summaryrefslogtreecommitdiffstats
path: root/src/misc/espresso
diff options
context:
space:
mode:
authorAlan Mishchenko <alanmi@berkeley.edu>2008-01-30 20:01:00 -0800
committerAlan Mishchenko <alanmi@berkeley.edu>2008-01-30 20:01:00 -0800
commit0c6505a26a537dc911b6566f82d759521e527c08 (patch)
treef2687995efd4943fe3b1307fce7ef5942d0a57b3 /src/misc/espresso
parent4d30a1e4f1edecff86d5066ce4653a370e59e5e1 (diff)
downloadabc-0c6505a26a537dc911b6566f82d759521e527c08.tar.gz
abc-0c6505a26a537dc911b6566f82d759521e527c08.tar.bz2
abc-0c6505a26a537dc911b6566f82d759521e527c08.zip
Version abc80130_2
Diffstat (limited to 'src/misc/espresso')
-rw-r--r--src/misc/espresso/cofactor.c382
-rw-r--r--src/misc/espresso/cols.c314
-rw-r--r--src/misc/espresso/compl.c680
-rw-r--r--src/misc/espresso/contain.c441
-rw-r--r--src/misc/espresso/cubehack.c138
-rw-r--r--src/misc/espresso/cubestr.c152
-rw-r--r--src/misc/espresso/cvrin.c810
-rw-r--r--src/misc/espresso/cvrm.c539
-rw-r--r--src/misc/espresso/cvrmisc.c142
-rw-r--r--src/misc/espresso/cvrout.c609
-rw-r--r--src/misc/espresso/dominate.c98
-rw-r--r--src/misc/espresso/equiv.c94
-rw-r--r--src/misc/espresso/espresso.c139
-rw-r--r--src/misc/espresso/espresso.h782
-rw-r--r--src/misc/espresso/essen.c179
-rw-r--r--src/misc/espresso/exact.c181
-rw-r--r--src/misc/espresso/expand.c693
-rw-r--r--src/misc/espresso/gasp.c228
-rw-r--r--src/misc/espresso/gimpel.c106
-rw-r--r--src/misc/espresso/globals.c76
-rw-r--r--src/misc/espresso/hack.c641
-rw-r--r--src/misc/espresso/indep.c134
-rw-r--r--src/misc/espresso/irred.c440
-rw-r--r--src/misc/espresso/main.c746
-rw-r--r--src/misc/espresso/main.h122
-rw-r--r--src/misc/espresso/map.c115
-rw-r--r--src/misc/espresso/matrix.c574
-rw-r--r--src/misc/espresso/mincov.c378
-rw-r--r--src/misc/espresso/mincov.h11
-rw-r--r--src/misc/espresso/mincov_int.h55
-rw-r--r--src/misc/espresso/module.make39
-rw-r--r--src/misc/espresso/opo.c624
-rw-r--r--src/misc/espresso/pair.c675
-rw-r--r--src/misc/espresso/part.c122
-rw-r--r--src/misc/espresso/primes.c170
-rw-r--r--src/misc/espresso/reduce.c258
-rw-r--r--src/misc/espresso/rows.c314
-rw-r--r--src/misc/espresso/set.c820
-rw-r--r--src/misc/espresso/setc.c483
-rw-r--r--src/misc/espresso/sharp.c247
-rw-r--r--src/misc/espresso/sminterf.c44
-rw-r--r--src/misc/espresso/solution.c114
-rw-r--r--src/misc/espresso/sparse.c146
-rw-r--r--src/misc/espresso/sparse.h135
-rw-r--r--src/misc/espresso/sparse_int.h121
-rw-r--r--src/misc/espresso/unate.c441
-rw-r--r--src/misc/espresso/util_old.h301
-rw-r--r--src/misc/espresso/verify.c193
48 files changed, 15246 insertions, 0 deletions
diff --git a/src/misc/espresso/cofactor.c b/src/misc/espresso/cofactor.c
new file mode 100644
index 00000000..b851a639
--- /dev/null
+++ b/src/misc/espresso/cofactor.c
@@ -0,0 +1,382 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+/*
+ The cofactor of a cover against a cube "c" is a cover formed by the
+ cofactor of each cube in the cover against c. The cofactor of two
+ cubes is null if they are distance 1 or more apart. If they are
+ distance zero apart, the cofactor is the restriction of the cube
+ to the minterms of c.
+
+ The cube list contains the following information:
+
+ T[0] = pointer to a cube identifying the variables that have
+ been cofactored against
+ T[1] = pointer to just beyond the sentinel (i.e., T[n] in this case)
+ T[2]
+ .
+ . = pointers to cubes
+ .
+ T[n-2]
+ T[n-1] = NULL pointer (sentinel)
+
+
+ Cofactoring involves repeated application of "cdist0" to check if a
+ cube of the cover intersects the cofactored cube. This can be
+ slow, especially for the recursive descent of the espresso
+ routines. Therefore, a special cofactor routine "scofactor" is
+ provided which assumes the cofactor is only in a single variable.
+*/
+
+
+/* cofactor -- compute the cofactor of a cover with respect to a cube */
+pcube *cofactor(T, c)
+IN pcube *T;
+IN register pcube c;
+{
+ pcube temp = cube.temp[0], *Tc_save, *Tc, *T1;
+ register pcube p;
+ int listlen;
+
+ listlen = CUBELISTSIZE(T) + 5;
+
+ /* Allocate a new list of cube pointers (max size is previous size) */
+ Tc_save = Tc = ALLOC(pcube, listlen);
+
+ /* pass on which variables have been cofactored against */
+ *Tc++ = set_or(new_cube(), T[0], set_diff(temp, cube.fullset, c));
+ Tc++;
+
+ /* Loop for each cube in the list, determine suitability, and save */
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ if (p != c) {
+
+#ifdef NO_INLINE
+ if (! cdist0(p, c)) goto false;
+#else
+ {register int w,last;register unsigned int x;if((last=cube.inword)!=-1)
+ {x=p[last]&c[last];if(~(x|x>>1)&cube.inmask)goto false;for(w=1;w<last;w++)
+ {x=p[w]&c[w];if(~(x|x>>1)&DISJOINT)goto false;}}}{register int w,var,last;
+ register pcube mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){
+ mask=cube.var_mask[var];last=cube.last_word[var];for(w=cube.first_word[var
+ ];w<=last;w++)if(p[w]&c[w]&mask[w])goto nextvar;goto false;nextvar:;}}
+#endif
+
+ *Tc++ = p;
+ false: ;
+ }
+ }
+
+ *Tc++ = (pcube) NULL; /* sentinel */
+ Tc_save[1] = (pcube) Tc; /* save pointer to last */
+ return Tc_save;
+}
+
+/*
+ scofactor -- compute the cofactor of a cover with respect to a cube,
+ where the cube is "active" in only a single variable.
+
+ This routine has been optimized for speed.
+*/
+
+pcube *scofactor(T, c, var)
+IN pcube *T, c;
+IN int var;
+{
+ pcube *Tc, *Tc_save;
+ register pcube p, mask = cube.temp[1], *T1;
+ register int first = cube.first_word[var], last = cube.last_word[var];
+ int listlen;
+
+ listlen = CUBELISTSIZE(T) + 5;
+
+ /* Allocate a new list of cube pointers (max size is previous size) */
+ Tc_save = Tc = ALLOC(pcube, listlen);
+
+ /* pass on which variables have been cofactored against */
+ *Tc++ = set_or(new_cube(), T[0], set_diff(mask, cube.fullset, c));
+ Tc++;
+
+ /* Setup for the quick distance check */
+ (void) set_and(mask, cube.var_mask[var], c);
+
+ /* Loop for each cube in the list, determine suitability, and save */
+ for(T1 = T+2; (p = *T1++) != NULL; )
+ if (p != c) {
+ register int i = first;
+ do
+ if (p[i] & mask[i]) {
+ *Tc++ = p;
+ break;
+ }
+ while (++i <= last);
+ }
+
+ *Tc++ = (pcube) NULL; /* sentinel */
+ Tc_save[1] = (pcube) Tc; /* save pointer to last */
+ return Tc_save;
+}
+
+void massive_count(T)
+IN pcube *T;
+{
+ int *count = cdata.part_zeros;
+ pcube *T1;
+
+ /* Clear the column counts (count of # zeros in each column) */
+ { register int i;
+ for(i = cube.size - 1; i >= 0; i--)
+ count[i] = 0;
+ }
+
+ /* Count the number of zeros in each column */
+ { register int i, *cnt;
+ register unsigned int val;
+ register pcube p, cof = T[0], full = cube.fullset;
+ for(T1 = T+2; (p = *T1++) != NULL; )
+ for(i = LOOP(p); i > 0; i--)
+ if (val = full[i] & ~ (p[i] | cof[i])) {
+ cnt = count + ((i-1) << LOGBPI);
+#if BPI == 32
+ if (val & 0xFF000000) {
+ if (val & 0x80000000) cnt[31]++;
+ if (val & 0x40000000) cnt[30]++;
+ if (val & 0x20000000) cnt[29]++;
+ if (val & 0x10000000) cnt[28]++;
+ if (val & 0x08000000) cnt[27]++;
+ if (val & 0x04000000) cnt[26]++;
+ if (val & 0x02000000) cnt[25]++;
+ if (val & 0x01000000) cnt[24]++;
+ }
+ if (val & 0x00FF0000) {
+ if (val & 0x00800000) cnt[23]++;
+ if (val & 0x00400000) cnt[22]++;
+ if (val & 0x00200000) cnt[21]++;
+ if (val & 0x00100000) cnt[20]++;
+ if (val & 0x00080000) cnt[19]++;
+ if (val & 0x00040000) cnt[18]++;
+ if (val & 0x00020000) cnt[17]++;
+ if (val & 0x00010000) cnt[16]++;
+ }
+#endif
+ if (val & 0xFF00) {
+ if (val & 0x8000) cnt[15]++;
+ if (val & 0x4000) cnt[14]++;
+ if (val & 0x2000) cnt[13]++;
+ if (val & 0x1000) cnt[12]++;
+ if (val & 0x0800) cnt[11]++;
+ if (val & 0x0400) cnt[10]++;
+ if (val & 0x0200) cnt[ 9]++;
+ if (val & 0x0100) cnt[ 8]++;
+ }
+ if (val & 0x00FF) {
+ if (val & 0x0080) cnt[ 7]++;
+ if (val & 0x0040) cnt[ 6]++;
+ if (val & 0x0020) cnt[ 5]++;
+ if (val & 0x0010) cnt[ 4]++;
+ if (val & 0x0008) cnt[ 3]++;
+ if (val & 0x0004) cnt[ 2]++;
+ if (val & 0x0002) cnt[ 1]++;
+ if (val & 0x0001) cnt[ 0]++;
+ }
+ }
+ }
+
+ /*
+ * Perform counts for each variable:
+ * cdata.var_zeros[var] = number of zeros in the variable
+ * cdata.parts_active[var] = number of active parts for each variable
+ * cdata.vars_active = number of variables which are active
+ * cdata.vars_unate = number of variables which are active and unate
+ *
+ * best -- the variable which is best for splitting based on:
+ * mostactive -- most # active parts in any variable
+ * mostzero -- most # zeros in any variable
+ * mostbalanced -- minimum over the maximum # zeros / part / variable
+ */
+
+ { register int var, i, lastbit, active, maxactive;
+ int best = -1, mostactive = 0, mostzero = 0, mostbalanced = 32000;
+ cdata.vars_unate = cdata.vars_active = 0;
+
+ for(var = 0; var < cube.num_vars; var++) {
+ if (var < cube.num_binary_vars) { /* special hack for binary vars */
+ i = count[var*2];
+ lastbit = count[var*2 + 1];
+ active = (i > 0) + (lastbit > 0);
+ cdata.var_zeros[var] = i + lastbit;
+ maxactive = MAX(i, lastbit);
+ } else {
+ maxactive = active = cdata.var_zeros[var] = 0;
+ lastbit = cube.last_part[var];
+ for(i = cube.first_part[var]; i <= lastbit; i++) {
+ cdata.var_zeros[var] += count[i];
+ active += (count[i] > 0);
+ if (active > maxactive) maxactive = active;
+ }
+ }
+
+ /* first priority is to maximize the number of active parts */
+ /* for binary case, this will usually select the output first */
+ if (active > mostactive)
+ best = var, mostactive = active, mostzero = cdata.var_zeros[best],
+ mostbalanced = maxactive;
+ else if (active == mostactive)
+ /* secondary condition is to maximize the number zeros */
+ /* for binary variables, this is the same as minimum # of 2's */
+ if (cdata.var_zeros[var] > mostzero)
+ best = var, mostzero = cdata.var_zeros[best],
+ mostbalanced = maxactive;
+ else if (cdata.var_zeros[var] == mostzero)
+ /* third condition is to pick a balanced variable */
+ /* for binary vars, this means roughly equal # 0's and 1's */
+ if (maxactive < mostbalanced)
+ best = var, mostbalanced = maxactive;
+
+ cdata.parts_active[var] = active;
+ cdata.is_unate[var] = (active == 1);
+ cdata.vars_active += (active > 0);
+ cdata.vars_unate += (active == 1);
+ }
+ cdata.best = best;
+ }
+}
+
+int binate_split_select(T, cleft, cright, debug_flag)
+IN pcube *T;
+IN register pcube cleft, cright;
+IN int debug_flag;
+{
+ int best = cdata.best;
+ register int i, lastbit = cube.last_part[best], halfbit = 0;
+ register pcube cof=T[0];
+
+ /* Create the cubes to cofactor against */
+ (void) set_diff(cleft, cube.fullset, cube.var_mask[best]);
+ (void) set_diff(cright, cube.fullset, cube.var_mask[best]);
+ for(i = cube.first_part[best]; i <= lastbit; i++)
+ if (! is_in_set(cof,i))
+ halfbit++;
+ for(i = cube.first_part[best], halfbit = halfbit/2; halfbit > 0; i++)
+ if (! is_in_set(cof,i))
+ halfbit--, set_insert(cleft, i);
+ for(; i <= lastbit; i++)
+ if (! is_in_set(cof,i))
+ set_insert(cright, i);
+
+ if (debug & debug_flag) {
+ (void) printf("BINATE_SPLIT_SELECT: split against %d\n", best);
+ if (verbose_debug)
+ (void) printf("cl=%s\ncr=%s\n", pc1(cleft), pc2(cright));
+ }
+ return best;
+}
+
+
+pcube *cube1list(A)
+pcover A;
+{
+ register pcube last, p, *plist, *list;
+
+ list = plist = ALLOC(pcube, A->count + 3);
+ *plist++ = new_cube();
+ plist++;
+ foreach_set(A, last, p) {
+ *plist++ = p;
+ }
+ *plist++ = NULL; /* sentinel */
+ list[1] = (pcube) plist;
+ return list;
+}
+
+
+pcube *cube2list(A, B)
+pcover A, B;
+{
+ register pcube last, p, *plist, *list;
+
+ list = plist = ALLOC(pcube, A->count + B->count + 3);
+ *plist++ = new_cube();
+ plist++;
+ foreach_set(A, last, p) {
+ *plist++ = p;
+ }
+ foreach_set(B, last, p) {
+ *plist++ = p;
+ }
+ *plist++ = NULL;
+ list[1] = (pcube) plist;
+ return list;
+}
+
+
+pcube *cube3list(A, B, C)
+pcover A, B, C;
+{
+ register pcube last, p, *plist, *list;
+
+ plist = ALLOC(pcube, A->count + B->count + C->count + 3);
+ list = plist;
+ *plist++ = new_cube();
+ plist++;
+ foreach_set(A, last, p) {
+ *plist++ = p;
+ }
+ foreach_set(B, last, p) {
+ *plist++ = p;
+ }
+ foreach_set(C, last, p) {
+ *plist++ = p;
+ }
+ *plist++ = NULL;
+ list[1] = (pcube) plist;
+ return list;
+}
+
+
+pcover cubeunlist(A1)
+pcube *A1;
+{
+ register int i;
+ register pcube p, pdest, cof = A1[0];
+ register pcover A;
+
+ A = new_cover(CUBELISTSIZE(A1));
+ for(i = 2; (p = A1[i]) != NULL; i++) {
+ pdest = GETSET(A, i-2);
+ INLINEset_or(pdest, p, cof);
+ }
+ A->count = CUBELISTSIZE(A1);
+ return A;
+}
+
+simplify_cubelist(T)
+pcube *T;
+{
+ register pcube *Tdest;
+ register int i, ncubes;
+
+ (void) set_copy(cube.temp[0], T[0]); /* retrieve cofactor */
+
+ ncubes = CUBELISTSIZE(T);
+ qsort((char *) (T+2), ncubes, sizeof(pset), (int (*)()) d1_order);
+
+ Tdest = T+2;
+ /* *Tdest++ = T[2]; */
+ for(i = 3; i < ncubes; i++) {
+ if (d1_order(&T[i-1], &T[i]) != 0) {
+ *Tdest++ = T[i];
+ }
+ }
+
+ *Tdest++ = NULL; /* sentinel */
+ Tdest[1] = (pcube) Tdest; /* save pointer to last */
+}
diff --git a/src/misc/espresso/cols.c b/src/misc/espresso/cols.c
new file mode 100644
index 00000000..ec3797e6
--- /dev/null
+++ b/src/misc/espresso/cols.c
@@ -0,0 +1,314 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+//#include "port.h"
+#include "sparse_int.h"
+
+
+/*
+ * allocate a new col vector
+ */
+sm_col *
+sm_col_alloc()
+{
+ register sm_col *pcol;
+
+#ifdef FAST_AND_LOOSE
+ if (sm_col_freelist == NIL(sm_col)) {
+ pcol = ALLOC(sm_col, 1);
+ } else {
+ pcol = sm_col_freelist;
+ sm_col_freelist = pcol->next_col;
+ }
+#else
+ pcol = ALLOC(sm_col, 1);
+#endif
+
+ pcol->col_num = 0;
+ pcol->length = 0;
+ pcol->first_row = pcol->last_row = NIL(sm_element);
+ pcol->next_col = pcol->prev_col = NIL(sm_col);
+ pcol->flag = 0;
+ pcol->user_word = NIL(char); /* for our user ... */
+ return pcol;
+}
+
+
+/*
+ * free a col vector -- for FAST_AND_LOOSE, this is real cheap for cols;
+ * however, freeing a rowumn must still walk down the rowumn discarding
+ * the elements one-by-one; that is the only use for the extra '-DCOLS'
+ * compile flag ...
+ */
+void
+sm_col_free(pcol)
+register sm_col *pcol;
+{
+#if defined(FAST_AND_LOOSE) && ! defined(COLS)
+ if (pcol->first_row != NIL(sm_element)) {
+ /* Add the linked list of col items to the free list */
+ pcol->last_row->next_row = sm_element_freelist;
+ sm_element_freelist = pcol->first_row;
+ }
+
+ /* Add the col to the free list of cols */
+ pcol->next_col = sm_col_freelist;
+ sm_col_freelist = pcol;
+#else
+ register sm_element *p, *pnext;
+
+ for(p = pcol->first_row; p != 0; p = pnext) {
+ pnext = p->next_row;
+ sm_element_free(p);
+ }
+ FREE(pcol);
+#endif
+}
+
+
+/*
+ * duplicate an existing col
+ */
+sm_col *
+sm_col_dup(pcol)
+register sm_col *pcol;
+{
+ register sm_col *pnew;
+ register sm_element *p;
+
+ pnew = sm_col_alloc();
+ for(p = pcol->first_row; p != 0; p = p->next_row) {
+ (void) sm_col_insert(pnew, p->row_num);
+ }
+ return pnew;
+}
+
+
+/*
+ * insert an element into a col vector
+ */
+sm_element *
+sm_col_insert(pcol, row)
+register sm_col *pcol;
+register int row;
+{
+ register sm_element *test, *element;
+
+ /* get a new item, save its address */
+ sm_element_alloc(element);
+ test = element;
+ sorted_insert(sm_element, pcol->first_row, pcol->last_row, pcol->length,
+ next_row, prev_row, row_num, row, test);
+
+ /* if item was not used, free it */
+ if (element != test) {
+ sm_element_free(element);
+ }
+
+ /* either way, return the current new value */
+ return test;
+}
+
+
+/*
+ * remove an element from a col vector
+ */
+void
+sm_col_remove(pcol, row)
+register sm_col *pcol;
+register int row;
+{
+ register sm_element *p;
+
+ for(p = pcol->first_row; p != 0 && p->row_num < row; p = p->next_row)
+ ;
+ if (p != 0 && p->row_num == row) {
+ dll_unlink(p, pcol->first_row, pcol->last_row,
+ next_row, prev_row, pcol->length);
+ sm_element_free(p);
+ }
+}
+
+
+/*
+ * find an element (if it is in the col vector)
+ */
+sm_element *
+sm_col_find(pcol, row)
+sm_col *pcol;
+int row;
+{
+ register sm_element *p;
+
+ for(p = pcol->first_row; p != 0 && p->row_num < row; p = p->next_row)
+ ;
+ if (p != 0 && p->row_num == row) {
+ return p;
+ } else {
+ return NIL(sm_element);
+ }
+}
+
+/*
+ * return 1 if col p2 contains col p1; 0 otherwise
+ */
+int
+sm_col_contains(p1, p2)
+sm_col *p1, *p2;
+{
+ register sm_element *q1, *q2;
+
+ q1 = p1->first_row;
+ q2 = p2->first_row;
+ while (q1 != 0) {
+ if (q2 == 0 || q1->row_num < q2->row_num) {
+ return 0;
+ } else if (q1->row_num == q2->row_num) {
+ q1 = q1->next_row;
+ q2 = q2->next_row;
+ } else {
+ q2 = q2->next_row;
+ }
+ }
+ return 1;
+}
+
+
+/*
+ * return 1 if col p1 and col p2 share an element in common
+ */
+int
+sm_col_intersects(p1, p2)
+sm_col *p1, *p2;
+{
+ register sm_element *q1, *q2;
+
+ q1 = p1->first_row;
+ q2 = p2->first_row;
+ if (q1 == 0 || q2 == 0) return 0;
+ for(;;) {
+ if (q1->row_num < q2->row_num) {
+ if ((q1 = q1->next_row) == 0) {
+ return 0;
+ }
+ } else if (q1->row_num > q2->row_num) {
+ if ((q2 = q2->next_row) == 0) {
+ return 0;
+ }
+ } else {
+ return 1;
+ }
+ }
+}
+
+
+/*
+ * compare two cols, lexical ordering
+ */
+int
+sm_col_compare(p1, p2)
+sm_col *p1, *p2;
+{
+ register sm_element *q1, *q2;
+
+ q1 = p1->first_row;
+ q2 = p2->first_row;
+ while(q1 != 0 && q2 != 0) {
+ if (q1->row_num != q2->row_num) {
+ return q1->row_num - q2->row_num;
+ }
+ q1 = q1->next_row;
+ q2 = q2->next_row;
+ }
+
+ if (q1 != 0) {
+ return 1;
+ } else if (q2 != 0) {
+ return -1;
+ } else {
+ return 0;
+ }
+}
+
+
+/*
+ * return the intersection
+ */
+sm_col *
+sm_col_and(p1, p2)
+sm_col *p1, *p2;
+{
+ register sm_element *q1, *q2;
+ register sm_col *result;
+
+ result = sm_col_alloc();
+ q1 = p1->first_row;
+ q2 = p2->first_row;
+ if (q1 == 0 || q2 == 0) return result;
+ for(;;) {
+ if (q1->row_num < q2->row_num) {
+ if ((q1 = q1->next_row) == 0) {
+ return result;
+ }
+ } else if (q1->row_num > q2->row_num) {
+ if ((q2 = q2->next_row) == 0) {
+ return result;
+ }
+ } else {
+ (void) sm_col_insert(result, q1->row_num);
+ if ((q1 = q1->next_row) == 0) {
+ return result;
+ }
+ if ((q2 = q2->next_row) == 0) {
+ return result;
+ }
+ }
+ }
+}
+
+int
+sm_col_hash(pcol, modulus)
+sm_col *pcol;
+int modulus;
+{
+ register int sum;
+ register sm_element *p;
+
+ sum = 0;
+ for(p = pcol->first_row; p != 0; p = p->next_row) {
+ sum = (sum*17 + p->row_num) % modulus;
+ }
+ return sum;
+}
+
+/*
+ * remove an element from a col vector (given a pointer to the element)
+ */
+void
+sm_col_remove_element(pcol, p)
+register sm_col *pcol;
+register sm_element *p;
+{
+ dll_unlink(p, pcol->first_row, pcol->last_row,
+ next_row, prev_row, pcol->length);
+ sm_element_free(p);
+}
+
+
+void
+sm_col_print(fp, pcol)
+FILE *fp;
+sm_col *pcol;
+{
+ sm_element *p;
+
+ for(p = pcol->first_row; p != 0; p = p->next_row) {
+ (void) fprintf(fp, " %d", p->row_num);
+ }
+}
diff --git a/src/misc/espresso/compl.c b/src/misc/espresso/compl.c
new file mode 100644
index 00000000..8f1c6606
--- /dev/null
+++ b/src/misc/espresso/compl.c
@@ -0,0 +1,680 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ * module: compl.c
+ * purpose: compute the complement of a multiple-valued function
+ *
+ * The "unate recursive paradigm" is used. After a set of special
+ * cases are examined, the function is split on the "most active
+ * variable". These two halves are complemented recursively, and then
+ * the results are merged.
+ *
+ * Changes (from Version 2.1 to Version 2.2)
+ * 1. Minor bug in compl_lifting -- cubes in the left half were
+ * not marked as active, so that when merging a leaf from the left
+ * hand side, the active flags were essentially random. This led
+ * to minor impredictability problem, but never affected the
+ * accuracy of the results.
+ */
+
+#include "espresso.h"
+
+#define USE_COMPL_LIFT 0
+#define USE_COMPL_LIFT_ONSET 1
+#define USE_COMPL_LIFT_ONSET_COMPLEX 2
+#define NO_LIFTING 3
+
+static bool compl_special_cases();
+static pcover compl_merge();
+static void compl_d1merge();
+static pcover compl_cube();
+static void compl_lift();
+static void compl_lift_onset();
+static void compl_lift_onset_complex();
+static bool simp_comp_special_cases();
+static bool simplify_special_cases();
+
+
+/* complement -- compute the complement of T */
+pcover complement(T)
+pcube *T; /* T will be disposed of */
+{
+ register pcube cl, cr;
+ register int best;
+ pcover Tbar, Tl, Tr;
+ int lifting;
+ static int compl_level = 0;
+
+ if (debug & COMPL)
+ debug_print(T, "COMPLEMENT", compl_level++);
+
+ if (compl_special_cases(T, &Tbar) == MAYBE) {
+
+ /* Allocate space for the partition cubes */
+ cl = new_cube();
+ cr = new_cube();
+ best = binate_split_select(T, cl, cr, COMPL);
+
+ /* Complement the left and right halves */
+ Tl = complement(scofactor(T, cl, best));
+ Tr = complement(scofactor(T, cr, best));
+
+ if (Tr->count*Tl->count > (Tr->count+Tl->count)*CUBELISTSIZE(T)) {
+ lifting = USE_COMPL_LIFT_ONSET;
+ } else {
+ lifting = USE_COMPL_LIFT;
+ }
+ Tbar = compl_merge(T, Tl, Tr, cl, cr, best, lifting);
+
+ free_cube(cl);
+ free_cube(cr);
+ free_cubelist(T);
+ }
+
+ if (debug & COMPL)
+ debug1_print(Tbar, "exit COMPLEMENT", --compl_level);
+ return Tbar;
+}
+
+static bool compl_special_cases(T, Tbar)
+pcube *T; /* will be disposed if answer is determined */
+pcover *Tbar; /* returned only if answer determined */
+{
+ register pcube *T1, p, ceil, cof=T[0];
+ pcover A, ceil_compl;
+
+ /* Check for no cubes in the cover */
+ if (T[2] == NULL) {
+ *Tbar = sf_addset(new_cover(1), cube.fullset);
+ free_cubelist(T);
+ return TRUE;
+ }
+
+ /* Check for only a single cube in the cover */
+ if (T[3] == NULL) {
+ *Tbar = compl_cube(set_or(cof, cof, T[2]));
+ free_cubelist(T);
+ return TRUE;
+ }
+
+ /* Check for a row of all 1's (implies complement is null) */
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ if (full_row(p, cof)) {
+ *Tbar = new_cover(0);
+ free_cubelist(T);
+ return TRUE;
+ }
+ }
+
+ /* Check for a column of all 0's which can be factored out */
+ ceil = set_save(cof);
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ INLINEset_or(ceil, ceil, p);
+ }
+ if (! setp_equal(ceil, cube.fullset)) {
+ ceil_compl = compl_cube(ceil);
+ (void) set_or(cof, cof, set_diff(ceil, cube.fullset, ceil));
+ set_free(ceil);
+ *Tbar = sf_append(complement(T), ceil_compl);
+ return TRUE;
+ }
+ set_free(ceil);
+
+ /* Collect column counts, determine unate variables, etc. */
+ massive_count(T);
+
+ /* If single active variable not factored out above, then tautology ! */
+ if (cdata.vars_active == 1) {
+ *Tbar = new_cover(0);
+ free_cubelist(T);
+ return TRUE;
+
+ /* Check for unate cover */
+ } else if (cdata.vars_unate == cdata.vars_active) {
+ A = map_cover_to_unate(T);
+ free_cubelist(T);
+ A = unate_compl(A);
+ *Tbar = map_unate_to_cover(A);
+ sf_free(A);
+ return TRUE;
+
+ /* Not much we can do about it */
+ } else {
+ return MAYBE;
+ }
+}
+
+/*
+ * compl_merge -- merge the two cofactors around the splitting
+ * variable
+ *
+ * The merge operation involves intersecting each cube of the left
+ * cofactor with cl, and intersecting each cube of the right cofactor
+ * with cr. The union of these two covers is the merged result.
+ *
+ * In order to reduce the number of cubes, a distance-1 merge is
+ * performed (note that two cubes can only combine distance-1 in the
+ * splitting variable). Also, a simple expand is performed in the
+ * splitting variable (simple implies the covering check for the
+ * expansion is not full containment, but single-cube containment).
+ */
+
+static pcover compl_merge(T1, L, R, cl, cr, var, lifting)
+pcube *T1; /* Original ON-set */
+pcover L, R; /* Complement from each recursion branch */
+register pcube cl, cr; /* cubes used for cofactoring */
+int var; /* splitting variable */
+int lifting; /* whether to perform lifting or not */
+{
+ register pcube p, last, pt;
+ pcover T, Tbar;
+ pcube *L1, *R1;
+
+ if (debug & COMPL) {
+ (void) printf("compl_merge: left %d, right %d\n", L->count, R->count);
+ (void) printf("%s (cl)\n%s (cr)\nLeft is\n", pc1(cl), pc2(cr));
+ cprint(L);
+ (void) printf("Right is\n");
+ cprint(R);
+ }
+
+ /* Intersect each cube with the cofactored cube */
+ foreach_set(L, last, p) {
+ INLINEset_and(p, p, cl);
+ SET(p, ACTIVE);
+ }
+ foreach_set(R, last, p) {
+ INLINEset_and(p, p, cr);
+ SET(p, ACTIVE);
+ }
+
+ /* Sort the arrays for a distance-1 merge */
+ (void) set_copy(cube.temp[0], cube.var_mask[var]);
+ qsort((char *) (L1 = sf_list(L)), L->count, sizeof(pset), (int (*)()) d1_order);
+ qsort((char *) (R1 = sf_list(R)), R->count, sizeof(pset), (int (*)()) d1_order);
+
+ /* Perform distance-1 merge */
+ compl_d1merge(L1, R1);
+
+ /* Perform lifting */
+ switch(lifting) {
+ case USE_COMPL_LIFT_ONSET:
+ T = cubeunlist(T1);
+ compl_lift_onset(L1, T, cr, var);
+ compl_lift_onset(R1, T, cl, var);
+ free_cover(T);
+ break;
+ case USE_COMPL_LIFT_ONSET_COMPLEX:
+ T = cubeunlist(T1);
+ compl_lift_onset_complex(L1, T, var);
+ compl_lift_onset_complex(R1, T, var);
+ free_cover(T);
+ break;
+ case USE_COMPL_LIFT:
+ compl_lift(L1, R1, cr, var);
+ compl_lift(R1, L1, cl, var);
+ break;
+ case NO_LIFTING:
+ break;
+ default:
+ ;
+ }
+ FREE(L1);
+ FREE(R1);
+
+ /* Re-create the merged cover */
+ Tbar = new_cover(L->count + R->count);
+ pt = Tbar->data;
+ foreach_set(L, last, p) {
+ INLINEset_copy(pt, p);
+ Tbar->count++;
+ pt += Tbar->wsize;
+ }
+ foreach_active_set(R, last, p) {
+ INLINEset_copy(pt, p);
+ Tbar->count++;
+ pt += Tbar->wsize;
+ }
+
+ if (debug & COMPL) {
+ (void) printf("Result %d\n", Tbar->count);
+ if (verbose_debug)
+ cprint(Tbar);
+ }
+
+ free_cover(L);
+ free_cover(R);
+ return Tbar;
+}
+
+/*
+ * compl_lift_simple -- expand in the splitting variable using single
+ * cube containment against the other recursion branch to check
+ * validity of the expansion, and expanding all (or none) of the
+ * splitting variable.
+ */
+static void compl_lift(A1, B1, bcube, var)
+pcube *A1, *B1, bcube;
+int var;
+{
+ register pcube a, b, *B2, lift=cube.temp[4], liftor=cube.temp[5];
+ pcube mask = cube.var_mask[var];
+
+ (void) set_and(liftor, bcube, mask);
+
+ /* for each cube in the first array ... */
+ for(; (a = *A1++) != NULL; ) {
+ if (TESTP(a, ACTIVE)) {
+
+ /* create a lift of this cube in the merging coord */
+ (void) set_merge(lift, bcube, a, mask);
+
+ /* for each cube in the second array */
+ for(B2 = B1; (b = *B2++) != NULL; ) {
+ INLINEsetp_implies(lift, b, /* when_false => */ continue);
+ /* when_true => fall through to next statement */
+
+ /* cube of A1 was contained by some cube of B1, so raise */
+ INLINEset_or(a, a, liftor);
+ break;
+ }
+ }
+ }
+}
+
+
+
+/*
+ * compl_lift_onset -- expand in the splitting variable using a
+ * distance-1 check against the original on-set; expand all (or
+ * none) of the splitting variable. Each cube of A1 is expanded
+ * against the original on-set T.
+ */
+static void compl_lift_onset(A1, T, bcube, var)
+pcube *A1;
+pcover T;
+pcube bcube;
+int var;
+{
+ register pcube a, last, p, lift=cube.temp[4], mask=cube.var_mask[var];
+
+ /* for each active cube from one branch of the complement */
+ for(; (a = *A1++) != NULL; ) {
+ if (TESTP(a, ACTIVE)) {
+
+ /* create a lift of this cube in the merging coord */
+ INLINEset_and(lift, bcube, mask); /* isolate parts to raise */
+ INLINEset_or(lift, a, lift); /* raise these parts in a */
+
+ /* for each cube in the ON-set, check for intersection */
+ foreach_set(T, last, p) {
+ if (cdist0(p, lift)) {
+ goto nolift;
+ }
+ }
+ INLINEset_copy(a, lift); /* save the raising */
+ SET(a, ACTIVE);
+nolift : ;
+ }
+ }
+}
+
+/*
+ * compl_lift_complex -- expand in the splitting variable, but expand all
+ * parts which can possibly expand.
