or, arg1, arg2, signed1, signed2, result_len);
}

RTLIL::Const RTLIL::const_xor(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	return logic_wrapper(logic_xor, arg1, arg2, signed1, signed2, result_len);
}

RTLIL::Const RTLIL::const_xnor(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	return logic_wrapper(logic_xnor, arg1, arg2, signed1, signed2, result_len);
}

static RTLIL::Const logic_reduce_wrapper(RTLIL::State initial, RTLIL::State(*logic_func)(RTLIL::State, RTLIL::State), const RTLIL::Const &arg1, int result_len)
{
	RTLIL::State temp = initial;

	for (size_t i = 0; i < arg1.bits.size(); i++)
		temp = logic_func(temp, arg1.bits[i]);

	RTLIL::Const result(temp);
	while (int(result.bits.size()) < result_len)
		result.bits.push_back(RTLIL::State::S0);
	return result;
}

RTLIL::Const RTLIL::const_reduce_and(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len)
{
	return logic_reduce_wrapper(RTLIL::State::S1, logic_and, arg1, result_len);
}

RTLIL::Const RTLIL::const_reduce_or(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len)
{
	return logic_reduce_wrapper(RTLIL::State::S0, logic_or, arg1, result_len);
}

RTLIL::Const RTLIL::const_reduce_xor(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len)
{
	return logic_reduce_wrapper(RTLIL::State::S0, logic_xor, arg1, result_len);
}

RTLIL::Const RTLIL::const_reduce_xnor(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len)
{
	RTLIL::Const buffer = logic_reduce_wrapper(RTLIL::State::S0, logic_xor, arg1, result_len);
	if (!buffer.bits.empty()) {
		if (buffer.bits.front() == RTLIL::State::S0)
			buffer.bits.front() = RTLIL::State::S1;
		else if (buffer.bits.front() == RTLIL::State::S1)
			buffer.bits.front() = RTLIL::State::S0;
	}
	return buffer;
}

RTLIL::Const RTLIL::const_reduce_bool(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len)
{
	return logic_reduce_wrapper(RTLIL::State::S0, logic_or, arg1, result_len);
}

RTLIL::Const RTLIL::const_logic_not(const RTLIL::Const &arg1, const RTLIL::Const&, bool signed1, bool, int result_len)
{
	int undef_bit_pos_a = -1;
	BigInteger a = const2big(arg1, signed1, undef_bit_pos_a);
	RTLIL::Const result(a.isZero() ? undef_bit_pos_a >= 0 ? RTLIL::State::Sx : RTLIL::State::S1 : RTLIL::State::S0);

	while (int(result.bits.size()) < result_len)
		result.bits.push_back(RTLIL::State::S0);
	return result;
}

RTLIL::Const RTLIL::const_logic_and(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos_a = -1, undef_bit_pos_b = -1;
	BigInteger a = const2big(arg1, signed1, undef_bit_pos_a);
	BigInteger b = const2big(arg2, signed2, undef_bit_pos_b);

	RTLIL::State bit_a = a.isZero() ? undef_bit_pos_a >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1;
	RTLIL::State bit_b = b.isZero() ? undef_bit_pos_b >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1;
	RTLIL::Const result(logic_and(bit_a, bit_b));

	while (int(result.bits.size()) < result_len)
		result.bits.push_back(RTLIL::State::S0);
	return result;
}

RTLIL::Const RTLIL::const_logic_or(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos_a = -1, undef_bit_pos_b = -1;
	BigInteger a = const2big(arg1, signed1, undef_bit_pos_a);
	BigInteger b = const2big(arg2, signed2, undef_bit_pos_b);

	RTLIL::State bit_a = a.isZero() ? undef_bit_pos_a >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1;
	RTLIL::State bit_b = b.isZero() ? undef_bit_pos_b >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1;
	RTLIL::Const result(logic_or(bit_a, bit_b));

	while (int(result.bits.size()) < result_len)
		result.bits.push_back(RTLIL::State::S0);
	return result;
}

