summaryrefslogtreecommitdiffstats
path: root/src/misc/espresso/irred.c
diff options
context:
space:
mode:
authorAlan Mishchenko <alanmi@berkeley.edu>2008-01-30 20:01:00 -0800
committerAlan Mishchenko <alanmi@berkeley.edu>2008-01-30 20:01:00 -0800
commit0c6505a26a537dc911b6566f82d759521e527c08 (patch)
treef2687995efd4943fe3b1307fce7ef5942d0a57b3 /src/misc/espresso/irred.c
parent4d30a1e4f1edecff86d5066ce4653a370e59e5e1 (diff)
downloadabc-0c6505a26a537dc911b6566f82d759521e527c08.tar.gz
abc-0c6505a26a537dc911b6566f82d759521e527c08.tar.bz2
abc-0c6505a26a537dc911b6566f82d759521e527c08.zip
Version abc80130_2
Diffstat (limited to 'src/misc/espresso/irred.c')
-rw-r--r--src/misc/espresso/irred.c440
1 files changed, 440 insertions, 0 deletions
diff --git a/src/misc/espresso/irred.c b/src/misc/espresso/irred.c
new file mode 100644
index 00000000..384e698f
--- /dev/null
+++ b/src/misc/espresso/irred.c
@@ -0,0 +1,440 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+static void fcube_is_covered();
+static void ftautology();
+static bool ftaut_special_cases();
+
+
+static int Rp_current;
+
+/*
+ * irredundant -- Return a minimal subset of F
+ */
+
+pcover
+irredundant(F, D)
+pcover F, D;
+{
+ mark_irredundant(F, D);
+ return sf_inactive(F);
+}
+
+
+/*
+ * mark_irredundant -- find redundant cubes, and mark them "INACTIVE"
+ */
+
+void
+mark_irredundant(F, D)
+pcover F, D;
+{
+ pcover E, Rt, Rp;
+ pset p, p1, last;
+ sm_matrix *table;
+ sm_row *cover;
+ sm_element *pe;
+
+ /* extract a minimum cover */
+ irred_split_cover(F, D, &E, &Rt, &Rp);
+ table = irred_derive_table(D, E, Rp);
+ cover = sm_minimum_cover(table, NIL(int), /* heuristic */ 1, /* debug */ 0);
+
+ /* mark the cubes for the result */
+ foreach_set(F, last, p) {
+ RESET(p, ACTIVE);
+ RESET(p, RELESSEN);
+ }
+ foreach_set(E, last, p) {
+ p1 = GETSET(F, SIZE(p));
+ assert(setp_equal(p1, p));
+ SET(p1, ACTIVE);
+ SET(p1, RELESSEN); /* for essen(), mark as rel. ess. */
+ }
+ sm_foreach_row_element(cover, pe) {
+ p1 = GETSET(F, pe->col_num);
+ SET(p1, ACTIVE);
+ }
+
+ if (debug & IRRED) {
+ printf("# IRRED: F=%d E=%d R=%d Rt=%d Rp=%d Rc=%d Final=%d Bound=%d\n",
+ F->count, E->count, Rt->count+Rp->count, Rt->count, Rp->count,
+ cover->length, E->count + cover->length, 0);
+ }
+
+ free_cover(E);
+ free_cover(Rt);
+ free_cover(Rp);
+ sm_free(table);
+ sm_row_free(cover);
+}
+
+/*
+ * irred_split_cover -- find E, Rt, and Rp from the cover F, D
+ *
+ * E -- relatively essential cubes
+ * Rt -- totally redundant cubes
+ * Rp -- partially redundant cubes
+ */
+
+void
+irred_split_cover(F, D, E, Rt, Rp)
+pcover F, D;
+pcover *E, *Rt, *Rp;
+{
+ register pcube p, last;
+ register int index;
+ pcover R;
+ pcube *FD, *ED;
+
+ /* number the cubes of F -- these numbers track into E, Rp, Rt, etc. */
+ index = 0;
+ foreach_set(F, last, p) {
+ PUTSIZE(p, index);
+ index++;
+ }
+
+ *E = new_cover(10);
+ *Rt = new_cover(10);
+ *Rp = new_cover(10);
+ R = new_cover(10);
+
+ /* Split F into E and R */
+ FD = cube2list(F, D);
+ foreach_set(F, last, p) {
+ if (cube_is_covered(FD, p)) {
+ R = sf_addset(R, p);
+ } else {
+ *E = sf_addset(*E, p);
+ }
+ if (debug & IRRED1) {
+ (void) printf("IRRED1: zr=%d ze=%d to-go=%d time=%s\n",
+ R->count, (*E)->count, F->count - (R->count + (*E)->count),
+ print_time(ptime()));
+ }
+ }
+ free_cubelist(FD);
+
+ /* Split R into Rt and Rp */
+ ED = cube2list(*E, D);
+ foreach_set(R, last, p) {
+ if (cube_is_covered(ED, p)) {
+ *Rt = sf_addset(*Rt, p);
+ } else {
+ *Rp = sf_addset(*Rp, p);
+ }
+ if (debug & IRRED1) {
+ (void) printf("IRRED1: zr=%d zrt=%d to-go=%d time=%s\n",
+ (*Rp)->count, (*Rt)->count,
+ R->count - ((*Rp)->count +(*Rt)->count), print_time(ptime()));
+ }
+ }
+ free_cubelist(ED);
+
+ free_cover(R);
+}
+
+/*
+ * irred_derive_table -- given the covers D, E and the set of
+ * partially redundant primes Rp, build a covering table showing
+ * possible selections of primes to cover Rp.