+ * T is the original ON-set
+ * A1 is either the left or right cofactor
+ */
+static void compl_lift_onset_complex(A1, T, var)
+pcube *A1; /* array of pointers to new result */
+pcover T; /* original ON-set */
+int var; /* which variable we split on */
+{
+ register int dist;
+ register pcube last, p, a, xlower;
+
+ /* for each cube in the complement */
+ xlower = new_cube();
+ for(; (a = *A1++) != NULL; ) {
+
+ if (TESTP(a, ACTIVE)) {
+
+ /* Find which parts of the splitting variable are forced low */
+ INLINEset_clear(xlower, cube.size);
+ foreach_set(T, last, p) {
+ if ((dist = cdist01(p, a)) < 2) {
+ if (dist == 0) {
+ fatal("compl: ON-set and OFF-set are not orthogonal");
+ } else {
+ (void) force_lower(xlower, p, a);
+ }
+ }
+ }
+
+ (void) set_diff(xlower, cube.var_mask[var], xlower);
+ (void) set_or(a, a, xlower);
+ free_cube(xlower);
+ }
+ }
+}
+
+
+
+/*
+ * compl_d1merge -- distance-1 merge in the splitting variable
+ */
+static void compl_d1merge(L1, R1)
+register pcube *L1, *R1;
+{
+ register pcube pl, pr;
+
+ /* Find equal cubes between the two cofactors */
+ for(pl = *L1, pr = *R1; (pl != NULL) && (pr != NULL); )
+ switch (d1_order(L1, R1)) {
+ case 1:
+ pr = *(++R1); break; /* advance right pointer */
+ case -1:
+ pl = *(++L1); break; /* advance left pointer */
+ case 0:
+ RESET(pr, ACTIVE);
+ INLINEset_or(pl, pl, pr);
+ pr = *(++R1);
+ default:
+ ;
+ }
+}
+
+
+
+/* compl_cube -- return the complement of a single cube (De Morgan's law) */
+static pcover compl_cube(p)
+register pcube p;
+{
+ register pcube diff=cube.temp[7], pdest, mask, full=cube.fullset;
+ int var;
+ pcover R;
+
+ /* Allocate worst-case size cover (to avoid checking overflow) */
+ R = new_cover(cube.num_vars);
+
+ /* Compute bit-wise complement of the cube */
+ INLINEset_diff(diff, full, p);
+
+ for(var = 0; var < cube.num_vars; var++) {
+ mask = cube.var_mask[var];
+ /* If the bit-wise complement is not empty in var ... */
+ if (! setp_disjoint(diff, mask)) {
+ pdest = GETSET(R, R->count++);
+ INLINEset_merge(pdest, diff, full, mask);
+ }
+ }
+ return R;
+}
+
+/* simp_comp -- quick simplification of T */
+void simp_comp(T, Tnew, Tbar)
+pcube *T; /* T will be disposed of */
+pcover *Tnew;
+pcover *Tbar;
+{
+ register pcube cl, cr;
+ register int best;
+ pcover Tl, Tr, Tlbar, Trbar;
+ int lifting;
+ static int simplify_level = 0;
+
+ if (debug & COMPL)
+ debug_print(T, "SIMPCOMP", simplify_level++);
+
+ if (simp_comp_special_cases(T, Tnew, Tbar) == MAYBE) {
+
+ /* Allocate space for the partition cubes */
+ cl = new_cube();
+ cr = new_cube();
+ best = binate_split_select(T, cl, cr, COMPL);
+
+ /* Complement the left and right halves */
+ simp_comp(scofactor(T, cl, best), &Tl, &Tlbar);
+ simp_comp(scofactor(T, cr, best), &Tr, &Trbar);
+
+ lifting = USE_COMPL_LIFT;
+ *Tnew = compl_merge(T, Tl, Tr, cl, cr, best, lifting);
+
+ lifting = USE_COMPL_LIFT;
+ *Tbar = compl_merge(T, Tlbar, Trbar, cl, cr, best, lifting);
+
+ /* All of this work for nothing ? Let's hope not ... */
+ if ((*Tnew)->count > CUBELISTSIZE(T)) {
+ sf_free(*Tnew);
+ *Tnew = cubeunlist(T);
+ }
+
+ free_cube(cl);
+ free_cube(cr);
+ free_cubelist(T);
+ }
+
+ if (debug & COMPL) {
+ debug1_print(*Tnew, "exit SIMPCOMP (new)", simplify_level);
+ debug1_print(*Tbar, "exit SIMPCOMP (compl)", simplify_level);
+ simplify_level--;
+ }
+}
+
+static bool simp_comp_special_cases(T, Tnew, Tbar)
+pcube *T; /* will be disposed if answer is determined */
+pcover *Tnew; /* returned only if answer determined */
+pcover *Tbar; /* returned only if answer determined */
+{
+ register pcube *T1, p, ceil, cof=T[0];
+ pcube last;
+ pcover A;
+
+ /* Check for no cubes in the cover (function is empty) */
+ if (T[2] == NULL) {
+ *Tnew = new_cover(1);
+ *Tbar = sf_addset(new_cover(1), cube.fullset);
+ free_cubelist(T);
+ return TRUE;
+ }
+
+ /* Check for only a single cube in the cover */
+ if (T[3] == NULL) {
+ (void) set_or(cof, cof, T[2]);
+ *Tnew = sf_addset(new_cover(1), cof);
+ *Tbar = compl_cube(cof);
+ free_cubelist(T);
+ return TRUE;
+ }
+
+ /* Check for a row of all 1's (function is a tautology) */
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ if (full_row(p, cof)) {
+ *Tnew = sf_addset(new_cover(1), cube.fullset);
+ *Tbar = new_cover(1);
+ free_cubelist(T);
+ return TRUE;
+ }
+ }
+
+ /* Check for a column of all 0's which can be factored out */
+ ceil = set_save(cof);
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ INLINEset_or(ceil, ceil, p);
+ }
+ if (! setp_equal(ceil, cube.fullset)) {
+ p = new_cube();
+ (void) set_diff(p, cube.fullset, ceil);
+ (void) set_or(cof, cof, p);
+ set_free(p);
+ simp_comp(T, Tnew, Tbar);
+
+ /* Adjust the ON-set */
+ A = *Tnew;
+ foreach_set(A, last, p) {
+ INLINEset_and(p, p, ceil);
+ }
+
+ /* Compute the new complement */
+ *Tbar = sf_append(*Tbar, compl_cube(ceil));
+ set_free(ceil);
+ return TRUE;
+ }
+ set_free(ceil);
+
+ /* Collect column counts, determine unate variables, etc. */
+ massive_count(T);
+
+ /* If single active variable not factored out above, then tautology ! */
+ if (cdata.vars_active == 1) {
+ *Tnew = sf_addset(new_cover(1), cube.fullset);
+ *Tbar = new_cover(1);
+ free_cubelist(T);
+ return TRUE;
+
+ /* Check for unate cover */
+ } else if (cdata.vars_unate == cdata.vars_active) {
+ /* Make the cover minimum by single-cube containment */
+ A = cubeunlist(T);
+ *Tnew = sf_contain(A);
+
+ /* Now form a minimum representation of the complement */
+ A = map_cover_to_unate(T);
+ A = unate_compl(A);
+ *Tbar = map_unate_to_cover(A);
+ sf_free(A);
+ free_cubelist(T);
+ return TRUE;
+
+ /* Not much we can do about it */
+ } else {
+ return MAYBE;
+ }
+}
+
+/* simplify -- quick simplification of T */
+pcover simplify(T)
+pcube *T; /* T will be disposed of */
+{
+ register pcube cl, cr;
+ register int best;
+ pcover Tbar, Tl, Tr;
+ int lifting;
+ static int simplify_level = 0;
+
+ if (debug & COMPL) {
+ debug_print(T, "SIMPLIFY", simplify_level++);
+ }
+
+ if (simplify_special_cases(T, &Tbar) == MAYBE) {
+
+ /* Allocate space for the partition cubes */
+ cl = new_cube();
+ cr = new_cube();
+
+ best = binate_split_select(T, cl, cr, COMPL);
+
+ /* Complement the left and right halves */
+ Tl = simplify(scofactor(T, cl, best));
+ Tr = simplify(scofactor(T, cr, best));
+
+ lifting = USE_COMPL_LIFT;
+ Tbar = compl_merge(T, Tl, Tr, cl, cr, best, lifting);
+
+ /* All of this work for nothing ? Let's hope not ... */
+ if (Tbar->count > CUBELISTSIZE(T)) {
+ sf_free(Tbar);
+ Tbar = cubeunlist(T);
+ }
+
+ free_cube(cl);
+ free_cube(cr);
+ free_cubelist(T);
+ }
+
+ if (debug & COMPL) {
+ debug1_print(Tbar, "exit SIMPLIFY", --simplify_level);
+ }
+ return Tbar;
+}
+
+static bool simplify_special_cases(T, Tnew)
+pcube *T; /* will be disposed if answer is determined */
+pcover *Tnew; /* returned only if answer determined */
+{
+ register pcube *T1, p, ceil, cof=T[0];
+ pcube last;
+ pcover A;
+
+ /* Check for no cubes in the cover */
+ if (T[2] == NULL) {
+ *Tnew = new_cover(0);
+ free_cubelist(T);
+ return TRUE;
+ }
+
+ /* Check for only a single cube in the cover */
+ if (T[3] == NULL) {
+ *Tnew = sf_addset(new_cover(1), set_or(cof, cof, T[2]));
+ free_cubelist(T);
+ return TRUE;
+ }
+
+ /* Check for a row of all 1's (implies function is a tautology) */
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ if (full_row(p, cof)) {
+ *Tnew = sf_addset(new_cover(1), cube.fullset);
+ free_cubelist(T);
+ return TRUE;
+ }
+ }
+
+ /* Check for a column of all 0's which can be factored out */
+ ceil = set_save(cof);
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ INLINEset_or(ceil, ceil, p);
+ }
+ if (! setp_equal(ceil, cube.fullset)) {
+ p = new_cube();
+ (void) set_diff(p, cube.fullset, ceil);
+ (void) set_or(cof, cof, p);
+ free_cube(p);
+
+ A = simplify(T);
+ foreach_set(A, last, p) {
+ INLINEset_and(p, p, ceil);
+ }
+ *Tnew = A;
+ set_free(ceil);
+ return TRUE;
+ }
+ set_free(ceil);
+
+ /* Collect column counts, determine unate variables, etc. */
+ massive_count(T);
+
+ /* If single active variable not factored out above, then tautology ! */
+ if (cdata.vars_active == 1) {
+ *Tnew = sf_addset(new_cover(1), cube.fullset);
+ free_cubelist(T);
+ return TRUE;
+
+ /* Check for unate cover */
+ } else if (cdata.vars_unate == cdata.vars_active) {
+ A = cubeunlist(T);
+ *Tnew = sf_contain(A);
+ free_cubelist(T);
+ return TRUE;
+
+ /* Not much we can do about it */
+ } else {
+ return MAYBE;
+ }
+}
diff --git a/src/misc/espresso/contain.c b/src/misc/espresso/contain.c
new file mode 100644
index 00000000..180dceb6
--- /dev/null
+++ b/src/misc/espresso/contain.c
@@ -0,0 +1,441 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ contain.c -- set containment routines
+
+ These are complex routines for performing containment over a
+ family of sets, but they have the advantage of being much faster
+ than a straightforward n*n routine.
+
+ First the cubes are sorted by size, and as a secondary key they are
+ sorted so that if two cubes are equal they end up adjacent. We can
+ than quickly remove equal cubes from further consideration by
+ comparing each cube to its neighbor. Finally, because the cubes
+ are sorted by size, we need only check cubes which are larger (or
+ smaller) than a given cube for containment.
+*/
+
+#include "espresso.h"
+
+
+/*
+ sf_contain -- perform containment on a set family (delete sets which
+ are contained by some larger set in the family). No assumptions are
+ made about A, and the result will be returned in decreasing order of
+ set size.
+*/
+pset_family sf_contain(A)
+INOUT pset_family A; /* disposes of A */
+{
+ int cnt;
+ pset *A1;
+ pset_family R;
+
+ A1 = sf_sort(A, descend); /* sort into descending order */
+ cnt = rm_equal(A1, descend); /* remove duplicates */
+ cnt = rm_contain(A1); /* remove contained sets */
+ R = sf_unlist(A1, cnt, A->sf_size); /* recreate the set family */
+ sf_free(A);
+ return R;
+}
+
+
+/*
+ sf_rev_contain -- perform containment on a set family (delete sets which
+ contain some smaller set in the family). No assumptions are made about
+ A, and the result will be returned in increasing order of set size
+*/
+pset_family sf_rev_contain(A)
+INOUT pset_family A; /* disposes of A */
+{
+ int cnt;
+ pset *A1;
+ pset_family R;
+
+ A1 = sf_sort(A, ascend); /* sort into ascending order */
+ cnt = rm_equal(A1, ascend); /* remove duplicates */
+ cnt = rm_rev_contain(A1); /* remove containing sets */
+ R = sf_unlist(A1, cnt, A->sf_size); /* recreate the set family */
+ sf_free(A);
+ return R;
+}
+
+
+/*
+ sf_ind_contain -- perform containment on a set family (delete sets which
+ are contained by some larger set in the family). No assumptions are
+ made about A, and the result will be returned in decreasing order of
+ set size. Also maintains a set of row_indices to track which rows
+ disappear and how the rows end up permuted.
+*/
+pset_family sf_ind_contain(A, row_indices)
+INOUT pset_family A; /* disposes of A */
+INOUT int *row_indices; /* updated with the new values */
+{
+ int cnt;
+ pset *A1;
+ pset_family R;
+
+ A1 = sf_sort(A, descend); /* sort into descending order */
+ cnt = rm_equal(A1, descend); /* remove duplicates */
+ cnt = rm_contain(A1); /* remove contained sets */
+ R = sf_ind_unlist(A1, cnt, A->sf_size, row_indices, A->data);
+ sf_free(A);
+ return R;
+}
+
+
+/* sf_dupl -- delete duplicate sets in a set family */
+pset_family sf_dupl(A)
+INOUT pset_family A; /* disposes of A */
+{
+ register int cnt;
+ register pset *A1;
+ pset_family R;
+
+ A1 = sf_sort(A, descend); /* sort the set family */
+ cnt = rm_equal(A1, descend); /* remove duplicates */
+ R = sf_unlist(A1, cnt, A->sf_size); /* recreate the set family */
+ sf_free(A);
+ return R;
+}
+
+
+/*
+ sf_union -- form the contained union of two set families (delete
+ sets which are contained by some larger set in the family). A and
+ B are assumed already sorted in decreasing order of set size (and
+ the SIZE field is assumed to contain the set size), and the result
+ will be returned sorted likewise.
+*/
+pset_family sf_union(A, B)
+INOUT pset_family A, B; /* disposes of A and B */
+{
+ int cnt;
+ pset_family R;
+ pset *A1 = sf_list(A), *B1 = sf_list(B), *E1;
+
+ E1 = ALLOC(pset, MAX(A->count, B->count) + 1);
+ cnt = rm2_equal(A1, B1, E1, descend);
+ cnt += rm2_contain(A1, B1) + rm2_contain(B1, A1);
+ R = sf_merge(A1, B1, E1, cnt, A->sf_size);
+ sf_free(A); sf_free(B);
+ return R;
+}
+
+
+/*
+ dist_merge -- consider all sets to be "or"-ed with "mask" and then
+ delete duplicates from the set family.
+*/
+pset_family dist_merge(A, mask)
+INOUT pset_family A; /* disposes of A */
+IN pset mask; /* defines variables to mask out */
+{
+ pset *A1;
+ int cnt;
+ pset_family R;
+
+ (void) set_copy(cube.temp[0], mask);
+ A1 = sf_sort(A, d1_order);
+ cnt = d1_rm_equal(A1, d1_order);
+ R = sf_unlist(A1, cnt, A->sf_size);
+ sf_free(A);
+ return R;
+}
+
+
+/*
+ d1merge -- perform an efficient distance-1 merge of cubes of A
+*/
+pset_family d1merge(A, var)
+INOUT pset_family A; /* disposes of A */
+IN int var;
+{
+ return dist_merge(A, cube.var_mask[var]);
+}
+
+
+
+/* d1_rm_equal -- distance-1 merge (merge cubes which are equal under a mask) */
+int d1_rm_equal(A1, compare)
+register pset *A1; /* array of set pointers */
+int (*compare)(); /* comparison function */
+{
+ register int i, j, dest;
+
+ dest = 0;
+ if (A1[0] != (pcube) NULL) {
+ for(i = 0, j = 1; A1[j] != (pcube) NULL; j++)
+ if ( (*compare)(&A1[i], &A1[j]) == 0) {
+ /* if sets are equal (under the mask) merge them */
+ (void) set_or(A1[i], A1[i], A1[j]);
+ } else {
+ /* sets are unequal, so save the set i */
+ A1[dest++] = A1[i];
+ i = j;
+ }
+ A1[dest++] = A1[i];
+ }
+ A1[dest] = (pcube) NULL;
+ return dest;
+}
+
+
+/* rm_equal -- scan a sorted array of set pointers for duplicate sets */
+int rm_equal(A1, compare)
+INOUT pset *A1; /* updated in place */
+IN int (*compare)();
+{
+ register pset *p, *pdest = A1;
+
+ if (*A1 != NULL) { /* If more than one set */
+ for(p = A1+1; *p != NULL; p++)
+ if ((*compare)(p, p-1) != 0)
+ *pdest++ = *(p-1);
+ *pdest++ = *(p-1);
+ *pdest = NULL;
+ }
+ return pdest - A1;
+}
+
+
+/* rm_contain -- perform containment over a sorted array of set pointers */
+int rm_contain(A1)
+INOUT pset *A1; /* updated in place */
+{
+ register pset *pa, *pb, *pcheck, a, b;
+ pset *pdest = A1;
+ int last_size = -1;
+
+ /* Loop for all cubes of A1 */
+ for(pa = A1; (a = *pa++) != NULL; ) {
+ /* Update the check pointer if the size has changed */
+ if (SIZE(a) != last_size)
+ last_size = SIZE(a), pcheck = pdest;
+ for(pb = A1; pb != pcheck; ) {
+ b = *pb++;
+ INLINEsetp_implies(a, b, /* when_false => */ continue);
+ goto lnext1;
+ }
+ /* set a was not contained by some larger set, so save it */
+ *pdest++ = a;
+ lnext1: ;
+ }
+
+ *pdest = NULL;
+ return pdest - A1;
+}
+
+
+/* rm_rev_contain -- perform rcontainment over a sorted array of set pointers */
+int rm_rev_contain(A1)
+INOUT pset *A1; /* updated in place */
+{
+ register pset *pa, *pb, *pcheck, a, b;
+ pset *pdest = A1;
+ int last_size = -1;
+
+ /* Loop for all cubes of A1 */
+ for(pa = A1; (a = *pa++) != NULL; ) {
+ /* Update the check pointer if the size has changed */
+ if (SIZE(a) != last_size)
+ last_size = SIZE(a), pcheck = pdest;
+ for(pb = A1; pb != pcheck; ) {
+ b = *pb++;
+ INLINEsetp_implies(b, a, /* when_false => */ continue);
+ goto lnext1;
+ }
+ /* the set a did not contain some smaller set, so save it */
+ *pdest++ = a;
+ lnext1: ;
+ }
+
+ *pdest = NULL;
+ return pdest - A1;
+}
+
+
+/* rm2_equal -- check two sorted arrays of set pointers for equal cubes */
+int rm2_equal(A1, B1, E1, compare)
+INOUT register pset *A1, *B1; /* updated in place */
+OUT pset *E1;
+IN int (*compare)();
+{
+ register pset *pda = A1, *pdb = B1, *pde = E1;
+
+ /* Walk through the arrays advancing pointer to larger cube */
+ for(; *A1 != NULL && *B1 != NULL; )
+ switch((*compare)(A1, B1)) {
+ case -1: /* "a" comes before "b" */
+ *pda++ = *A1++; break;
+ case 0: /* equal cubes */
+ *pde++ = *A1++; B1++; break;
+ case 1: /* "a" is to follow "b" */
+ *pdb++ = *B1++; break;
+ }
+
+ /* Finish moving down the pointers of A and B */
+ while (*A1 != NULL)
+ *pda++ = *A1++;
+ while (*B1 != NULL)
+ *pdb++ = *B1++;
+ *pda = *pdb = *pde = NULL;
+
+ return pde - E1;
+}
+
+
+/* rm2_contain -- perform containment between two arrays of set pointers */
+int rm2_contain(A1, B1)
+INOUT pset *A1; /* updated in place */
+IN pset *B1; /* unchanged */
+{
+ register pset *pa, *pb, a, b, *pdest = A1;
+
+ /* for each set in the first array ... */
+ for(pa = A1; (a = *pa++) != NULL; ) {
+ /* for each set in the second array which is larger ... */
+ for(pb = B1; (b = *pb++) != NULL && SIZE(b) > SIZE(a); ) {
+ INLINEsetp_implies(a, b, /* when_false => */ continue);
+ /* set was contained in some set of B, so don't save pointer */
+ goto lnext1;
+ }
+ /* set wasn't contained in any set of B, so save the pointer */
+ *pdest++ = a;
+ lnext1: ;
+ }
+
+ *pdest = NULL; /* sentinel */
+ return pdest - A1; /* # elements in A1 */
+}
+
+
+
+/* sf_sort -- sort the sets of A */
+pset *sf_sort(A, compare)
+IN pset_family A;
+IN int (*compare)();
+{
+ register pset p, last, *pdest, *A1;
+
+ /* Create a single array pointing to each cube of A */
+ pdest = A1 = ALLOC(pset, A->count + 1);
+ foreach_set(A, last, p) {
+ PUTSIZE(p, set_ord(p)); /* compute the set size */
+ *pdest++ = p; /* save the pointer */
+ }
+ *pdest = NULL; /* Sentinel -- never seen by sort */
+
+ /* Sort cubes by size */
+ qsort((char *) A1, A->count, sizeof(pset), compare);
+ return A1;
+}
+
+
+/* sf_list -- make a list of pointers to the sets in a set family */
+pset *sf_list(A)
+IN register pset_family A;
+{
+ register pset p, last, *pdest, *A1;
+
+ /* Create a single array pointing to each cube of A */
+ pdest = A1 = ALLOC(pset, A->count + 1);
+ foreach_set(A, last, p)
+ *pdest++ = p; /* save the pointer */
+ *pdest = NULL; /* Sentinel */
+ return A1;
+}
+
+
+/* sf_unlist -- make a set family out of a list of pointers to sets */
+pset_family sf_unlist(A1, totcnt, size)
+IN pset *A1;
+IN int totcnt, size;
+{
+ register pset pr, p, *pa;
+ pset_family R = sf_new(totcnt, size);
+
+ R->count = totcnt;
+ for(pr = R->data, pa = A1; (p = *pa++) != NULL; pr += R->wsize)
+ INLINEset_copy(pr, p);
+ FREE(A1);
+ return R;
+}
+
+
+/* sf_ind_unlist -- make a set family out of a list of pointers to sets */
+pset_family sf_ind_unlist(A1, totcnt, size, row_indices, pfirst)
+IN pset *A1;
+IN int totcnt, size;
+INOUT int *row_indices;
+IN register pset pfirst;
+{
+ register pset pr, p, *pa;
+ register int i, *new_row_indices;
+ pset_family R = sf_new(totcnt, size);
+
+ R->count = totcnt;
+ new_row_indices = ALLOC(int, totcnt);
+ for(pr = R->data, pa = A1, i=0; (p = *pa++) != NULL; pr += R->wsize, i++) {
+ INLINEset_copy(pr, p);
+ new_row_indices[i] = row_indices[(p - pfirst)/R->wsize];
+ }
+ for(i = 0; i < totcnt; i++)
+ row_indices[i] = new_row_indices[i];
+ FREE(new_row_indices);
+ FREE(A1);
+ return R;
+}
+
+
+/* sf_merge -- merge three sorted lists of set pointers */
+pset_family sf_merge(A1, B1, E1, totcnt, size)
+INOUT pset *A1, *B1, *E1; /* will be disposed of */
+IN int totcnt, size;
+{
+ register pset pr, ps, *pmin, *pmid, *pmax;
+ pset_family R;
+ pset *temp[3], *swap;
+ int i, j, n;
+
+ /* Allocate the result set_family */
+ R = sf_new(totcnt, size);
+ R->count = totcnt;
+ pr = R->data;
+
+ /* Quick bubble sort to order the top member of the three arrays */
+ n = 3; temp[0] = A1; temp[1] = B1; temp[2] = E1;
+ for(i = 0; i < n-1; i++)
+ for(j = i+1; j < n; j++)
+ if (desc1(*temp[i], *temp[j]) > 0) {
+ swap = temp[j];
+ temp[j] = temp[i];
+ temp[i] = swap;
+ }
+ pmin = temp[0]; pmid = temp[1]; pmax = temp[2];
+
+ /* Save the minimum element, then update pmin, pmid, pmax */
+ while (*pmin != (pset) NULL) {
+ ps = *pmin++;
+ INLINEset_copy(pr, ps);
+ pr += R->wsize;
+ if (desc1(*pmin, *pmax) > 0) {
+ swap = pmax; pmax = pmin; pmin = pmid; pmid = swap;
+ } else if (desc1(*pmin, *pmid) > 0) {
+ swap = pmin; pmin = pmid; pmid = swap;
+ }
+ }
+
+ FREE(A1);
+ FREE(B1);
+ FREE(E1);
+ return R;
+}
diff --git a/src/misc/espresso/cubehack.c b/src/misc/espresso/cubehack.c
new file mode 100644
index 00000000..8e1724fc
--- /dev/null
+++ b/src/misc/espresso/cubehack.c
@@ -0,0 +1,138 @@
+/*
+ * Revision Control Information
+ *
+ * $Source: /vol/opua/opua2/sis/sis-1.1/common/src/sis/node/RCS/cubehack.c,v $
+ * $Author: sis $
+ * $Revision: 1.2 $
+ * $Date: 1992/05/06 18:57:41 $
+ *
+ */
+/*
+#include "sis.h"
+#include "node_int.h"
+
+#ifdef lint
+struct cube_struct cube;
+bool summary;
+bool trace;
+bool remove_essential;
+bool force_irredundant;
+bool unwrap_onset;
+bool single_expand;
+bool pos;
+bool recompute_onset;
+bool use_super_gasp;
+bool use_random_order;
+#endif
+*/
+#include "espresso.h"
+
+
+void
+cautious_define_cube_size(n)
+int n;
+{
+ if (cube.fullset != 0 && cube.num_binary_vars == n)
+ return;
+ if (cube.fullset != 0) {
+ setdown_cube();
+ FREE(cube.part_size);
+ }
+ cube.num_binary_vars = cube.num_vars = n;
+ cube.part_size = ALLOC(int, n);
+ cube_setup();
+}
+
+
+void
+define_cube_size(n)
+int n;
+{
+ register int q, i;
+ static int called_before = 0;
+
+ /* check if the cube is already just the right size */
+ if (cube.fullset != 0 && cube.num_binary_vars == n && cube.num_vars == n)
+ return;
+
+ /* We can't handle more than 100 inputs */
+ if (n > 100) {
+ cautious_define_cube_size(n);
+ called_before = 0;
+ return;
+ }
+
+ if (cube.fullset == 0 || ! called_before) {
+ cautious_define_cube_size(100);
+ called_before = 1;
+ }
+
+ cube.num_vars = n;
+ cube.num_binary_vars = n;
+ cube.num_mv_vars = 0;
+ cube.output = -1;
+ cube.size = n * 2;
+
+ /* first_part, last_part, first_word, last_word, part_size OKAY */
+ /* cube.sparse is OKAY */
+
+ /* need to completely re-make cube.fullset and cube.binary_mask */
+ (void) set_fill(cube.fullset, n*2);
+ (void) set_fill(cube.binary_mask, n*2);
+
+ /* need to resize each set in cube.var_mask and cube.temp */
+ q = cube.fullset[0];
+ for(i = 0; i < cube.num_vars; i++)
+ cube.var_mask[i][0] = q;
+ for(i = 0; i < CUBE_TEMP; i++)
+ cube.temp[i][0] = q;
+
+ /* need to resize cube.emptyset and cube.mv_mask */
+ cube.emptyset[0] = q;
+ cube.mv_mask[0] = q;
+
+ /* need to reset the inword and inmask */
+ if (cube.num_binary_vars != 0) {
+ cube.inword = cube.last_word[cube.num_binary_vars - 1];
+ cube.inmask = cube.binary_mask[cube.inword] & DISJOINT;
+ } else {
+ cube.inword = -1;
+ cube.inmask = 0;
+ }
+
+ /* cdata (entire structure) is OKAY */
+}
+
+
+void
+undefine_cube_size()
+{
+ if (cube.num_binary_vars > 100) {
+ if (cube.fullset != 0) {
+ setdown_cube();
+ FREE(cube.part_size);
+ }
+ } else {
+ cube.num_vars = cube.num_binary_vars = 100;
+ if (cube.fullset != 0) {
+ setdown_cube();
+ FREE(cube.part_size);
+ }
+ }
+}
+
+
+void
+set_espresso_flags()
+{
+ summary = FALSE;
+ trace = FALSE;
+ remove_essential = TRUE;
+ force_irredundant = TRUE;
+ unwrap_onset = TRUE;
+ single_expand = FALSE;
+ pos = FALSE;
+ recompute_onset = FALSE;
+ use_super_gasp = FALSE;
+ use_random_order = FALSE;
+}
diff --git a/src/misc/espresso/cubestr.c b/src/misc/espresso/cubestr.c
new file mode 100644
index 00000000..77389e73
--- /dev/null
+++ b/src/misc/espresso/cubestr.c
@@ -0,0 +1,152 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ Module: cubestr.c -- routines for managing the global cube structure
+*/
+
+#include "espresso.h"
+
+/*
+ cube_setup -- assume that the fields "num_vars", "num_binary_vars", and
+ part_size[num_binary_vars .. num_vars-1] are setup, and initialize the
+ rest of cube and cdata.
+
+ If a part_size is < 0, then the field size is abs(part_size) and the
+ field read from the input is symbolic.
+*/
+void cube_setup()
+{
+ register int i, var;
+ register pcube p;
+
+ if (cube.num_binary_vars < 0 || cube.num_vars < cube.num_binary_vars)
+ fatal("cube size is silly, error in .i/.o or .mv");
+
+ cube.num_mv_vars = cube.num_vars - cube.num_binary_vars;
+ cube.output = cube.num_mv_vars > 0 ? cube.num_vars - 1 : -1;
+
+ cube.size = 0;
+ cube.first_part = ALLOC(int, cube.num_vars);
+ cube.last_part = ALLOC(int, cube.num_vars);
+ cube.first_word = ALLOC(int, cube.num_vars);
+ cube.last_word = ALLOC(int, cube.num_vars);
+ for(var = 0; var < cube.num_vars; var++) {
+ if (var < cube.num_binary_vars)
+ cube.part_size[var] = 2;
+ cube.first_part[var] = cube.size;
+ cube.first_word[var] = WHICH_WORD(cube.size);
+ cube.size += ABS(cube.part_size[var]);
+ cube.last_part[var] = cube.size - 1;
+ cube.last_word[var] = WHICH_WORD(cube.size - 1);
+ }
+
+ cube.var_mask = ALLOC(pset, cube.num_vars);
+ cube.sparse = ALLOC(int, cube.num_vars);
+ cube.binary_mask = new_cube();
+ cube.mv_mask = new_cube();
+ for(var = 0; var < cube.num_vars; var++) {
+ p = cube.var_mask[var] = new_cube();
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++)
+ set_insert(p, i);
+ if (var < cube.num_binary_vars) {
+ INLINEset_or(cube.binary_mask, cube.binary_mask, p);
+ cube.sparse[var] = 0;
+ } else {
+ INLINEset_or(cube.mv_mask, cube.mv_mask, p);
+ cube.sparse[var] = 1;
+ }
+ }
+ if (cube.num_binary_vars == 0)
+ cube.inword = -1;
+ else {
+ cube.inword = cube.last_word[cube.num_binary_vars - 1];
+ cube.inmask = cube.binary_mask[cube.inword] & DISJOINT;
+ }
+
+ cube.temp = ALLOC(pset, CUBE_TEMP);
+ for(i = 0; i < CUBE_TEMP; i++)
+ cube.temp[i] = new_cube();
+ cube.fullset = set_fill(new_cube(), cube.size);
+ cube.emptyset = new_cube();
+
+ cdata.part_zeros = ALLOC(int, cube.size);
+ cdata.var_zeros = ALLOC(int, cube.num_vars);
+ cdata.parts_active = ALLOC(int, cube.num_vars);
+ cdata.is_unate = ALLOC(int, cube.num_vars);
+}
+
+/*
+ setdown_cube -- free memory allocated for the cube/cdata structs
+ (free's all but the part_size array)
+
+ (I wanted to call this cube_setdown, but that violates the 8-character
+ external routine limit on the IBM !)
+*/
+void setdown_cube()
+{
+ register int i, var;
+
+ FREE(cube.first_part);
+ FREE(cube.last_part);
+ FREE(cube.first_word);
+ FREE(cube.last_word);
+ FREE(cube.sparse);
+
+ free_cube(cube.binary_mask);
+ free_cube(cube.mv_mask);
+ free_cube(cube.fullset);
+ free_cube(cube.emptyset);
+ for(var = 0; var < cube.num_vars; var++)
+ free_cube(cube.var_mask[var]);
+ FREE(cube.var_mask);
+
+ for(i = 0; i < CUBE_TEMP; i++)
+ free_cube(cube.temp[i]);
+ FREE(cube.temp);
+
+ FREE(cdata.part_zeros);
+ FREE(cdata.var_zeros);
+ FREE(cdata.parts_active);
+ FREE(cdata.is_unate);
+
+ cube.first_part = cube.last_part = (int *) NULL;
+ cube.first_word = cube.last_word = (int *) NULL;
+ cube.sparse = (int *) NULL;
+ cube.binary_mask = cube.mv_mask = (pcube) NULL;
+ cube.fullset = cube.emptyset = (pcube) NULL;
+ cube.var_mask = cube.temp = (pcube *) NULL;
+
+ cdata.part_zeros = cdata.var_zeros = cdata.parts_active = (int *) NULL;
+ cdata.is_unate = (bool *) NULL;
+}
+
+
+void save_cube_struct()
+{
+ temp_cube_save = cube; /* structure copy ! */
+ temp_cdata_save = cdata; /* "" */
+
+ cube.first_part = cube.last_part = (int *) NULL;
+ cube.first_word = cube.last_word = (int *) NULL;
+ cube.part_size = (int *) NULL;
+ cube.binary_mask = cube.mv_mask = (pcube) NULL;
+ cube.fullset = cube.emptyset = (pcube) NULL;
+ cube.var_mask = cube.temp = (pcube *) NULL;
+
+ cdata.part_zeros = cdata.var_zeros = cdata.parts_active = (int *) NULL;
+ cdata.is_unate = (bool *) NULL;
+}
+
+
+void restore_cube_struct()
+{
+ cube = temp_cube_save; /* structure copy ! */
+ cdata = temp_cdata_save; /* "" */
+}
diff --git a/src/misc/espresso/cvrin.c b/src/misc/espresso/cvrin.c
new file mode 100644
index 00000000..7790b38b
--- /dev/null
+++ b/src/misc/espresso/cvrin.c
@@ -0,0 +1,810 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ module: cvrin.c
+ purpose: cube and cover input routines
+*/
+
+#include "espresso.h"
+
+static bool line_length_error;
+static int lineno;
+
+void skip_line(fpin, fpout, echo)
+register FILE *fpin, *fpout;
+register bool echo;
+{
+ register int ch;
+ while ((ch=getc(fpin)) != EOF && ch != '\n')
+ if (echo)
+ putc(ch, fpout);
+ if (echo)
+ putc('\n', fpout);
+ lineno++;
+}
+
+char *get_word(fp, word)
+register FILE *fp;
+register char *word;
+{
+ register int ch, i = 0;
+ while ((ch = getc(fp)) != EOF && isspace(ch))
+ ;
+ word[i++] = ch;
+ while ((ch = getc(fp)) != EOF && ! isspace(ch))
+ word[i++] = ch;
+ word[i++] = '\0';
+ return word;
+}
+
+/*
+ * Yes, I know this routine is a mess
+ */
+void read_cube(fp, PLA)
+register FILE *fp;
+pPLA PLA;
+{
+ register int var, i;
+ pcube cf = cube.temp[0], cr = cube.temp[1], cd = cube.temp[2];
+ bool savef = FALSE, saved = FALSE, saver = FALSE;
+ char token[256]; /* for kiss read hack */
+ int varx, first, last, offset; /* for kiss read hack */
+
+ set_clear(cf, cube.size);
+
+ /* Loop and read binary variables */
+ for(var = 0; var < cube.num_binary_vars; var++)
+ switch(getc(fp)) {
+ case EOF:
+ goto bad_char;
+ case '\n':
+ if (! line_length_error)
+ (void) fprintf(stderr, "product term(s) %s\n",
+ "span more than one line (warning only)");
+ line_length_error = TRUE;
+ lineno++;
+ var--;
+ break;
+ case ' ': case '|': case '\t':
+ var--;
+ break;
+ case '2': case '-':
+ set_insert(cf, var*2+1);
+ case '0':
+ set_insert(cf, var*2);
+ break;
+ case '1':
+ set_insert(cf, var*2+1);
+ break;
+ case '?':
+ break;
+ default:
+ goto bad_char;
+ }
+
+
+ /* Loop for the all but one of the multiple-valued variables */
+ for(var = cube.num_binary_vars; var < cube.num_vars-1; var++)
+
+ /* Read a symbolic multiple-valued variable */
+ if (cube.part_size[var] < 0) {
+ (void) fscanf(fp, "%s", token);
+ if (equal(token, "-") || equal(token, "ANY")) {
+ if (kiss && var == cube.num_vars - 2) {
+ /* leave it empty */
+ } else {
+ /* make it full */
+ set_or(cf, cf, cube.var_mask[var]);
+ }
+ } else if (equal(token, "~")) {
+ ;
+ /* leave it empty ... (?) */
+ } else {
+ if (kiss && var == cube.num_vars - 2)
+ varx = var - 1, offset = ABS(cube.part_size[var-1]);
+ else
+ varx = var, offset = 0;
+ /* Find the symbolic label in the label table */
+ first = cube.first_part[varx];
+ last = cube.last_part[varx];
+ for(i = first; i <= last; i++)
+ if (PLA->label[i] == (char *) NULL) {
+ PLA->label[i] = util_strsav(token); /* add new label */
+ set_insert(cf, i+offset);
+ break;
+ } else if (equal(PLA->label[i], token)) {
+ set_insert(cf, i+offset); /* use column i */
+ break;
+ }
+ if (i > last) {
+ (void) fprintf(stderr,
+"declared size of variable %d (counting from variable 0) is too small\n", var);
+ exit(-1);
+ }
+ }
+
+ } else for(i = cube.first_part[var]; i <= cube.last_part[var]; i++)
+ switch (getc(fp)) {
+ case EOF:
+ goto bad_char;
+ case '\n':
+ if (! line_length_error)
+ (void) fprintf(stderr, "product term(s) %s\n",
+ "span more than one line (warning only)");
+ line_length_error = TRUE;
+ lineno++;
+ i--;
+ break;
+ case ' ': case '|': case '\t':
+ i--;
+ break;
+ case '1':
+ set_insert(cf, i);
+ case '0':
+ break;
+ default:
+ goto bad_char;
+ }
+
+ /* Loop for last multiple-valued variable */
+ if (kiss) {
+ saver = savef = TRUE;
+ (void) set_xor(cr, cf, cube.var_mask[cube.num_vars - 2]);
+ } else
+ set_copy(cr, cf);
+ set_copy(cd, cf);
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++)
+ switch (getc(fp)) {
+ case EOF:
+ goto bad_char;
+ case '\n':
+ if (! line_length_error)
+ (void) fprintf(stderr, "product term(s) %s\n",
+ "span more than one line (warning only)");
+ line_length_error = TRUE;
+ lineno++;
+ i--;
+ break;
+ case ' ': case '|': case '\t':
+ i--;
+ break;
+ case '4': case '1':
+ if (PLA->pla_type & F_type)
+ set_insert(cf, i), savef = TRUE;
+ break;
+ case '3': case '0':
+ if (PLA->pla_type & R_type)
+ set_insert(cr, i), saver = TRUE;
+ break;
+ case '2': case '-':
+ if (PLA->pla_type & D_type)
+ set_insert(cd, i), saved = TRUE;
+ case '~':
+ break;
+ default:
+ goto bad_char;
+ }
+ if (savef) PLA->F = sf_addset(PLA->F, cf);
+ if (saved) PLA->D = sf_addset(PLA->D, cd);
+ if (saver) PLA->R = sf_addset(PLA->R, cr);
+ return;
+
+bad_char:
+ (void) fprintf(stderr, "(warning): input line #%d ignored\n", lineno);
+ skip_line(fp, stdout, TRUE);
+ return;
+}
+void parse_pla(fp, PLA)
+IN FILE *fp;
+INOUT pPLA PLA;
+{
+ int i, var, ch, np, last;
+ char word[256];
+
+ lineno = 1;
+ line_length_error = FALSE;
+
+loop:
+ switch(ch = getc(fp)) {
+ case EOF:
+ return;
+
+ case '\n':
+ lineno++;
+
+ case ' ': case '\t': case '\f': case '\r':
+ break;
+
+ case '#':
+ (void) ungetc(ch, fp);
+ skip_line(fp, stdout, echo_comments);
+ break;
+
+ case '.':
+ /* .i gives the cube input size (binary-functions only) */
+ if (equal(get_word(fp, word), "i")) {
+ if (cube.fullset != NULL) {
+ (void) fprintf(stderr, "extra .i ignored\n");
+ skip_line(fp, stdout, /* echo */ FALSE);
+ } else {
+ if (fscanf(fp, "%d", &cube.num_binary_vars) != 1)
+ fatal("error reading .i");
+ cube.num_vars = cube.num_binary_vars + 1;
+ cube.part_size = ALLOC(int, cube.num_vars);
+ }
+
+ /* .o gives the cube output size (binary-functions only) */
+ } else if (equal(word, "o")) {
+ if (cube.fullset != NULL) {
+ (void) fprintf(stderr, "extra .o ignored\n");
+ skip_line(fp, stdout, /* echo */ FALSE);
+ } else {
+ if (cube.part_size == NULL)
+ fatal(".o cannot appear before .i");
+ if (fscanf(fp, "%d", &(cube.part_size[cube.num_vars-1]))!=1)
+ fatal("error reading .o");
+ cube_setup();
+ PLA_labels(PLA);
+ }
+
+ /* .mv gives the cube size for a multiple-valued function */
+ } else if (equal(word, "mv")) {
+ if (cube.fullset != NULL) {
+ (void) fprintf(stderr, "extra .mv ignored\n");
+ skip_line(fp, stdout, /* echo */ FALSE);
+ } else {
+ if (cube.part_size != NULL)
+ fatal("cannot mix .i and .mv");
+ if (fscanf(fp,"%d %d",
+ &cube.num_vars,&cube.num_binary_vars) != 2)
+ fatal("error reading .mv");
+ if (cube.num_binary_vars < 0)
+fatal("num_binary_vars (second field of .mv) cannot be negative");
+ if (cube.num_vars < cube.num_binary_vars)
+ fatal(
+"num_vars (1st field of .mv) must exceed num_binary_vars (2nd field of .mv)");
+ cube.part_size = ALLOC(int, cube.num_vars);
+ for(var=cube.num_binary_vars; var < cube.num_vars; var++)
+ if (fscanf(fp, "%d", &(cube.part_size[var])) != 1)
+ fatal("error reading .mv");
+ cube_setup();
+ PLA_labels(PLA);
+ }
+
+ /* .p gives the number of product terms -- we ignore it */
+ } else if (equal(word, "p"))
+ (void) fscanf(fp, "%d", &np);
+ /* .e and .end specify the end of the file */
+ else if (equal(word, "e") || equal(word,"end")) {
+ if (cube.fullset == NULL) {
+ /* fatal("unknown PLA size, need .i/.o or .mv");*/
+ } else if (PLA->F == NULL) {
+ PLA->F = new_cover(10);
+ PLA->D = new_cover(10);
+ PLA->R = new_cover(10);
+ }
+ return;
+ }
+ /* .kiss turns on the kiss-hack option */
+ else if (equal(word, "kiss"))
+ kiss = TRUE;
+
+ /* .type specifies a logical type for the PLA */
+ else if (equal(word, "type")) {
+ (void) get_word(fp, word);
+ for(i = 0; pla_types[i].key != 0; i++)
+ if (equal(pla_types[i].key + 1, word)) {
+ PLA->pla_type = pla_types[i].value;
+ break;
+ }
+ if (pla_types[i].key == 0)
+ fatal("unknown type in .type command");
+
+ /* parse the labels */
+ } else if (equal(word, "ilb")) {
+ if (cube.fullset == NULL)
+ fatal("PLA size must be declared before .ilb or .ob");
+ if (PLA->label == NULL)
+ PLA_labels(PLA);
+ for(var = 0; var < cube.num_binary_vars; var++) {
+ (void) get_word(fp, word);
+ i = cube.first_part[var];
+ PLA->label[i+1] = util_strsav(word);
+ PLA->label[i] = ALLOC(char, strlen(word) + 6);
+ (void) sprintf(PLA->label[i], "%s.bar", word);
+ }
+ } else if (equal(word, "ob")) {
+ if (cube.fullset == NULL)
+ fatal("PLA size must be declared before .ilb or .ob");
+ if (PLA->label == NULL)
+ PLA_labels(PLA);
+ var = cube.num_vars - 1;
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
+ (void) get_word(fp, word);
+ PLA->label[i] = util_strsav(word);
+ }
+ /* .label assigns labels to multiple-valued variables */
+ } else if (equal(word, "label")) {
+ if (cube.fullset == NULL)
+ fatal("PLA size must be declared before .label");
+ if (PLA->label == NULL)
+ PLA_labels(PLA);
+ if (fscanf(fp, "var=%d", &var) != 1)
+ fatal("Error reading labels");
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
+ (void) get_word(fp, word);
+ PLA->label[i] = util_strsav(word);
+ }
+
+ } else if (equal(word, "symbolic")) {
+ symbolic_t *newlist, *p1;
+ if (read_symbolic(fp, PLA, word, &newlist)) {
+ if (PLA->symbolic == NIL(symbolic_t)) {
+ PLA->symbolic = newlist;
+ } else {
+ for(p1=PLA->symbolic;p1->next!=NIL(symbolic_t);
+ p1=p1->next){
+ }
+ p1->next = newlist;
+ }
+ } else {
+ fatal("error reading .symbolic");
+ }
+
+ } else if (equal(word, "symbolic-output")) {
+ symbolic_t *newlist, *p1;
+ if (read_symbolic(fp, PLA, word, &newlist)) {
+ if (PLA->symbolic_output == NIL(symbolic_t)) {
+ PLA->symbolic_output = newlist;
+ } else {
+ for(p1=PLA->symbolic_output;p1->next!=NIL(symbolic_t);
+ p1=p1->next){
+ }
+ p1->next = newlist;
+ }
+ } else {
+ fatal("error reading .symbolic-output");
+ }
+
+ /* .phase allows a choice of output phases */
+ } else if (equal(word, "phase")) {
+ if (cube.fullset == NULL)
+ fatal("PLA size must be declared before .phase");
+ if (PLA->phase != NULL) {
+ (void) fprintf(stderr, "extra .phase ignored\n");
+ skip_line(fp, stdout, /* echo */ FALSE);
+ } else {
+ do ch = getc(fp); while (ch == ' ' || ch == '\t');
+ (void) ungetc(ch, fp);
+ PLA->phase = set_save(cube.fullset);
+ last = cube.last_part[cube.num_vars - 1];
+ for(i=cube.first_part[cube.num_vars - 1]; i <= last; i++)
+ if ((ch = getc(fp)) == '0')
+ set_remove(PLA->phase, i);
+ else if (ch != '1')
+ fatal("only 0 or 1 allowed in phase description");
+ }
+
+ /* .pair allows for bit-pairing input variables */
+ } else if (equal(word, "pair")) {
+ int j;
+ if (PLA->pair != NULL) {
+ (void) fprintf(stderr, "extra .pair ignored\n");
+ } else {
+ ppair pair;
+ PLA->pair = pair = ALLOC(pair_t, 1);
+ if (fscanf(fp, "%d", &(pair->cnt)) != 1)
+ fatal("syntax error in .pair");
+ pair->var1 = ALLOC(int, pair->cnt);
+ pair->var2 = ALLOC(int, pair->cnt);
+ for(i = 0; i < pair->cnt; i++) {
+ (void) get_word(fp, word);
+ if (word[0] == '(') (void) strcpy(word, word+1);
+ if (label_index(PLA, word, &var, &j)) {
+ pair->var1[i] = var+1;
+ } else {
+ fatal("syntax error in .pair");
+ }
+
+ (void) get_word(fp, word);
+ if (word[strlen(word)-1] == ')') {
+ word[strlen(word)-1]='\0';
+ }
+ if (label_index(PLA, word, &var, &j)) {
+ pair->var2[i] = var+1;
+ } else {
+ fatal("syntax error in .pair");
+ }
+ }
+ }
+
+ } else {
+ if (echo_unknown_commands)
+ printf("%c%s ", ch, word);
+ skip_line(fp, stdout, echo_unknown_commands);
+ }
+ break;
+ default:
+ (void) ungetc(ch, fp);
+ if (cube.fullset == NULL) {
+/* fatal("unknown PLA size, need .i/.o or .mv");*/
+ if (echo_comments)
+ putchar('#');
+ skip_line(fp, stdout, echo_comments);
+ break;
+ }
+ if (PLA->F == NULL) {
+ PLA->F = new_cover(10);
+ PLA->D = new_cover(10);
+ PLA->R = new_cover(10);
+ }
+ read_cube(fp, PLA);
+ }
+ goto loop;
+}
+/*
+ read_pla -- read a PLA from a file
+
+ Input stops when ".e" is encountered in the input file, or upon reaching
+ end of file.