// Shift `arg1` by `arg2` bits.
// If `direction` is +1, `arg1` is shifted right by `arg2` bits; if `direction` is -1, `arg1` is shifted left by `arg2` bits.
// If `signed2` is true, `arg2` is interpreted as a signed integer; a negative `arg2` will cause a shift in the opposite direction.
// Any required bits outside the bounds of `arg1` are padded with `vacant_bits` unless `sign_ext` is true, in which case any bits outside the left
// bounds are filled with the leftmost bit of `arg1` (arithmetic shift).
static RTLIL::Const const_shift_worker(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool sign_ext, bool signed2, int direction, int result_len, RTLIL::State vacant_bits = RTLIL::State::S0)
{
	int undef_bit_pos = -1;
	BigInteger offset = const2big(arg2, signed2, undef_bit_pos) * direction;

	if (result_len < 0)
		result_len = arg1.bits.size();

	RTLIL::Const result(RTLIL::State::Sx, result_len);
	if (undef_bit_pos >= 0)
		return result;

	for (int i = 0; i < result_len; i++) {
		BigInteger pos = BigInteger(i) + offset;
		if (pos < 0)
			result.bits[i] = vacant_bits;
		else if (pos >= BigInteger(int(arg1.bits.size())))
			result.bits[i] = sign_ext ? arg1.bits.back() : vacant_bits;
		else
			result.bits[i] = arg1.bits[pos.toInt()];
	}

	return result;
}

RTLIL::Const RTLIL::const_shl(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool, int result_len)
{
	RTLIL::Const arg1_ext = arg1;
	extend_u0(arg1_ext, result_len, signed1);
	return const_shift_worker(arg1_ext, arg2, false, false, -1, result_len);
}

RTLIL::Const RTLIL::const_shr(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool, int result_len)
{
	RTLIL::Const arg1_ext = arg1;
	extend_u0(arg1_ext, max(result_len, GetSize(arg1)), signed1);
	return const_shift_worker(arg1_ext, arg2, false, false, +1, result_len);
}

RTLIL::Const RTLIL::const_sshl(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool, int result_len)
{
	return const_shift_worker(arg1, arg2, signed1, false, -1, result_len);
}

RTLIL::Const RTLIL::const_sshr(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool, int result_len)
{
	return const_shift_worker(arg1, arg2, signed1, false, +1, result_len);
}

RTLIL::Const RTLIL::const_shift(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	RTLIL::Const arg1_ext = arg1;
	extend_u0(arg1_ext, max(result_len, GetSize(arg1)), signed1);
	return const_shift_worker(arg1_ext, arg2, false, signed2, +1, result_len);
}

RTLIL::Const RTLIL::const_shiftx(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool, bool signed2, int result_len)
{
	return const_shift_worker(arg1, arg2, false, signed2, +1, result_len, RTLIL::State::Sx);
}

RTLIL::Const RTLIL::const_lt(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos = -1;
	bool y = const2big(arg1, signed1, undef_bit_pos) < const2big(arg2, signed2, undef_bit_pos);
	RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0);

	while (int(result.bits.size()) < result_len)
		result.bits.push_back(RTLIL::State::S0);
	return result;
}

RTLIL::Const RTLIL::const_le(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos = -1;
	bool y = const2big(arg1, signed1, undef_bit_pos) <= const2big(arg2, signed2, undef_bit_pos);
	RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0);

	while (int(result.bits.size()) < result_len)
		result.bits.push_back(RTLIL::State::S0);
	return result;
}

RTLIL::Const RTLIL::const_eq(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	RTLIL::Const arg1_ext = arg1;
	RTLIL::Const arg2_ext = arg2;
	RTLIL::Const result(RTLIL::State::S0, result_len);

	int width = max(arg1_ext.bits.size(), arg2_ext.bits.size());
	extend_u0(arg1_ext, width, signed1 && signed2);
	extend_u0(arg2_ext, width, signed1 && signed2);