+ */
+
+sm_matrix *
+irred_derive_table(D, E, Rp)
+pcover D, E, Rp;
+{
+ register pcube last, p, *list;
+ sm_matrix *table;
+ int size_last_dominance, i;
+
+ /* Mark each cube in DE as not part of the redundant set */
+ foreach_set(D, last, p) {
+ RESET(p, REDUND);
+ }
+ foreach_set(E, last, p) {
+ RESET(p, REDUND);
+ }
+
+ /* Mark each cube in Rp as partially redundant */
+ foreach_set(Rp, last, p) {
+ SET(p, REDUND); /* belongs to redundant set */
+ }
+
+ /* For each cube in Rp, find ways to cover its minterms */
+ list = cube3list(D, E, Rp);
+ table = sm_alloc();
+ size_last_dominance = 0;
+ i = 0;
+ foreach_set(Rp, last, p) {
+ Rp_current = SIZE(p);
+ fcube_is_covered(list, p, table);
+ RESET(p, REDUND); /* can now consider this cube redundant */
+ if (debug & IRRED1) {
+ (void) printf("IRRED1: %d of %d to-go=%d, table=%dx%d time=%s\n",
+ i, Rp->count, Rp->count - i,
+ table->nrows, table->ncols, print_time(ptime()));
+ }
+ /* try to keep memory limits down by reducing table as we go along */
+ if (table->nrows - size_last_dominance > 1000) {
+ (void) sm_row_dominance(table);
+ size_last_dominance = table->nrows;
+ if (debug & IRRED1) {
+ (void) printf("IRRED1: delete redundant rows, now %dx%d\n",
+ table->nrows, table->ncols);
+ }
+ }
+ i++;
+ }
+ free_cubelist(list);
+
+ return table;
+}
+
+/* cube_is_covered -- determine if a cubelist "covers" a single cube */
+bool
+cube_is_covered(T, c)
+pcube *T, c;
+{
+ return tautology(cofactor(T,c));
+}
+
+
+
+/* tautology -- answer the tautology question for T */
+bool
+tautology(T)
+pcube *T; /* T will be disposed of */
+{
+ register pcube cl, cr;
+ register int best, result;
+ static int taut_level = 0;
+
+ if (debug & TAUT) {
+ debug_print(T, "TAUTOLOGY", taut_level++);
+ }
+
+ if ((result = taut_special_cases(T)) == MAYBE) {
+ cl = new_cube();
+ cr = new_cube();
+ best = binate_split_select(T, cl, cr, TAUT);
+ result = tautology(scofactor(T, cl, best)) &&
+ tautology(scofactor(T, cr, best));
+ free_cubelist(T);
+ free_cube(cl);
+ free_cube(cr);
+ }
+
+ if (debug & TAUT) {
+ printf("exit TAUTOLOGY[%d]: %s\n", --taut_level, print_bool(result));
+ }
+ return result;
+}
+
+/*
+ * taut_special_cases -- check special cases for tautology
+ */
+
+bool
+taut_special_cases(T)
+pcube *T; /* will be disposed if answer is determined */
+{
+ register pcube *T1, *Tsave, p, ceil=cube.temp[0], temp=cube.temp[1];
+ pcube *A, *B;
+ int var;
+
+ /* Check for a row of all 1's which implies tautology */
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ if (full_row(p, T[0])) {
+ free_cubelist(T);
+ return TRUE;
+ }
+ }
+
+ /* Check for a column of all 0's which implies no tautology */
+start:
+ INLINEset_copy(ceil, T[0]);
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ INLINEset_or(ceil, ceil, p);
+ }
+ if (! setp_equal(ceil, cube.fullset)) {
+ free_cubelist(T);
+ return FALSE;
+ }
+
+ /* Collect column counts, determine unate variables, etc. */
+ massive_count(T);
+
+ /* If function is unate (and no row of all 1's), then no tautology */
+ if (cdata.vars_unate == cdata.vars_active) {
+ free_cubelist(T);
+ return FALSE;
+
+ /* If active in a single variable (and no column of 0's) then tautology */
+ } else if (cdata.vars_active == 1) {
+ free_cubelist(T);
+ return TRUE;
+
+ /* Check for unate variables, and reduce cover if there are any */
+ } else if (cdata.vars_unate != 0) {
+ /* Form a cube "ceil" with full variables in the unate variables */
+ (void) set_copy(ceil, cube.emptyset);
+ for(var = 0; var < cube.num_vars; var++) {
+ if (cdata.is_unate[var]) {
+ INLINEset_or(ceil, ceil, cube.var_mask[var]);