+
+ Returns the PLA in the variable PLA after massaging the "symbolic"
+ representation into a positional cube notation of the ON-set, OFF-set,
+ and the DC-set.
+
+ needs_dcset and needs_offset control the computation of the OFF-set
+ and DC-set (i.e., if either needs to be computed, then it will be
+ computed via complement only if the corresponding option is TRUE.)
+ pla_type specifies the interpretation to be used when reading the
+ PLA.
+
+ The phase of the output functions is adjusted according to the
+ global option "pos" or according to an imbedded .phase option in
+ the input file. Note that either phase option implies that the
+ OFF-set be computed regardless of whether the caller needs it
+ explicitly or not.
+
+ Bit pairing of the binary variables is performed according to an
+ imbedded .pair option in the input file.
+
+ The global cube structure also reflects the sizes of the PLA which
+ was just read. If these fields have already been set, then any
+ subsequent PLA must conform to these sizes.
+
+ The global flags trace and summary control the output produced
+ during the read.
+
+ Returns a status code as a result:
+ EOF (-1) : End of file reached before any data was read
+ > 0 : Operation successful
+*/
+
+int read_pla(fp, needs_dcset, needs_offset, pla_type, PLA_return)
+IN FILE *fp;
+IN bool needs_dcset, needs_offset;
+IN int pla_type;
+OUT pPLA *PLA_return;
+{
+ pPLA PLA;
+ int i, second, third;
+ long time;
+ cost_t cost;
+
+ /* Allocate and initialize the PLA structure */
+ PLA = *PLA_return = new_PLA();
+ PLA->pla_type = pla_type;
+
+ /* Read the pla */
+ time = ptime();
+ parse_pla(fp, PLA);
+
+ /* Check for nothing on the file -- implies reached EOF */
+ if (PLA->F == NULL) {
+ return EOF;
+ }
+
+ /* This hack merges the next-state field with the outputs */
+ for(i = 0; i < cube.num_vars; i++) {
+ cube.part_size[i] = ABS(cube.part_size[i]);
+ }
+ if (kiss) {
+ third = cube.num_vars - 3;
+ second = cube.num_vars - 2;
+ if (cube.part_size[third] != cube.part_size[second]) {
+ (void) fprintf(stderr," with .kiss option, third to last and second\n");
+ (void) fprintf(stderr, "to last variables must be the same size.\n");
+ return EOF;
+ }
+ for(i = 0; i < cube.part_size[second]; i++) {
+ PLA->label[i + cube.first_part[second]] =
+ util_strsav(PLA->label[i + cube.first_part[third]]);
+ }
+ cube.part_size[second] += cube.part_size[cube.num_vars-1];
+ cube.num_vars--;
+ setdown_cube();
+ cube_setup();
+ }
+
+ if (trace) {
+ totals(time, READ_TIME, PLA->F, &cost);
+ }
+
+ /* Decide how to break PLA into ON-set, OFF-set and DC-set */
+ time = ptime();
+ if (pos || PLA->phase != NULL || PLA->symbolic_output != NIL(symbolic_t)) {
+ needs_offset = TRUE;
+ }
+ if (needs_offset && (PLA->pla_type==F_type || PLA->pla_type==FD_type)) {
+ free_cover(PLA->R);
+ PLA->R = complement(cube2list(PLA->F, PLA->D));
+ } else if (needs_dcset && PLA->pla_type == FR_type) {
+ pcover X;
+ free_cover(PLA->D);
+ /* hack, why not? */
+ X = d1merge(sf_join(PLA->F, PLA->R), cube.num_vars - 1);
+ PLA->D = complement(cube1list(X));
+ free_cover(X);
+ } else if (PLA->pla_type == R_type || PLA->pla_type == DR_type) {
+ free_cover(PLA->F);
+ PLA->F = complement(cube2list(PLA->D, PLA->R));
+ }
+
+ if (trace) {
+ totals(time, COMPL_TIME, PLA->R, &cost);
+ }
+
+ /* Check for phase rearrangement of the functions */
+ if (pos) {
+ pcover onset = PLA->F;
+ PLA->F = PLA->R;
+ PLA->R = onset;
+ PLA->phase = new_cube();
+ set_diff(PLA->phase, cube.fullset, cube.var_mask[cube.num_vars-1]);
+ } else if (PLA->phase != NULL) {
+ (void) set_phase(PLA);
+ }
+
+ /* Setup minimization for two-bit decoders */
+ if (PLA->pair != (ppair) NULL) {
+ set_pair(PLA);
+ }
+
+ if (PLA->symbolic != NIL(symbolic_t)) {
+ EXEC(map_symbolic(PLA), "MAP-INPUT ", PLA->F);
+ }
+ if (PLA->symbolic_output != NIL(symbolic_t)) {
+ EXEC(map_output_symbolic(PLA), "MAP-OUTPUT ", PLA->F);
+ if (needs_offset) {
+ free_cover(PLA->R);
+EXECUTE(PLA->R=complement(cube2list(PLA->F,PLA->D)), COMPL_TIME, PLA->R, cost);
+ }
+ }
+
+ return 1;
+}
+
+void PLA_summary(PLA)
+pPLA PLA;
+{
+ int var, i;
+ symbolic_list_t *p2;
+ symbolic_t *p1;
+
+ printf("# PLA is %s", PLA->filename);
+ if (cube.num_binary_vars == cube.num_vars - 1)
+ printf(" with %d inputs and %d outputs\n",
+ cube.num_binary_vars, cube.part_size[cube.num_vars - 1]);
+ else {
+ printf(" with %d variables (%d binary, mv sizes",
+ cube.num_vars, cube.num_binary_vars);
+ for(var = cube.num_binary_vars; var < cube.num_vars; var++)
+ printf(" %d", cube.part_size[var]);
+ printf(")\n");
+ }
+ printf("# ON-set cost is %s\n", print_cost(PLA->F));
+ printf("# OFF-set cost is %s\n", print_cost(PLA->R));
+ printf("# DC-set cost is %s\n", print_cost(PLA->D));
+ if (PLA->phase != NULL)
+ printf("# phase is %s\n", pc1(PLA->phase));
+ if (PLA->pair != NULL) {
+ printf("# two-bit decoders:");
+ for(i = 0; i < PLA->pair->cnt; i++)
+ printf(" (%d %d)", PLA->pair->var1[i], PLA->pair->var2[i]);
+ printf("\n");
+ }
+ if (PLA->symbolic != NIL(symbolic_t)) {
+ for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) {
+ printf("# symbolic: ");
+ for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ printf(" %d", p2->variable);
+ }
+ printf("\n");
+ }
+ }
+ if (PLA->symbolic_output != NIL(symbolic_t)) {
+ for(p1 = PLA->symbolic_output; p1 != NIL(symbolic_t); p1 = p1->next) {
+ printf("# output symbolic: ");
+ for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ printf(" %d", p2->pos);
+ }
+ printf("\n");
+ }
+ }
+ (void) fflush(stdout);
+}
+
+
+pPLA new_PLA()
+{
+ pPLA PLA;
+
+ PLA = ALLOC(PLA_t, 1);
+ PLA->F = PLA->D = PLA->R = (pcover) NULL;
+ PLA->phase = (pcube) NULL;
+ PLA->pair = (ppair) NULL;
+ PLA->label = (char **) NULL;
+ PLA->filename = (char *) NULL;
+ PLA->pla_type = 0;
+ PLA->symbolic = NIL(symbolic_t);
+ PLA->symbolic_output = NIL(symbolic_t);
+ return PLA;
+}
+
+
+PLA_labels(PLA)
+pPLA PLA;
+{
+ int i;
+
+ PLA->label = ALLOC(char *, cube.size);
+ for(i = 0; i < cube.size; i++)
+ PLA->label[i] = (char *) NULL;
+}
+
+
+void free_PLA(PLA)
+pPLA PLA;
+{
+ symbolic_list_t *p2, *p2next;
+ symbolic_t *p1, *p1next;
+ int i;
+
+ if (PLA->F != (pcover) NULL)
+ free_cover(PLA->F);
+ if (PLA->R != (pcover) NULL)
+ free_cover(PLA->R);
+ if (PLA->D != (pcover) NULL)
+ free_cover(PLA->D);
+ if (PLA->phase != (pcube) NULL)
+ free_cube(PLA->phase);
+ if (PLA->pair != (ppair) NULL) {
+ FREE(PLA->pair->var1);
+ FREE(PLA->pair->var2);
+ FREE(PLA->pair);
+ }
+ if (PLA->label != NULL) {
+ for(i = 0; i < cube.size; i++)
+ if (PLA->label[i] != NULL)
+ FREE(PLA->label[i]);
+ FREE(PLA->label);
+ }
+ if (PLA->filename != NULL) {
+ FREE(PLA->filename);
+ }
+ for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1next) {
+ for(p2 = p1->symbolic_list; p2 != NIL(symbolic_list_t); p2 = p2next) {
+ p2next = p2->next;
+ FREE(p2);
+ }
+ p1next = p1->next;
+ FREE(p1);
+ }
+ PLA->symbolic = NIL(symbolic_t);
+ for(p1 = PLA->symbolic_output; p1 != NIL(symbolic_t); p1 = p1next) {
+ for(p2 = p1->symbolic_list; p2 != NIL(symbolic_list_t); p2 = p2next) {
+ p2next = p2->next;
+ FREE(p2);
+ }
+ p1next = p1->next;
+ FREE(p1);
+ }
+ PLA->symbolic_output = NIL(symbolic_t);
+ FREE(PLA);
+}
+
+
+int read_symbolic(fp, PLA, word, retval)
+FILE *fp;
+pPLA PLA;
+char *word; /* scratch string for words */
+symbolic_t **retval;
+{
+ symbolic_list_t *listp, *prev_listp;
+ symbolic_label_t *labelp, *prev_labelp;
+ symbolic_t *newlist;
+ int i, var;
+
+ newlist = ALLOC(symbolic_t, 1);
+ newlist->next = NIL(symbolic_t);
+ newlist->symbolic_list = NIL(symbolic_list_t);
+ newlist->symbolic_list_length = 0;
+ newlist->symbolic_label = NIL(symbolic_label_t);
+ newlist->symbolic_label_length = 0;
+ prev_listp = NIL(symbolic_list_t);
+ prev_labelp = NIL(symbolic_label_t);
+
+ for(;;) {
+ (void) get_word(fp, word);
+ if (equal(word, ";"))
+ break;
+ if (label_index(PLA, word, &var, &i)) {
+ listp = ALLOC(symbolic_list_t, 1);
+ listp->variable = var;
+ listp->pos = i;
+ listp->next = NIL(symbolic_list_t);
+ if (prev_listp == NIL(symbolic_list_t)) {
+ newlist->symbolic_list = listp;
+ } else {
+ prev_listp->next = listp;
+ }
+ prev_listp = listp;
+ newlist->symbolic_list_length++;
+ } else {
+ return FALSE;
+ }
+ }
+
+ for(;;) {
+ (void) get_word(fp, word);
+ if (equal(word, ";"))
+ break;
+ labelp = ALLOC(symbolic_label_t, 1);
+ labelp->label = util_strsav(word);
+ labelp->next = NIL(symbolic_label_t);
+ if (prev_labelp == NIL(symbolic_label_t)) {
+ newlist->symbolic_label = labelp;
+ } else {
+ prev_labelp->next = labelp;
+ }
+ prev_labelp = labelp;
+ newlist->symbolic_label_length++;
+ }
+
+ *retval = newlist;
+ return TRUE;
+}
+
+
+int label_index(PLA, word, varp, ip)
+pPLA PLA;
+char *word;
+int *varp;
+int *ip;
+{
+ int var, i;
+
+ if (PLA->label == NIL(char *) || PLA->label[0] == NIL(char)) {
+ if (sscanf(word, "%d", varp) == 1) {
+ *ip = *varp;
+ return TRUE;
+ }
+ } else {
+ for(var = 0; var < cube.num_vars; var++) {
+ for(i = 0; i < cube.part_size[var]; i++) {
+ if (equal(PLA->label[cube.first_part[var]+i], word)) {
+ *varp = var;
+ *ip = i;
+ return TRUE;
+ }
+ }
+ }
+ }
+ return FALSE;
+}
diff --git a/src/misc/espresso/cvrm.c b/src/misc/espresso/cvrm.c
new file mode 100644
index 00000000..7d42d6e3
--- /dev/null
+++ b/src/misc/espresso/cvrm.c
@@ -0,0 +1,539 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ module: cvrm.c
+ Purpose: miscellaneous cover manipulation
+ a) verify two covers are equal, check consistency of a cover
+ b) unravel a multiple-valued cover into minterms
+ c) sort covers
+*/
+
+#include "espresso.h"
+
+
+static void cb_unravel(c, start, end, startbase, B1)
+IN register pcube c;
+IN int start, end;
+IN pcube startbase;
+INOUT pcover B1;
+{
+ pcube base = cube.temp[0], p, last;
+ int expansion, place, skip, var, size, offset;
+ register int i, j, k, n;
+
+ /* Determine how many cubes it will blow up into, and create a mask
+ for those parts that have only a single coordinate
+ */
+ expansion = 1;
+ (void) set_copy(base, startbase);
+ for(var = start; var <= end; var++) {
+ if ((size = set_dist(c, cube.var_mask[var])) < 2) {
+ (void) set_or(base, base, cube.var_mask[var]);
+ } else {
+ expansion *= size;
+ }
+ }
+ (void) set_and(base, c, base);
+
+ /* Add the unravelled sets starting at the last element of B1 */
+ offset = B1->count;
+ B1->count += expansion;
+ foreach_remaining_set(B1, last, GETSET(B1, offset-1), p) {
+ INLINEset_copy(p, base);
+ }
+
+ place = expansion;
+ for(var = start; var <= end; var++) {
+ if ((size = set_dist(c, cube.var_mask[var])) > 1) {
+ skip = place;
+ place = place / size;
+ n = 0;
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
+ if (is_in_set(c, i)) {
+ for(j = n; j < expansion; j += skip) {
+ for(k = 0; k < place; k++) {
+ p = GETSET(B1, j+k+offset);
+ (void) set_insert(p, i);
+ }
+ }
+ n += place;
+ }
+ }
+ }
+ }
+}
+
+
+pcover unravel_range(B, start, end)
+IN pcover B;
+IN int start, end;
+{
+ pcover B1;
+ int var, total_size, expansion, size;
+ register pcube p, last, startbase = cube.temp[1];
+
+ /* Create the starting base for those variables not being unravelled */
+ (void) set_copy(startbase, cube.emptyset);
+ for(var = 0; var < start; var++)
+ (void) set_or(startbase, startbase, cube.var_mask[var]);
+ for(var = end+1; var < cube.num_vars; var++)
+ (void) set_or(startbase, startbase, cube.var_mask[var]);
+
+ /* Determine how many cubes it will blow up into */
+ total_size = 0;
+ foreach_set(B, last, p) {
+ expansion = 1;
+ for(var = start; var <= end; var++)
+ if ((size = set_dist(p, cube.var_mask[var])) >= 2)
+ if ((expansion *= size) > 1000000)
+ fatal("unreasonable expansion in unravel");
+ total_size += expansion;
+ }
+
+ /* We can now allocate a cover of exactly the correct size */
+ B1 = new_cover(total_size);
+ foreach_set(B, last, p) {
+ cb_unravel(p, start, end, startbase, B1);
+ }
+ free_cover(B);
+ return B1;
+}
+
+
+pcover unravel(B, start)
+IN pcover B;
+IN int start;
+{
+ return unravel_range(B, start, cube.num_vars-1);
+}
+
+/* lex_sort -- sort cubes in a standard lexical fashion */
+pcover lex_sort(T)
+pcover T;
+{
+ pcover T1 = sf_unlist(sf_sort(T, lex_order), T->count, T->sf_size);
+ free_cover(T);
+ return T1;
+}
+
+
+/* size_sort -- sort cubes by their size */
+pcover size_sort(T)
+pcover T;
+{
+ pcover T1 = sf_unlist(sf_sort(T, descend), T->count, T->sf_size);
+ free_cover(T);
+ return T1;
+}
+
+
+/* mini_sort -- sort cubes according to the heuristics of mini */
+pcover mini_sort(F, compare)
+pcover F;
+int (*compare)();
+{
+ register int *count, cnt, n = cube.size, i;
+ register pcube p, last;
+ pcover F_sorted;
+ pcube *F1;
+
+ /* Perform a column sum over the set family */
+ count = sf_count(F);
+
+ /* weight is "inner product of the cube and the column sums" */
+ foreach_set(F, last, p) {
+ cnt = 0;
+ for(i = 0; i < n; i++)
+ if (is_in_set(p, i))
+ cnt += count[i];
+ PUTSIZE(p, cnt);
+ }
+ FREE(count);
+
+ /* use qsort to sort the array */
+ qsort((char *) (F1 = sf_list(F)), F->count, sizeof(pcube), compare);
+ F_sorted = sf_unlist(F1, F->count, F->sf_size);
+ free_cover(F);
+
+ return F_sorted;
+}
+
+
+/* sort_reduce -- Espresso strategy for ordering the cubes before reduction */
+pcover sort_reduce(T)
+IN pcover T;
+{
+ register pcube p, last, largest = NULL;
+ register int bestsize = -1, size, n = cube.num_vars;
+ pcover T_sorted;
+ pcube *T1;
+
+ if (T->count == 0)
+ return T;
+
+ /* find largest cube */
+ foreach_set(T, last, p)
+ if ((size = set_ord(p)) > bestsize)
+ largest = p, bestsize = size;
+
+ foreach_set(T, last, p)
+ PUTSIZE(p, ((n - cdist(largest,p)) << 7) + MIN(set_ord(p),127));
+
+ qsort((char *) (T1 = sf_list(T)), T->count, sizeof(pcube), (int (*)()) descend);
+ T_sorted = sf_unlist(T1, T->count, T->sf_size);
+ free_cover(T);
+
+ return T_sorted;
+}
+
+pcover random_order(F)
+register pcover F;
+{
+ pset temp;
+ register int i, k;
+#ifdef RANDOM
+ long random();
+#endif
+
+ temp = set_new(F->sf_size);
+ for(i = F->count - 1; i > 0; i--) {
+ /* Choose a random number between 0 and i */
+#ifdef RANDOM
+ k = random() % i;
+#else
+ /* this is not meant to be really used; just provides an easy
+ "out" if random() and srandom() aren't around
+ */
+ k = (i*23 + 997) % i;
+#endif
+ /* swap sets i and k */
+ (void) set_copy(temp, GETSET(F, k));
+ (void) set_copy(GETSET(F, k), GETSET(F, i));
+ (void) set_copy(GETSET(F, i), temp);
+ }
+ set_free(temp);
+ return F;
+}
+
+/*
+ * cubelist_partition -- take a cubelist T and see if it has any components;
+ * if so, return cubelist's of the two partitions A and B; the return value
+ * is the size of the partition; if not, A and B
+ * are undefined and the return value is 0
+ */
+int cubelist_partition(T, A, B, comp_debug)
+pcube *T; /* a list of cubes */
+pcube **A, **B; /* cubelist of partition and remainder */
+unsigned int comp_debug;
+{
+ register pcube *T1, p, seed, cof;
+ pcube *A1, *B1;
+ bool change;
+ int count, numcube;
+
+ numcube = CUBELISTSIZE(T);
+
+ /* Mark all cubes -- covered cubes belong to the partition */
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ RESET(p, COVERED);
+ }
+
+ /*
+ * Extract a partition from the cubelist T; start with the first cube as a
+ * seed, and then pull in all cubes which share a variable with the seed;
+ * iterate until no new cubes are brought into the partition.
+ */
+ seed = set_save(T[2]);
+ cof = T[0];
+ SET(T[2], COVERED);
+ count = 1;
+
+ do {
+ change = FALSE;
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ if (! TESTP(p, COVERED) && ccommon(p, seed, cof)) {
+ INLINEset_and(seed, seed, p);
+ SET(p, COVERED);
+ change = TRUE;
+ count++;
+ }
+
+ }
+ } while (change);
+
+ set_free(seed);
+
+ if (comp_debug) {
+ (void) printf("COMPONENT_REDUCTION: split into %d %d\n",
+ count, numcube - count);
+ }
+
+ if (count != numcube) {
+ /* Allocate and setup the cubelist's for the two partitions */
+ *A = A1 = ALLOC(pcube, numcube+3);
+ *B = B1 = ALLOC(pcube, numcube+3);
+ (*A)[0] = set_save(T[0]);
+ (*B)[0] = set_save(T[0]);
+ A1 = *A + 2;
+ B1 = *B + 2;
+
+ /* Loop over the cubes in T and distribute to A and B */
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ if (TESTP(p, COVERED)) {
+ *A1++ = p;
+ } else {
+ *B1++ = p;
+ }
+ }
+
+ /* Stuff needed at the end of the cubelist's */
+ *A1++ = NULL;
+ (*A)[1] = (pcube) A1;
+ *B1++ = NULL;
+ (*B)[1] = (pcube) B1;
+ }
+
+ return numcube - count;
+}
+
+/*
+ * quick cofactor against a single output function
+ */
+pcover cof_output(T, i)
+pcover T;
+register int i;
+{
+ pcover T1;
+ register pcube p, last, pdest, mask;
+
+ mask = cube.var_mask[cube.output];
+ T1 = new_cover(T->count);
+ foreach_set(T, last, p) {
+ if (is_in_set(p, i)) {
+ pdest = GETSET(T1, T1->count++);
+ INLINEset_or(pdest, p, mask);
+ RESET(pdest, PRIME);
+ }
+ }
+ return T1;
+}
+
+
+/*
+ * quick intersection against a single output function
+ */
+pcover uncof_output(T, i)
+pcover T;
+int i;
+{
+ register pcube p, last, mask;
+
+ if (T == NULL) {
+ return T;
+ }
+
+ mask = cube.var_mask[cube.output];
+ foreach_set(T, last, p) {
+ INLINEset_diff(p, p, mask);
+ set_insert(p, i);
+ }
+ return T;
+}
+
+
+/*
+ * A generic routine to perform an operation for each output function
+ *
+ * func() is called with a PLA for each output function (with the output
+ * part effectively removed).