	RTLIL::State matched_status = RTLIL::State::S1;
	for (size_t i = 0; i < arg1_ext.bits.size(); i++) {
		if (arg1_ext.bits.at(i) == RTLIL::State::S0 && arg2_ext.bits.at(i) == RTLIL::State::S1)
			return result;
		if (arg1_ext.bits.at(i) == RTLIL::State::S1 && arg2_ext.bits.at(i) == RTLIL::State::S0)
			return result;
		if (arg1_ext.bits.at(i) > RTLIL::State::S1 || arg2_ext.bits.at(i) > RTLIL::State::S1)
			matched_status = RTLIL::State::Sx;
	}

	result.bits.front() = matched_status;
	return result;
}

RTLIL::Const RTLIL::const_ne(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	RTLIL::Const result = RTLIL::const_eq(arg1, arg2, signed1, signed2, result_len);
	if (result.bits.front() == RTLIL::State::S0)
		result.bits.front() = RTLIL::State::S1;
	else if (result.bits.front() == RTLIL::State::S1)
		result.bits.front() = RTLIL::State::S0;
	return result;
}

RTLIL::Const RTLIL::const_eqx(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	RTLIL::Const arg1_ext = arg1;
	RTLIL::Const arg2_ext = arg2;
	RTLIL::Const result(RTLIL::State::S0, result_len);

	int width = max(arg1_ext.bits.size(), arg2_ext.bits.size());
	extend_u0(arg1_ext, width, signed1 && signed2);
	extend_u0(arg2_ext, width, signed1 && signed2);

	for (size_t i = 0; i < arg1_ext.bits.size(); i++) {
		if (arg1_ext.bits.at(i) != arg2_ext.bits.at(i))
			return result;
	}

	result.bits.front() = RTLIL::State::S1;
	return result;
}

RTLIL::Const RTLIL::const_nex(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	RTLIL::Const result = RTLIL::const_eqx(arg1, arg2, signed1, signed2, result_len);
	if (result.bits.front() == RTLIL::State::S0)
		result.bits.front() = RTLIL::State::S1;
	else if (result.bits.front() == RTLIL::State::S1)
		result.bits.front() = RTLIL::State::S0;
	return result;
}

RTLIL::Const RTLIL::const_ge(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos = -1;
	bool y = const2big(arg1, signed1, undef_bit_pos) >= const2big(arg2, signed2, undef_bit_pos);
	RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0);

	while (int(result.bits.size()) < result_len)
		result.bits.push_back(RTLIL::State::S0);
	return result;
}

RTLIL::Const RTLIL::const_gt(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos = -1;
	bool y = const2big(arg1, signed1, undef_bit_pos) > const2big(arg2, signed2, undef_bit_pos);
	RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0);

	while (int(result.bits.size()) < result_len)
		result.bits.push_back(RTLIL::State::S0);
	return result;
}

RTLIL::Const RTLIL::const_add(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos = -1;
	BigInteger y = const2big(arg1, signed1, undef_bit_pos) + const2big(arg2, signed2, undef_bit_pos);
	return big2const(y, result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), undef_bit_pos);
}

RTLIL::Const RTLIL::const_sub(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos = -1;
	BigInteger y = const2big(arg1, signed1, undef_bit_pos) - const2big(arg2, signed2, undef_bit_pos);
	return big2const(y, result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), undef_bit_pos);
}

RTLIL::Const RTLIL::const_mul(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos = -1;
	BigInteger y = const2big(arg1, signed1, undef_bit_pos) * const2big(arg2, signed2, undef_bit_pos);
	return big2const(y, result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), min(undef_bit_pos, 0));
}

// truncating division
RTLIL::Const RTLIL::const_div(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos = -1;
	BigInteger a = const2big(arg1, signed1, undef_bit_pos);
	BigInteger b = const2big(arg2, signed2, undef_bit_pos);
	if (b.isZero())
		return RTLIL::Const(RTLIL::State::Sx, result_len);
	bool result_neg = (a.getSign() == BigInteger::negative) != (b.getSign() == BigInteger::negative);
	a = a.getSign() == BigInteger::negative ? -a : a;
	b = b.getSign() == BigInteger::negative ? -b : b;
	return big2const(result_neg ? -(a / b) : (a / b), result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), min(undef_bit_pos, 0));
}