+ }
+ }
+
+ /* Save only those cubes that are "full" in all unate variables */
+ for(Tsave = T1 = T+2; (p = *T1++) != 0; ) {
+ if (setp_implies(ceil, set_or(temp, p, T[0]))) {
+ *Tsave++ = p;
+ }
+ }
+ *Tsave++ = NULL;
+ T[1] = (pcube) Tsave;
+
+ if (debug & TAUT) {
+ printf("UNATE_REDUCTION: %d unate variables, reduced to %d\n",
+ cdata.vars_unate, CUBELISTSIZE(T));
+ }
+ goto start;
+
+ /* Check for component reduction */
+ } else if (cdata.var_zeros[cdata.best] < CUBELISTSIZE(T) / 2) {
+ if (cubelist_partition(T, &A, &B, debug & TAUT) == 0) {
+ return MAYBE;
+ } else {
+ free_cubelist(T);
+ if (tautology(A)) {
+ free_cubelist(B);
+ return TRUE;
+ } else {
+ return tautology(B);
+ }
+ }
+ }
+
+ /* We tried as hard as we could, but must recurse from here on */
+ return MAYBE;
+}
+
+/* fcube_is_covered -- determine exactly how a cubelist "covers" a cube */
+static void
+fcube_is_covered(T, c, table)
+pcube *T, c;
+sm_matrix *table;
+{
+ ftautology(cofactor(T,c), table);
+}
+
+
+/* ftautology -- find ways to make a tautology */
+static void
+ftautology(T, table)
+pcube *T; /* T will be disposed of */
+sm_matrix *table;
+{
+ register pcube cl, cr;
+ register int best;
+ static int ftaut_level = 0;
+
+ if (debug & TAUT) {
+ debug_print(T, "FIND_TAUTOLOGY", ftaut_level++);
+ }
+
+ if (ftaut_special_cases(T, table) == MAYBE) {
+ cl = new_cube();
+ cr = new_cube();
+ best = binate_split_select(T, cl, cr, TAUT);
+
+ ftautology(scofactor(T, cl, best), table);
+ ftautology(scofactor(T, cr, best), table);
+
+ free_cubelist(T);
+ free_cube(cl);
+ free_cube(cr);
+ }
+
+ if (debug & TAUT) {
+ (void) printf("exit FIND_TAUTOLOGY[%d]: table is %d by %d\n",
+ --ftaut_level, table->nrows, table->ncols);
+ }
+}
+
+static bool
+ftaut_special_cases(T, table)
+pcube *T; /* will be disposed if answer is determined */
+sm_matrix *table;
+{
+ register pcube *T1, *Tsave, p, temp = cube.temp[0], ceil = cube.temp[1];
+ int var, rownum;
+
+ /* Check for a row of all 1's in the essential cubes */
+ for(T1 = T+2; (p = *T1++) != 0; ) {
+ if (! TESTP(p, REDUND)) {
+ if (full_row(p, T[0])) {
+ /* subspace is covered by essentials -- no new rows for table */
+ free_cubelist(T);
+ return TRUE;
+ }
+ }
+ }
+
+ /* Collect column counts, determine unate variables, etc. */
+start:
+ massive_count(T);
+
+ /* If function is unate, find the rows of all 1's */
+ if (cdata.vars_unate == cdata.vars_active) {
+ /* find which nonessentials cover this subspace */
+ rownum = table->last_row ? table->last_row->row_num+1 : 0;
+ (void) sm_insert(table, rownum, Rp_current);
+ for(T1 = T+2; (p = *T1++) != 0; ) {
+ if (TESTP(p, REDUND)) {
+ /* See if a redundant cube covers this leaf */
+ if (full_row(p, T[0])) {
+ (void) sm_insert(table, rownum, (int) SIZE(p));
+ }
+ }
+ }
+ free_cubelist(T);
+ return TRUE;
+
+ /* Perform unate reduction if there are any unate variables */
+ } else if (cdata.vars_unate != 0) {
+ /* Form a cube "ceil" with full variables in the unate variables */
+ (void) set_copy(ceil, cube.emptyset);
+ for(var = 0; var < cube.num_vars; var++) {
+ if (cdata.is_unate[var]) {
+ INLINEset_or(ceil, ceil, cube.var_mask[var]);
+ }
+ }
+
+ /* Save only those cubes that are "full" in all unate variables */
+ for(Tsave = T1 = T+2; (p = *T1++) != 0; ) {
+ if (setp_implies(ceil, set_or(temp, p, T[0]))) {
+ *Tsave++ = p;
+ }
+ }
+ *Tsave++ = 0;
+ T[1] = (pcube) Tsave;
+
+ if (debug & TAUT) {
+ printf("UNATE_REDUCTION: %d unate variables, reduced to %d\n",
+ cdata.vars_unate, CUBELISTSIZE(T));
+ }
+ goto start;
+ }
+
+ /* Not much we can do about it */
+ return MAYBE;
+}