+ * func1() is called after reforming the equivalent output function
+ *
+ * Each function returns TRUE if process is to continue
+ */
+foreach_output_function(PLA, func, func1)
+pPLA PLA;
+int (*func)();
+int (*func1)();
+{
+ pPLA PLA1;
+ int i;
+
+ /* Loop for each output function */
+ for(i = 0; i < cube.part_size[cube.output]; i++) {
+
+ /* cofactor on the output part */
+ PLA1 = new_PLA();
+ PLA1->F = cof_output(PLA->F, i + cube.first_part[cube.output]);
+ PLA1->R = cof_output(PLA->R, i + cube.first_part[cube.output]);
+ PLA1->D = cof_output(PLA->D, i + cube.first_part[cube.output]);
+
+ /* Call a routine to do something with the cover */
+ if ((*func)(PLA1, i) == 0) {
+ free_PLA(PLA1);
+ return;
+ }
+
+ /* intersect with the particular output part again */
+ PLA1->F = uncof_output(PLA1->F, i + cube.first_part[cube.output]);
+ PLA1->R = uncof_output(PLA1->R, i + cube.first_part[cube.output]);
+ PLA1->D = uncof_output(PLA1->D, i + cube.first_part[cube.output]);
+
+ /* Call a routine to do something with the final result */
+ if ((*func1)(PLA1, i) == 0) {
+ free_PLA(PLA1);
+ return;
+ }
+
+ /* Cleanup for next go-around */
+ free_PLA(PLA1);
+
+
+ }
+}
+
+static pcover Fmin;
+static pcube phase;
+
+/*
+ * minimize each output function individually
+ */
+void so_espresso(PLA, strategy)
+pPLA PLA;
+int strategy;
+{
+ Fmin = new_cover(PLA->F->count);
+ if (strategy == 0) {
+ foreach_output_function(PLA, so_do_espresso, so_save);
+ } else {
+ foreach_output_function(PLA, so_do_exact, so_save);
+ }
+ sf_free(PLA->F);
+ PLA->F = Fmin;
+}
+
+
+/*
+ * minimize each output function, choose function or complement based on the
+ * one with the fewer number of terms
+ */
+void so_both_espresso(PLA, strategy)
+pPLA PLA;
+int strategy;
+{
+ phase = set_save(cube.fullset);
+ Fmin = new_cover(PLA->F->count);
+ if (strategy == 0) {
+ foreach_output_function(PLA, so_both_do_espresso, so_both_save);
+ } else {
+ foreach_output_function(PLA, so_both_do_exact, so_both_save);
+ }
+ sf_free(PLA->F);
+ PLA->F = Fmin;
+ PLA->phase = phase;
+}
+
+
+int so_do_espresso(PLA, i)
+pPLA PLA;
+int i;
+{
+ char word[32];
+
+ /* minimize the single-output function (on-set) */
+ skip_make_sparse = 1;
+ (void) sprintf(word, "ESPRESSO-POS(%d)", i);
+ EXEC_S(PLA->F = espresso(PLA->F, PLA->D, PLA->R), word, PLA->F);
+ return 1;
+}
+
+
+int so_do_exact(PLA, i)
+pPLA PLA;
+int i;
+{
+ char word[32];
+
+ /* minimize the single-output function (on-set) */
+ skip_make_sparse = 1;
+ (void) sprintf(word, "EXACT-POS(%d)", i);
+ EXEC_S(PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, 1), word, PLA->F);
+ return 1;
+}
+
+
+/*ARGSUSED*/
+int so_save(PLA, i)
+pPLA PLA;
+int i;
+{
+ Fmin = sf_append(Fmin, PLA->F); /* disposes of PLA->F */
+ PLA->F = NULL;
+ return 1;
+}
+
+
+int so_both_do_espresso(PLA, i)
+pPLA PLA;
+int i;
+{
+ char word[32];
+
+ /* minimize the single-output function (on-set) */
+ (void) sprintf(word, "ESPRESSO-POS(%d)", i);
+ skip_make_sparse = 1;
+ EXEC_S(PLA->F = espresso(PLA->F, PLA->D, PLA->R), word, PLA->F);
+
+ /* minimize the single-output function (off-set) */
+ (void) sprintf(word, "ESPRESSO-NEG(%d)", i);
+ skip_make_sparse = 1;
+ EXEC_S(PLA->R = espresso(PLA->R, PLA->D, PLA->F), word, PLA->R);
+
+ return 1;
+}
+
+
+int so_both_do_exact(PLA, i)
+pPLA PLA;
+int i;
+{
+ char word[32];
+
+ /* minimize the single-output function (on-set) */
+ (void) sprintf(word, "EXACT-POS(%d)", i);
+ skip_make_sparse = 1;
+ EXEC_S(PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, 1), word, PLA->F);
+
+ /* minimize the single-output function (off-set) */
+ (void) sprintf(word, "EXACT-NEG(%d)", i);
+ skip_make_sparse = 1;
+ EXEC_S(PLA->R = minimize_exact(PLA->R, PLA->D, PLA->F, 1), word, PLA->R);
+
+ return 1;
+}
+
+
+int so_both_save(PLA, i)
+pPLA PLA;
+int i;
+{
+ if (PLA->F->count > PLA->R->count) {
+ sf_free(PLA->F);
+ PLA->F = PLA->R;
+ PLA->R = NULL;
+ i += cube.first_part[cube.output];
+ set_remove(phase, i);
+ } else {
+ sf_free(PLA->R);
+ PLA->R = NULL;
+ }
+ Fmin = sf_append(Fmin, PLA->F);
+ PLA->F = NULL;
+ return 1;
+}
diff --git a/src/misc/espresso/cvrmisc.c b/src/misc/espresso/cvrmisc.c
new file mode 100644
index 00000000..0f3de195
--- /dev/null
+++ b/src/misc/espresso/cvrmisc.c
@@ -0,0 +1,142 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+
+/* cost -- compute the cost of a cover */
+void cover_cost(F, cost)
+IN pcover F;
+INOUT pcost cost;
+{
+ register pcube p, last;
+ pcube *T;
+ int var;
+
+ /* use the routine used by cofactor to decide splitting variables */
+ massive_count(T = cube1list(F));
+ free_cubelist(T);
+
+ cost->cubes = F->count;
+ cost->total = cost->in = cost->out = cost->mv = cost->primes = 0;
+
+ /* Count transistors (zeros) for each binary variable (inputs) */
+ for(var = 0; var < cube.num_binary_vars; var++)
+ cost->in += cdata.var_zeros[var];
+
+ /* Count transistors for each mv variable based on sparse/dense */
+ for(var = cube.num_binary_vars; var < cube.num_vars - 1; var++)
+ if (cube.sparse[var])
+ cost->mv += F->count * cube.part_size[var] - cdata.var_zeros[var];
+ else
+ cost->mv += cdata.var_zeros[var];
+
+ /* Count the transistors (ones) for the output variable */
+ if (cube.num_binary_vars != cube.num_vars) {
+ var = cube.num_vars - 1;
+ cost->out = F->count * cube.part_size[var] - cdata.var_zeros[var];
+ }
+
+ /* Count the number of nonprime cubes */
+ foreach_set(F, last, p)
+ cost->primes += TESTP(p, PRIME) != 0;
+
+ /* Count the total number of literals */
+ cost->total = cost->in + cost->out + cost->mv;
+}
+
+
+/* fmt_cost -- return a string which reports the "cost" of a cover */
+char *fmt_cost(cost)
+IN pcost cost;
+{
+ static char s[200];
+
+ if (cube.num_binary_vars == cube.num_vars - 1)
+ (void) sprintf(s, "c=%d(%d) in=%d out=%d tot=%d",
+ cost->cubes, cost->cubes - cost->primes, cost->in,
+ cost->out, cost->total);
+ else
+ (void) sprintf(s, "c=%d(%d) in=%d mv=%d out=%d",
+ cost->cubes, cost->cubes - cost->primes, cost->in,
+ cost->mv, cost->out);
+ return s;
+}
+
+
+char *print_cost(F)
+IN pcover F;
+{
+ cost_t cost;
+ cover_cost(F, &cost);
+ return fmt_cost(&cost);
+}
+
+
+/* copy_cost -- copy a cost function from s to d */
+void copy_cost(s, d)
+pcost s, d;
+{
+ d->cubes = s->cubes;
+ d->in = s->in;
+ d->out = s->out;
+ d->mv = s->mv;
+ d->total = s->total;
+ d->primes = s->primes;
+}
+
+
+/* size_stamp -- print single line giving the size of a cover */
+void size_stamp(T, name)
+IN pcover T;
+IN char *name;
+{
+ (void) printf("# %s\tCost is %s\n", name, print_cost(T));
+ (void) fflush(stdout);
+}
+
+
+/* print_trace -- print a line reporting size and time after a function */
+void print_trace(T, name, time)
+pcover T;
+char *name;
+long time;
+{
+ (void) printf("# %s\tTime was %s, cost is %s\n",
+ name, print_time(time), print_cost(T));
+ (void) fflush(stdout);
+}
+
+
+/* totals -- add time spent in the function into the totals */
+void totals(time, i, T, cost)
+long time;
+int i;
+pcover T;
+pcost cost;
+{
+ time = ptime() - time;
+ total_time[i] += time;
+ total_calls[i]++;
+ cover_cost(T, cost);
+ if (trace) {
+ (void) printf("# %s\tTime was %s, cost is %s\n",
+ total_name[i], print_time(time), fmt_cost(cost));
+ (void) fflush(stdout);
+ }
+}
+
+
+/* fatal -- report fatal error message and take a dive */
+void fatal(s)
+char *s;
+{
+ (void) fprintf(stderr, "espresso: %s\n", s);
+ exit(1);
+}
diff --git a/src/misc/espresso/cvrout.c b/src/misc/espresso/cvrout.c
new file mode 100644
index 00000000..4bd1c53b
--- /dev/null
+++ b/src/misc/espresso/cvrout.c
@@ -0,0 +1,609 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ module: cvrout.c
+ purpose: cube and cover output routines
+*/
+
+#include "espresso.h"
+
+void fprint_pla(fp, PLA, output_type)
+INOUT FILE *fp;
+IN pPLA PLA;
+IN int output_type;
+{
+ int num;
+ register pcube last, p;
+
+ if ((output_type & CONSTRAINTS_type) != 0) {
+ output_symbolic_constraints(fp, PLA, 0);
+ output_type &= ~ CONSTRAINTS_type;
+ if (output_type == 0) {
+ return;
+ }
+ }
+
+ if ((output_type & SYMBOLIC_CONSTRAINTS_type) != 0) {
+ output_symbolic_constraints(fp, PLA, 1);
+ output_type &= ~ SYMBOLIC_CONSTRAINTS_type;
+ if (output_type == 0) {
+ return;
+ }
+ }
+
+ if (output_type == PLEASURE_type) {
+ pls_output(PLA);
+ } else if (output_type == EQNTOTT_type) {
+ eqn_output(PLA);
+ } else if (output_type == KISS_type) {
+ kiss_output(fp, PLA);
+ } else {
+ fpr_header(fp, PLA, output_type);
+
+ num = 0;
+ if (output_type & F_type) num += (PLA->F)->count;
+ if (output_type & D_type) num += (PLA->D)->count;
+ if (output_type & R_type) num += (PLA->R)->count;
+ (void) fprintf(fp, ".p %d\n", num);
+
+ /* quick patch 01/17/85 to support TPLA ! */
+ if (output_type == F_type) {
+ foreach_set(PLA->F, last, p) {
+ print_cube(fp, p, "01");
+ }
+ (void) fprintf(fp, ".e\n");
+ } else {
+ if (output_type & F_type) {
+ foreach_set(PLA->F, last, p) {
+ print_cube(fp, p, "~1");
+ }
+ }
+ if (output_type & D_type) {
+ foreach_set(PLA->D, last, p) {
+ print_cube(fp, p, "~2");
+ }
+ }
+ if (output_type & R_type) {
+ foreach_set(PLA->R, last, p) {
+ print_cube(fp, p, "~0");
+ }
+ }
+ (void) fprintf(fp, ".end\n");
+ }
+ }
+}
+
+void fpr_header(fp, PLA, output_type)
+FILE *fp;
+pPLA PLA;
+int output_type;
+{
+ register int i, var;
+ int first, last;
+
+ /* .type keyword gives logical type */
+ if (output_type != F_type) {
+ (void) fprintf(fp, ".type ");
+ if (output_type & F_type) putc('f', fp);
+ if (output_type & D_type) putc('d', fp);
+ if (output_type & R_type) putc('r', fp);
+ putc('\n', fp);
+ }
+
+ /* Check for binary or multiple-valued labels */
+ if (cube.num_mv_vars <= 1) {
+ (void) fprintf(fp, ".i %d\n", cube.num_binary_vars);
+ if (cube.output != -1)
+ (void) fprintf(fp, ".o %d\n", cube.part_size[cube.output]);
+ } else {
+ (void) fprintf(fp, ".mv %d %d", cube.num_vars, cube.num_binary_vars);
+ for(var = cube.num_binary_vars; var < cube.num_vars; var++)
+ (void) fprintf(fp, " %d", cube.part_size[var]);
+ (void) fprintf(fp, "\n");
+ }
+
+ /* binary valued labels */
+ if (PLA->label != NIL(char *) && PLA->label[1] != NIL(char)
+ && cube.num_binary_vars > 0) {
+ (void) fprintf(fp, ".ilb");
+ for(var = 0; var < cube.num_binary_vars; var++)
+ /* see (NIL) OUTLABELS comment below */
+ if(INLABEL(var) == NIL(char)){
+ (void) fprintf(fp, " (null)");
+ }
+ else{
+ (void) fprintf(fp, " %s", INLABEL(var));
+ }
+ putc('\n', fp);
+ }
+
+ /* output-part (last multiple-valued variable) labels */
+ if (PLA->label != NIL(char *) &&
+ PLA->label[cube.first_part[cube.output]] != NIL(char)
+ && cube.output != -1) {
+ (void) fprintf(fp, ".ob");
+ for(i = 0; i < cube.part_size[cube.output]; i++)
+ /* (NIL) OUTLABELS caused espresso to segfault under solaris */
+ if(OUTLABEL(i) == NIL(char)){
+ (void) fprintf(fp, " (null)");
+ }
+ else{
+ (void) fprintf(fp, " %s", OUTLABEL(i));
+ }
+ putc('\n', fp);
+ }
+
+ /* multiple-valued labels */
+ for(var = cube.num_binary_vars; var < cube.num_vars-1; var++) {
+ first = cube.first_part[var];
+ last = cube.last_part[var];
+ if (PLA->label != NULL && PLA->label[first] != NULL) {
+ (void) fprintf(fp, ".label var=%d", var);
+ for(i = first; i <= last; i++) {
+ (void) fprintf(fp, " %s", PLA->label[i]);
+ }
+ putc('\n', fp);
+ }
+ }
+
+ if (PLA->phase != (pcube) NULL) {
+ first = cube.first_part[cube.output];
+ last = cube.last_part[cube.output];
+ (void) fprintf(fp, "#.phase ");
+ for(i = first; i <= last; i++)
+ putc(is_in_set(PLA->phase,i) ? '1' : '0', fp);
+ (void) fprintf(fp, "\n");
+ }
+}
+
+void pls_output(PLA)
+IN pPLA PLA;
+{
+ register pcube last, p;
+
+ (void) printf(".option unmerged\n");
+ makeup_labels(PLA);
+ pls_label(PLA, stdout);
+ pls_group(PLA, stdout);
+ (void) printf(".p %d\n", PLA->F->count);
+ foreach_set(PLA->F, last, p) {
+ print_expanded_cube(stdout, p, PLA->phase);
+ }
+ (void) printf(".end\n");
+}
+
+
+void pls_group(PLA, fp)
+pPLA PLA;
+FILE *fp;
+{
+ int var, i, col, len;
+
+ (void) fprintf(fp, "\n.group");
+ col = 6;
+ for(var = 0; var < cube.num_vars-1; var++) {
+ (void) fprintf(fp, " ("), col += 2;
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
+ len = strlen(PLA->label[i]);
+ if (col + len > 75)
+ (void) fprintf(fp, " \\\n"), col = 0;
+ else if (i != 0)
+ putc(' ', fp), col += 1;
+ (void) fprintf(fp, "%s", PLA->label[i]), col += len;
+ }
+ (void) fprintf(fp, ")"), col += 1;
+ }
+ (void) fprintf(fp, "\n");
+}
+
+
+void pls_label(PLA, fp)
+pPLA PLA;
+FILE *fp;
+{
+ int var, i, col, len;
+
+ (void) fprintf(fp, ".label");
+ col = 6;
+ for(var = 0; var < cube.num_vars; var++)
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
+ len = strlen(PLA->label[i]);
+ if (col + len > 75)
+ (void) fprintf(fp, " \\\n"), col = 0;
+ else
+ putc(' ', fp), col += 1;
+ (void) fprintf(fp, "%s", PLA->label[i]), col += len;
+ }
+}
+
+
+
+/*
+ eqntott output mode -- output algebraic equations
+*/
+void eqn_output(PLA)
+pPLA PLA;
+{
+ register pcube p, last;
+ register int i, var, col, len;
+ int x;
+ bool firstand, firstor;
+
+ if (cube.output == -1)
+ fatal("Cannot have no-output function for EQNTOTT output mode");
+ if (cube.num_mv_vars != 1)
+ fatal("Must have binary-valued function for EQNTOTT output mode");
+ makeup_labels(PLA);
+
+ /* Write a single equation for each output */
+ for(i = 0; i < cube.part_size[cube.output]; i++) {
+ (void) printf("%s = ", OUTLABEL(i));
+ col = strlen(OUTLABEL(i)) + 3;
+ firstor = TRUE;
+
+ /* Write product terms for each cube in this output */
+ foreach_set(PLA->F, last, p)
+ if (is_in_set(p, i + cube.first_part[cube.output])) {
+ if (firstor)
+ (void) printf("("), col += 1;
+ else
+ (void) printf(" | ("), col += 4;
+ firstor = FALSE;
+ firstand = TRUE;
+
+ /* print out a product term */
+ for(var = 0; var < cube.num_binary_vars; var++)
+ if ((x=GETINPUT(p, var)) != DASH) {
+ len = strlen(INLABEL(var));
+ if (col+len > 72)
+ (void) printf("\n "), col = 4;
+ if (! firstand)
+ (void) printf("&"), col += 1;
+ firstand = FALSE;
+ if (x == ZERO)
+ (void) printf("!"), col += 1;
+ (void) printf("%s", INLABEL(var)), col += len;
+ }
+ (void) printf(")"), col += 1;
+ }
+ (void) printf(";\n\n");
+ }
+}
+
+
+char *fmt_cube(c, out_map, s)
+register pcube c;
+register char *out_map, *s;
+{
+ register int i, var, last, len = 0;
+
+ for(var = 0; var < cube.num_binary_vars; var++) {
+ s[len++] = "?01-" [GETINPUT(c, var)];
+ }
+ for(var = cube.num_binary_vars; var < cube.num_vars - 1; var++) {
+ s[len++] = ' ';
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
+ s[len++] = "01" [is_in_set(c, i) != 0];
+ }
+ }
+ if (cube.output != -1) {
+ last = cube.last_part[cube.output];
+ s[len++] = ' ';
+ for(i = cube.first_part[cube.output]; i <= last; i++) {
+ s[len++] = out_map [is_in_set(c, i) != 0];
+ }
+ }
+ s[len] = '\0';
+ return s;
+}
+
+
+void print_cube(fp, c, out_map)
+register FILE *fp;
+register pcube c;
+register char *out_map;
+{
+ register int i, var, ch;
+ int last;
+
+ for(var = 0; var < cube.num_binary_vars; var++) {
+ ch = "?01-" [GETINPUT(c, var)];
+ putc(ch, fp);
+ }
+ for(var = cube.num_binary_vars; var < cube.num_vars - 1; var++) {
+ putc(' ', fp);
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
+ ch = "01" [is_in_set(c, i) != 0];
+ putc(ch, fp);
+ }
+ }
+ if (cube.output != -1) {
+ last = cube.last_part[cube.output];
+ putc(' ', fp);
+ for(i = cube.first_part[cube.output]; i <= last; i++) {
+ ch = out_map [is_in_set(c, i) != 0];
+ putc(ch, fp);
+ }
+ }
+ putc('\n', fp);
+}
+
+
+void print_expanded_cube(fp, c, phase)
+register FILE *fp;
+register pcube c;
+pcube phase;
+{
+ register int i, var, ch;
+ char *out_map;
+
+ for(var = 0; var < cube.num_binary_vars; var++) {
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
+ ch = "~1" [is_in_set(c, i) != 0];
+ putc(ch, fp);
+ }
+ }
+ for(var = cube.num_binary_vars; var < cube.num_vars - 1; var++) {
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
+ ch = "1~" [is_in_set(c, i) != 0];
+ putc(ch, fp);
+ }
+ }
+ if (cube.output != -1) {
+ var = cube.num_vars - 1;
+ putc(' ', fp);
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
+ if (phase == (pcube) NULL || is_in_set(phase, i)) {
+ out_map = "~1";
+ } else {
+ out_map = "~0";
+ }
+ ch = out_map[is_in_set(c, i) != 0];
+ putc(ch, fp);
+ }
+ }
+ putc('\n', fp);
+}
+
+
+char *pc1(c) pcube c;
+{static char s1[256];return fmt_cube(c, "01", s1);}
+char *pc2(c) pcube c;
+{static char s2[256];return fmt_cube(c, "01", s2);}
+
+
+void debug_print(T, name, level)
+pcube *T;
+char *name;
+int level;
+{
+ register pcube *T1, p, temp;
+ register int cnt;
+
+ cnt = CUBELISTSIZE(T);
+ temp = new_cube();
+ if (verbose_debug && level == 0)
+ (void) printf("\n");
+ (void) printf("%s[%d]: ord(T)=%d\n", name, level, cnt);
+ if (verbose_debug) {
+ (void) printf("cofactor=%s\n", pc1(T[0]));
+ for(T1 = T+2, cnt = 1; (p = *T1++) != (pcube) NULL; cnt++)
+ (void) printf("%4d. %s\n", cnt, pc1(set_or(temp, p, T[0])));
+ }
+ free_cube(temp);
+}
+
+
+void debug1_print(T, name, num)
+pcover T;
+char *name;
+int num;
+{
+ register int cnt = 1;
+ register pcube p, last;
+
+ if (verbose_debug && num == 0)
+ (void) printf("\n");
+ (void) printf("%s[%d]: ord(T)=%d\n", name, num, T->count);
+ if (verbose_debug)
+ foreach_set(T, last, p)
+ (void) printf("%4d. %s\n", cnt++, pc1(p));
+}
+
+
+void cprint(T)
+pcover T;
+{
+ register pcube p, last;
+
+ foreach_set(T, last, p)
+ (void) printf("%s\n", pc1(p));
+}
+
+
+int makeup_labels(PLA)
+pPLA PLA;
+{
+ int var, i, ind;
+
+ if (PLA->label == (char **) NULL)
+ PLA_labels(PLA);
+
+ for(var = 0; var < cube.num_vars; var++)
+ for(i = 0; i < cube.part_size[var]; i++) {
+ ind = cube.first_part[var] + i;
+ if (PLA->label[ind] == (char *) NULL) {
+ PLA->label[ind] = ALLOC(char, 15);
+ if (var < cube.num_binary_vars)
+ if ((i % 2) == 0)
+ (void) sprintf(PLA->label[ind], "v%d.bar", var);
+ else
+ (void) sprintf(PLA->label[ind], "v%d", var);
+ else
+ (void) sprintf(PLA->label[ind], "v%d.%d", var, i);
+ }
+ }
+}
+
+
+kiss_output(fp, PLA)
+FILE *fp;
+pPLA PLA;
+{
+ register pset last, p;
+
+ foreach_set(PLA->F, last, p) {
+ kiss_print_cube(fp, PLA, p, "~1");
+ }
+ foreach_set(PLA->D, last, p) {
+ kiss_print_cube(fp, PLA, p, "~2");
+ }
+}
+
+
+kiss_print_cube(fp, PLA, p, out_string)
+FILE *fp;
+pPLA PLA;
+pcube p;
+char *out_string;
+{
+ register int i, var;
+ int part, x;
+
+ for(var = 0; var < cube.num_binary_vars; var++) {
+ x = "?01-" [GETINPUT(p, var)];
+ putc(x, fp);
+ }
+
+ for(var = cube.num_binary_vars; var < cube.num_vars - 1; var++) {
+ putc(' ', fp);
+ if (setp_implies(cube.var_mask[var], p)) {
+ putc('-', fp);
+ } else {
+ part = -1;
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
+ if (is_in_set(p, i)) {
+ if (part != -1) {
+ fatal("more than 1 part in a symbolic variable\n");
+ }
+ part = i;
+ }
+ }
+ if (part == -1) {
+ putc('~', fp); /* no parts, hope its an output ... */
+ } else {
+ (void) fputs(PLA->label[part], fp);
+ }
+ }
+ }
+
+ if ((var = cube.output) != -1) {
+ putc(' ', fp);
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
+ x = out_string [is_in_set(p, i) != 0];
+ putc(x, fp);
+ }
+ }
+
+ putc('\n', fp);
+}
+
+output_symbolic_constraints(fp, PLA, output_symbolic)
+FILE *fp;
+pPLA PLA;
+int output_symbolic;
+{
+ pset_family A;
+ register int i, j;
+ int size, var, npermute, *permute, *weight, noweight;
+
+ if ((cube.num_vars - cube.num_binary_vars) <= 1) {
+ return;
+ }
+ makeup_labels(PLA);
+
+ for(var=cube.num_binary_vars; var < cube.num_vars-1; var++) {
+
+ /* pull out the columns for variable "var" */
+ npermute = cube.part_size[var];
+ permute = ALLOC(int, npermute);
+ for(i=0; i < npermute; i++) {
+ permute[i] = cube.first_part[var] + i;
+ }
+ A = sf_permute(sf_save(PLA->F), permute, npermute);
+ FREE(permute);
+
+
+ /* Delete the singletons and the full sets */
+ noweight = 0;
+ for(i = 0; i < A->count; i++) {
+ size = set_ord(GETSET(A,i));
+ if (size == 1 || size == A->sf_size) {
+ sf_delset(A, i--);
+ noweight++;
+ }
+ }
+
+
+ /* Count how many times each is duplicated */
+ weight = ALLOC(int, A->count);
+ for(i = 0; i < A->count; i++) {
+ RESET(GETSET(A, i), COVERED);
+ }
+ for(i = 0; i < A->count; i++) {
+ weight[i] = 0;
+ if (! TESTP(GETSET(A,i), COVERED)) {
+ weight[i] = 1;
+ for(j = i+1; j < A->count; j++) {
+ if (setp_equal(GETSET(A,i), GETSET(A,j))) {
+ weight[i]++;
+ SET(GETSET(A,j), COVERED);
+ }
+ }
+ }
+ }
+
+
+ /* Print out the contraints */
+ if (! output_symbolic) {
+ (void) fprintf(fp,
+ "# Symbolic constraints for variable %d (Numeric form)\n", var);
+ (void) fprintf(fp, "# unconstrained weight = %d\n", noweight);
+ (void) fprintf(fp, "num_codes=%d\n", cube.part_size[var]);
+ for(i = 0; i < A->count; i++) {
+ if (weight[i] > 0) {
+ (void) fprintf(fp, "weight=%d: ", weight[i]);
+ for(j = 0; j < A->sf_size; j++) {
+ if (is_in_set(GETSET(A,i), j)) {
+ (void) fprintf(fp, " %d", j);
+ }
+ }
+ (void) fprintf(fp, "\n");
+ }
+ }
+ } else {
+ (void) fprintf(fp,
+ "# Symbolic constraints for variable %d (Symbolic form)\n", var);
+ for(i = 0; i < A->count; i++) {
+ if (weight[i] > 0) {
+ (void) fprintf(fp, "# w=%d: (", weight[i]);
+ for(j = 0; j < A->sf_size; j++) {
+ if (is_in_set(GETSET(A,i), j)) {
+ (void) fprintf(fp, " %s",
+ PLA->label[cube.first_part[var]+j]);
+ }
+ }
+ (void) fprintf(fp, " )\n");
+ }
+ }
+ FREE(weight);
+ }
+ }
+}
diff --git a/src/misc/espresso/dominate.c b/src/misc/espresso/dominate.c
new file mode 100644
index 00000000..a930d453
--- /dev/null
+++ b/src/misc/espresso/dominate.c
@@ -0,0 +1,98 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "mincov_int.h"
+
+
+int
+sm_row_dominance(A)
+sm_matrix *A;
+{
+ register sm_row *prow, *prow1;
+ register sm_col *pcol, *least_col;
+ register sm_element *p, *pnext;
+ int rowcnt;
+
+ rowcnt = A->nrows;
+
+ /* Check each row against all other rows */
+ for(prow = A->first_row; prow != 0; prow = prow->next_row) {
+
+ /* Among all columns with a 1 in this row, choose smallest */
+ least_col = sm_get_col(A, prow->first_col->col_num);
+ for(p = prow->first_col->next_col; p != 0; p = p->next_col) {
+ pcol = sm_get_col(A, p->col_num);
+ if (pcol->length < least_col->length) {
+ least_col = pcol;
+ }
+ }
+
+ /* Only check for containment against rows in this column */
+ for(p = least_col->first_row; p != 0; p = pnext) {
+ pnext = p->next_row;
+
+ prow1 = sm_get_row(A, p->row_num);
+ if ((prow1->length > prow->length) ||
+ (prow1->length == prow->length &&
+ prow1->row_num > prow->row_num)) {
+ if (sm_row_contains(prow, prow1)) {
+ sm_delrow(A, prow1->row_num);
+ }
+ }
+ }
+ }
+
+ return rowcnt - A->nrows;
+}
+
+int
+sm_col_dominance(A, weight)
+sm_matrix *A;
+int *weight;
+{
+ register sm_row *prow;
+ register sm_col *pcol, *pcol1;
+ register sm_element *p;
+ sm_row *least_row;
+ sm_col *next_col;
+ int colcnt;
+
+ colcnt = A->ncols;
+
+ /* Check each column against all other columns */
+ for(pcol = A->first_col; pcol != 0; pcol = next_col) {
+ next_col = pcol->next_col;
+
+ /* Check all rows to find the one with fewest elements */
+ least_row = sm_get_row(A, pcol->first_row->row_num);
+ for(p = pcol->first_row->next_row; p != 0; p = p->next_row) {
+ prow = sm_get_row(A, p->row_num);
+ if (prow->length < least_row->length) {
+ least_row = prow;
+ }
+ }
+
+ /* Only check for containment against columns in this row */
+ for(p = least_row->first_col; p != 0; p = p->next_col) {
+ pcol1 = sm_get_col(A, p->col_num);
+ if (weight != 0 && weight[pcol1->col_num] > weight[pcol->col_num])
+ continue;
+ if ((pcol1->length > pcol->length) ||
+ (pcol1->length == pcol->length &&
+ pcol1->col_num > pcol->col_num)) {
+ if (sm_col_contains(pcol, pcol1)) {
+ sm_delcol(A, pcol->col_num);
+ break;
+ }
+ }
+ }
+ }
+
+ return colcnt - A->ncols;
+}
diff --git a/src/misc/espresso/equiv.c b/src/misc/espresso/equiv.c
new file mode 100644
index 00000000..ba898a70
--- /dev/null
+++ b/src/misc/espresso/equiv.c
@@ -0,0 +1,94 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+
+find_equiv_outputs(PLA)
+pPLA PLA;
+{
+ int i, j, ipart, jpart, some_equiv;
+ pcover *R, *F;
+
+ some_equiv = FALSE;
+
+ makeup_labels(PLA);
+
+ F = ALLOC(pcover, cube.part_size[cube.output]);
+ R = ALLOC(pcover, cube.part_size[cube.output]);
+
+ for(i = 0; i < cube.part_size[cube.output]; i++) {
+ ipart = cube.first_part[cube.output] + i;
+ R[i] = cof_output(PLA->R, ipart);
+ F[i] = complement(cube1list(R[i]));
+ }
+
+ for(i = 0; i < cube.part_size[cube.output]-1; i++) {
+ for(j = i+1; j < cube.part_size[cube.output]; j++) {
+ ipart = cube.first_part[cube.output] + i;
+ jpart = cube.first_part[cube.output] + j;
+
+ if (check_equiv(F[i], F[j])) {
+ (void) printf("# Outputs %d and %d (%s and %s) are equivalent\n",
+ i, j, PLA->label[ipart], PLA->label[jpart]);
+ some_equiv = TRUE;
+ } else if (check_equiv(F[i], R[j])) {
+ (void) printf("# Outputs %d and NOT %d (%s and %s) are equivalent\n",
+ i, j, PLA->label[ipart], PLA->label[jpart]);
+ some_equiv = TRUE;
+ } else if (check_equiv(R[i], F[j])) {
+ (void) printf("# Outputs NOT %d and %d (%s and %s) are equivalent\n",
+ i, j, PLA->label[ipart], PLA->label[jpart]);
+ some_equiv = TRUE;
+ } else if (check_equiv(R[i], R[j])) {
+ (void) printf("# Outputs NOT %d and NOT %d (%s and %s) are equivalent\n",
+ i, j, PLA->label[ipart], PLA->label[jpart]);
+ some_equiv = TRUE;
+ }
+ }
+ }
+
+ if (! some_equiv) {
+ (void) printf("# No outputs are equivalent\n");
+ }
+
+ for(i = 0; i < cube.part_size[cube.output]; i++) {
+ free_cover(F[i]);
+ free_cover(R[i]);
+ }
+ FREE(F);
+ FREE(R);
+}
+
+
+
+int check_equiv(f1, f2)
+pcover f1, f2;
+{
+ register pcube *f1list, *f2list;
+ register pcube p, last;
+
+ f1list = cube1list(f1);
+ foreach_set(f2, last, p) {
+ if (! cube_is_covered(f1list, p)) {
+ return FALSE;
+ }
+ }
+ free_cubelist(f1list);
+
+ f2list = cube1list(f2);
+ foreach_set(f1, last, p) {
+ if (! cube_is_covered(f2list, p)) {
+ return FALSE;
+ }
+ }
+ free_cubelist(f2list);
+
+ return TRUE;
+}
diff --git a/src/misc/espresso/espresso.c b/src/misc/espresso/espresso.c
new file mode 100644
index 00000000..8f05d43f
--- /dev/null
+++ b/src/misc/espresso/espresso.c
@@ -0,0 +1,139 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ * Module: espresso.c
+ * Purpose: The main espresso algorithm
+ *
+ * Returns a minimized version of the ON-set of a function
+ *
+ * The following global variables affect the operation of Espresso:
+ *
+ * MISCELLANEOUS:
+ * trace
+ * print trace information as the minimization progresses
+ *
+ * remove_essential
+ * remove essential primes
+ *
+ * single_expand
+ * if true, stop after first expand/irredundant
+ *
+ * LAST_GASP or SUPER_GASP strategy:
+ * use_super_gasp
+ * uses the super_gasp strategy rather than last_gasp
+ *
+ * SETUP strategy:
+ * recompute_onset
+ * recompute onset using the complement before starting
+ *
+ * unwrap_onset
+ * unwrap the function output part before first expand
+ *
+ * MAKE_SPARSE strategy:
+ * force_irredundant
+ * iterates make_sparse to force a minimal solution (used
+ * indirectly by make_sparse)
+ *
+ * skip_make_sparse
+ * skip the make_sparse step (used by opo only)
+ */
+
+#include "espresso.h"
+
+pcover espresso(F, D1, R)
+pcover F, D1, R;
+{
+ pcover E, D, Fsave;
+ pset last, p;
+ cost_t cost, best_cost;
+
+begin:
+ Fsave = sf_save(F); /* save original function */
+ D = sf_save(D1); /* make a scratch copy of D */
+
+ /* Setup has always been a problem */
+ if (recompute_onset) {
+ EXEC(E = simplify(cube1list(F)), "SIMPLIFY ", E);
+ free_cover(F);
+ F = E;
+ }
+ cover_cost(F, &cost);
+ if (unwrap_onset && (cube.part_size[cube.num_vars - 1] > 1)
+ && (cost.out != cost.cubes*cube.part_size[cube.num_vars-1])
+ && (cost.out < 5000))
+ EXEC(F = sf_contain(unravel(F, cube.num_vars - 1)), "SETUP ", F);
+
+ /* Initial expand and irredundant */
+ foreach_set(F, last, p) {
+ RESET(p, PRIME);
+ }
+ EXECUTE(F = expand(F, R, FALSE), EXPAND_TIME, F, cost);
+ EXECUTE(F = irredundant(F, D), IRRED_TIME, F, cost);
+
+ if (! single_expand) {
+ if (remove_essential) {
+ EXECUTE(E = essential(&F, &D), ESSEN_TIME, E, cost);
+ } else {
+ E = new_cover(0);
+ }
+
+ cover_cost(F, &cost);
+ do {
+
+ /* Repeat inner loop until solution becomes "stable" */
+ do {
+ copy_cost(&cost, &best_cost);
+ EXECUTE(F = reduce(F, D), REDUCE_TIME, F, cost);
+ EXECUTE(F = expand(F, R, FALSE), EXPAND_TIME, F, cost);
+ EXECUTE(F = irredundant(F, D), IRRED_TIME, F, cost);
+ } while (cost.cubes < best_cost.cubes);
+
+ /* Perturb solution to see if we can continue to iterate */
+ copy_cost(&cost, &best_cost);
+ if (use_super_gasp) {
+ F = super_gasp(F, D, R, &cost);
+ if (cost.cubes >= best_cost.cubes)
+ break;
+ } else {
+ F = last_gasp(F, D, R, &cost);
+ }
+
+ } while (cost.cubes < best_cost.cubes ||
+ (cost.cubes == best_cost.cubes && cost.total < best_cost.total));
+
+ /* Append the essential cubes to F */
+ F = sf_append(F, E); /* disposes of E */
+ if (trace) size_stamp(F, "ADJUST ");
+ }
+
+ /* Free the D which we used */
+ free_cover(D);
+
+ /* Attempt to make the PLA matrix sparse */
+ if (! skip_make_sparse) {
+ F = make_sparse(F, D1, R);
+ }
+
+ /*
+ * Check to make sure function is actually smaller !!
+ * This can only happen because of the initial unravel. If we fail,
+ * then run the whole thing again without the unravel.
+ */
+ if (Fsave->count < F->count) {
+ free_cover(F);
+ F = Fsave;
+ unwrap_onset = FALSE;
+ goto begin;
+ } else {
+ free_cover(Fsave);
+ }
+
+ return F;
+}
diff --git a/src/misc/espresso/espresso.h b/src/misc/espresso/espresso.h
new file mode 100644
index 00000000..1c7a8646
--- /dev/null
+++ b/src/misc/espresso/espresso.h
@@ -0,0 +1,782 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ * espresso.h -- header file for Espresso-mv
+ */
+
+//#include "port.h"
+//#include "utility.h"
+#include "sparse.h"
+#include "mincov.h"
+
+#include "util_hack.h" // added
+
+#define ptime() util_cpu_time()
+#define print_time(t) util_print_time(t)
+
+#ifdef IBM_WATC
+#define void int
+#include "short.h"
+#endif
+
+#ifdef IBMPC /* set default options for IBM/PC */
+#define NO_INLINE
+#define BPI 16
+#endif
+
+/*-----THIS USED TO BE set.h----- */
+
+/*
+ * set.h -- definitions for packed arrays of bits
+ *
+ * This header file describes the data structures which comprise a
+ * facility for efficiently implementing packed arrays of bits
+ * (otherwise known as sets, cf. Pascal).
+ *
+ * A set is a vector of bits and is implemented here as an array of
+ * unsigned integers. The low order bits of set[0] give the index of
+ * the last word of set data. The higher order bits of set[0] are
+ * used to store data associated with the set. The set data is
+ * contained in elements set[1] ... set[LOOP(set)] as a packed bit
+ * array.
+ *
+ * A family of sets is a two-dimensional matrix of bits and is
+ * implemented with the data type "set_family".
+ *
+ * BPI == 32 and BPI == 16 have been tested and work.
+ */
+
+
+/* Define host machine characteristics of "unsigned int" */
+#ifndef BPI
+#define BPI 32 /* # bits per integer */
+#endif
+
+#if BPI == 32
+#define LOGBPI 5 /* log(BPI)/log(2) */
+#else
+#define LOGBPI 4 /* log(BPI)/log(2) */
+#endif
+
+/* Define the set type */
+typedef unsigned int *pset;
+
+/* Define the set family type -- an array of sets */
+typedef struct set_family {
+ int wsize; /* Size of each set in 'ints' */
+ int sf_size; /* User declared set size */
+ int capacity; /* Number of sets allocated */
+ int count; /* The number of sets in the family */
+ int active_count; /* Number of "active" sets */
+ pset data; /* Pointer to the set data */
+ struct set_family *next; /* For garbage collection */
+} set_family_t, *pset_family;
+
+/* Macros to set and test single elements */
+#define WHICH_WORD(element) (((element) >> LOGBPI) + 1)
+#define WHICH_BIT(element) ((element) & (BPI-1))
+
+/* # of ints needed to allocate a set with "size" elements */
+#if BPI == 32
+#define SET_SIZE(size) ((size) <= BPI ? 2 : (WHICH_WORD((size)-1) + 1))
+#else
+#define SET_SIZE(size) ((size) <= BPI ? 3 : (WHICH_WORD((size)-1) + 2))
+#endif
+
+/*
+ * Three fields are maintained in the first word of the set
+ * LOOP is the index of the last word used for set data
+ * LOOPCOPY is the index of the last word in the set
+ * SIZE is available for general use (e.g., recording # elements in set)
+ * NELEM retrieves the number of elements in the set
+ */
+#define LOOP(set) (set[0] & 0x03ff)
+#define PUTLOOP(set, i) (set[0] &= ~0x03ff, set[0] |= (i))
+#if BPI == 32
+#define LOOPCOPY(set) LOOP(set)
+#define SIZE(set) (set[0] >> 16)
+#define PUTSIZE(set, size) (set[0] &= 0xffff, set[0] |= ((size) << 16))
+#else
+#define LOOPCOPY(set) (LOOP(set) + 1)
+#define SIZE(set) (set[LOOP(set)+1])
+#define PUTSIZE(set, size) ((set[LOOP(set)+1]) = (size))
+#endif
+
+#define NELEM(set) (BPI * LOOP(set))
+#define LOOPINIT(size) ((size <= BPI) ? 1 : WHICH_WORD((size)-1))
+
+/*
+ * FLAGS store general information about the set
+ */
+#define SET(set, flag) (set[0] |= (flag))
+#define RESET(set, flag) (set[0] &= ~ (flag))
+#define TESTP(set, flag) (set[0] & (flag))
+
+/* Flag definitions are ... */
+#define PRIME 0x8000 /* cube is prime */
+#define NONESSEN 0x4000 /* cube cannot be essential prime */
+#define ACTIVE 0x2000 /* cube is still active */
+#define REDUND 0x1000 /* cube is redundant(at this point) */
+#define COVERED 0x0800 /* cube has been covered */
+#define RELESSEN 0x0400 /* cube is relatively essential */
+
+/* Most efficient way to look at all members of a set family */
+#define foreach_set(R, last, p)\
+ for(p=R->data,last=p+R->count*R->wsize;p<last;p+=R->wsize)
+#define foreach_remaining_set(R, last, pfirst, p)\
+ for(p=pfirst+R->wsize,last=R->data+R->count*R->wsize;p<last;p+=R->wsize)
+#define foreach_active_set(R, last, p)\
+ foreach_set(R,last,p) if (TESTP(p, ACTIVE))
+
+/* Another way that also keeps the index of the current set member in i */
+#define foreachi_set(R, i, p)\
+ for(p=R->data,i=0;i<R->count;p+=R->wsize,i++)
+#define foreachi_active_set(R, i, p)\
+ foreachi_set(R,i,p) if (TESTP(p, ACTIVE))
+
+/* Looping over all elements in a set:
+ * foreach_set_element(pset p, int i, unsigned val, int base) {
+ * .
+ * .
+ * .