// truncating modulo
RTLIL::Const RTLIL::const_mod(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos = -1;
	BigInteger a = const2big(arg1, signed1, undef_bit_pos);
	BigInteger b = const2big(arg2, signed2, undef_bit_pos);
	if (b.isZero())
		return RTLIL::Const(RTLIL::State::Sx, result_len);
	bool result_neg = a.getSign() == BigInteger::negative;
	a = a.getSign() == BigInteger::negative ? -a : a;
	b = b.getSign() == BigInteger::negative ? -b : b;
	return big2const(result_neg ? -(a % b) : (a % b), result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), min(undef_bit_pos, 0));
}

RTLIL::Const RTLIL::const_divfloor(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos = -1;
	BigInteger a = const2big(arg1, signed1, undef_bit_pos);
	BigInteger b = const2big(arg2, signed2, undef_bit_pos);
	if (b.isZero())
		return RTLIL::Const(RTLIL::State::Sx, result_len);

	bool result_pos = (a.getSign() == BigInteger::negative) == (b.getSign() == BigInteger::negative);
	a = a.getSign() == BigInteger::negative ? -a : a;
	b = b.getSign() == BigInteger::negative ? -b : b;
	BigInteger result;

	if (result_pos || a == 0) {
		result = a / b;
	} else {
		// bigint division with negative numbers is wonky, make sure we only negate at the very end
		result = -((a + b - 1) / b);
	}
	return big2const(result, result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), min(undef_bit_pos, 0));
}

RTLIL::Const RTLIL::const_modfloor(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos = -1;
	BigInteger a = const2big(arg1, signed1, undef_bit_pos);
	BigInteger b = const2big(arg2, signed2, undef_bit_pos);
	if (b.isZero())
		return RTLIL::Const(RTLIL::State::Sx, result_len);

	BigInteger::Sign a_sign = a.getSign();
	BigInteger::Sign b_sign = b.getSign();
	a = a_sign == BigInteger::negative ? -a : a;
	b = b_sign == BigInteger::negative ? -b : b;
	BigInteger truncated = a_sign == BigInteger::negative ? -(a % b) : (a % b);
	BigInteger modulo;

	if (truncated == 0 || (a_sign == b_sign)) {
		modulo = truncated;
	} else {
		modulo = b_sign == BigInteger::negative ? truncated - b : truncated + b;
	}
	return big2const(modulo, result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), min(undef_bit_pos, 0));
}

RTLIL::Const RTLIL::const_pow(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len)
{
	int undef_bit_pos = -1;

	BigInteger a = const2big(arg1, signed1, undef_bit_pos);
	BigInteger b = const2big(arg2, signed2, undef_bit_pos);
	BigInteger y = 1;

	if (a == 0 && b < 0)
		return RTLIL::Const(RTLIL::State::Sx, result_len);

	if (a == 0 && b > 0)
		return RTLIL::Const(RTLIL::State::S0, result_len);

	if (b < 0)
	{
		if (a < -1 || a > 1)
			y = 0;
		if (a == -1)
			y = (-b % 2) == 0 ? 1 : -1;
	}

	if (b > 0)
	{
		// Power-modulo with 2^result_len as modulus
		BigInteger modulus = 1;
		int modulus_bits = (result_len >= 0 ? result_len : 1024);
		for (int i = 0; i < modulus_bits; i++)
			modulus *= 2;

		bool flip_result_sign = false;
		if (a < 0) {
			a *= -1;
			if (b % 2 == 1)
				flip_result_sign = true;
		}

		while (b > 0) {
			if (b % 2 == 1)
				y = (y * a) % modulus;
			b = b / 2;
			a = (a * a) % modulus;
		}

		if (flip_result_sign)
			y *= -1;
	}

	return big2const(y, result_len >= 0 ? result_len : max(arg1.bits.size(), arg2.bits.size()), min(undef_bit_pos, 0));
}

RTLIL::Const RTLIL::const_pos(const RTLIL::Const &arg1, const RTLIL::Const&, bool signed1, bool, int result_len)
{
	RTLIL::Const arg1_ext = arg1;
	extend_u0(arg1_ext, result_len, signed1);

	return arg1_ext;
}

RTLIL::Const RTLIL::const_neg(const RTLIL::Const &arg1, const RTLIL::Const&, bool signed1, bool, int result_len)
{
	RTLIL::Const arg1_ext = arg1;
	RTLIL::Const zero(RTLIL::State::S0, 1);

	return RTLIL::const_sub(zero, arg1_ext, true, signed1, result_len);
}

RTLIL::Const RTLIL::const_mux(const RTLIL::Const &arg1, const RTLIL::Const &arg2, const RTLIL::Const &arg3)
{
	log_assert(arg2.size() == arg1.size());
	if (arg3[0] == State::S0)
		return arg1;
	else if (arg3[0] == State::S1)
		return arg2;