+ * }
+ */
+#define foreach_set_element(p, i, val, base) \
+ for(i = LOOP(p); i > 0; ) \
+ for(val = p[i], base = --i << LOGBPI; val != 0; base++, val >>= 1) \
+ if (val & 1)
+
+/* Return a pointer to a given member of a set family */
+#define GETSET(family, index) ((family)->data + (family)->wsize * (index))
+
+/* Allocate and deallocate sets */
+#define set_new(size) set_clear(ALLOC(unsigned int, SET_SIZE(size)), size)
+#define set_full(size) set_fill(ALLOC(unsigned int, SET_SIZE(size)), size)
+#define set_save(r) set_copy(ALLOC(unsigned int, SET_SIZE(NELEM(r))), r)
+#define set_free(r) FREE(r)
+
+/* Check for set membership, remove set element and insert set element */
+#define is_in_set(set, e) (set[WHICH_WORD(e)] & (1 << WHICH_BIT(e)))
+#define set_remove(set, e) (set[WHICH_WORD(e)] &= ~ (1 << WHICH_BIT(e)))
+#define set_insert(set, e) (set[WHICH_WORD(e)] |= 1 << WHICH_BIT(e))
+
+/* Inline code substitution for those places that REALLY need it on a VAX */
+#ifdef NO_INLINE
+#define INLINEset_copy(r, a) (void) set_copy(r,a)
+#define INLINEset_clear(r, size) (void) set_clear(r, size)
+#define INLINEset_fill(r, size) (void) set_fill(r, size)
+#define INLINEset_and(r, a, b) (void) set_and(r, a, b)
+#define INLINEset_or(r, a, b) (void) set_or(r, a, b)
+#define INLINEset_diff(r, a, b) (void) set_diff(r, a, b)
+#define INLINEset_ndiff(r, a, b, f) (void) set_ndiff(r, a, b, f)
+#define INLINEset_xor(r, a, b) (void) set_xor(r, a, b)
+#define INLINEset_xnor(r, a, b, f) (void) set_xnor(r, a, b, f)
+#define INLINEset_merge(r, a, b, mask) (void) set_merge(r, a, b, mask)
+#define INLINEsetp_implies(a, b, when_false) \
+ if (! setp_implies(a,b)) when_false
+#define INLINEsetp_disjoint(a, b, when_false) \
+ if (! setp_disjoint(a,b)) when_false
+#define INLINEsetp_equal(a, b, when_false) \
+ if (! setp_equal(a,b)) when_false
+
+#else
+
+#define INLINEset_copy(r, a)\
+ {register int i_=LOOPCOPY(a); do r[i_]=a[i_]; while (--i_>=0);}
+#define INLINEset_clear(r, size)\
+ {register int i_=LOOPINIT(size); *r=i_; do r[i_] = 0; while (--i_ > 0);}
+#define INLINEset_fill(r, size)\
+ {register int i_=LOOPINIT(size); *r=i_; \
+ r[i_]=((unsigned int)(~0))>>(i_*BPI-size); while(--i_>0) r[i_]=~0;}
+#define INLINEset_and(r, a, b)\
+ {register int i_=LOOP(a); PUTLOOP(r,i_);\
+ do r[i_] = a[i_] & b[i_]; while (--i_>0);}
+#define INLINEset_or(r, a, b)\
+ {register int i_=LOOP(a); PUTLOOP(r,i_);\
+ do r[i_] = a[i_] | b[i_]; while (--i_>0);}
+#define INLINEset_diff(r, a, b)\
+ {register int i_=LOOP(a); PUTLOOP(r,i_);\
+ do r[i_] = a[i_] & ~ b[i_]; while (--i_>0);}
+#define INLINEset_ndiff(r, a, b, fullset)\
+ {register int i_=LOOP(a); PUTLOOP(r,i_);\
+ do r[i_] = fullset[i_] & (a[i_] | ~ b[i_]); while (--i_>0);}
+#ifdef IBM_WATC
+#define INLINEset_xor(r, a, b) (void) set_xor(r, a, b)
+#define INLINEset_xnor(r, a, b, f) (void) set_xnor(r, a, b, f)
+#else
+#define INLINEset_xor(r, a, b)\
+ {register int i_=LOOP(a); PUTLOOP(r,i_);\
+ do r[i_] = a[i_] ^ b[i_]; while (--i_>0);}
+#define INLINEset_xnor(r, a, b, fullset)\
+ {register int i_=LOOP(a); PUTLOOP(r,i_);\
+ do r[i_] = fullset[i_] & ~ (a[i_] ^ b[i_]); while (--i_>0);}
+#endif
+#define INLINEset_merge(r, a, b, mask)\
+ {register int i_=LOOP(a); PUTLOOP(r,i_);\
+ do r[i_] = (a[i_]&mask[i_]) | (b[i_]&~mask[i_]); while (--i_>0);}
+#define INLINEsetp_implies(a, b, when_false)\
+ {register int i_=LOOP(a); do if (a[i_]&~b[i_]) break; while (--i_>0);\
+ if (i_ != 0) when_false;}
+#define INLINEsetp_disjoint(a, b, when_false)\
+ {register int i_=LOOP(a); do if (a[i_]&b[i_]) break; while (--i_>0);\
+ if (i_ != 0) when_false;}
+#define INLINEsetp_equal(a, b, when_false)\
+ {register int i_=LOOP(a); do if (a[i_]!=b[i_]) break; while (--i_>0);\
+ if (i_ != 0) when_false;}
+
+#endif
+
+#if BPI == 32
+#define count_ones(v)\
+ (bit_count[v & 255] + bit_count[(v >> 8) & 255]\
+ + bit_count[(v >> 16) & 255] + bit_count[(v >> 24) & 255])
+#else
+#define count_ones(v) (bit_count[v & 255] + bit_count[(v >> 8) & 255])
+#endif
+
+/* Table for efficient bit counting */
+extern int bit_count[256];
+/*----- END OF set.h ----- */
+
+
+/* Define a boolean type */
+#define bool int
+#define FALSE 0
+#define TRUE 1
+#define MAYBE 2
+#define print_bool(x) ((x) == 0 ? "FALSE" : ((x) == 1 ? "TRUE" : "MAYBE"))
+
+/* Map many cube/cover types/routines into equivalent set types/routines */
+#define pcube pset
+#define new_cube() set_new(cube.size)
+#define free_cube(r) set_free(r)
+#define pcover pset_family
+#define new_cover(i) sf_new(i, cube.size)
+#define free_cover(r) sf_free(r)
+#define free_cubelist(T) FREE(T[0]); FREE(T);
+
+
+/* cost_t describes the cost of a cover */
+typedef struct cost_struct {
+ int cubes; /* number of cubes in the cover */
+ int in; /* transistor count, binary-valued variables */
+ int out; /* transistor count, output part */
+ int mv; /* transistor count, multiple-valued vars */
+ int total; /* total number of transistors */
+ int primes; /* number of prime cubes */
+} cost_t, *pcost;
+
+
+/* pair_t describes bit-paired variables */
+typedef struct pair_struct {
+ int cnt;
+ int *var1;
+ int *var2;
+} pair_t, *ppair;
+
+
+/* symbolic_list_t describes a single ".symbolic" line */
+typedef struct symbolic_list_struct {
+ int variable;
+ int pos;
+ struct symbolic_list_struct *next;
+} symbolic_list_t;
+
+
+/* symbolic_list_t describes a single ".symbolic" line */
+typedef struct symbolic_label_struct {
+ char *label;
+ struct symbolic_label_struct *next;
+} symbolic_label_t;
+
+
+/* symbolic_t describes a linked list of ".symbolic" lines */
+typedef struct symbolic_struct {
+ symbolic_list_t *symbolic_list; /* linked list of items */
+ int symbolic_list_length; /* length of symbolic_list list */
+ symbolic_label_t *symbolic_label; /* linked list of new names */
+ int symbolic_label_length; /* length of symbolic_label list */
+ struct symbolic_struct *next;
+} symbolic_t;
+
+
+/* PLA_t stores the logical representation of a PLA */
+typedef struct {
+ pcover F, D, R; /* on-set, off-set and dc-set */
+ char *filename; /* filename */
+ int pla_type; /* logical PLA format */
+ pcube phase; /* phase to split into on-set and off-set */
+ ppair pair; /* how to pair variables */
+ char **label; /* labels for the columns */
+ symbolic_t *symbolic; /* allow binary->symbolic mapping */
+ symbolic_t *symbolic_output;/* allow symbolic output mapping */
+} PLA_t, *pPLA;
+
+#define equal(a,b) (strcmp(a,b) == 0)
+
+/* This is a hack which I wish I hadn't done, but too painful to change */
+#define CUBELISTSIZE(T) (((pcube *) T[1] - T) - 3)
+
+/* For documentation purposes */
+#define IN
+#define OUT
+#define INOUT
+
+/* The pla_type field describes the input and output format of the PLA */
+#define F_type 1
+#define D_type 2
+#define R_type 4
+#define PLEASURE_type 8 /* output format */
+#define EQNTOTT_type 16 /* output format algebraic eqns */
+#define KISS_type 128 /* output format kiss */
+#define CONSTRAINTS_type 256 /* output the constraints (numeric) */
+#define SYMBOLIC_CONSTRAINTS_type 512 /* output the constraints (symbolic) */
+#define FD_type (F_type | D_type)
+#define FR_type (F_type | R_type)
+#define DR_type (D_type | R_type)
+#define FDR_type (F_type | D_type | R_type)
+
+/* Definitions for the debug variable */
+#define COMPL 0x0001
+#define ESSEN 0x0002
+#define EXPAND 0x0004
+#define EXPAND1 0x0008
+#define GASP 0x0010
+#define IRRED 0x0020
+#define REDUCE 0x0040
+#define REDUCE1 0x0080
+#define SPARSE 0x0100
+#define TAUT 0x0200
+#define EXACT 0x0400
+#define MINCOV 0x0800
+#define MINCOV1 0x1000
+#define SHARP 0x2000
+#define IRRED1 0x4000
+
+#define VERSION\
+ "UC Berkeley, Espresso Version #2.3, Release date 01/31/88"
+
+/* Define constants used for recording program statistics */
+#define TIME_COUNT 16
+#define READ_TIME 0
+#define COMPL_TIME 1
+#define ONSET_TIME 2
+#define ESSEN_TIME 3
+#define EXPAND_TIME 4
+#define IRRED_TIME 5
+#define REDUCE_TIME 6
+#define GEXPAND_TIME 7
+#define GIRRED_TIME 8
+#define GREDUCE_TIME 9
+#define PRIMES_TIME 10
+#define MINCOV_TIME 11
+#define MV_REDUCE_TIME 12
+#define RAISE_IN_TIME 13
+#define VERIFY_TIME 14
+#define WRITE_TIME 15
+
+
+/* For those who like to think about PLAs, macros to get at inputs/outputs */
+#define NUMINPUTS cube.num_binary_vars
+#define NUMOUTPUTS cube.part_size[cube.num_vars - 1]
+
+#define POSITIVE_PHASE(pos)\
+ (is_in_set(PLA->phase, cube.first_part[cube.output]+pos) != 0)
+
+#define INLABEL(var) PLA->label[cube.first_part[var] + 1]
+#define OUTLABEL(pos) PLA->label[cube.first_part[cube.output] + pos]
+
+#define GETINPUT(c, pos)\
+ ((c[WHICH_WORD(2*pos)] >> WHICH_BIT(2*pos)) & 3)
+#define GETOUTPUT(c, pos)\
+ (is_in_set(c, cube.first_part[cube.output] + pos) != 0)
+
+#define PUTINPUT(c, pos, value)\
+ c[WHICH_WORD(2*pos)] = (c[WHICH_WORD(2*pos)] & ~(3 << WHICH_BIT(2*pos)))\
+ | (value << WHICH_BIT(2*pos))
+#define PUTOUTPUT(c, pos, value)\
+ c[WHICH_WORD(pos)] = (c[WHICH_WORD(pos)] & ~(1 << WHICH_BIT(pos)))\
+ | (value << WHICH_BIT(pos))
+
+#define TWO 3
+#define DASH 3
+#define ONE 2
+#define ZERO 1
+
+
+#define EXEC(fct, name, S)\
+ {long t=ptime();fct;if(trace)print_trace(S,name,ptime()-t);}
+#define EXEC_S(fct, name, S)\
+ {long t=ptime();fct;if(summary)print_trace(S,name,ptime()-t);}
+#define EXECUTE(fct,i,S,cost)\
+ {long t=ptime();fct;totals(t,i,S,&(cost));}
+
+/*
+ * Global Variable Declarations
+ */
+
+extern unsigned int debug; /* debug parameter */
+extern bool verbose_debug; /* -v: whether to print a lot */
+extern char *total_name[TIME_COUNT]; /* basic function names */
+extern long total_time[TIME_COUNT]; /* time spent in basic fcts */
+extern int total_calls[TIME_COUNT]; /* # calls to each fct */
+
+extern bool echo_comments; /* turned off by -eat option */
+extern bool echo_unknown_commands; /* always true ?? */
+extern bool force_irredundant; /* -nirr command line option */
+extern bool skip_make_sparse;
+extern bool kiss; /* -kiss command line option */
+extern bool pos; /* -pos command line option */
+extern bool print_solution; /* -x command line option */
+extern bool recompute_onset; /* -onset command line option */
+extern bool remove_essential; /* -ness command line option */
+extern bool single_expand; /* -fast command line option */
+extern bool summary; /* -s command line option */
+extern bool trace; /* -t command line option */
+extern bool unwrap_onset; /* -nunwrap command line option */
+extern bool use_random_order; /* -random command line option */
+extern bool use_super_gasp; /* -strong command line option */
+extern char *filename; /* filename PLA was read from */
+extern bool debug_exact_minimization; /* dumps info for -do exact */
+
+
+/*
+ * pla_types are the input and output types for reading/writing a PLA
+ */
+struct pla_types_struct {
+ char *key;
+ int value;
+};
+
+
+/*
+ * The cube structure is a global structure which contains information
+ * on how a set maps into a cube -- i.e., number of parts per variable,
+ * number of variables, etc. Also, many fields are pre-computed to
+ * speed up various primitive operations.
+ */
+#define CUBE_TEMP 10
+
+struct cube_struct {
+ int size; /* set size of a cube */
+ int num_vars; /* number of variables in a cube */
+ int num_binary_vars; /* number of binary variables */
+ int *first_part; /* first element of each variable */
+ int *last_part; /* first element of each variable */
+ int *part_size; /* number of elements in each variable */
+ int *first_word; /* first word for each variable */
+ int *last_word; /* last word for each variable */
+ pset binary_mask; /* Mask to extract binary variables */
+ pset mv_mask; /* mask to get mv parts */
+ pset *var_mask; /* mask to extract a variable */
+ pset *temp; /* an array of temporary sets */
+ pset fullset; /* a full cube */
+ pset emptyset; /* an empty cube */
+ unsigned int inmask; /* mask to get odd word of binary part */
+ int inword; /* which word number for above */
+ int *sparse; /* should this variable be sparse? */
+ int num_mv_vars; /* number of multiple-valued variables */
+ int output; /* which variable is "output" (-1 if none) */
+};
+
+struct cdata_struct {
+ int *part_zeros; /* count of zeros for each element */
+ int *var_zeros; /* count of zeros for each variable */
+ int *parts_active; /* number of "active" parts for each var */
+ bool *is_unate; /* indicates given var is unate */
+ int vars_active; /* number of "active" variables */
+ int vars_unate; /* number of unate variables */
+ int best; /* best "binate" variable */
+};
+
+
+extern struct pla_types_struct pla_types[];
+extern struct cube_struct cube, temp_cube_save;
+extern struct cdata_struct cdata, temp_cdata_save;
+
+#ifdef lint
+#define DISJOINT 0x5555
+#else
+#if BPI == 32
+#define DISJOINT 0x55555555
+#else
+#define DISJOINT 0x5555
+#endif
+#endif
+
+/* function declarations */
+
+/* cofactor.c */ extern int binate_split_select();
+/* cofactor.c */ extern pcover cubeunlist();
+/* cofactor.c */ extern pcube *cofactor();
+/* cofactor.c */ extern pcube *cube1list();
+/* cofactor.c */ extern pcube *cube2list();
+/* cofactor.c */ extern pcube *cube3list();
+/* cofactor.c */ extern pcube *scofactor();
+/* cofactor.c */ extern void massive_count();
+/* compl.c */ extern pcover complement();
+/* compl.c */ extern pcover simplify();
+/* compl.c */ extern void simp_comp();
+/* contain.c */ extern int d1_rm_equal();
+/* contain.c */ extern int rm2_contain();
+/* contain.c */ extern int rm2_equal();
+/* contain.c */ extern int rm_contain();
+/* contain.c */ extern int rm_equal();
+/* contain.c */ extern int rm_rev_contain();
+/* contain.c */ extern pset *sf_list();
+/* contain.c */ extern pset *sf_sort();
+/* contain.c */ extern pset_family d1merge();
+/* contain.c */ extern pset_family dist_merge();
+/* contain.c */ extern pset_family sf_contain();
+/* contain.c */ extern pset_family sf_dupl();
+/* contain.c */ extern pset_family sf_ind_contain();
+/* contain.c */ extern pset_family sf_ind_unlist();
+/* contain.c */ extern pset_family sf_merge();
+/* contain.c */ extern pset_family sf_rev_contain();
+/* contain.c */ extern pset_family sf_union();
+/* contain.c */ extern pset_family sf_unlist();
+/* cubestr.c */ extern void cube_setup();
+/* cubestr.c */ extern void restore_cube_struct();
+/* cubestr.c */ extern void save_cube_struct();
+/* cubestr.c */ extern void setdown_cube();
+/* cvrin.c */ extern PLA_labels();
+/* cvrin.c */ extern char *get_word();
+/* cvrin.c */ extern int label_index();
+/* cvrin.c */ extern int read_pla();
+/* cvrin.c */ extern int read_symbolic();
+/* cvrin.c */ extern pPLA new_PLA();
+/* cvrin.c */ extern void PLA_summary();
+/* cvrin.c */ extern void free_PLA();
+/* cvrin.c */ extern void parse_pla();
+/* cvrin.c */ extern void read_cube();
+/* cvrin.c */ extern void skip_line();
+/* cvrm.c */ extern foreach_output_function();
+/* cvrm.c */ extern int cubelist_partition();
+/* cvrm.c */ extern int so_both_do_espresso();
+/* cvrm.c */ extern int so_both_do_exact();
+/* cvrm.c */ extern int so_both_save();
+/* cvrm.c */ extern int so_do_espresso();
+/* cvrm.c */ extern int so_do_exact();
+/* cvrm.c */ extern int so_save();
+/* cvrm.c */ extern pcover cof_output();
+/* cvrm.c */ extern pcover lex_sort();
+/* cvrm.c */ extern pcover mini_sort();
+/* cvrm.c */ extern pcover random_order();
+/* cvrm.c */ extern pcover size_sort();
+/* cvrm.c */ extern pcover sort_reduce();
+/* cvrm.c */ extern pcover uncof_output();
+/* cvrm.c */ extern pcover unravel();
+/* cvrm.c */ extern pcover unravel_range();
+/* cvrm.c */ extern void so_both_espresso();
+/* cvrm.c */ extern void so_espresso();
+/* cvrmisc.c */ extern char *fmt_cost();
+/* cvrmisc.c */ extern char *print_cost();
+/* cvrmisc.c */ extern char *strsav();
+/* cvrmisc.c */ extern void copy_cost();
+/* cvrmisc.c */ extern void cover_cost();
+/* cvrmisc.c */ extern void fatal();
+/* cvrmisc.c */ extern void print_trace();
+/* cvrmisc.c */ extern void size_stamp();
+/* cvrmisc.c */ extern void totals();
+/* cvrout.c */ extern char *fmt_cube();
+/* cvrout.c */ extern char *fmt_expanded_cube();
+/* cvrout.c */ extern char *pc1();
+/* cvrout.c */ extern char *pc2();
+/* cvrout.c */ extern char *pc3();
+/* cvrout.c */ extern int makeup_labels();
+/* cvrout.c */ extern kiss_output();
+/* cvrout.c */ extern kiss_print_cube();
+/* cvrout.c */ extern output_symbolic_constraints();
+/* cvrout.c */ extern void cprint();
+/* cvrout.c */ extern void debug1_print();
+/* cvrout.c */ extern void debug_print();
+/* cvrout.c */ extern void eqn_output();
+/* cvrout.c */ extern void fpr_header();
+/* cvrout.c */ extern void fprint_pla();
+/* cvrout.c */ extern void pls_group();
+/* cvrout.c */ extern void pls_label();
+/* cvrout.c */ extern void pls_output();
+/* cvrout.c */ extern void print_cube();
+/* cvrout.c */ extern void print_expanded_cube();
+/* cvrout.c */ extern void sf_debug_print();
+/* equiv.c */ extern find_equiv_outputs();
+/* equiv.c */ extern int check_equiv();
+/* espresso.c */ extern pcover espresso();
+/* essen.c */ extern bool essen_cube();
+/* essen.c */ extern pcover cb_consensus();
+/* essen.c */ extern pcover cb_consensus_dist0();
+/* essen.c */ extern pcover essential();
+/* exact.c */ extern pcover minimize_exact();
+/* exact.c */ extern pcover minimize_exact_literals();
+/* expand.c */ extern bool feasibly_covered();
+/* expand.c */ extern int most_frequent();
+/* expand.c */ extern pcover all_primes();
+/* expand.c */ extern pcover expand();
+/* expand.c */ extern pcover find_all_primes();
+/* expand.c */ extern void elim_lowering();
+/* expand.c */ extern void essen_parts();
+/* expand.c */ extern void essen_raising();
+/* expand.c */ extern void expand1();
+/* expand.c */ extern void mincov();
+/* expand.c */ extern void select_feasible();
+/* expand.c */ extern void setup_BB_CC();
+/* gasp.c */ extern pcover expand_gasp();
+/* gasp.c */ extern pcover irred_gasp();
+/* gasp.c */ extern pcover last_gasp();
+/* gasp.c */ extern pcover super_gasp();
+/* gasp.c */ extern void expand1_gasp();
+/* getopt.c */ extern int util_getopt();
+/* hack.c */ extern find_dc_inputs();
+/* hack.c */ extern find_inputs();
+/* hack.c */ extern form_bitvector();
+/* hack.c */ extern map_dcset();
+/* hack.c */ extern map_output_symbolic();
+/* hack.c */ extern map_symbolic();
+/* hack.c */ extern pcover map_symbolic_cover();
+/* hack.c */ extern symbolic_hack_labels();
+/* irred.c */ extern bool cube_is_covered();
+/* irred.c */ extern bool taut_special_cases();
+/* irred.c */ extern bool tautology();
+/* irred.c */ extern pcover irredundant();
+/* irred.c */ extern void mark_irredundant();
+/* irred.c */ extern void irred_split_cover();
+/* irred.c */ extern sm_matrix *irred_derive_table();
+/* map.c */ extern pset minterms();
+/* map.c */ extern void explode();
+/* map.c */ extern void map();
+/* opo.c */ extern output_phase_setup();
+/* opo.c */ extern pPLA set_phase();
+/* opo.c */ extern pcover opo();
+/* opo.c */ extern pcube find_phase();
+/* opo.c */ extern pset_family find_covers();
+/* opo.c */ extern pset_family form_cover_table();
+/* opo.c */ extern pset_family opo_leaf();
+/* opo.c */ extern pset_family opo_recur();
+/* opo.c */ extern void opoall();
+/* opo.c */ extern void phase_assignment();
+/* opo.c */ extern void repeated_phase_assignment();
+/* pair.c */ extern generate_all_pairs();
+/* pair.c */ extern int **find_pairing_cost();
+/* pair.c */ extern int find_best_cost();
+/* pair.c */ extern int greedy_best_cost();
+/* pair.c */ extern int minimize_pair();
+/* pair.c */ extern int pair_free();
+/* pair.c */ extern pair_all();
+/* pair.c */ extern pcover delvar();
+/* pair.c */ extern pcover pairvar();
+/* pair.c */ extern ppair pair_best_cost();
+/* pair.c */ extern ppair pair_new();
+/* pair.c */ extern ppair pair_save();
+/* pair.c */ extern print_pair();
+/* pair.c */ extern void find_optimal_pairing();
+/* pair.c */ extern void set_pair();
+/* pair.c */ extern void set_pair1();
+/* primes.c */ extern pcover primes_consensus();
+/* reduce.c */ extern bool sccc_special_cases();
+/* reduce.c */ extern pcover reduce();
+/* reduce.c */ extern pcube reduce_cube();
+/* reduce.c */ extern pcube sccc();
+/* reduce.c */ extern pcube sccc_cube();
+/* reduce.c */ extern pcube sccc_merge();
+/* set.c */ extern bool set_andp();
+/* set.c */ extern bool set_orp();
+/* set.c */ extern bool setp_disjoint();
+/* set.c */ extern bool setp_empty();
+/* set.c */ extern bool setp_equal();
+/* set.c */ extern bool setp_full();
+/* set.c */ extern bool setp_implies();
+/* set.c */ extern char *pbv1();
+/* set.c */ extern char *ps1();
+/* set.c */ extern int *sf_count();
+/* set.c */ extern int *sf_count_restricted();
+/* set.c */ extern int bit_index();
+/* set.c */ extern int set_dist();
+/* set.c */ extern int set_ord();
+/* set.c */ extern void set_adjcnt();
+/* set.c */ extern pset set_and();
+/* set.c */ extern pset set_clear();
+/* set.c */ extern pset set_copy();
+/* set.c */ extern pset set_diff();
+/* set.c */ extern pset set_fill();
+/* set.c */ extern pset set_merge();
+/* set.c */ extern pset set_or();
+/* set.c */ extern pset set_xor();
+/* set.c */ extern pset sf_and();
+/* set.c */ extern pset sf_or();
+/* set.c */ extern pset_family sf_active();
+/* set.c */ extern pset_family sf_addcol();
+/* set.c */ extern pset_family sf_addset();
+/* set.c */ extern pset_family sf_append();
+/* set.c */ extern pset_family sf_bm_read();
+/* set.c */ extern pset_family sf_compress();
+/* set.c */ extern pset_family sf_copy();
+/* set.c */ extern pset_family sf_copy_col();
+/* set.c */ extern pset_family sf_delc();
+/* set.c */ extern pset_family sf_delcol();
+/* set.c */ extern pset_family sf_inactive();
+/* set.c */ extern pset_family sf_join();
+/* set.c */ extern pset_family sf_new();
+/* set.c */ extern pset_family sf_permute();
+/* set.c */ extern pset_family sf_read();
+/* set.c */ extern pset_family sf_save();
+/* set.c */ extern pset_family sf_transpose();
+/* set.c */ extern void set_write();
+/* set.c */ extern void sf_bm_print();
+/* set.c */ extern void sf_cleanup();
+/* set.c */ extern void sf_delset();
+/* set.c */ extern void sf_free();
+/* set.c */ extern void sf_print();
+/* set.c */ extern void sf_write();
+/* setc.c */ extern bool ccommon();
+/* setc.c */ extern bool cdist0();
+/* setc.c */ extern bool full_row();
+/* setc.c */ extern int ascend();
+/* setc.c */ extern int cactive();
+/* setc.c */ extern int cdist();
+/* setc.c */ extern int cdist01();
+/* setc.c */ extern int cvolume();
+/* setc.c */ extern int d1_order();
+/* setc.c */ extern int d1_order_size();
+/* setc.c */ extern int desc1();
+/* setc.c */ extern int descend();
+/* setc.c */ extern int lex_order();
+/* setc.c */ extern int lex_order1();
+/* setc.c */ extern pset force_lower();
+/* setc.c */ extern void consensus();
+/* sharp.c */ extern pcover cb1_dsharp();
+/* sharp.c */ extern pcover cb_dsharp();
+/* sharp.c */ extern pcover cb_recur_dsharp();
+/* sharp.c */ extern pcover cb_recur_sharp();
+/* sharp.c */ extern pcover cb_sharp();
+/* sharp.c */ extern pcover cv_dsharp();
+/* sharp.c */ extern pcover cv_intersect();
+/* sharp.c */ extern pcover cv_sharp();
+/* sharp.c */ extern pcover dsharp();
+/* sharp.c */ extern pcover make_disjoint();
+/* sharp.c */ extern pcover sharp();
+/* sminterf.c */pset do_sm_minimum_cover();
+/* sparse.c */ extern pcover make_sparse();
+/* sparse.c */ extern pcover mv_reduce();
+#if !defined(__osf__) && !defined(__STDC__) && !defined(__hpux)
+/* ucbqsort.c */ extern qsort();
+#endif
+/* ucbqsort.c */ extern qst();
+/* unate.c */ extern pcover find_all_minimal_covers_petrick();
+/* unate.c */ extern pcover map_cover_to_unate();
+/* unate.c */ extern pcover map_unate_to_cover();
+/* unate.c */ extern pset_family exact_minimum_cover();
+/* unate.c */ extern pset_family gen_primes();
+/* unate.c */ extern pset_family unate_compl();
+/* unate.c */ extern pset_family unate_complement();
+/* unate.c */ extern pset_family unate_intersect();
+/* verify.c */ extern PLA_permute();
+/* verify.c */ extern bool PLA_verify();
+/* verify.c */ extern bool check_consistency();
+/* verify.c */ extern bool verify();
diff --git a/src/misc/espresso/essen.c b/src/misc/espresso/essen.c
new file mode 100644
index 00000000..6a46295d
--- /dev/null
+++ b/src/misc/espresso/essen.c
@@ -0,0 +1,179 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ module: essen.c
+ purpose: Find essential primes in a multiple-valued function
+*/
+
+#include "espresso.h"
+
+/*
+ essential -- return a cover consisting of the cubes of F which are
+ essential prime implicants (with respect to F u D); Further, remove
+ these cubes from the ON-set F, and add them to the OFF-set D.
+
+ Sometimes EXPAND can determine that a cube is not an essential prime.
+ If so, it will set the "NONESSEN" flag in the cube.
+
+ We count on IRREDUNDANT to have set the flag RELESSEN to indicate
+ that a prime was relatively essential (i.e., covers some minterm
+ not contained in any other prime in the current cover), or to have
+ reset the flag to indicate that a prime was relatively redundant
+ (i.e., all minterms covered by other primes in the current cover).
+ Of course, after executing irredundant, all of the primes in the
+ cover are relatively essential, but we can mark the primes which
+ were redundant at the start of irredundant and avoid an extra check
+ on these primes for essentiality.
+*/
+
+pcover essential(Fp, Dp)
+IN pcover *Fp, *Dp;
+{
+ register pcube last, p;
+ pcover E, F = *Fp, D = *Dp;
+
+ /* set all cubes in F active */
+ (void) sf_active(F);
+
+ /* Might as well start out with some cubes in E */
+ E = new_cover(10);
+
+ foreach_set(F, last, p) {
+ /* don't test a prime which EXPAND says is nonessential */
+ if (! TESTP(p, NONESSEN)) {
+ /* only test a prime which was relatively essential */
+ if (TESTP(p, RELESSEN)) {
+ /* Check essentiality */
+ if (essen_cube(F, D, p)) {
+ if (debug & ESSEN)
+ printf("ESSENTIAL: %s\n", pc1(p));
+ E = sf_addset(E, p);
+ RESET(p, ACTIVE);
+ F->active_count--;
+ }
+ }
+ }
+ }
+
+ *Fp = sf_inactive(F); /* delete the inactive cubes from F */
+ *Dp = sf_join(D, E); /* add the essentials to D */
+ sf_free(D);
+ return E;
+}
+
+/*
+ essen_cube -- check if a single cube is essential or not
+
+ The prime c is essential iff
+
+ consensus((F u D) # c, c) u D
+
+ does not contain c.
+*/
+bool essen_cube(F, D, c)
+IN pcover F, D;
+IN pcube c;
+{
+ pcover H, FD;
+ pcube *H1;
+ bool essen;
+
+ /* Append F and D together, and take the sharp-consensus with c */
+ FD = sf_join(F, D);
+ H = cb_consensus(FD, c);
+ free_cover(FD);
+
+ /* Add the don't care set, and see if this covers c */
+ H1 = cube2list(H, D);
+ essen = ! cube_is_covered(H1, c);
+ free_cubelist(H1);
+
+ free_cover(H);
+ return essen;
+}
+
+
+/*
+ * cb_consensus -- compute consensus(T # c, c)
+ */
+pcover cb_consensus(T, c)
+register pcover T;
+register pcube c;
+{
+ register pcube temp, last, p;
+ register pcover R;
+
+ R = new_cover(T->count*2);
+ temp = new_cube();
+ foreach_set(T, last, p) {
+ if (p != c) {
+ switch (cdist01(p, c)) {
+ case 0:
+ /* distance-0 needs special care */
+ R = cb_consensus_dist0(R, p, c);
+ break;
+
+ case 1:
+ /* distance-1 is easy because no sharping required */
+ consensus(temp, p, c);
+ R = sf_addset(R, temp);
+ break;
+ }
+ }
+ }
+ set_free(temp);
+ return R;
+}
+
+
+/*
+ * form the sharp-consensus for p and c when they intersect
+ * What we are forming is consensus(p # c, c).
+ */
+pcover cb_consensus_dist0(R, p, c)
+pcover R;
+register pcube p, c;
+{
+ int var;
+ bool got_one;
+ register pcube temp, mask;
+ register pcube p_diff_c=cube.temp[0], p_and_c=cube.temp[1];
+
+ /* If c contains p, then this gives us no information for essential test */
+ if (setp_implies(p, c)) {
+ return R;
+ }
+
+ /* For the multiple-valued variables */
+ temp = new_cube();
+ got_one = FALSE;
+ INLINEset_diff(p_diff_c, p, c);
+ INLINEset_and(p_and_c, p, c);
+
+ for(var = cube.num_binary_vars; var < cube.num_vars; var++) {
+ /* Check if c(var) is contained in p(var) -- if so, no news */
+ mask = cube.var_mask[var];
+ if (! setp_disjoint(p_diff_c, mask)) {
+ INLINEset_merge(temp, c, p_and_c, mask);
+ R = sf_addset(R, temp);
+ got_one = TRUE;
+ }
+ }
+
+ /* if no cube so far, add one for the intersection */
+ if (! got_one && cube.num_binary_vars > 0) {
+ /* Add a single cube for the intersection of p and c */
+ INLINEset_and(temp, p, c);
+ R = sf_addset(R, temp);
+ }
+
+ set_free(temp);
+ return R;
+}
diff --git a/src/misc/espresso/exact.c b/src/misc/espresso/exact.c
new file mode 100644
index 00000000..b1943636
--- /dev/null
+++ b/src/misc/espresso/exact.c
@@ -0,0 +1,181 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+
+static void dump_irredundant();
+static pcover do_minimize();
+
+
+/*
+ * minimize_exact -- main entry point for exact minimization
+ *
+ * Global flags which affect this routine are:
+ *
+ * debug
+ * skip_make_sparse
+ */
+
+pcover
+minimize_exact(F, D, R, exact_cover)
+pcover F, D, R;
+int exact_cover;
+{
+ return do_minimize(F, D, R, exact_cover, /*weighted*/ 0);
+}
+
+
+pcover
+minimize_exact_literals(F, D, R, exact_cover)
+pcover F, D, R;
+int exact_cover;
+{
+ return do_minimize(F, D, R, exact_cover, /*weighted*/ 1);
+}
+
+
+
+static pcover
+do_minimize(F, D, R, exact_cover, weighted)
+pcover F, D, R;
+int exact_cover;
+int weighted;
+{
+ pcover newF, E, Rt, Rp;
+ pset p, last;
+ int heur, level, *weights, i;
+ sm_matrix *table;
+ sm_row *cover;
+ sm_element *pe;
+ int debug_save = debug;
+
+ if (debug & EXACT) {
+ debug |= (IRRED | MINCOV);
+ }
+#if defined(sun) || defined(bsd4_2) /* hack ... */
+ if (debug & MINCOV) {
+ setlinebuf(stdout);
+ }
+#endif
+ level = (debug & MINCOV) ? 4 : 0;
+ heur = ! exact_cover;
+
+ /* Generate all prime implicants */
+ EXEC(F = primes_consensus(cube2list(F, D)), "PRIMES ", F);
+
+ /* Setup the prime implicant table */
+ EXEC(irred_split_cover(F, D, &E, &Rt, &Rp), "ESSENTIALS ", E);
+ EXEC(table = irred_derive_table(D, E, Rp), "PI-TABLE ", Rp);
+
+ /* Solve either a weighted or nonweighted covering problem */
+ if (weighted) {
+ /* correct only for all 2-valued variables */
+ weights = ALLOC(int, F->count);
+ foreach_set(Rp, last, p) {
+ weights[SIZE(p)] = cube.size - set_ord(p);
+ /* We have added the 0's in the output part instead of the 1's.
+ This loop corrects the literal count. */
+ for (i = cube.first_part[cube.output];
+ i <= cube.last_part[cube.output]; i++) {
+ is_in_set(p, i) ? weights[SIZE(p)]++ : weights[SIZE(p)]--;
+ }
+ }
+ } else {
+ weights = NIL(int);
+ }
+ EXEC(cover=sm_minimum_cover(table,weights,heur,level), "MINCOV ", F);
+ if (weights != 0) {
+ FREE(weights);
+ }
+
+ if (debug & EXACT) {
+ dump_irredundant(E, Rt, Rp, table);
+ }
+
+ /* Form the result cover */
+ newF = new_cover(100);
+ foreach_set(E, last, p) {
+ newF = sf_addset(newF, p);
+ }
+ sm_foreach_row_element(cover, pe) {
+ newF = sf_addset(newF, GETSET(F, pe->col_num));
+ }
+
+ free_cover(E);
+ free_cover(Rt);
+ free_cover(Rp);
+ sm_free(table);
+ sm_row_free(cover);
+ free_cover(F);
+
+ /* Attempt to make the results more sparse */
+ debug &= ~ (IRRED | SHARP | MINCOV);
+ if (! skip_make_sparse && R != 0) {
+ newF = make_sparse(newF, D, R);
+ }
+
+ debug = debug_save;
+ return newF;
+}
+
+static void
+dump_irredundant(E, Rt, Rp, table)
+pcover E, Rt, Rp;
+sm_matrix *table;
+{
+ FILE *fp_pi_table, *fp_primes;
+ pPLA PLA;
+ pset last, p;
+ char *file;
+
+ if (filename == 0 || strcmp(filename, "(stdin)") == 0) {
+ fp_pi_table = fp_primes = stdout;
+ } else {
+ file = ALLOC(char, strlen(filename)+20);
+ (void) sprintf(file, "%s.primes", filename);
+ if ((fp_primes = fopen(file, "w")) == NULL) {
+ (void) fprintf(stderr, "espresso: Unable to open %s\n", file);
+ fp_primes = stdout;
+ }
+ (void) sprintf(file, "%s.pi", filename);
+ if ((fp_pi_table = fopen(file, "w")) == NULL) {
+ (void) fprintf(stderr, "espresso: Unable to open %s\n", file);
+ fp_pi_table = stdout;
+ }
+ FREE(file);
+ }
+
+ PLA = new_PLA();
+ PLA_labels(PLA);
+
+ fpr_header(fp_primes, PLA, F_type);
+ free_PLA(PLA);
+
+ (void) fprintf(fp_primes, "# Essential primes are\n");
+ foreach_set(E, last, p) {
+ (void) fprintf(fp_primes, "%s\n", pc1(p));
+ }
+ (void) fprintf(fp_primes, "# Totally redundant primes are\n");
+ foreach_set(Rt, last, p) {
+ (void) fprintf(fp_primes, "%s\n", pc1(p));
+ }
+ (void) fprintf(fp_primes, "# Partially redundant primes are\n");
+ foreach_set(Rp, last, p) {
+ (void) fprintf(fp_primes, "%s\n", pc1(p));
+ }
+ if (fp_primes != stdout) {
+ (void) fclose(fp_primes);
+ }
+
+ sm_write(fp_pi_table, table);
+ if (fp_pi_table != stdout) {
+ (void) fclose(fp_pi_table);
+ }
+}
diff --git a/src/misc/espresso/expand.c b/src/misc/espresso/expand.c
new file mode 100644
index 00000000..2765d71c
--- /dev/null
+++ b/src/misc/espresso/expand.c
@@ -0,0 +1,693 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ module: expand.c
+ purpose: Perform the Espresso-II Expansion Step
+
+ The idea is to take each nonprime cube of the on-set and expand it
+ into a prime implicant such that we can cover as many other cubes
+ of the on-set. If no cube of the on-set can be covered, then we
+ expand each cube into a large prime implicant by transforming the
+ problem into a minimum covering problem which is solved by the
+ heuristics of minimum_cover.
+
+ These routines revolve around having a representation of the
+ OFF-set. (In contrast to the Espresso-II manuscript, we do NOT
+ require an "unwrapped" version of the OFF-set).
+
+ Some conventions on variable names:
+
+ SUPER_CUBE is the supercube of all cubes which can be covered
+ by an expansion of the cube being expanded
+
+ OVEREXPANDED_CUBE is the cube which would result from expanding
+ all parts which can expand individually of the cube being expanded
+
+ RAISE is the current expansion of the current cube
+
+ FREESET is the set of parts which haven't been raised or lowered yet.
+
+ INIT_LOWER is a set of parts to be removed from the free parts before
+ starting the expansion
+*/
+
+#include "espresso.h"
+
+/*
+ expand -- expand each nonprime cube of F into a prime implicant
+
+ If nonsparse is true, only the non-sparse variables will be expanded;
+ this is done by forcing all of the sparse variables out of the free set.
+*/
+
+pcover expand(F, R, nonsparse)
+INOUT pcover F;
+IN pcover R;
+IN bool nonsparse; /* expand non-sparse variables only */
+{
+ register pcube last, p;
+ pcube RAISE, FREESET, INIT_LOWER, SUPER_CUBE, OVEREXPANDED_CUBE;
+ int var, num_covered;
+ bool change;
+
+ /* Order the cubes according to "chewing-away from the edges" of mini */
+ if (use_random_order)
+ F = random_order(F);
+ else
+ F = mini_sort(F, ascend);
+
+ /* Allocate memory for variables needed by expand1() */
+ RAISE = new_cube();
+ FREESET = new_cube();
+ INIT_LOWER = new_cube();
+ SUPER_CUBE = new_cube();
+ OVEREXPANDED_CUBE = new_cube();
+
+ /* Setup the initial lowering set (differs only for nonsparse) */
+ if (nonsparse)
+ for(var = 0; var < cube.num_vars; var++)
+ if (cube.sparse[var])
+ (void) set_or(INIT_LOWER, INIT_LOWER, cube.var_mask[var]);
+
+ /* Mark all cubes as not covered, and maybe essential */
+ foreach_set(F, last, p) {
+ RESET(p, COVERED);
+ RESET(p, NONESSEN);
+ }
+
+ /* Try to expand each nonprime and noncovered cube */
+ foreach_set(F, last, p) {
+ /* do not expand if PRIME or if covered by previous expansion */
+ if (! TESTP(p, PRIME) && ! TESTP(p, COVERED)) {
+
+ /* expand the cube p, result is RAISE */
+ expand1(R, F, RAISE, FREESET, OVEREXPANDED_CUBE, SUPER_CUBE,
+ INIT_LOWER, &num_covered, p);
+ if (debug & EXPAND)
+ printf("EXPAND: %s (covered %d)\n", pc1(p), num_covered);
+ (void) set_copy(p, RAISE);
+ SET(p, PRIME);
+ RESET(p, COVERED); /* not really necessary */
+
+ /* See if we generated an inessential prime */
+ if (num_covered == 0 && ! setp_equal(p, OVEREXPANDED_CUBE)) {
+ SET(p, NONESSEN);
+ }
+ }
+ }
+
+ /* Delete any cubes of F which became covered during the expansion */
+ F->active_count = 0;
+ change = FALSE;
+ foreach_set(F, last, p) {
+ if (TESTP(p, COVERED)) {
+ RESET(p, ACTIVE);
+ change = TRUE;
+ } else {
+ SET(p, ACTIVE);
+ F->active_count++;
+ }
+ }
+ if (change)
+ F = sf_inactive(F);
+
+ free_cube(RAISE);
+ free_cube(FREESET);
+ free_cube(INIT_LOWER);
+ free_cube(SUPER_CUBE);
+ free_cube(OVEREXPANDED_CUBE);
+ return F;
+}
+
+/*
+ expand1 -- Expand a single cube against the OFF-set
+*/
+void expand1(BB, CC, RAISE, FREESET, OVEREXPANDED_CUBE, SUPER_CUBE,
+ INIT_LOWER, num_covered, c)
+pcover BB; /* Blocking matrix (OFF-set) */
+pcover CC; /* Covering matrix (ON-set) */
+pcube RAISE; /* The current parts which have been raised */
+pcube FREESET; /* The current parts which are free */
+pcube OVEREXPANDED_CUBE; /* Overexpanded cube of c */
+pcube SUPER_CUBE; /* Supercube of all cubes of CC we cover */
+pcube INIT_LOWER; /* Parts to initially remove from FREESET */
+int *num_covered; /* Number of cubes of CC which are covered */
+pcube c; /* The cube to be expanded */
+{
+ int bestindex;
+
+ if (debug & EXPAND1)
+ printf("\nEXPAND1: \t%s\n", pc1(c));
+
+ /* initialize BB and CC */
+ SET(c, PRIME); /* don't try to cover ourself */
+ setup_BB_CC(BB, CC);
+
+ /* initialize count of # cubes covered, and the supercube of them */
+ *num_covered = 0;
+ (void) set_copy(SUPER_CUBE, c);
+
+ /* Initialize the lowering, raising and unassigned sets */
+ (void) set_copy(RAISE, c);
+ (void) set_diff(FREESET, cube.fullset, RAISE);
+
+ /* If some parts are forced into lowering set, remove them */
+ if (! setp_empty(INIT_LOWER)) {
+ (void) set_diff(FREESET, FREESET, INIT_LOWER);
+ elim_lowering(BB, CC, RAISE, FREESET);
+ }
+
+ /* Determine what can be raised, and return the over-expanded cube */
+ essen_parts(BB, CC, RAISE, FREESET);
+ (void) set_or(OVEREXPANDED_CUBE, RAISE, FREESET);
+
+ /* While there are still cubes which can be covered, cover them ! */
+ if (CC->active_count > 0) {
+ select_feasible(BB, CC, RAISE, FREESET, SUPER_CUBE, num_covered);
+ }
+
+ /* While there are still cubes covered by the overexpanded cube ... */
+ while (CC->active_count > 0) {
+ bestindex = most_frequent(CC, FREESET);
+ set_insert(RAISE, bestindex);
+ set_remove(FREESET, bestindex);
+ essen_parts(BB, CC, RAISE, FREESET);
+ }
+
+ /* Finally, when all else fails, choose the largest possible prime */
+ /* We will loop only if we decide unravelling OFF-set is too expensive */
+ while (BB->active_count > 0) {
+ mincov(BB, RAISE, FREESET);
+ }
+
+ /* Raise any remaining free coordinates */
+ (void) set_or(RAISE, RAISE, FREESET);
+}
+
+/*
+ essen_parts -- determine which parts are forced into the lowering
+ set to insure that the cube be orthognal to the OFF-set.
+
+ If any cube of the OFF-set is distance 1 from the raising cube,
+ then we must lower all parts of the conflicting variable. (If the
+ cube is distance 0, we detect this error here.)
+
+ If there are essentially lowered parts, we can remove from consideration
+ any cubes of the OFF-set which are more than distance 1 from the
+ overexpanded cube of RAISE.
+*/
+
+void essen_parts(BB, CC, RAISE, FREESET)
+pcover BB, CC;
+pcube RAISE, FREESET;
+{
+ register pcube p, r = RAISE;
+ pcube lastp, xlower = cube.temp[0];
+ int dist;
+
+ (void) set_copy(xlower, cube.emptyset);
+
+ foreach_active_set(BB, lastp, p) {
+#ifdef NO_INLINE
+ if ((dist = cdist01(p, r)) > 1) goto exit_if;
+#else
+ {register int w,last;register unsigned int x;dist=0;if((last=cube.inword)!=-1)
+{x=p[last]&r[last];if(x=~(x|x>>1)&cube.inmask)if((dist=count_ones(x))>1)goto
+exit_if;for(w=1;w<last;w++){x=p[w]&r[w];if(x=~(x|x>>1)&DISJOINT)if(dist==1||(
+dist+=count_ones(x))>1)goto exit_if;}}}{register int w,var,last;register pcube
+mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){mask=cube.var_mask[
+var];last=cube.last_word[var];for(w=cube.first_word[var];w<=last;w++)if(p[w]&r[
+w]&mask[w])goto nextvar;if(++dist>1)goto exit_if;nextvar:;}}
+#endif
+ if (dist == 0) {
+ fatal("ON-set and OFF-set are not orthogonal");
+ } else {
+ (void) force_lower(xlower, p, r);
+ BB->active_count--;
+ RESET(p, ACTIVE);
+ }
+exit_if: ;
+ }
+
+ if (! setp_empty(xlower)) {
+ (void) set_diff(FREESET, FREESET, xlower);/* remove from free set */
+ elim_lowering(BB, CC, RAISE, FREESET);
+ }
+
+ if (debug & EXPAND1)
+ printf("ESSEN_PARTS:\tRAISE=%s FREESET=%s\n", pc1(RAISE), pc2(FREESET));
+}
+
+/*
+ essen_raising -- determine which parts may always be added to
+ the raising set without restricting further expansions
+
+ General rule: if some part is not blocked by any cube of BB, then
+ this part can always be raised.
+*/
+
+void essen_raising(BB, RAISE, FREESET)
+register pcover BB;
+pcube RAISE, FREESET;
+{
+ register pcube last, p, xraise = cube.temp[0];
+
+ /* Form union of all cubes of BB, and then take complement wrt FREESET */
+ (void) set_copy(xraise, cube.emptyset);
+ foreach_active_set(BB, last, p)
+ INLINEset_or(xraise, xraise, p);
+ (void) set_diff(xraise, FREESET, xraise);
+
+ (void) set_or(RAISE, RAISE, xraise); /* add to raising set */
+ (void) set_diff(FREESET, FREESET, xraise); /* remove from free set */
+
+ if (debug & EXPAND1)
+ printf("ESSEN_RAISING:\tRAISE=%s FREESET=%s\n",
+ pc1(RAISE), pc2(FREESET));
+}
+
+/*
+ elim_lowering -- after removing parts from FREESET, we can reduce the
+ size of both BB and CC.
+
+ We mark as inactive any cube of BB which does not intersect the
+ overexpanded cube (i.e., RAISE + FREESET). Likewise, we remove
+ from CC any cube which is not covered by the overexpanded cube.
+*/
+
+void elim_lowering(BB, CC, RAISE, FREESET)
+pcover BB, CC;
+pcube RAISE, FREESET;
+{
+ register pcube p, r = set_or(cube.temp[0], RAISE, FREESET);
+ pcube last;
+
+ /*
+ * Remove sets of BB which are orthogonal to future expansions
+ */
+ foreach_active_set(BB, last, p) {
+#ifdef NO_INLINE
+ if (! cdist0(p, r))
+#else
+ {register int w,lastw;register unsigned int x;if((lastw=cube.inword)!=-1){x=p[
+lastw]&r[lastw];if(~(x|x>>1)&cube.inmask)goto false;for(w=1;w<lastw;w++){x=p[w]
+&r[w];if(~(x|x>>1)&DISJOINT)goto false;}}}{register int w,var,lastw;register
+pcube mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){mask=cube.
+var_mask[var];lastw=cube.last_word[var];for(w=cube.first_word[var];w<=lastw;w++)
+if(p[w]&r[w]&mask[w])goto nextvar;goto false;nextvar:;}}continue;false:
+#endif
+ BB->active_count--, RESET(p, ACTIVE);
+ }
+
+
+ /*
+ * Remove sets of CC which cannot be covered by future expansions
+ */
+ if (CC != (pcover) NULL) {
+ foreach_active_set(CC, last, p) {
+#ifdef NO_INLINE
+ if (! setp_implies(p, r))
+#else
+ INLINEsetp_implies(p, r, /* when false => */ goto false1);
+ /* when true => go to end of loop */ continue;
+ false1:
+#endif
+ CC->active_count--, RESET(p, ACTIVE);
+ }
+ }
+}
+
+/*
+ most_frequent -- When all else fails, select a reasonable part to raise
+ The active cubes of CC are the cubes which are covered by the
+ overexpanded cube of the original cube (however, we know that none
+ of them can actually be covered by a feasible expansion of the
+ original cube). We resort to the MINI strategy of selecting to
+ raise the part which will cover the same part in the most cubes of CC.
+*/
+int most_frequent(CC, FREESET)
+pcover CC;
+pcube FREESET;
+{
+ register int i, best_part, best_count, *count;
+ register pset p, last;
+
+ /* Count occurences of each variable */
+ count = ALLOC(int, cube.size);
+ for(i = 0; i < cube.size; i++)
+ count[i] = 0;
+ if (CC != (pcover) NULL)
+ foreach_active_set(CC, last, p)
+ set_adjcnt(p, count, 1);
+
+ /* Now find which free part occurs most often */
+ best_count = best_part = -1;
+ for(i = 0; i < cube.size; i++)
+ if (is_in_set(FREESET,i) && count[i] > best_count) {
+ best_part = i;
+ best_count = count[i];
+ }
+ FREE(count);
+
+ if (debug & EXPAND1)
+ printf("MOST_FREQUENT:\tbest=%d FREESET=%s\n", best_part, pc2(FREESET));
+ return best_part;
+}
+
+/*
+ setup_BB_CC -- set up the blocking and covering set families;
+
+ Note that the blocking family is merely the set of cubes of R, and
+ that CC is the set of cubes of F which might possibly be covered
+ (i.e., nonprime cubes, and cubes not already covered)
+*/
+
+void setup_BB_CC(BB, CC)
+register pcover BB, CC;
+{
+ register pcube p, last;
+
+ /* Create the block and cover set families */
+ BB->active_count = BB->count;
+ foreach_set(BB, last, p)
+ SET(p, ACTIVE);
+
+ if (CC != (pcover) NULL) {
+ CC->active_count = CC->count;
+ foreach_set(CC, last, p)
+ if (TESTP(p, COVERED) || TESTP(p, PRIME))
+ CC->active_count--, RESET(p, ACTIVE);
+ else
+ SET(p, ACTIVE);
+ }
+}
+
+/*
+ select_feasible -- Determine if there are cubes which can be covered,
+ and if so, raise those parts necessary to cover as many as possible.
+
+ We really don't check to maximize the number that can be covered;
+ instead, we check, for each fcc, how many other fcc remain fcc
+ after expanding to cover the fcc. (Essentially one-level lookahead).
+*/
+
+void select_feasible(BB, CC, RAISE, FREESET, SUPER_CUBE, num_covered)
+pcover BB, CC;
+pcube RAISE, FREESET, SUPER_CUBE;
+int *num_covered;
+{
+ register pcube p, last, bestfeas, *feas;
+ register int i, j;
+ pcube *feas_new_lower;
+ int bestcount, bestsize, count, size, numfeas, lastfeas;
+ pcover new_lower;
+
+ /* Start out with all cubes covered by the over-expanded cube as
+ * the "possibly" feasibly-covered cubes (pfcc)
+ */
+ feas = ALLOC(pcube, CC->active_count);
+ numfeas = 0;
+ foreach_active_set(CC, last, p)
+ feas[numfeas++] = p;
+
+ /* Setup extra cubes to record parts forced low after a covering */
+ feas_new_lower = ALLOC(pcube, CC->active_count);
+ new_lower = new_cover(numfeas);
+ for(i = 0; i < numfeas; i++)
+ feas_new_lower[i] = GETSET(new_lower, i);
+
+
+loop:
+ /* Find the essentially raised parts -- this might cover some cubes
+ for us, without having to find out if they are fcc or not
+ */
+ essen_raising(BB, RAISE, FREESET);
+
+ /* Now check all "possibly" feasibly covered cubes to check feasibility */
+ lastfeas = numfeas;
+ numfeas = 0;
+ for(i = 0; i < lastfeas; i++) {
+ p = feas[i];
+
+ /* Check active because essen_parts might have removed it */
+ if (TESTP(p, ACTIVE)) {
+
+ /* See if the cube is already covered by RAISE --
+ * this can happen because of essen_raising() or because of
+ * the previous "loop"
+ */
+ if (setp_implies(p, RAISE)) {
+ (*num_covered) += 1;
+ (void) set_or(SUPER_CUBE, SUPER_CUBE, p);
+ CC->active_count--;
+ RESET(p, ACTIVE);
+ SET(p, COVERED);
+ /* otherwise, test if it is feasibly covered */
+ } else if (feasibly_covered(BB,p,RAISE,feas_new_lower[numfeas])) {
+ feas[numfeas] = p; /* save the fcc */
+ numfeas++;
+ }
+ }
+ }
+ if (debug & EXPAND1)
+ printf("SELECT_FEASIBLE: started with %d pfcc, ended with %d fcc\n",
+ lastfeas, numfeas);
+
+ /* Exit here if there are no feasibly covered cubes */
+ if (numfeas == 0) {
+ FREE(feas);
+ FREE(feas_new_lower);
+ free_cover(new_lower);
+ return;
+ }
+
+ /* Now find which is the best feasibly covered cube */
+ bestcount = 0;
+ bestsize = 9999;
+ for(i = 0; i < numfeas; i++) {
+ size = set_dist(feas[i], FREESET); /* # of newly raised parts */
+ count = 0; /* # of other cubes which remain fcc after raising */
+
+#define NEW
+#ifdef NEW
+ for(j = 0; j < numfeas; j++)
+ if (setp_disjoint(feas_new_lower[i], feas[j]))
+ count++;
+#else
+ for(j = 0; j < numfeas; j++)
+ if (setp_implies(feas[j], feas[i]))
+ count++;
+#endif
+ if (count > bestcount) {
+ bestcount = count;
+ bestfeas = feas[i];
+ bestsize = size;
+ } else if (count == bestcount && size < bestsize) {
+ bestfeas = feas[i];
+ bestsize = size;
+ }
+ }
+
+ /* Add the necessary parts to the raising set */
+ (void) set_or(RAISE, RAISE, bestfeas);
+ (void) set_diff(FREESET, FREESET, RAISE);
+ if (debug & EXPAND1)
+ printf("FEASIBLE: \tRAISE=%s FREESET=%s\n", pc1(RAISE), pc2(FREESET));
+ essen_parts(BB, CC, RAISE, FREESET);
+ goto loop;
+/* NOTREACHED */
+}
+
+/*
+ feasibly_covered -- determine if the cube c is feasibly covered
+ (i.e., if it is possible to raise all of the necessary variables
+ while still insuring orthogonality with R). Also, if c is feasibly
+ covered, then compute the new set of parts which are forced into
+ the lowering set.
+*/
+
+bool feasibly_covered(BB, c, RAISE, new_lower)
+pcover BB;
+pcube c, RAISE, new_lower;
+{
+ register pcube p, r = set_or(cube.temp[0], RAISE, c);
+ int dist;
+ pcube lastp;
+
+ set_copy(new_lower, cube.emptyset);
+ foreach_active_set(BB, lastp, p) {
+#ifdef NO_INLINE
+ if ((dist = cdist01(p, r)) > 1) goto exit_if;
+#else
+ {register int w,last;register unsigned int x;dist=0;if((last=cube.inword)!=-1)
+{x=p[last]&r[last];if(x=~(x|x>>1)&cube.inmask)if((dist=count_ones(x))>1)goto
+exit_if;for(w=1;w<last;w++){x=p[w]&r[w];if(x=~(x|x>>1)&DISJOINT)if(dist==1||(
+dist+=count_ones(x))>1)goto exit_if;}}}{register int w,var,last;register pcube
+mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){mask=cube.var_mask[
+var];last=cube.last_word[var];for(w=cube.first_word[var];w<=last;w++)if(p[w]&r[
+w]&mask[w])goto nextvar;if(++dist>1)goto exit_if;nextvar:;}}
+#endif
+ if (dist == 0)
+ return FALSE;
+ else
+ (void) force_lower(new_lower, p, r);
+ exit_if: ;
+ }
+ return TRUE;
+}
+
+/*
+ mincov -- transform the problem of expanding a cube to a maximally-
+ large prime implicant into the problem of selecting a minimum
+ cardinality cover over a family of sets.
+
+ When we get to this point, we must unravel the remaining off-set.
+ This may be painful.
+*/
+
+void mincov(BB, RAISE, FREESET)
+pcover BB;
+pcube RAISE, FREESET;
+{
+ int expansion, nset, var, dist;
+ pset_family B;
+ register pcube xraise=cube.temp[0], xlower, p, last, plower;
+
+#ifdef RANDOM_MINCOV
+#if defined(_POSIX_SOURCE) || defined(__SVR4)
+ dist = rand() % set_ord(FREESET);
+#else
+ dist = random() % set_ord(FREESET);
+#endif
+ for(var = 0; var < cube.size && dist >= 0; var++) {
+ if (is_in_set(FREESET, var)) {
+ dist--;
+ }
+ }
+
+ set_insert(RAISE, var);
+ set_remove(FREESET, var);
+ (void) essen_parts(BB, /*CC*/ (pcover) NULL, RAISE, FREESET);
+#else
+
+ /* Create B which are those cubes which we must avoid intersecting */
+ B = new_cover(BB->active_count);
+ foreach_active_set(BB, last, p) {
+ plower = set_copy(GETSET(B, B->count++), cube.emptyset);
+ (void) force_lower(plower, p, RAISE);
+ }
+
+ /* Determine how many sets it will blow up into after the unravel */
+ nset = 0;
+ foreach_set(B, last, p) {
+ expansion = 1;
+ for(var = cube.num_binary_vars; var < cube.num_vars; var++) {
+ if ((dist=set_dist(p, cube.var_mask[var])) > 1) {
+ expansion *= dist;
+ if (expansion > 500) goto heuristic_mincov;
+ }
+ }
+ nset += expansion;
+ if (nset > 500) goto heuristic_mincov;
+ }
+
+ B = unravel(B, cube.num_binary_vars);
+ xlower = do_sm_minimum_cover(B);
+
+ /* Add any remaining free parts to the raising set */
+ (void) set_or(RAISE, RAISE, set_diff(xraise, FREESET, xlower));
+ (void) set_copy(FREESET, cube.emptyset); /* free set is empty */
+ BB->active_count = 0; /* BB satisfied */
+ if (debug & EXPAND1) {
+ printf("MINCOV: \tRAISE=%s FREESET=%s\n", pc1(RAISE), pc2(FREESET));
+ }
+ sf_free(B);
+ set_free(xlower);
+ return;
+
+heuristic_mincov:
+ sf_free(B);
+ /* most_frequent will pick first free part */
+ set_insert(RAISE, most_frequent(/*CC*/ (pcover) NULL, FREESET));
+ (void) set_diff(FREESET, FREESET, RAISE);
+ essen_parts(BB, /*CC*/ (pcover) NULL, RAISE, FREESET);
+ return;
+#endif
+}
+
+/*
+ find_all_primes -- find all of the primes which cover the
+ currently reduced BB
+*/
+pcover find_all_primes(BB, RAISE, FREESET)
+pcover BB;
+register pcube RAISE, FREESET;
+{
+ register pset last, p, plower;
+ pset_family B, B1;
+
+ if (BB->active_count == 0) {
+ B1 = new_cover(1);
+ p = GETSET(B1, B1->count++);
+ (void) set_copy(p, RAISE);
+ SET(p, PRIME);
+ } else {
+ B = new_cover(BB->active_count);
+ foreach_active_set(BB, last, p) {
+ plower = set_copy(GETSET(B, B->count++), cube.emptyset);
+ (void) force_lower(plower, p, RAISE);
+ }
+ B = sf_rev_contain(unravel(B, cube.num_binary_vars));
+ B1 = exact_minimum_cover(B);
+ foreach_set(B1, last, p) {
+ INLINEset_diff(p, FREESET, p);
+ INLINEset_or(p, p, RAISE);
+ SET(p, PRIME);
+ }
+ free_cover(B);
+ }
+ return B1;
+}
+
+/*
+ all_primes -- foreach cube in F, generate all of the primes
+ which cover the cube.
+*/
+
+pcover all_primes(F, R)
+pcover F, R;
+{
+ register pcube last, p, RAISE, FREESET;
+ pcover Fall_primes, B1;
+
+ FREESET = new_cube();
+ RAISE = new_cube();
+ Fall_primes = new_cover(F->count);
+
+ foreach_set(F, last, p) {
+ if (TESTP(p, PRIME)) {
+ Fall_primes = sf_addset(Fall_primes, p);
+ } else {
+ /* Setup for call to essential parts */
+ (void) set_copy(RAISE, p);
+ (void) set_diff(FREESET, cube.fullset, RAISE);
+ setup_BB_CC(R, /* CC */ (pcover) NULL);
+ essen_parts(R, /* CC */ (pcover) NULL, RAISE, FREESET);
+
+ /* Find all of the primes, and add them to the prime set */
+ B1 = find_all_primes(R, RAISE, FREESET);
+ Fall_primes = sf_append(Fall_primes, B1);
+ }
+ }
+
+ set_free(RAISE);
+ set_free(FREESET);
+ return Fall_primes;
+}
diff --git a/src/misc/espresso/gasp.c b/src/misc/espresso/gasp.c
new file mode 100644
index 00000000..aa3254d3
--- /dev/null
+++ b/src/misc/espresso/gasp.c
@@ -0,0 +1,228 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ module: gasp.c
+
+ The "last_gasp" heuristic computes the reduction of each cube in
+ the cover (without replacement) and then performs an expansion of
+ these cubes. The cubes which expand to cover some other cube are
+ added to the original cover and irredundant finds a minimal subset.
+
+ If one of the reduced cubes expands to cover some other reduced
+ cube, then the new prime thus generated is a candidate for reducing
+ the size of the cover.
+
+ super_gasp is a variation on this strategy which extracts a minimal
+ subset from the set of all prime implicants which cover all
+ maximally reduced cubes.
+*/
+
+#include "espresso.h"
+
+
+/*
+ * reduce_gasp -- compute the maximal reduction of each cube of F
+ *
+ * If a cube does not reduce, it remains prime; otherwise, it is marked
+ * as nonprime. If the cube is redundant (should NEVER happen here) we
+ * just crap out ...
+ *
+ * A cover with all of the cubes of F is returned. Those that did
+ * reduce are marked "NONPRIME"; those that reduced are marked "PRIME".
+ * The cubes are in the same order as in F.
+ */
+static pcover reduce_gasp(F, D)
+pcover F, D;
+{
+ pcube p, last, cunder, *FD;
+ pcover G;
+
+ G = new_cover(F->count);
+ FD = cube2list(F, D);
+
+ /* Reduce cubes of F without replacement */
+ foreach_set(F, last, p) {
+ cunder = reduce_cube(FD, p);
+ if (setp_empty(cunder)) {
+ fatal("empty reduction in reduce_gasp, shouldn't happen");
+ } else if (setp_equal(cunder, p)) {
+ SET(cunder, PRIME); /* just to make sure */
+ G = sf_addset(G, p); /* it did not reduce ... */
+ } else {
+ RESET(cunder, PRIME); /* it reduced ... */
+ G = sf_addset(G, cunder);
+ }
+ if (debug & GASP) {
+ printf("REDUCE_GASP: %s reduced to %s\n", pc1(p), pc2(cunder));
+ }
+ free_cube(cunder);
+ }
+
+ free_cubelist(FD);
+ return G;
+}
+
+/*
+ * expand_gasp -- expand each nonprime cube of F into a prime implicant
+ *
+ * The gasp strategy differs in that only those cubes which expand to
+ * cover some other cube are saved; also, all cubes are expanded
+ * regardless of whether they become covered or not.
+ */
+
+pcover expand_gasp(F, D, R, Foriginal)
+INOUT pcover F;
+IN pcover D;
+IN pcover R;
+IN pcover Foriginal;
+{
+ int c1index;
+ pcover G;
+
+ /* Try to expand each nonprime and noncovered cube */
+ G = new_cover(10);
+ for(c1index = 0; c1index < F->count; c1index++) {
+ expand1_gasp(F, D, R, Foriginal, c1index, &G);
+ }
+ G = sf_dupl(G);
+ G = expand(G, R, /*nonsparse*/ FALSE); /* Make them prime ! */
+ return G;
+}
+
+
+
+/*
+ * expand1 -- Expand a single cube against the OFF-set, using the gasp strategy
+ */
+void expand1_gasp(F, D, R, Foriginal, c1index, G)
+pcover F; /* reduced cubes of ON-set */
+pcover D; /* DC-set */
+pcover R; /* OFF-set */
+pcover Foriginal; /* ON-set before reduction (same order as F) */
+int c1index; /* which index of F (or Freduced) to be checked */
+pcover *G;
+{
+ register int c2index;
+ register pcube p, last, c2under;
+ pcube RAISE, FREESET, temp, *FD, c2essential;
+ pcover F1;
+
+ if (debug & EXPAND1) {
+ printf("\nEXPAND1_GASP: \t%s\n", pc1(GETSET(F, c1index)));
+ }
+
+ RAISE = new_cube();
+ FREESET = new_cube();
+ temp = new_cube();
+
+ /* Initialize the OFF-set */
+ R->active_count = R->count;
+ foreach_set(R, last, p) {
+ SET(p, ACTIVE);
+ }
+ /* Initialize the reduced ON-set, all nonprime cubes become active */
+ F->active_count = F->count;
+ foreachi_set(F, c2index, c2under) {
+ if (c1index == c2index || TESTP(c2under, PRIME)) {
+ F->active_count--;
+ RESET(c2under, ACTIVE);
+ } else {
+ SET(c2under, ACTIVE);
+ }
+ }
+
+ /* Initialize the raising and unassigned sets */
+ (void) set_copy(RAISE, GETSET(F, c1index));
+ (void) set_diff(FREESET, cube.fullset, RAISE);
+
+ /* Determine parts which must be lowered */
+ essen_parts(R, F, RAISE, FREESET);
+
+ /* Determine parts which can always be raised */
+ essen_raising(R, RAISE, FREESET);
+
+ /* See which, if any, of the reduced cubes we can cover */
+ foreachi_set(F, c2index, c2under) {
+ if (TESTP(c2under, ACTIVE)) {
+ /* See if this cube can be covered by an expansion */
+ if (setp_implies(c2under, RAISE) ||
+ feasibly_covered(R, c2under, RAISE, temp)) {
+
+ /* See if c1under can expanded to cover c2 reduced against
+ * (F - c1) u c1under; if so, c2 can definitely be removed !
+ */
+
+ /* Copy F and replace c1 with c1under */
+ F1 = sf_save(Foriginal);
+ (void) set_copy(GETSET(F1, c1index), GETSET(F, c1index));
+
+ /* Reduce c2 against ((F - c1) u c1under) */
+ FD = cube2list(F1, D);
+ c2essential = reduce_cube(FD, GETSET(F1, c2index));
+ free_cubelist(FD);
+ sf_free(F1);
+
+ /* See if c2essential is covered by an expansion of c1under */
+ if (feasibly_covered(R, c2essential, RAISE, temp)) {
+ (void) set_or(temp, RAISE, c2essential);
+ RESET(temp, PRIME); /* cube not prime */
+ *G = sf_addset(*G, temp);
+ }
+ set_free(c2essential);
+ }
+ }
+ }
+
+ free_cube(RAISE);
+ free_cube(FREESET);
+ free_cube(temp);
+}
+
+/* irred_gasp -- Add new primes to F and find an irredundant subset */
+pcover irred_gasp(F, D, G)
+pcover F, D, G; /* G is disposed of */
+{
+ if (G->count != 0)
+ F = irredundant(sf_append(F, G), D);
+ else
+ free_cover(G);
+ return F;
+}
+
+
+/* last_gasp */
+pcover last_gasp(F, D, R, cost)
+pcover F, D, R;
+cost_t *cost;
+{
+ pcover G, G1;
+
+ EXECUTE(G = reduce_gasp(F, D), GREDUCE_TIME, G, *cost);
+ EXECUTE(G1 = expand_gasp(G, D, R, F), GEXPAND_TIME, G1, *cost);
+ free_cover(G);
+ EXECUTE(F = irred_gasp(F, D, G1), GIRRED_TIME, F, *cost);
+ return F;
+}
+
+
+/* super_gasp */
+pcover super_gasp(F, D, R, cost)
+pcover F, D, R;
+cost_t *cost;
+{
+ pcover G, G1;
+
+ EXECUTE(G = reduce_gasp(F, D), GREDUCE_TIME, G, *cost);
+ EXECUTE(G1 = all_primes(G, R), GEXPAND_TIME, G1, *cost);
+ free_cover(G);
+ EXEC(G = sf_dupl(sf_append(F, G1)), "NEWPRIMES", G);
+ EXECUTE(F = irredundant(G, D), IRRED_TIME, F, *cost);
+ return F;
+}
diff --git a/src/misc/espresso/gimpel.c b/src/misc/espresso/gimpel.c
new file mode 100644
index 00000000..648bb64a
--- /dev/null
+++ b/src/misc/espresso/gimpel.c
@@ -0,0 +1,106 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "mincov_int.h"
+
+
+/*
+ * check for:
+ *
+ * c1 c2 rest
+ * -- -- ---
+ * 1 1 0 0 0 0 <-- primary row
+ * 1 0 S1 <-- secondary row
+ * 0 1 T1
+ * 0 1 T2
+ * 0 1 Tn
+ * 0 0 R
+ */
+
+int
+gimpel_reduce(A, select, weight, lb, bound, depth, stats, best)
+sm_matrix *A;
+solution_t *select;
+int *weight;
+int lb;
+int bound;
+int depth;
+stats_t *stats;
+solution_t **best;
+{
+ register sm_row *prow, *save_sec;
+ register sm_col *c1, *c2;
+ register sm_element *p, *p1;
+ int c1_col_num, c2_col_num, primary_row_num, secondary_row_num;
+ int reduce_it;
+
+ reduce_it = 0;
+ for(prow = A->first_row; prow != 0; prow = prow->next_row) {
+ if (prow->length == 2) {
+ c1 = sm_get_col(A, prow->first_col->col_num);
+ c2 = sm_get_col(A, prow->last_col->col_num);
+ if (c1->length == 2) {
+ reduce_it = 1;
+ } else if (c2->length == 2) {
+ c1 = sm_get_col(A, prow->last_col->col_num);
+ c2 = sm_get_col(A, prow->first_col->col_num);
+ reduce_it = 1;
+ }
+ if (reduce_it) {
+ primary_row_num = prow->row_num;
+ secondary_row_num = c1->first_row->row_num;
+ if (secondary_row_num == primary_row_num) {
+ secondary_row_num = c1->last_row->row_num;
+ }
+ break;
+ }
+ }
+ }
+
+ if (reduce_it) {
+ c1_col_num = c1->col_num;
+ c2_col_num = c2->col_num;
+ save_sec = sm_row_dup(sm_get_row(A, secondary_row_num));
+ sm_row_remove(save_sec, c1_col_num);
+
+ for(p = c2->first_row; p != 0; p = p->next_row) {
+ if (p->row_num != primary_row_num) {
+ /* merge rows S1 and T */
+ for(p1 = save_sec->first_col; p1 != 0; p1 = p1->next_col) {
+ (void) sm_insert(A, p->row_num, p1->col_num);
+ }
+ }
+ }
+
+ sm_delcol(A, c1_col_num);
+ sm_delcol(A, c2_col_num);
+ sm_delrow(A, primary_row_num);
+ sm_delrow(A, secondary_row_num);
+
+ stats->gimpel_count++;
+ stats->gimpel++;
+ *best = sm_mincov(A, select, weight, lb-1, bound-1, depth, stats);
+ stats->gimpel--;
+
+ if (*best != NIL(solution_t)) {
+ /* is secondary row covered ? */
+ if (sm_row_intersects(save_sec, (*best)->row)) {
+ /* yes, actually select c2 */
+ solution_add(*best, weight, c2_col_num);
+ } else {
+ solution_add(*best, weight, c1_col_num);
+ }
+ }
+
+ sm_row_free(save_sec);
+ return 1;
+ } else {
+ return 0;
+ }
+}
diff --git a/src/misc/espresso/globals.c b/src/misc/espresso/globals.c
new file mode 100644
index 00000000..d04771e9
--- /dev/null
+++ b/src/misc/espresso/globals.c
@@ -0,0 +1,76 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+/*
+ * Global Variable Declarations
+ */
+
+unsigned int debug; /* debug parameter */
+bool verbose_debug; /* -v: whether to print a lot */
+char *total_name[TIME_COUNT]; /* basic function names */
+long total_time[TIME_COUNT]; /* time spent in basic fcts */
+int total_calls[TIME_COUNT]; /* # calls to each fct */
+
+bool echo_comments; /* turned off by -eat option */
+bool echo_unknown_commands; /* always true ?? */
+bool force_irredundant; /* -nirr command line option */
+bool skip_make_sparse;
+bool kiss; /* -kiss command line option */
+bool pos; /* -pos command line option */
+bool print_solution; /* -x command line option */
+bool recompute_onset; /* -onset command line option */
+bool remove_essential; /* -ness command line option */
+bool single_expand; /* -fast command line option */
+bool summary; /* -s command line option */
+bool trace; /* -t command line option */
+bool unwrap_onset; /* -nunwrap command line option */
+bool use_random_order; /* -random command line option */
+bool use_super_gasp; /* -strong command line option */
+char *filename; /* filename PLA was read from */
+
+struct pla_types_struct pla_types[] = {
+ "-f", F_type,
+ "-r", R_type,
+ "-d", D_type,
+ "-fd", FD_type,
+ "-fr", FR_type,
+ "-dr", DR_type,
+ "-fdr", FDR_type,
+ "-fc", F_type | CONSTRAINTS_type,
+ "-rc", R_type | CONSTRAINTS_type,
+ "-dc", D_type | CONSTRAINTS_type,
+ "-fdc", FD_type | CONSTRAINTS_type,
+ "-frc", FR_type | CONSTRAINTS_type,
+ "-drc", DR_type | CONSTRAINTS_type,
+ "-fdrc", FDR_type | CONSTRAINTS_type,
+ "-pleasure", PLEASURE_type,
+ "-eqn", EQNTOTT_type,
+ "-eqntott", EQNTOTT_type,
+ "-kiss", KISS_type,
+ "-cons", CONSTRAINTS_type,
+ "-scons", SYMBOLIC_CONSTRAINTS_type,
+ 0, 0
+};
+
+
+struct cube_struct cube, temp_cube_save;
+struct cdata_struct cdata, temp_cdata_save;
+
+int bit_count[256] = {
+ 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
+ 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
+ 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
+ 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
+ 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
+ 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
+ 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
+ 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
+};
diff --git a/src/misc/espresso/hack.c b/src/misc/espresso/hack.c
new file mode 100644
index 00000000..927f5341
--- /dev/null
+++ b/src/misc/espresso/hack.c
@@ -0,0 +1,641 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+map_dcset(PLA)
+pPLA PLA;
+{
+ int var, i;
+ pcover Tplus, Tminus, Tplusbar, Tminusbar;
+ pcover newf, term1, term2, dcset, dcsetbar;
+ pcube cplus, cminus, last, p;
+
+ if (PLA->label == NIL(char *) || PLA->label[0] == NIL(char))
+ return;
+
+ /* try to find a binary variable named "DONT_CARE" */
+ var = -1;
+ for(i = 0; i < cube.num_binary_vars * 2; i++) {
+ if (strncmp(PLA->label[i], "DONT_CARE", 9) == 0 ||
+ strncmp(PLA->label[i], "DONTCARE", 8) == 0 ||
+ strncmp(PLA->label[i], "dont_care", 9) == 0 ||
+ strncmp(PLA->label[i], "dontcare", 8) == 0) {
+ var = i/2;
+ break;
+ }
+ }
+ if (var == -1) {
+ return;
+ }
+
+ /* form the cofactor cubes for the don't-care variable */
+ cplus = set_save(cube.fullset);
+ cminus = set_save(cube.fullset);
+ set_remove(cplus, var*2);
+ set_remove(cminus, var*2 + 1);
+
+ /* form the don't-care set */
+ EXEC(simp_comp(cofactor(cube1list(PLA->F), cplus), &Tplus, &Tplusbar),
+ "simpcomp+", Tplus);
+ EXEC(simp_comp(cofactor(cube1list(PLA->F), cminus), &Tminus, &Tminusbar),
+ "simpcomp-", Tminus);
+ EXEC(term1 = cv_intersect(Tplus, Tminusbar), "term1 ", term1);
+ EXEC(term2 = cv_intersect(Tminus, Tplusbar), "term2 ", term2);
+ EXEC(dcset = sf_union(term1, term2), "union ", dcset);
+ EXEC(simp_comp(cube1list(dcset), &PLA->D, &dcsetbar), "simplify", PLA->D);
+ EXEC(newf = cv_intersect(PLA->F, dcsetbar), "separate ", PLA->F);
+ free_cover(PLA->F);
+ PLA->F = newf;
+ free_cover(Tplus);
+ free_cover(Tminus);
+ free_cover(Tplusbar);
+ free_cover(Tminusbar);
+ free_cover(dcsetbar);
+
+ /* remove any cubes dependent on the DONT_CARE variable */
+ (void) sf_active(PLA->F);
+ foreach_set(PLA->F, last, p) {
+ if (! is_in_set(p, var*2) || ! is_in_set(p, var*2+1)) {
+ RESET(p, ACTIVE);
+ }
+ }
+ PLA->F = sf_inactive(PLA->F);
+
+ /* resize the cube and delete the don't-care variable */
+ setdown_cube();
+ for(i = 2*var+2; i < cube.size; i++) {
+ PLA->label[i-2] = PLA->label[i];
+ }
+ for(i = var+1; i < cube.num_vars; i++) {
+ cube.part_size[i-1] = cube.part_size[i];
+ }
+ cube.num_binary_vars--;
+ cube.num_vars--;
+ cube_setup();
+ PLA->F = sf_delc(PLA->F, 2*var, 2*var+1);
+ PLA->D = sf_delc(PLA->D, 2*var, 2*var+1);
+}
+
+map_output_symbolic(PLA)
+pPLA PLA;
+{
+ pset_family newF, newD;
+ pset compress;
+ symbolic_t *p1;
+ symbolic_list_t *p2;
+ int i, bit, tot_size, base, old_size;
+
+ /* Remove the DC-set from the ON-set (is this necessary ??) */
+ if (PLA->D->count > 0) {
+ sf_free(PLA->F);
+ PLA->F = complement(cube2list(PLA->D, PLA->R));
+ }
+
+ /* tot_size = width added for all symbolic variables */
+ tot_size = 0;
+ for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) {