	RTLIL::Const ret = arg1;
	for (int i = 0; i < ret.size(); i++)
		if (ret[i] != arg2[i])
			ret[i] = State::Sx;
	return ret;
}

RTLIL::Const RTLIL::const_pmux(const RTLIL::Const &arg1, const RTLIL::Const &arg2, const RTLIL::Const &arg3)
{
	if (arg3.is_fully_zero())
		return arg1;

	if (!arg3.is_onehot())
		return RTLIL::Const(State::Sx, arg1.size());

	for (int i = 0; i < arg3.size(); i++)
		if (arg3[i] == State::S1)
			return RTLIL::Const(std::vector<RTLIL::State>(arg2.bits.begin() + i*arg1.bits.size(), arg2.bits.begin() + (i+1)*arg1.bits.size()));

	log_abort(); // unreachable
}

RTLIL::Const RTLIL::const_bmux(const RTLIL::Const &arg1, const RTLIL::Const &arg2)
{
	std::vector<RTLIL::State> t = arg1.bits;

	for (int i = GetSize(arg2)-1; i >= 0; i--)
	{
		RTLIL::State sel = arg2.bits.at(i);
		std::vector<RTLIL::State> new_t;
		if (sel == State::S0)
			new_t = std::vector<RTLIL::State>(t.begin(), t.begin() + GetSize(t)/2);
		else if (sel == State::S1)
			new_t = std::vector<RTLIL::State>(t.begin() + GetSize(t)/2, t.end());
		else
			for (int j = 0; j < GetSize(t)/2; j++)
				new_t.push_back(t[j] == t[j + GetSize(t)/2] ? t[j] : RTLIL::Sx);
		t.swap(new_t);
	}

	return t;
}

RTLIL::Const RTLIL::const_demux(const RTLIL::Const &arg1, const RTLIL::Const &arg2)
{
	int width = GetSize(arg1);
	int s_width = GetSize(arg2);
	std::vector<RTLIL::State> res;
	for (int i = 0; i < (1 << s_width); i++)
	{
		bool ne = false;
		bool x = false;
		for (int j = 0; j < s_width; j++) {
			bool bit = i & 1 << j;
			if (arg2[j] == (bit ? RTLIL::S0 : RTLIL::S1))
				ne = true;
			else if (arg2[j] != RTLIL::S0 && arg2[j] != RTLIL::S1)
				x = true;
		}
		if (ne) {
			for (int j = 0; j < width; j++)
				res.push_back(State::S0);
		} else if (x) {
			for (int j = 0; j < width; j++)
				res.push_back(arg1.bits[j] == State::S0 ? State::S0 : State::Sx);
		} else {
			for (int j = 0; j < width; j++)
				res.push_back(arg1.bits[j]);
		}
	}
	return res;
}

RTLIL::Const RTLIL::const_bweqx(const RTLIL::Const &arg1, const RTLIL::Const &arg2)
{
	log_assert(arg2.size() == arg1.size());
	RTLIL::Const result(RTLIL::State::S0, arg1.size());
	for (int i = 0; i < arg1.size(); i++)
		result[i] = arg1[i] == arg2[i] ? State::S1 : State::S0;

	return result;
}

RTLIL::Const RTLIL::const_bwmux(const RTLIL::Const &arg1, const RTLIL::Const &arg2, const RTLIL::Const &arg3)
{
	log_assert(arg2.size() == arg1.size());
	log_assert(arg3.size() == arg1.size());
	RTLIL::Const result(RTLIL::State::Sx, arg1.size());
	for (int i = 0; i < arg1.size(); i++) {
		if (arg3[i] != State::Sx || arg1[i] == arg2[i])
			result[i] = arg3[i] == State::S1 ? arg2[i] : arg1[i];
	}

	return result;
}

YOSYS_NAMESPACE_END