+ for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ if (p2->pos<0 || p2->pos>=cube.part_size[cube.output]) {
+ fatal("symbolic-output index out of range");
+/* } else if (p2->variable != cube.output) {
+ fatal("symbolic-output label must be an output");*/
+ }
+ }
+ tot_size += 1 << p1->symbolic_list_length;
+ }
+
+ /* adjust the indices to skip over new outputs */
+ for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) {
+ for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ p2->pos += tot_size;
+ }
+ }
+
+ /* resize the cube structure -- add enough for the one-hot outputs */
+ old_size = cube.size;
+ cube.part_size[cube.output] += tot_size;
+ setdown_cube();
+ cube_setup();
+
+ /* insert space in the output part for the one-hot output */
+ base = cube.first_part[cube.output];
+ PLA->F = sf_addcol(PLA->F, base, tot_size);
+ PLA->D = sf_addcol(PLA->D, base, tot_size);
+ PLA->R = sf_addcol(PLA->R, base, tot_size);
+
+ /* do the real work */
+ for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) {
+ newF = new_cover(100);
+ newD = new_cover(100);
+ find_inputs(NIL(set_family_t), PLA, p1->symbolic_list, base, 0,
+ &newF, &newD);
+/*
+ * Not sure what this means
+ find_dc_inputs(PLA, p1->symbolic_list,
+ base, 1 << p1->symbolic_list_length, &newF, &newD);
+ */
+ free_cover(PLA->F);
+ PLA->F = newF;
+/*
+ * retain OLD DC-set -- but we've lost the don't-care arc information
+ * (it defaults to branch to the zero state)
+ free_cover(PLA->D);
+ PLA->D = newD;
+ */
+ free_cover(newD);
+ base += 1 << p1->symbolic_list_length;
+ }
+
+ /* delete the old outputs, and resize the cube */
+ compress = set_full(newF->sf_size);
+ for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) {
+ for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ bit = cube.first_part[cube.output] + p2->pos;
+ set_remove(compress, bit);
+ }
+ }
+ cube.part_size[cube.output] -= newF->sf_size - set_ord(compress);
+ setdown_cube();
+ cube_setup();
+ PLA->F = sf_compress(PLA->F, compress);
+ PLA->D = sf_compress(PLA->D, compress);
+ if (cube.size != PLA->F->sf_size) fatal("error");
+
+ /* Quick minimization */
+ PLA->F = sf_contain(PLA->F);
+ PLA->D = sf_contain(PLA->D);
+ for(i = 0; i < cube.num_vars; i++) {
+ PLA->F = d1merge(PLA->F, i);
+ PLA->D = d1merge(PLA->D, i);
+ }
+ PLA->F = sf_contain(PLA->F);
+ PLA->D = sf_contain(PLA->D);
+
+ free_cover(PLA->R);
+ PLA->R = new_cover(0);
+
+ symbolic_hack_labels(PLA, PLA->symbolic_output,
+ compress, cube.size, old_size, tot_size);
+ set_free(compress);
+}
+
+
+find_inputs(A, PLA, list, base, value, newF, newD)
+pcover A;
+pPLA PLA;
+symbolic_list_t *list;
+int base, value;
+pcover *newF, *newD;
+{
+ pcover S, S1;
+ register pset last, p;
+
+ /*
+ * A represents th 'input' values for which the outputs assume
+ * the integer value 'value
+ */
+ if (list == NIL(symbolic_list_t)) {
+ /*
+ * Simulate these inputs against the on-set; then, insert into the
+ * new on-set a 1 in the proper position
+ */
+ S = cv_intersect(A, PLA->F);
+ foreach_set(S, last, p) {
+ set_insert(p, base + value);
+ }
+ *newF = sf_append(*newF, S);
+
+ /*
+ * 'simulate' these inputs against the don't-care set
+ S = cv_intersect(A, PLA->D);
+ *newD = sf_append(*newD, S);
+ */
+
+ } else {
+ /* intersect and recur with the OFF-set */
+ S = cof_output(PLA->R, cube.first_part[cube.output] + list->pos);
+ if (A != NIL(set_family_t)) {
+ S1 = cv_intersect(A, S);
+ free_cover(S);
+ S = S1;
+ }
+ find_inputs(S, PLA, list->next, base, value*2, newF, newD);
+ free_cover(S);
+
+ /* intersect and recur with the ON-set */
+ S = cof_output(PLA->F, cube.first_part[cube.output] + list->pos);
+ if (A != NIL(set_family_t)) {
+ S1 = cv_intersect(A, S);
+ free_cover(S);
+ S = S1;
+ }
+ find_inputs(S, PLA, list->next, base, value*2 + 1, newF, newD);
+ free_cover(S);
+ }
+}
+
+
+#if 0
+find_dc_inputs(PLA, list, base, maxval, newF, newD)
+pPLA PLA;
+symbolic_list_t *list;
+int base, maxval;
+pcover *newF, *newD;
+{
+ pcover A, S, S1;
+ symbolic_list_t *p2;
+ register pset p, last;
+ register int i;
+
+ /* painfully find the points for which the symbolic output is dc */
+ A = NIL(set_family_t);
+ for(p2=list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ S = cof_output(PLA->D, cube.first_part[cube.output] + p2->pos);
+ if (A == NIL(set_family_t)) {
+ A = S;
+ } else {
+ S1 = cv_intersect(A, S);
+ free_cover(S);
+ free_cover(A);
+ A = S1;
+ }
+ }
+
+ S = cv_intersect(A, PLA->F);
+ *newF = sf_append(*newF, S);
+
+ S = cv_intersect(A, PLA->D);
+ foreach_set(S, last, p) {
+ for(i = base; i < base + maxval; i++) {
+ set_insert(p, i);
+ }
+ }
+ *newD = sf_append(*newD, S);
+ free_cover(A);
+}
+#endif
+
+map_symbolic(PLA)
+pPLA PLA;
+{
+ symbolic_t *p1;
+ symbolic_list_t *p2;
+ int var, base, num_vars, num_binary_vars, *new_part_size;
+ int new_size, size_added, num_deleted_vars, num_added_vars, newvar;
+ pset compress;
+
+ /* Verify legal values are in the symbolic lists */
+ for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) {
+ for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ if (p2->variable < 0 || p2->variable >= cube.num_binary_vars) {
+ fatal(".symbolic requires binary variables");
+ }
+ }
+ }
+
+ /*
+ * size_added = width added for all symbolic variables
+ * num_deleted_vars = # binary variables to be deleted
+ * num_added_vars = # new mv variables
+ * compress = a cube which will be used to compress the set families
+ */
+ size_added = 0;
+ num_added_vars = 0;
+ for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) {
+ size_added += 1 << p1->symbolic_list_length;
+ num_added_vars++;
+ }
+ compress = set_full(PLA->F->sf_size + size_added);
+ for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) {
+ for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ set_remove(compress, p2->variable*2);
+ set_remove(compress, p2->variable*2+1);
+ }
+ }
+ num_deleted_vars = ((PLA->F->sf_size + size_added) - set_ord(compress))/2;
+
+ /* compute the new cube constants */
+ num_vars = cube.num_vars - num_deleted_vars + num_added_vars;
+ num_binary_vars = cube.num_binary_vars - num_deleted_vars;
+ new_size = cube.size - num_deleted_vars*2 + size_added;
+ new_part_size = ALLOC(int, num_vars);
+ new_part_size[num_vars-1] = cube.part_size[cube.num_vars-1];
+ for(var = cube.num_binary_vars; var < cube.num_vars-1; var++) {
+ new_part_size[var-num_deleted_vars] = cube.part_size[var];
+ }
+
+ /* re-size the covers, opening room for the new mv variables */
+ base = cube.first_part[cube.output];
+ PLA->F = sf_addcol(PLA->F, base, size_added);
+ PLA->D = sf_addcol(PLA->D, base, size_added);
+ PLA->R = sf_addcol(PLA->R, base, size_added);
+
+ /* compute the values for the new mv variables */
+ newvar = (cube.num_vars - 1) - num_deleted_vars;
+ for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) {
+ PLA->F = map_symbolic_cover(PLA->F, p1->symbolic_list, base);
+ PLA->D = map_symbolic_cover(PLA->D, p1->symbolic_list, base);
+ PLA->R = map_symbolic_cover(PLA->R, p1->symbolic_list, base);
+ base += 1 << p1->symbolic_list_length;
+ new_part_size[newvar++] = 1 << p1->symbolic_list_length;
+ }
+
+ /* delete the binary variables which disappear */
+ PLA->F = sf_compress(PLA->F, compress);
+ PLA->D = sf_compress(PLA->D, compress);
+ PLA->R = sf_compress(PLA->R, compress);
+
+ symbolic_hack_labels(PLA, PLA->symbolic, compress,
+ new_size, cube.size, size_added);
+ setdown_cube();
+ FREE(cube.part_size);
+ cube.num_vars = num_vars;
+ cube.num_binary_vars = num_binary_vars;
+ cube.part_size = new_part_size;
+ cube_setup();
+ set_free(compress);
+}
+
+
+pcover map_symbolic_cover(T, list, base)
+pcover T;
+symbolic_list_t *list;
+int base;
+{
+ pset last, p;
+ foreach_set(T, last, p) {
+ form_bitvector(p, base, 0, list);
+ }
+ return T;
+}
+
+
+form_bitvector(p, base, value, list)
+pset p; /* old cube, looking at binary variables */
+int base; /* where in mv cube the new variable starts */
+int value; /* current value for this recursion */
+symbolic_list_t *list; /* current place in the symbolic list */
+{
+ if (list == NIL(symbolic_list_t)) {
+ set_insert(p, base + value);
+ } else {
+ switch(GETINPUT(p, list->variable)) {
+ case ZERO:
+ form_bitvector(p, base, value*2, list->next);
+ break;
+ case ONE:
+ form_bitvector(p, base, value*2+1, list->next);
+ break;
+ case TWO:
+ form_bitvector(p, base, value*2, list->next);
+ form_bitvector(p, base, value*2+1, list->next);
+ break;
+ default:
+ fatal("bad cube in form_bitvector");
+ }
+ }
+}
+
+
+symbolic_hack_labels(PLA, list, compress, new_size, old_size, size_added)
+pPLA PLA;
+symbolic_t *list;
+pset compress;
+int new_size, old_size, size_added;
+{
+ int i, base;
+ char **oldlabel;
+ symbolic_t *p1;
+ symbolic_label_t *p3;
+
+ /* hack with the labels */
+ if ((oldlabel = PLA->label) == NIL(char *))
+ return;
+ PLA->label = ALLOC(char *, new_size);
+ for(i = 0; i < new_size; i++) {
+ PLA->label[i] = NIL(char);
+ }
+
+ /* copy the binary variable labels and unchanged mv variable labels */
+ base = 0;
+ for(i = 0; i < cube.first_part[cube.output]; i++) {
+ if (is_in_set(compress, i)) {
+ PLA->label[base++] = oldlabel[i];
+ } else {
+ if (oldlabel[i] != NIL(char)) {
+ FREE(oldlabel[i]);
+ }
+ }
+ }
+
+ /* add the user-defined labels for the symbolic outputs */
+ for(p1 = list; p1 != NIL(symbolic_t); p1 = p1->next) {
+ p3 = p1->symbolic_label;
+ for(i = 0; i < (1 << p1->symbolic_list_length); i++) {
+ if (p3 == NIL(symbolic_label_t)) {
+ PLA->label[base+i] = ALLOC(char, 10);
+ (void) sprintf(PLA->label[base+i], "X%d", i);
+ } else {
+ PLA->label[base+i] = p3->label;
+ p3 = p3->next;
+ }
+ }
+ base += 1 << p1->symbolic_list_length;
+ }
+
+ /* copy the labels for the binary outputs which remain */
+ for(i = cube.first_part[cube.output]; i < old_size; i++) {
+ if (is_in_set(compress, i + size_added)) {
+ PLA->label[base++] = oldlabel[i];
+ } else {
+ if (oldlabel[i] != NIL(char)) {
+ FREE(oldlabel[i]);
+ }
+ }
+ }
+ FREE(oldlabel);
+}
+
+static pcover fsm_simplify(F)
+pcover F;
+{
+ pcover D, R;
+ D = new_cover(0);
+ R = complement(cube1list(F));
+ F = espresso(F, D, R);
+ free_cover(D);
+ free_cover(R);
+ return F;
+}
+
+
+disassemble_fsm(PLA, verbose_mode)
+pPLA PLA;
+int verbose_mode;
+{
+ int nin, nstates, nout;
+ int before, after, present_state, next_state, i, j;
+ pcube next_state_mask, present_state_mask, state_mask, p, p1, last;
+ pcover go_nowhere, F, tF;
+
+ /* We make the DISGUSTING assumption that the first 'n' outputs have
+ * been created by .symbolic-output, and represent a one-hot encoding
+ * of the next state. 'n' is the size of the second-to-last multiple-
+ * valued variable (i.e., before the outputs
+ */
+
+ if (cube.num_vars - cube.num_binary_vars != 2) {
+ (void) fprintf(stderr,
+ "use .symbolic and .symbolic-output to specify\n");
+ (void) fprintf(stderr,
+ "the present state and next state field information\n");
+ fatal("disassemble_pla: need two multiple-valued variables\n");
+ }
+
+ nin = cube.num_binary_vars;
+ nstates = cube.part_size[cube.num_binary_vars];
+ nout = cube.part_size[cube.num_vars - 1];
+ if (nout < nstates) {
+ (void) fprintf(stderr,
+ "use .symbolic and .symbolic-output to specify\n");
+ (void) fprintf(stderr,
+ "the present state and next state field information\n");
+ fatal("disassemble_pla: # outputs < # states\n");
+ }
+
+
+ present_state = cube.first_part[cube.num_binary_vars];
+ present_state_mask = new_cube();
+ for(i = 0; i < nstates; i++) {
+ set_insert(present_state_mask, i + present_state);
+ }
+
+ next_state = cube.first_part[cube.num_binary_vars+1];
+ next_state_mask = new_cube();
+ for(i = 0; i < nstates; i++) {
+ set_insert(next_state_mask, i + next_state);
+ }
+
+ state_mask = set_or(new_cube(), next_state_mask, present_state_mask);
+
+ F = new_cover(10);
+
+
+ /*
+ * check for arcs which go from ANY state to state #i
+ */
+ for(i = 0; i < nstates; i++) {
+ tF = new_cover(10);
+ foreach_set(PLA->F, last, p) {
+ if (setp_implies(present_state_mask, p)) { /* from any state ! */
+ if (is_in_set(p, next_state + i)) {
+ tF = sf_addset(tF, p);
+ }
+ }
+ }
+ before = tF->count;
+ if (before > 0) {
+ tF = fsm_simplify(tF);
+ /* don't allow the next state to disappear ... */
+ foreach_set(tF, last, p) {
+ set_insert(p, next_state + i);
+ }
+ after = tF->count;
+ F = sf_append(F, tF);
+ if (verbose_mode) {
+ printf("# state EVERY to %d, before=%d after=%d\n",
+ i, before, after);
+ }
+ }
+ }
+
+
+ /*
+ * some 'arcs' may NOT have a next state -- handle these
+ * we must unravel the present state part
+ */
+ go_nowhere = new_cover(10);
+ foreach_set(PLA->F, last, p) {
+ if (setp_disjoint(p, next_state_mask)) { /* no next state !! */
+ go_nowhere = sf_addset(go_nowhere, p);
+ }
+ }
+ before = go_nowhere->count;
+ go_nowhere = unravel_range(go_nowhere,
+ cube.num_binary_vars, cube.num_binary_vars);
+ after = go_nowhere->count;
+ F = sf_append(F, go_nowhere);
+ if (verbose_mode) {
+ printf("# state ANY to NOWHERE, before=%d after=%d\n", before, after);
+ }
+
+
+ /*
+ * minimize cover for all arcs from state #i to state #j
+ */
+ for(i = 0; i < nstates; i++) {
+ for(j = 0; j < nstates; j++) {
+ tF = new_cover(10);
+ foreach_set(PLA->F, last, p) {
+ /* not EVERY state */
+ if (! setp_implies(present_state_mask, p)) {
+ if (is_in_set(p, present_state + i)) {
+ if (is_in_set(p, next_state + j)) {
+ p1 = set_save(p);
+ set_diff(p1, p1, state_mask);
+ set_insert(p1, present_state + i);
+ set_insert(p1, next_state + j);
+ tF = sf_addset(tF, p1);
+ set_free(p1);
+ }
+ }
+ }
+ }
+ before = tF->count;
+ if (before > 0) {
+ tF = fsm_simplify(tF);
+ /* don't allow the next state to disappear ... */
+ foreach_set(tF, last, p) {
+ set_insert(p, next_state + j);
+ }
+ after = tF->count;
+ F = sf_append(F, tF);
+ if (verbose_mode) {
+ printf("# state %d to %d, before=%d after=%d\n",
+ i, j, before, after);
+ }
+ }
+ }
+ }
+
+
+ free_cube(state_mask);
+ free_cube(present_state_mask);
+ free_cube(next_state_mask);
+
+ free_cover(PLA->F);
+ PLA->F = F;
+ free_cover(PLA->D);
+ PLA->D = new_cover(0);
+
+ setdown_cube();
+ FREE(cube.part_size);
+ cube.num_binary_vars = nin;
+ cube.num_vars = nin + 3;
+ cube.part_size = ALLOC(int, cube.num_vars);
+ cube.part_size[cube.num_binary_vars] = nstates;
+ cube.part_size[cube.num_binary_vars+1] = nstates;
+ cube.part_size[cube.num_binary_vars+2] = nout - nstates;
+ cube_setup();
+
+ foreach_set(PLA->F, last, p) {
+ kiss_print_cube(stdout, PLA, p, "~1");
+ }
+}
diff --git a/src/misc/espresso/indep.c b/src/misc/espresso/indep.c
new file mode 100644
index 00000000..10b363a0
--- /dev/null
+++ b/src/misc/espresso/indep.c
@@ -0,0 +1,134 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "mincov_int.h"
+
+static sm_matrix *build_intersection_matrix();
+
+
+#if 0
+/*
+ * verify that all rows in 'indep' are actually independent !
+ */
+static int
+verify_indep_set(A, indep)
+sm_matrix *A;
+sm_row *indep;
+{
+ register sm_row *prow, *prow1;
+ register sm_element *p, *p1;
+
+ for(p = indep->first_col; p != 0; p = p->next_col) {
+ prow = sm_get_row(A, p->col_num);
+ for(p1 = p->next_col; p1 != 0; p1 = p1->next_col) {
+ prow1 = sm_get_row(A, p1->col_num);
+ if (sm_row_intersects(prow, prow1)) {
+ return 0;
+ }
+ }
+ }
+ return 1;
+}
+#endif
+
+solution_t *
+sm_maximal_independent_set(A, weight)
+sm_matrix *A;
+int *weight;
+{
+ register sm_row *best_row, *prow;
+ register sm_element *p;
+ int least_weight;
+ sm_row *save;
+ sm_matrix *B;
+ solution_t *indep;
+
+ indep = solution_alloc();
+ B = build_intersection_matrix(A);
+
+ while (B->nrows > 0) {
+ /* Find the row which is disjoint from a maximum number of rows */
+ best_row = B->first_row;
+ for(prow = B->first_row->next_row; prow != 0; prow = prow->next_row) {
+ if (prow->length < best_row->length) {
+ best_row = prow;
+ }
+ }
+
+ /* Find which element in this row has least weight */
+ if (weight == NIL(int)) {
+ least_weight = 1;
+ } else {
+ prow = sm_get_row(A, best_row->row_num);
+ least_weight = weight[prow->first_col->col_num];
+ for(p = prow->first_col->next_col; p != 0; p = p->next_col) {
+ if (weight[p->col_num] < least_weight) {
+ least_weight = weight[p->col_num];
+ }
+ }
+ }
+ indep->cost += least_weight;
+ (void) sm_row_insert(indep->row, best_row->row_num);
+
+ /* Discard the rows which intersect this row */
+ save = sm_row_dup(best_row);
+ for(p = save->first_col; p != 0; p = p->next_col) {
+ sm_delrow(B, p->col_num);
+ sm_delcol(B, p->col_num);
+ }
+ sm_row_free(save);
+ }
+
+ sm_free(B);
+
+/*
+ if (! verify_indep_set(A, indep->row)) {
+ fail("sm_maximal_independent_set: row set is not independent");
+ }
+*/
+ return indep;
+}
+
+static sm_matrix *
+build_intersection_matrix(A)
+sm_matrix *A;
+{
+ register sm_row *prow, *prow1;
+ register sm_element *p, *p1;
+ register sm_col *pcol;
+ sm_matrix *B;
+
+ /* Build row-intersection matrix */
+ B = sm_alloc();
+ for(prow = A->first_row; prow != 0; prow = prow->next_row) {
+
+ /* Clear flags on all rows we can reach from row 'prow' */
+ for(p = prow->first_col; p != 0; p = p->next_col) {
+ pcol = sm_get_col(A, p->col_num);
+ for(p1 = pcol->first_row; p1 != 0; p1 = p1->next_row) {
+ prow1 = sm_get_row(A, p1->row_num);
+ prow1->flag = 0;
+ }
+ }
+
+ /* Now record which rows can be reached */
+ for(p = prow->first_col; p != 0; p = p->next_col) {
+ pcol = sm_get_col(A, p->col_num);
+ for(p1 = pcol->first_row; p1 != 0; p1 = p1->next_row) {
+ prow1 = sm_get_row(A, p1->row_num);
+ if (! prow1->flag) {
+ prow1->flag = 1;
+ (void) sm_insert(B, prow->row_num, prow1->row_num);
+ }
+ }
+ }
+ }
+
+ return B;
+}
diff --git a/src/misc/espresso/irred.c b/src/misc/espresso/irred.c
new file mode 100644
index 00000000..384e698f
--- /dev/null
+++ b/src/misc/espresso/irred.c
@@ -0,0 +1,440 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+static void fcube_is_covered();
+static void ftautology();
+static bool ftaut_special_cases();
+
+
+static int Rp_current;
+
+/*
+ * irredundant -- Return a minimal subset of F
+ */
+
+pcover
+irredundant(F, D)
+pcover F, D;
+{
+ mark_irredundant(F, D);
+ return sf_inactive(F);
+}
+
+
+/*
+ * mark_irredundant -- find redundant cubes, and mark them "INACTIVE"
+ */
+
+void
+mark_irredundant(F, D)
+pcover F, D;
+{
+ pcover E, Rt, Rp;
+ pset p, p1, last;
+ sm_matrix *table;
+ sm_row *cover;
+ sm_element *pe;
+
+ /* extract a minimum cover */
+ irred_split_cover(F, D, &E, &Rt, &Rp);
+ table = irred_derive_table(D, E, Rp);
+ cover = sm_minimum_cover(table, NIL(int), /* heuristic */ 1, /* debug */ 0);
+
+ /* mark the cubes for the result */
+ foreach_set(F, last, p) {
+ RESET(p, ACTIVE);
+ RESET(p, RELESSEN);
+ }
+ foreach_set(E, last, p) {
+ p1 = GETSET(F, SIZE(p));
+ assert(setp_equal(p1, p));
+ SET(p1, ACTIVE);
+ SET(p1, RELESSEN); /* for essen(), mark as rel. ess. */
+ }
+ sm_foreach_row_element(cover, pe) {
+ p1 = GETSET(F, pe->col_num);
+ SET(p1, ACTIVE);
+ }
+
+ if (debug & IRRED) {
+ printf("# IRRED: F=%d E=%d R=%d Rt=%d Rp=%d Rc=%d Final=%d Bound=%d\n",
+ F->count, E->count, Rt->count+Rp->count, Rt->count, Rp->count,
+ cover->length, E->count + cover->length, 0);
+ }
+
+ free_cover(E);
+ free_cover(Rt);
+ free_cover(Rp);
+ sm_free(table);
+ sm_row_free(cover);
+}
+
+/*
+ * irred_split_cover -- find E, Rt, and Rp from the cover F, D
+ *
+ * E -- relatively essential cubes
+ * Rt -- totally redundant cubes
+ * Rp -- partially redundant cubes
+ */
+
+void
+irred_split_cover(F, D, E, Rt, Rp)
+pcover F, D;
+pcover *E, *Rt, *Rp;
+{
+ register pcube p, last;
+ register int index;
+ pcover R;
+ pcube *FD, *ED;
+
+ /* number the cubes of F -- these numbers track into E, Rp, Rt, etc. */
+ index = 0;
+ foreach_set(F, last, p) {
+ PUTSIZE(p, index);
+ index++;
+ }
+
+ *E = new_cover(10);
+ *Rt = new_cover(10);
+ *Rp = new_cover(10);
+ R = new_cover(10);
+
+ /* Split F into E and R */
+ FD = cube2list(F, D);
+ foreach_set(F, last, p) {
+ if (cube_is_covered(FD, p)) {
+ R = sf_addset(R, p);
+ } else {
+ *E = sf_addset(*E, p);
+ }
+ if (debug & IRRED1) {
+ (void) printf("IRRED1: zr=%d ze=%d to-go=%d time=%s\n",
+ R->count, (*E)->count, F->count - (R->count + (*E)->count),
+ print_time(ptime()));
+ }
+ }
+ free_cubelist(FD);
+
+ /* Split R into Rt and Rp */
+ ED = cube2list(*E, D);
+ foreach_set(R, last, p) {
+ if (cube_is_covered(ED, p)) {
+ *Rt = sf_addset(*Rt, p);
+ } else {
+ *Rp = sf_addset(*Rp, p);
+ }
+ if (debug & IRRED1) {
+ (void) printf("IRRED1: zr=%d zrt=%d to-go=%d time=%s\n",
+ (*Rp)->count, (*Rt)->count,
+ R->count - ((*Rp)->count +(*Rt)->count), print_time(ptime()));
+ }
+ }
+ free_cubelist(ED);
+
+ free_cover(R);
+}
+
+/*
+ * irred_derive_table -- given the covers D, E and the set of
+ * partially redundant primes Rp, build a covering table showing
+ * possible selections of primes to cover Rp.
+ */
+
+sm_matrix *
+irred_derive_table(D, E, Rp)
+pcover D, E, Rp;
+{
+ register pcube last, p, *list;
+ sm_matrix *table;
+ int size_last_dominance, i;
+
+ /* Mark each cube in DE as not part of the redundant set */
+ foreach_set(D, last, p) {
+ RESET(p, REDUND);
+ }
+ foreach_set(E, last, p) {
+ RESET(p, REDUND);
+ }
+
+ /* Mark each cube in Rp as partially redundant */
+ foreach_set(Rp, last, p) {
+ SET(p, REDUND); /* belongs to redundant set */
+ }
+
+ /* For each cube in Rp, find ways to cover its minterms */
+ list = cube3list(D, E, Rp);
+ table = sm_alloc();
+ size_last_dominance = 0;
+ i = 0;
+ foreach_set(Rp, last, p) {
+ Rp_current = SIZE(p);
+ fcube_is_covered(list, p, table);
+ RESET(p, REDUND); /* can now consider this cube redundant */
+ if (debug & IRRED1) {
+ (void) printf("IRRED1: %d of %d to-go=%d, table=%dx%d time=%s\n",
+ i, Rp->count, Rp->count - i,
+ table->nrows, table->ncols, print_time(ptime()));
+ }
+ /* try to keep memory limits down by reducing table as we go along */
+ if (table->nrows - size_last_dominance > 1000) {
+ (void) sm_row_dominance(table);
+ size_last_dominance = table->nrows;
+ if (debug & IRRED1) {
+ (void) printf("IRRED1: delete redundant rows, now %dx%d\n",
+ table->nrows, table->ncols);
+ }
+ }
+ i++;
+ }
+ free_cubelist(list);
+
+ return table;
+}
+
+/* cube_is_covered -- determine if a cubelist "covers" a single cube */
+bool
+cube_is_covered(T, c)
+pcube *T, c;
+{
+ return tautology(cofactor(T,c));
+}
+
+
+
+/* tautology -- answer the tautology question for T */
+bool
+tautology(T)
+pcube *T; /* T will be disposed of */
+{
+ register pcube cl, cr;
+ register int best, result;
+ static int taut_level = 0;
+
+ if (debug & TAUT) {
+ debug_print(T, "TAUTOLOGY", taut_level++);
+ }
+
+ if ((result = taut_special_cases(T)) == MAYBE) {
+ cl = new_cube();
+ cr = new_cube();
+ best = binate_split_select(T, cl, cr, TAUT);
+ result = tautology(scofactor(T, cl, best)) &&
+ tautology(scofactor(T, cr, best));
+ free_cubelist(T);
+ free_cube(cl);
+ free_cube(cr);
+ }
+
+ if (debug & TAUT) {
+ printf("exit TAUTOLOGY[%d]: %s\n", --taut_level, print_bool(result));
+ }
+ return result;
+}
+
+/*
+ * taut_special_cases -- check special cases for tautology
+ */
+
+bool
+taut_special_cases(T)
+pcube *T; /* will be disposed if answer is determined */
+{
+ register pcube *T1, *Tsave, p, ceil=cube.temp[0], temp=cube.temp[1];
+ pcube *A, *B;
+ int var;
+
+ /* Check for a row of all 1's which implies tautology */
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ if (full_row(p, T[0])) {
+ free_cubelist(T);
+ return TRUE;
+ }
+ }
+
+ /* Check for a column of all 0's which implies no tautology */
+start:
+ INLINEset_copy(ceil, T[0]);
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ INLINEset_or(ceil, ceil, p);
+ }
+ if (! setp_equal(ceil, cube.fullset)) {
+ free_cubelist(T);
+ return FALSE;
+ }
+
+ /* Collect column counts, determine unate variables, etc. */
+ massive_count(T);
+
+ /* If function is unate (and no row of all 1's), then no tautology */
+ if (cdata.vars_unate == cdata.vars_active) {
+ free_cubelist(T);
+ return FALSE;
+
+ /* If active in a single variable (and no column of 0's) then tautology */
+ } else if (cdata.vars_active == 1) {
+ free_cubelist(T);
+ return TRUE;
+
+ /* Check for unate variables, and reduce cover if there are any */
+ } else if (cdata.vars_unate != 0) {
+ /* Form a cube "ceil" with full variables in the unate variables */
+ (void) set_copy(ceil, cube.emptyset);
+ for(var = 0; var < cube.num_vars; var++) {
+ if (cdata.is_unate[var]) {
+ INLINEset_or(ceil, ceil, cube.var_mask[var]);
+ }
+ }
+
+ /* Save only those cubes that are "full" in all unate variables */
+ for(Tsave = T1 = T+2; (p = *T1++) != 0; ) {
+ if (setp_implies(ceil, set_or(temp, p, T[0]))) {
+ *Tsave++ = p;
+ }
+ }
+ *Tsave++ = NULL;
+ T[1] = (pcube) Tsave;
+
+ if (debug & TAUT) {
+ printf("UNATE_REDUCTION: %d unate variables, reduced to %d\n",
+ cdata.vars_unate, CUBELISTSIZE(T));
+ }
+ goto start;
+
+ /* Check for component reduction */
+ } else if (cdata.var_zeros[cdata.best] < CUBELISTSIZE(T) / 2) {
+ if (cubelist_partition(T, &A, &B, debug & TAUT) == 0) {
+ return MAYBE;
+ } else {
+ free_cubelist(T);
+ if (tautology(A)) {
+ free_cubelist(B);
+ return TRUE;
+ } else {
+ return tautology(B);
+ }
+ }
+ }
+
+ /* We tried as hard as we could, but must recurse from here on */
+ return MAYBE;
+}
+
+/* fcube_is_covered -- determine exactly how a cubelist "covers" a cube */
+static void
+fcube_is_covered(T, c, table)
+pcube *T, c;
+sm_matrix *table;
+{
+ ftautology(cofactor(T,c), table);
+}
+
+
+/* ftautology -- find ways to make a tautology */
+static void
+ftautology(T, table)
+pcube *T; /* T will be disposed of */
+sm_matrix *table;
+{
+ register pcube cl, cr;
+ register int best;
+ static int ftaut_level = 0;
+
+ if (debug & TAUT) {
+ debug_print(T, "FIND_TAUTOLOGY", ftaut_level++);
+ }
+
+ if (ftaut_special_cases(T, table) == MAYBE) {
+ cl = new_cube();
+ cr = new_cube();
+ best = binate_split_select(T, cl, cr, TAUT);
+
+ ftautology(scofactor(T, cl, best), table);
+ ftautology(scofactor(T, cr, best), table);
+
+ free_cubelist(T);
+ free_cube(cl);
+ free_cube(cr);
+ }
+
+ if (debug & TAUT) {
+ (void) printf("exit FIND_TAUTOLOGY[%d]: table is %d by %d\n",
+ --ftaut_level, table->nrows, table->ncols);
+ }
+}
+
+static bool
+ftaut_special_cases(T, table)
+pcube *T; /* will be disposed if answer is determined */
+sm_matrix *table;
+{
+ register pcube *T1, *Tsave, p, temp = cube.temp[0], ceil = cube.temp[1];
+ int var, rownum;
+
+ /* Check for a row of all 1's in the essential cubes */
+ for(T1 = T+2; (p = *T1++) != 0; ) {
+ if (! TESTP(p, REDUND)) {
+ if (full_row(p, T[0])) {
+ /* subspace is covered by essentials -- no new rows for table */
+ free_cubelist(T);
+ return TRUE;
+ }
+ }
+ }
+
+ /* Collect column counts, determine unate variables, etc. */
+start:
+ massive_count(T);
+
+ /* If function is unate, find the rows of all 1's */
+ if (cdata.vars_unate == cdata.vars_active) {
+ /* find which nonessentials cover this subspace */
+ rownum = table->last_row ? table->last_row->row_num+1 : 0;
+ (void) sm_insert(table, rownum, Rp_current);
+ for(T1 = T+2; (p = *T1++) != 0; ) {
+ if (TESTP(p, REDUND)) {
+ /* See if a redundant cube covers this leaf */
+ if (full_row(p, T[0])) {
+ (void) sm_insert(table, rownum, (int) SIZE(p));
+ }
+ }
+ }
+ free_cubelist(T);
+ return TRUE;
+
+ /* Perform unate reduction if there are any unate variables */
+ } else if (cdata.vars_unate != 0) {
+ /* Form a cube "ceil" with full variables in the unate variables */
+ (void) set_copy(ceil, cube.emptyset);
+ for(var = 0; var < cube.num_vars; var++) {
+ if (cdata.is_unate[var]) {
+ INLINEset_or(ceil, ceil, cube.var_mask[var]);
+ }
+ }
+
+ /* Save only those cubes that are "full" in all unate variables */
+ for(Tsave = T1 = T+2; (p = *T1++) != 0; ) {
+ if (setp_implies(ceil, set_or(temp, p, T[0]))) {
+ *Tsave++ = p;
+ }
+ }
+ *Tsave++ = 0;
+ T[1] = (pcube) Tsave;
+
+ if (debug & TAUT) {
+ printf("UNATE_REDUCTION: %d unate variables, reduced to %d\n",
+ cdata.vars_unate, CUBELISTSIZE(T));
+ }
+ goto start;
+ }
+
+ /* Not much we can do about it */
+ return MAYBE;
+}
diff --git a/src/misc/espresso/main.c b/src/misc/espresso/main.c
new file mode 100644
index 00000000..0a511c0e
--- /dev/null
+++ b/src/misc/espresso/main.c
@@ -0,0 +1,746 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ * Main driver for espresso
+ *
+ * Old style -do xxx, -out xxx, etc. are still supported.
+ */
+
+#include "espresso.h"
+#include "main.h" /* table definitions for options */
+
+static FILE *last_fp;
+static int input_type = FD_type;
+
+
+main(argc, argv)
+int argc;
+char *argv[];
+{
+ int i, j, first, last, strategy, out_type, option;
+ pPLA PLA, PLA1;
+ pcover F, Fold, Dold;
+ pset last1, p;
+ cost_t cost;
+ bool error, exact_cover;
+ long start;
+ extern char *util_optarg;
+ extern int util_optind;
+
+ start = ptime();
+
+ error = FALSE;
+ init_runtime();
+#ifdef RANDOM
+ srandom(314973);
+#endif
+
+ option = 0; /* default -D: ESPRESSO */
+ out_type = F_type; /* default -o: default is ON-set only */
+ debug = 0; /* default -d: no debugging info */
+ verbose_debug = FALSE; /* default -v: not verbose */
+ print_solution = TRUE; /* default -x: print the solution (!) */
+ summary = FALSE; /* default -s: no summary */
+ trace = FALSE; /* default -t: no trace information */
+ strategy = 0; /* default -S: strategy number */
+ first = -1; /* default -R: select range */
+ last = -1;
+ remove_essential = TRUE; /* default -e: */
+ force_irredundant = TRUE;
+ unwrap_onset = TRUE;
+ single_expand = FALSE;
+ pos = FALSE;
+ recompute_onset = FALSE;
+ use_super_gasp = FALSE;
+ use_random_order = FALSE;
+ kiss = FALSE;
+ echo_comments = TRUE;
+ echo_unknown_commands = TRUE;
+ exact_cover = FALSE; /* for -qm option, the default */
+
+ backward_compatibility_hack(&argc, argv, &option, &out_type);
+
+
+ /* parse command line options*/
+ while ((i = util_getopt(argc, argv, "D:S:de:o:r:stv:x")) != EOF) {
+ switch(i) {
+ case 'D': /* -Dcommand invokes a subcommand */
+ for(j = 0; option_table[j].name != 0; j++) {
+ if (strcmp(util_optarg, option_table[j].name) == 0) {
+ option = j;
+ break;
+ }
+ }
+ if (option_table[j].name == 0) {
+ (void) fprintf(stderr, "%s: bad subcommand \"%s\"\n",
+ argv[0], util_optarg);
+ exit(1);
+ }
+ break;
+
+ case 'o': /* -ooutput selects and output option */
+ for(j = 0; pla_types[j].key != 0; j++) {
+ if (strcmp(util_optarg, pla_types[j].key+1) == 0) {
+ out_type = pla_types[j].value;
+ break;
+ }
+ }
+ if (pla_types[j].key == 0) {
+ (void) fprintf(stderr, "%s: bad output type \"%s\"\n",
+ argv[0], util_optarg);
+ exit(1);
+ }
+ break;
+
+ case 'e': /* -eespresso selects an option for espresso */
+ for(j = 0; esp_opt_table[j].name != 0; j++) {
+ if (strcmp(util_optarg, esp_opt_table[j].name) == 0) {
+ *(esp_opt_table[j].variable) = esp_opt_table[j].value;
+ break;
+ }
+ }
+ if (esp_opt_table[j].name == 0) {
+ (void) fprintf(stderr, "%s: bad espresso option \"%s\"\n",
+ argv[0], util_optarg);
+ exit(1);
+ }
+ break;
+
+ case 'd': /* -d turns on (softly) all debug switches */
+ debug = debug_table[0].value;
+ trace = TRUE;
+ summary = TRUE;
+ break;
+
+ case 'v': /* -vdebug invokes a debug option */
+ verbose_debug = TRUE;
+ for(j = 0; debug_table[j].name != 0; j++) {
+ if (strcmp(util_optarg, debug_table[j].name) == 0) {
+ debug |= debug_table[j].value;
+ break;
+ }
+ }
+ if (debug_table[j].name == 0) {
+ (void) fprintf(stderr, "%s: bad debug type \"%s\"\n",
+ argv[0], util_optarg);
+ exit(1);
+ }
+ break;
+
+ case 't':
+ trace = TRUE;
+ break;
+
+ case 's':
+ summary = TRUE;
+ break;
+
+ case 'x': /* -x suppress printing of results */
+ print_solution = FALSE;
+ break;
+
+ case 'S': /* -S sets a strategy for several cmds */
+ strategy = atoi(util_optarg);
+ break;
+
+ case 'r': /* -r selects range (outputs or vars) */
+ if (sscanf(util_optarg, "%d-%d", &first, &last) < 2) {
+ (void) fprintf(stderr, "%s: bad output range \"%s\"\n",
+ argv[0], util_optarg);
+ exit(1);
+ }
+ break;
+
+ default:
+ usage();
+ exit(1);
+ }
+ }
+
+ /* provide version information and summaries */
+ if (summary || trace) {
+ /* echo command line and arguments */
+ printf("#");
+ for(i = 0; i < argc; i++) {
+ printf(" %s", argv[i]);
+ }
+ printf("\n");
+ printf("# %s\n", VERSION);
+ }
+
+ /* the remaining arguments are argv[util_optind ... argc-1] */
+ PLA = PLA1 = NIL(PLA_t);
+ switch(option_table[option].num_plas) {
+ case 2:
+ if (util_optind+2 < argc) fatal("trailing arguments on command line");
+ getPLA(util_optind++, argc, argv, option, &PLA, out_type);
+ getPLA(util_optind++, argc, argv, option, &PLA1, out_type);
+ break;
+ case 1:
+ if (util_optind+1 < argc) fatal("trailing arguments on command line");
+ getPLA(util_optind++, argc, argv, option, &PLA, out_type);
+ break;
+ }
+ if (util_optind < argc) fatal("trailing arguments on command line");
+
+ if (summary || trace) {
+ if (PLA != NIL(PLA_t)) PLA_summary(PLA);
+ if (PLA1 != NIL(PLA_t)) PLA_summary(PLA1);
+ }
+
+/*
+ * Now a case-statement to decide what to do
+ */
+
+ switch(option_table[option].key) {
+
+
+/******************** Espresso operations ********************/
+
+ case KEY_ESPRESSO:
+ Fold = sf_save(PLA->F);
+ PLA->F = espresso(PLA->F, PLA->D, PLA->R);
+ EXECUTE(error=verify(PLA->F,Fold,PLA->D), VERIFY_TIME, PLA->F, cost);
+ if (error) {
+ print_solution = FALSE;
+ PLA->F = Fold;
+ (void) check_consistency(PLA);
+ } else {
+ free_cover(Fold);
+ }
+ break;
+
+ case KEY_MANY_ESPRESSO: {
+ int pla_type;
+ do {
+ EXEC(PLA->F=espresso(PLA->F,PLA->D,PLA->R),"ESPRESSO ",PLA->F);
+ if (print_solution) {
+ fprint_pla(stdout, PLA, out_type);
+ (void) fflush(stdout);
+ }
+ pla_type = PLA->pla_type;
+ free_PLA(PLA);
+ setdown_cube();
+ FREE(cube.part_size);
+ } while (read_pla(last_fp, TRUE, TRUE, pla_type, &PLA) != EOF);
+ exit(0);
+ }
+
+ case KEY_simplify:
+ EXEC(PLA->F = simplify(cube1list(PLA->F)), "SIMPLIFY ", PLA->F);
+ break;
+
+ case KEY_so: /* minimize all functions as single-output */
+ if (strategy < 0 || strategy > 1) {
+ strategy = 0;
+ }
+ so_espresso(PLA, strategy);
+ break;
+
+ case KEY_so_both: /* minimize all functions as single-output */
+ if (strategy < 0 || strategy > 1) {
+ strategy = 0;
+ }
+ so_both_espresso(PLA, strategy);
+ break;
+
+ case KEY_expand: /* execute expand */
+ EXECUTE(PLA->F=expand(PLA->F,PLA->R,FALSE),EXPAND_TIME, PLA->F, cost);
+ break;
+
+ case KEY_irred: /* extract minimal irredundant subset */
+ EXECUTE(PLA->F = irredundant(PLA->F, PLA->D), IRRED_TIME, PLA->F, cost);
+ break;
+
+ case KEY_reduce: /* perform reduction */
+ EXECUTE(PLA->F = reduce(PLA->F, PLA->D), REDUCE_TIME, PLA->F, cost);
+ break;
+
+ case KEY_essen: /* check for essential primes */
+ foreach_set(PLA->F, last1, p) {
+ SET(p, RELESSEN);
+ RESET(p, NONESSEN);
+ }
+ EXECUTE(F = essential(&(PLA->F), &(PLA->D)), ESSEN_TIME, PLA->F, cost);
+ free_cover(F);
+ break;
+
+ case KEY_super_gasp:
+ PLA->F = super_gasp(PLA->F, PLA->D, PLA->R, &cost);
+ break;
+
+ case KEY_gasp:
+ PLA->F = last_gasp(PLA->F, PLA->D, PLA->R, &cost);
+ break;
+
+ case KEY_make_sparse: /* make_sparse step of Espresso */
+ PLA->F = make_sparse(PLA->F, PLA->D, PLA->R);
+ break;
+
+ case KEY_exact:
+ exact_cover = TRUE;
+
+ case KEY_qm:
+ Fold = sf_save(PLA->F);
+ PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, exact_cover);
+ EXECUTE(error=verify(PLA->F,Fold,PLA->D), VERIFY_TIME, PLA->F, cost);
+ if (error) {
+ print_solution = FALSE;
+ PLA->F = Fold;
+ (void) check_consistency(PLA);
+ }
+ free_cover(Fold);
+ break;
+
+ case KEY_primes: /* generate all prime implicants */
+ EXEC(PLA->F = primes_consensus(cube2list(PLA->F, PLA->D)),
+ "PRIMES ", PLA->F);
+ break;
+
+ case KEY_map: /* print out a Karnaugh map of function */
+ map(PLA->F);
+ print_solution = FALSE;
+ break;
+
+
+
+/******************** Output phase and bit pairing ********************/
+
+ case KEY_opo: /* sasao output phase assignment */
+ phase_assignment(PLA, strategy);
+ break;
+
+ case KEY_opoall: /* try all phase assignments (!) */
+ if (first < 0 || first >= cube.part_size[cube.output]) {
+ first = 0;
+ }
+ if (last < 0 || last >= cube.part_size[cube.output]) {
+ last = cube.part_size[cube.output] - 1;
+ }
+ opoall(PLA, first, last, strategy);
+ break;
+
+ case KEY_pair: /* find an optimal pairing */
+ find_optimal_pairing(PLA, strategy);
+ break;
+
+ case KEY_pairall: /* try all pairings !! */
+ pair_all(PLA, strategy);
+ break;
+
+
+
+/******************** Simple cover operations ********************/
+
+ case KEY_echo: /* echo the PLA */
+ break;
+
+ case KEY_taut: /* tautology check */
+ printf("ON-set is%sa tautology\n",
+ tautology(cube1list(PLA->F)) ? " " : " not ");
+ print_solution = FALSE;
+ break;
+
+ case KEY_contain: /* single cube containment */
+ PLA->F = sf_contain(PLA->F);
+ break;
+
+ case KEY_intersect: /* cover intersection */
+ PLA->F = cv_intersect(PLA->F, PLA1->F);
+ break;
+
+ case KEY_union: /* cover union */
+ PLA->F = sf_union(PLA->F, PLA1->F);
+ break;
+
+ case KEY_disjoint: /* make cover disjoint */
+ PLA->F = make_disjoint(PLA->F);
+ break;
+
+ case KEY_dsharp: /* cover disjoint-sharp */
+ PLA->F = cv_dsharp(PLA->F, PLA1->F);
+ break;
+
+ case KEY_sharp: /* cover sharp */
+ PLA->F = cv_sharp(PLA->F, PLA1->F);
+ break;
+
+ case KEY_lexsort: /* lexical sort order */
+ PLA->F = lex_sort(PLA->F);
+ break;
+
+ case KEY_stats: /* print info on size */
+ if (! summary) PLA_summary(PLA);
+ print_solution = FALSE;
+ break;
+
+ case KEY_minterms: /* explode into minterms */
+ if (first < 0 || first >= cube.num_vars) {
+ first = 0;
+ }
+ if (last < 0 || last >= cube.num_vars) {
+ last = cube.num_vars - 1;
+ }
+ PLA->F = sf_dupl(unravel_range(PLA->F, first, last));
+ break;
+
+ case KEY_d1merge: /* distance-1 merge */
+ if (first < 0 || first >= cube.num_vars) {
+ first = 0;
+ }
+ if (last < 0 || last >= cube.num_vars) {
+ last = cube.num_vars - 1;
+ }
+ for(i = first; i <= last; i++) {
+ PLA->F = d1merge(PLA->F, i);
+ }
+ break;
+
+ case KEY_d1merge_in: /* distance-1 merge inputs only */
+ for(i = 0; i < cube.num_binary_vars; i++) {
+ PLA->F = d1merge(PLA->F, i);
+ }
+ break;
+
+ case KEY_PLA_verify: /* check two PLAs for equivalence */
+ EXECUTE(error = PLA_verify(PLA, PLA1), VERIFY_TIME, PLA->F, cost);
+ if (error) {
+ printf("PLA comparison failed; the PLA's are not equivalent\n");
+ exit(1);
+ } else {
+ printf("PLA's compared equal\n");
+ exit(0);
+ }
+ break; /* silly */
+
+ case KEY_verify: /* check two covers for equivalence */
+ Fold = PLA->F; Dold = PLA->D; F = PLA1->F;
+ EXECUTE(error=verify(F, Fold, Dold), VERIFY_TIME, PLA->F, cost);
+ if (error) {
+ printf("PLA comparison failed; the PLA's are not equivalent\n");
+ exit(1);
+ } else {
+ printf("PLA's compared equal\n");
+ exit(0);
+ }
+ break; /* silly */
+
+ case KEY_check: /* check consistency */
+ (void) check_consistency(PLA);
+ print_solution = FALSE;
+ break;
+
+ case KEY_mapdc: /* compute don't care set */
+ map_dcset(PLA);
+ out_type = FD_type;
+ break;
+
+ case KEY_equiv:
+ find_equiv_outputs(PLA);
+ print_solution = FALSE;
+ break;
+
+ case KEY_separate: /* remove PLA->D from PLA->F */
+ PLA->F = complement(cube2list(PLA->D, PLA->R));
+ break;
+
+ case KEY_xor: {
+ pcover T1 = cv_intersect(PLA->F, PLA1->R);
+ pcover T2 = cv_intersect(PLA1->F, PLA->R);
+ free_cover(PLA->F);
+ PLA->F = sf_contain(sf_join(T1, T2));
+ free_cover(T1);
+ free_cover(T2);
+ break;
+ }
+
+ case KEY_fsm: {
+ disassemble_fsm(PLA, summary);
+ print_solution = FALSE;
+ break;
+ }
+
+ case KEY_test: {
+ pcover T, E;
+ T = sf_join(PLA->D, PLA->R);
+ E = new_cover(10);
+ sf_free(PLA->F);
+ EXECUTE(PLA->F = complement(cube1list(T)), COMPL_TIME, PLA->F, cost);
+ EXECUTE(PLA->F = expand(PLA->F, T, FALSE), EXPAND_TIME, PLA->F, cost);
+ EXECUTE(PLA->F = irredundant(PLA->F, E), IRRED_TIME, PLA->F, cost);
+ sf_free(T);
+ T = sf_join(PLA->F, PLA->R);
+ EXECUTE(PLA->D = expand(PLA->D, T, FALSE), EXPAND_TIME, PLA->D, cost);
+ EXECUTE(PLA->D = irredundant(PLA->D, E), IRRED_TIME, PLA->D, cost);
+ sf_free(T);
+ sf_free(E);
+ break;
+ }
+
+
+ }
+
+ /* Print a runtime summary if trace mode enabled */
+ if (trace) {
+ runtime();
+ }
+
+ /* Print total runtime */
+ if (summary || trace) {
+ print_trace(PLA->F, option_table[option].name, ptime()-start);
+ }
+
+ /* Output the solution */
+ if (print_solution) {
+ EXECUTE(fprint_pla(stdout, PLA, out_type), WRITE_TIME, PLA->F, cost);
+ }
+
+ /* Crash and burn if there was a verify error */
+ if (error) {
+ fatal("cover verification failed");
+ }
+
+ /* cleanup all used memory */
+ free_PLA(PLA);
+ FREE(cube.part_size);
+ setdown_cube(); /* free the cube/cdata structure data */
+ sf_cleanup(); /* free unused set structures */
+ sm_cleanup(); /* sparse matrix cleanup */
+
+ exit(0);
+}
+
+
+getPLA(opt, argc, argv, option, PLA, out_type)
+int opt;
+int argc;
+char *argv[];
+int option;
+pPLA *PLA;
+int out_type;
+{
+ FILE *fp;
+ int needs_dcset, needs_offset;
+ char *fname;
+
+ if (opt >= argc) {
+ fp = stdin;
+ fname = "(stdin)";
+ } else {
+ fname = argv[opt];
+ if (strcmp(fname, "-") == 0) {
+ fp = stdin;
+ } else if ((fp = fopen(argv[opt], "r")) == NULL) {
+ (void) fprintf(stderr, "%s: Unable to open %s\n", argv[0], fname);
+ exit(1);
+ }
+ }
+ if (option_table[option].key == KEY_echo) {
+ needs_dcset = (out_type & D_type) != 0;
+ needs_offset = (out_type & R_type) != 0;
+ } else {
+ needs_dcset = option_table[option].needs_dcset;
+ needs_offset = option_table[option].needs_offset;
+ }
+
+ if (read_pla(fp, needs_dcset, needs_offset, input_type, PLA) == EOF) {
+ (void) fprintf(stderr, "%s: Unable to find PLA on file %s\n", argv[0], fname);
+ exit(1);
+ }
+ (*PLA)->filename = util_strsav(fname);
+ filename = (*PLA)->filename;
+/* (void) fclose(fp);*/
+/* hackto support -Dmany */
+ last_fp = fp;
+}
+
+
+runtime()
+{
+ int i;
+ long total = 1, temp;
+
+ for(i = 0; i < TIME_COUNT; i++) {
+ total += total_time[i];
+ }
+ for(i = 0; i < TIME_COUNT; i++) {
+ if (total_calls[i] != 0) {
+ temp = 100 * total_time[i];
+ printf("# %s\t%2d call(s) for %s (%2ld.%01ld%%)\n",
+ total_name[i], total_calls[i], print_time(total_time[i]),
+ temp/total, (10 * (temp%total)) / total);
+ }
+ }
+}
+
+
+init_runtime()
+{
+ total_name[READ_TIME] = "READ ";
+ total_name[WRITE_TIME] = "WRITE ";
+ total_name[COMPL_TIME] = "COMPL ";
+ total_name[REDUCE_TIME] = "REDUCE ";
+ total_name[EXPAND_TIME] = "EXPAND ";
+ total_name[ESSEN_TIME] = "ESSEN ";
+ total_name[IRRED_TIME] = "IRRED ";
+ total_name[GREDUCE_TIME] = "REDUCE_GASP";
+ total_name[GEXPAND_TIME] = "EXPAND_GASP";
+ total_name[GIRRED_TIME] = "IRRED_GASP ";
+ total_name[MV_REDUCE_TIME] ="MV_REDUCE ";
+ total_name[RAISE_IN_TIME] = "RAISE_IN ";
+ total_name[VERIFY_TIME] = "VERIFY ";
+ total_name[PRIMES_TIME] = "PRIMES ";
+ total_name[MINCOV_TIME] = "MINCOV ";
+}
+
+
+subcommands()
+{
+ int i, col;
+ printf(" ");
+ col = 16;
+ for(i = 0; option_table[i].name != 0; i++) {
+ if ((col + strlen(option_table[i].name) + 1) > 76) {
+ printf(",\n ");
+ col = 16;
+ } else if (i != 0) {
+ printf(", ");
+ }
+ printf("%s", option_table[i].name);
+ col += strlen(option_table[i].name) + 2;
+ }
+ printf("\n");
+}
+
+
+usage()
+{
+ printf("%s\n\n", VERSION);
+ printf("SYNOPSIS: espresso [options] [file]\n\n");
+ printf(" -d Enable debugging\n");
+ printf(" -e[opt] Select espresso option:\n");
+ printf(" fast, ness, nirr, nunwrap, onset, pos, strong,\n");
+ printf(" eat, eatdots, kiss, random\n");
+ printf(" -o[type] Select output format:\n");
+ printf(" f, fd, fr, fdr, pleasure, eqntott, kiss, cons\n");
+ printf(" -rn-m Select range for subcommands:\n");
+ printf(" d1merge: first and last variables (0 ... m-1)\n");
+ printf(" minterms: first and last variables (0 ... m-1)\n");
+ printf(" opoall: first and last outputs (0 ... m-1)\n");
+ printf(" -s Provide short execution summary\n");
+ printf(" -t Provide longer execution trace\n");
+ printf(" -x Suppress printing of solution\n");
+ printf(" -v[type] Verbose debugging detail (-v '' for all)\n");
+ printf(" -D[cmd] Execute subcommand 'cmd':\n");
+ subcommands();
+ printf(" -Sn Select strategy for subcommands:\n");
+ printf(" opo: bit2=exact bit1=repeated bit0=skip sparse\n");
+ printf(" opoall: 0=minimize, 1=exact\n");
+ printf(" pair: 0=algebraic, 1=strongd, 2=espresso, 3=exact\n");
+ printf(" pairall: 0=minimize, 1=exact, 2=opo\n");
+ printf(" so_espresso: 0=minimize, 1=exact\n");
+ printf(" so_both: 0=minimize, 1=exact\n");
+}
+
+/*
+ * Hack for backward compatibility (ACK! )
+ */
+
+backward_compatibility_hack(argc, argv, option, out_type)
+int *argc;
+char **argv;
+int *option;
+int *out_type;
+{
+ int i, j;
+
+ /* Scan the argument list for something to do (default is ESPRESSO) */
+ *option = 0;
+ for(i = 1; i < (*argc)-1; i++) {
+ if (strcmp(argv[i], "-do") == 0) {
+ for(j = 0; option_table[j].name != 0; j++)
+ if (strcmp(argv[i+1], option_table[j].name) == 0) {
+ *option = j;
+ delete_arg(argc, argv, i+1);
+ delete_arg(argc, argv, i);
+ break;
+ }
+ if (option_table[j].name == 0) {
+ (void) fprintf(stderr,
+ "espresso: bad keyword \"%s\" following -do\n",argv[i+1]);
+ exit(1);
+ }
+ break;
+ }
+ }
+
+ for(i = 1; i < (*argc)-1; i++) {
+ if (strcmp(argv[i], "-out") == 0) {
+ for(j = 0; pla_types[j].key != 0; j++)
+ if (strcmp(pla_types[j].key+1, argv[i+1]) == 0) {
+ *out_type = pla_types[j].value;
+ delete_arg(argc, argv, i+1);
+ delete_arg(argc, argv, i);
+ break;
+ }
+ if (pla_types[j].key == 0) {
+ (void) fprintf(stderr,
+ "espresso: bad keyword \"%s\" following -out\n",argv[i+1]);
+ exit(1);
+ }
+ break;
+ }
+ }
+
+ for(i = 1; i < (*argc); i++) {
+ if (argv[i][0] == '-') {
+ for(j = 0; esp_opt_table[j].name != 0; j++) {
+ if (strcmp(argv[i]+1, esp_opt_table[j].name) == 0) {
+ delete_arg(argc, argv, i);
+ *(esp_opt_table[j].variable) = esp_opt_table[j].value;
+ break;
+ }
+ }
+ }
+ }
+
+ if (check_arg(argc, argv, "-fdr")) input_type = FDR_type;
+ if (check_arg(argc, argv, "-fr")) input_type = FR_type;
+ if (check_arg(argc, argv, "-f")) input_type = F_type;
+}
+
+
+/* delete_arg -- delete an argument from the argument list */
+delete_arg(argc, argv, num)
+int *argc, num;
+register char *argv[];
+{
+ register int i;
+ (*argc)--;
+ for(i = num; i < *argc; i++) {
+ argv[i] = argv[i+1];
+ }
+}
+
+
+/* check_arg -- scan argv for an argument, and return TRUE if found */
+bool check_arg(argc, argv, s)
+int *argc;
+register char *argv[], *s;
+{
+ register int i;
+ for(i = 1; i < *argc; i++) {
+ if (strcmp(argv[i], s) == 0) {
+ delete_arg(argc, argv, i);
+ return TRUE;
+ }
+ }
+ return FALSE;
+}
diff --git a/src/misc/espresso/main.h b/src/misc/espresso/main.h
new file mode 100644
index 00000000..00657f39
--- /dev/null
+++ b/src/misc/espresso/main.h
@@ -0,0 +1,122 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+enum keys {
+ KEY_ESPRESSO, KEY_PLA_verify, KEY_check, KEY_contain, KEY_d1merge,
+ KEY_disjoint, KEY_dsharp, KEY_echo, KEY_essen, KEY_exact, KEY_expand,
+ KEY_gasp, KEY_intersect, KEY_irred, KEY_lexsort, KEY_make_sparse,
+ KEY_map, KEY_mapdc, KEY_minterms, KEY_opo, KEY_opoall,
+ KEY_pair, KEY_pairall, KEY_primes, KEY_qm, KEY_reduce, KEY_sharp,
+ KEY_simplify, KEY_so, KEY_so_both, KEY_stats, KEY_super_gasp, KEY_taut,
+ KEY_test, KEY_equiv, KEY_union, KEY_verify, KEY_MANY_ESPRESSO,
+ KEY_separate, KEY_xor, KEY_d1merge_in, KEY_fsm,
+ KEY_unknown
+};
+
+/* Lookup table for program options */
+struct {
+ char *name;
+ enum keys key;
+ int num_plas;
+ bool needs_offset;
+ bool needs_dcset;
+} option_table [] = {
+ /* ways to minimize functions */
+ "ESPRESSO", KEY_ESPRESSO, 1, TRUE, TRUE, /* must be first */
+ "many", KEY_MANY_ESPRESSO, 1, TRUE, TRUE,
+ "exact", KEY_exact, 1, TRUE, TRUE,
+ "qm", KEY_qm, 1, TRUE, TRUE,
+ "single_output", KEY_so, 1, TRUE, TRUE,
+ "so", KEY_so, 1, TRUE, TRUE,
+ "so_both", KEY_so_both, 1, TRUE, TRUE,
+ "simplify", KEY_simplify, 1, FALSE, FALSE,
+ "echo", KEY_echo, 1, FALSE, FALSE,
+
+ /* output phase assignment and assignment of inputs to two-bit decoders */
+ "opo", KEY_opo, 1, TRUE, TRUE,
+ "opoall", KEY_opoall, 1, TRUE, TRUE,
+ "pair", KEY_pair, 1, TRUE, TRUE,
+ "pairall", KEY_pairall, 1, TRUE, TRUE,
+
+ /* Ways to check covers */
+ "check", KEY_check, 1, TRUE, TRUE,
+ "stats", KEY_stats, 1, FALSE, FALSE,
+ "verify", KEY_verify, 2, FALSE, TRUE,
+ "PLAverify", KEY_PLA_verify, 2, FALSE, TRUE,
+
+ /* hacks */
+ "equiv", KEY_equiv, 1, TRUE, TRUE,
+ "map", KEY_map, 1, FALSE, FALSE,
+ "mapdc", KEY_mapdc, 1, FALSE, FALSE,
+ "fsm", KEY_fsm, 1, FALSE, TRUE,
+
+ /* the basic boolean operations on covers */
+ "contain", KEY_contain, 1, FALSE, FALSE,
+ "d1merge", KEY_d1merge, 1, FALSE, FALSE,
+ "d1merge_in", KEY_d1merge_in, 1, FALSE, FALSE,
+ "disjoint", KEY_disjoint, 1, TRUE, FALSE,
+ "dsharp", KEY_dsharp, 2, FALSE, FALSE,
+ "intersect", KEY_intersect, 2, FALSE, FALSE,
+ "minterms", KEY_minterms, 1, FALSE, FALSE,
+ "primes", KEY_primes, 1, FALSE, TRUE,
+ "separate", KEY_separate, 1, TRUE, TRUE,
+ "sharp", KEY_sharp, 2, FALSE, FALSE,
+ "union", KEY_union, 2, FALSE, FALSE,
+ "xor", KEY_xor, 2, TRUE, TRUE,
+
+ /* debugging only -- call each step of the espresso algorithm */
+ "essen", KEY_essen, 1, FALSE, TRUE,
+ "expand", KEY_expand, 1, TRUE, FALSE,
+ "gasp", KEY_gasp, 1, TRUE, TRUE,
+ "irred", KEY_irred, 1, FALSE, TRUE,
+ "make_sparse", KEY_make_sparse, 1, TRUE, TRUE,
+ "reduce", KEY_reduce, 1, FALSE, TRUE,
+ "taut", KEY_taut, 1, FALSE, FALSE,
+ "super_gasp", KEY_super_gasp, 1, TRUE, TRUE,
+ "lexsort", KEY_lexsort, 1, FALSE, FALSE,
+ "test", KEY_test, 1, TRUE, TRUE,
+ 0, KEY_unknown, 0, FALSE, FALSE /* must be last */
+};
+
+
+struct {
+ char *name;
+ int value;
+} debug_table[] = {
+ "", EXPAND + ESSEN + IRRED + REDUCE + SPARSE + GASP + SHARP + MINCOV,
+ "compl", COMPL, "essen", ESSEN,
+ "expand", EXPAND, "expand1", EXPAND1|EXPAND,
+ "irred", IRRED, "irred1", IRRED1|IRRED,
+ "reduce", REDUCE, "reduce1", REDUCE1|REDUCE,
+ "mincov", MINCOV, "mincov1", MINCOV1|MINCOV,
+ "sparse", SPARSE, "sharp", SHARP,
+ "taut", TAUT, "gasp", GASP,
+ "exact", EXACT,
+ 0,
+};
+
+
+struct {
+ char *name;
+ int *variable;
+ int value;
+} esp_opt_table[] = {
+ "eat", &echo_comments, FALSE,
+ "eatdots", &echo_unknown_commands, FALSE,
+ "fast", &single_expand, TRUE,
+ "kiss", &kiss, TRUE,
+ "ness", &remove_essential, FALSE,
+ "nirr", &force_irredundant, FALSE,
+ "nunwrap", &unwrap_onset, FALSE,
+ "onset", &recompute_onset, TRUE,
+ "pos", &pos, TRUE,
+ "random", &use_random_order, TRUE,
+ "strong", &use_super_gasp, TRUE,
+ 0,
+};
diff --git a/src/misc/espresso/map.c b/src/misc/espresso/map.c
new file mode 100644
index 00000000..5ccf264c
--- /dev/null
+++ b/src/misc/espresso/map.c
@@ -0,0 +1,115 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+static pcube Gcube;
+static pset Gminterm;
+
+pset minterms(T)
+pcover T;
+{
+ int size, var;
+ register pcube last;
+
+ size = 1;
+ for(var = 0; var < cube.num_vars; var++)
+ size *= cube.part_size[var];
+ Gminterm = set_new(size);
+
+ foreach_set(T, last, Gcube)
+ explode(cube.num_vars-1, 0);
+
+ return Gminterm;
+}
+
+
+void explode(var, z)
+int var, z;
+{
+ int i, last = cube.last_part[var];
+ for(i=cube.first_part[var], z *= cube.part_size[var]; i<=last; i++, z++)
+ if (is_in_set(Gcube, i))
+ if (var == 0)
+ set_insert(Gminterm, z);
+ else
+ explode(var-1, z);
+}
+
+
+static int mapindex[16][16] = {
+ 0, 1, 3, 2, 16, 17, 19, 18, 80, 81, 83, 82, 64, 65, 67, 66,
+ 4, 5, 7, 6, 20, 21, 23, 22, 84, 85, 87, 86, 68, 69, 71, 70,
+ 12, 13, 15, 14, 28, 29, 31, 30, 92, 93, 95, 94, 76, 77, 79, 78,
+ 8, 9, 11, 10, 24, 25, 27, 26, 88, 89, 91, 90, 72, 73, 75, 74,
+
+ 32, 33, 35, 34, 48, 49, 51, 50, 112,113,115,114, 96, 97, 99, 98,
+ 36, 37, 39, 38, 52, 53, 55, 54, 116,117,119,118, 100,101,103,102,
+ 44, 45, 47, 46, 60, 61, 63, 62, 124,125,127,126, 108,109,111,110,
+ 40, 41, 43, 42, 56, 57, 59, 58, 120,121,123,122, 104,105,107,106,
+
+
+ 160,161,163,162, 176,177,179,178, 240,241,243,242, 224,225,227,226,
+ 164,165,167,166, 180,181,183,182, 244,245,247,246, 228,229,231,230,
+ 172,173,175,174, 188,189,191,190, 252,253,255,254, 236,237,239,238,
+ 168,169,171,170, 184,185,187,186, 248,249,251,250, 232,233,235,234,
+
+ 128,129,131,130, 144,145,147,146, 208,209,211,210, 192,193,195,194,
+ 132,133,135,134, 148,149,151,150, 212,213,215,214, 196,197,199,198,
+ 140,141,143,142, 156,157,159,158, 220,221,223,222, 204,205,207,206,
+ 136,137,139,138, 152,153,155,154, 216,217,219,218, 200,201,203,202
+};
+
+#define POWER2(n) (1 << n)
+void map(T)
+pcover T;
+{
+ int j, k, l, other_input_offset, output_offset, outnum, ind;
+ int largest_input_ind, numout;
+ char c;
+ pset m;
+ bool some_output;
+
+ m = minterms(T);
+ largest_input_ind = POWER2(cube.num_binary_vars);
+ numout = cube.part_size[cube.num_vars-1];
+
+ for(outnum = 0; outnum < numout; outnum++) {
+ output_offset = outnum * largest_input_ind;
+ printf("\n\nOutput space # %d\n", outnum);
+ for(l = 0; l <= MAX(cube.num_binary_vars - 8, 0); l++) {
+ other_input_offset = l * 256;
+ for(k = 0; k < 16; k++) {
+ some_output = FALSE;
+ for(j = 0; j < 16; j++) {
+ ind = mapindex[k][j] + other_input_offset;
+ if (ind < largest_input_ind) {
+ c = is_in_set(m, ind+output_offset) ? '1' : '.';
+ putchar(c);
+ some_output = TRUE;
+ }
+ if ((j+1)%4 == 0)
+ putchar(' ');
+ if ((j+1)%8 == 0)
+ printf(" ");
+ }
+ if (some_output)
+ putchar('\n');
+ if ((k+1)%4 == 0) {
+ if (k != 15 && mapindex[k+1][0] >= largest_input_ind)
+ break;
+ putchar('\n');
+ }
+ if ((k+1)%8 == 0)
+ putchar('\n');
+ }
+ }
+ }
+ set_free(m);
+}
diff --git a/src/misc/espresso/matrix.c b/src/misc/espresso/matrix.c
new file mode 100644
index 00000000..747fe54f
--- /dev/null
+++ b/src/misc/espresso/matrix.c
@@ -0,0 +1,574 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+//#include "port.h"
+#include "sparse_int.h"
+
+/*
+ * free-lists are only used if 'FAST_AND_LOOSE' is set; this is because
+ * we lose the debugging capability of libmm_t which trashes objects when
+ * they are free'd. However, FAST_AND_LOOSE is much faster if matrices
+ * are created and freed frequently.
+ */
+
+#ifdef FAST_AND_LOOSE
+sm_element *sm_element_freelist;
+sm_row *sm_row_freelist;
+sm_col *sm_col_freelist;
+#endif
+
+
+sm_matrix *
+sm_alloc()
+{
+ register sm_matrix *A;
+
+ A = ALLOC(sm_matrix, 1);
+ A->rows = NIL(sm_row *);
+ A->cols = NIL(sm_col *);
+ A->nrows = A->ncols = 0;
+ A->rows_size = A->cols_size = 0;
+ A->first_row = A->last_row = NIL(sm_row);
+ A->first_col = A->last_col = NIL(sm_col);
+ A->user_word = NIL(char); /* for our user ... */
+ return A;
+}
+
+
+sm_matrix *
+sm_alloc_size(row, col)
+int row, col;
+{
+ register sm_matrix *A;
+
+ A = sm_alloc();
+ sm_resize(A, row, col);
+ return A;
+}
+
+
+void
+sm_free(A)
+sm_matrix *A;
+{
+#ifdef FAST_AND_LOOSE
+ register sm_row *prow;
+
+ if (A->first_row != 0) {
+ for(prow = A->first_row; prow != 0; prow = prow->next_row) {
+ /* add the elements to the free list of elements */
+ prow->last_col->next_col = sm_element_freelist;
+ sm_element_freelist = prow->first_col;
+ }
+
+ /* Add the linked list of rows to the row-free-list */
+ A->last_row->next_row = sm_row_freelist;
+ sm_row_freelist = A->first_row;
+
+ /* Add the linked list of cols to the col-free-list */
+ A->last_col->next_col = sm_col_freelist;
+ sm_col_freelist = A->first_col;
+ }
+#else
+ register sm_row *prow, *pnext_row;
+ register sm_col *pcol, *pnext_col;
+
+ for(prow = A->first_row; prow != 0; prow = pnext_row) {
+ pnext_row = prow->next_row;
+ sm_row_free(prow);
+ }
+ for(pcol = A->first_col; pcol != 0; pcol = pnext_col) {
+ pnext_col = pcol->next_col;
+ pcol->first_row = pcol->last_row = NIL(sm_element);
+ sm_col_free(pcol);
+ }
+#endif
+
+ /* Free the arrays to map row/col numbers into pointers */
+ FREE(A->rows);
+ FREE(A->cols);
+ FREE(A);
+}
+
+
+sm_matrix *
+sm_dup(A)
+sm_matrix *A;
+{
+ register sm_row *prow;
+ register sm_element *p;
+ register sm_matrix *B;
+
+ B = sm_alloc();
+ if (A->last_row != 0) {
+ sm_resize(B, A->last_row->row_num, A->last_col->col_num);
+ for(prow = A->first_row; prow != 0; prow = prow->next_row) {
+ for(p = prow->first_col; p != 0; p = p->next_col) {
+ (void) sm_insert(B, p->row_num, p->col_num);
+ }
+ }
+ }
+ return B;
+}
+
+
+void
+sm_resize(A, row, col)
+register sm_matrix *A;
+int row, col;
+{
+ register int i, new_size;
+
+ if (row >= A->rows_size) {
+ new_size = MAX(A->rows_size*2, row+1);
+ A->rows = REALLOC(sm_row *, A->rows, new_size);
+ for(i = A->rows_size; i < new_size; i++) {
+ A->rows[i] = NIL(sm_row);
+ }
+ A->rows_size = new_size;
+ }
+
+ if (col >= A->cols_size) {
+ new_size = MAX(A->cols_size*2, col+1);
+ A->cols = REALLOC(sm_col *, A->cols, new_size);
+ for(i = A->cols_size; i < new_size; i++) {
+ A->cols[i] = NIL(sm_col);
+ }
+ A->cols_size = new_size;
+ }
+}
+
+
+/*
+ * insert -- insert a value into the matrix
+ */
+sm_element *
+sm_insert(A, row, col)
+register sm_matrix *A;
+register int row, col;
+{
+ register sm_row *prow;
+ register sm_col *pcol;
+ register sm_element *element;
+ sm_element *save_element;
+
+ if (row >= A->rows_size || col >= A->cols_size) {
+ sm_resize(A, row, col);
+ }
+
+ prow = A->rows[row];
+ if (prow == NIL(sm_row)) {
+ prow = A->rows[row] = sm_row_alloc();
+ prow->row_num = row;
+ sorted_insert(sm_row, A->first_row, A->last_row, A->nrows,
+ next_row, prev_row, row_num, row, prow);
+ }
+
+ pcol = A->cols[col];
+ if (pcol == NIL(sm_col)) {
+ pcol = A->cols[col] = sm_col_alloc();
+ pcol->col_num = col;
+ sorted_insert(sm_col, A->first_col, A->last_col, A->ncols,
+ next_col, prev_col, col_num, col, pcol);
+ }
+
+ /* get a new item, save its address */
+ sm_element_alloc(element);
+ save_element = element;
+
+ /* insert it into the row list */
+ sorted_insert(sm_element, prow->first_col, prow->last_col,
+ prow->length, next_col, prev_col, col_num, col, element);
+
+ /* if it was used, also insert it into the column list */
+ if (element == save_element) {
+ sorted_insert(sm_element, pcol->first_row, pcol->last_row,
+ pcol->length, next_row, prev_row, row_num, row, element);
+ } else {
+ /* otherwise, it was already in matrix -- free element we allocated */
+ sm_element_free(save_element);
+ }
+ return element;
+}
+
+
+sm_element *
+sm_find(A, rownum, colnum)
+sm_matrix *A;
+int rownum, colnum;
+{
+ sm_row *prow;
+ sm_col *pcol;
+
+ prow = sm_get_row(A, rownum);
+ if (prow == NIL(sm_row)) {
+ return NIL(sm_element);
+ } else {
+ pcol = sm_get_col(A, colnum);
+ if (pcol == NIL(sm_col)) {
+ return NIL(sm_element);
+ }
+ if (prow->length < pcol->length) {
+ return sm_row_find(prow, colnum);
+ } else {
+ return sm_col_find(pcol, rownum);
+ }
+ }
+}
+
+
+void
+sm_remove(A, rownum, colnum)
+sm_matrix *A;
+int rownum, colnum;
+{
+ sm_remove_element(A, sm_find(A, rownum, colnum));
+}
+
+
+
+void
+sm_remove_element(A, p)
+register sm_matrix *A;
+register sm_element *p;
+{
+ register sm_row *prow;
+ register sm_col *pcol;
+
+ if (p == 0) return;
+
+ /* Unlink the element from its row */
+ prow = sm_get_row(A, p->row_num);
+ dll_unlink(p, prow->first_col, prow->last_col,
+ next_col, prev_col, prow->length);
+
+ /* if no more elements in the row, discard the row header */
+ if (prow->first_col == NIL(sm_element)) {
+ sm_delrow(A, p->row_num);
+ }
+
+ /* Unlink the element from its column */
+ pcol = sm_get_col(A, p->col_num);
+ dll_unlink(p, pcol->first_row, pcol->last_row,
+ next_row, prev_row, pcol->length);
+
+ /* if no more elements in the column, discard the column header */
+ if (pcol->first_row == NIL(sm_element)) {
+ sm_delcol(A, p->col_num);
+ }
+
+ sm_element_free(p);
+}
+
+void
+sm_delrow(A, i)
+sm_matrix *A;
+int i;
+{
+ register sm_element *p, *pnext;
+ sm_col *pcol;
+ sm_row *prow;
+
+ prow = sm_get_row(A, i);
+ if (prow != NIL(sm_row)) {
+ /* walk across the row */
+ for(p = prow->first_col; p != 0; p = pnext) {
+ pnext = p->next_col;
+
+ /* unlink the item from the column (and delete it) */
+ pcol = sm_get_col(A, p->col_num);
+ sm_col_remove_element(pcol, p);
+
+ /* discard the column if it is now empty */
+ if (pcol->first_row == NIL(sm_element)) {
+ sm_delcol(A, pcol->col_num);
+ }
+ }
+
+ /* discard the row -- we already threw away the elements */
+ A->rows[i] = NIL(sm_row);
+ dll_unlink(prow, A->first_row, A->last_row,
+ next_row, prev_row, A->nrows);
+ prow->first_col = prow->last_col = NIL(sm_element);
+ sm_row_free(prow);
+ }
+}
+
+void
+sm_delcol(A, i)
+sm_matrix *A;
+int i;
+{
+ register sm_element *p, *pnext;
+ sm_row *prow;
+ sm_col *pcol;
+
+ pcol = sm_get_col(A, i);
+ if (pcol != NIL(sm_col)) {
+ /* walk down the column */
+ for(p = pcol->first_row; p != 0; p = pnext) {
+ pnext = p->next_row;
+
+ /* unlink the element from the row (and delete it) */
+ prow = sm_get_row(A, p->row_num);
+ sm_row_remove_element(prow, p);
+
+ /* discard the row if it is now empty */
+ if (prow->first_col == NIL(sm_element)) {
+ sm_delrow(A, prow->row_num);
+ }
+ }
+
+ /* discard the column -- we already threw away the elements */
+ A->cols[i] = NIL(sm_col);
+ dll_unlink(pcol, A->first_col, A->last_col,
+ next_col, prev_col, A->ncols);
+ pcol->first_row = pcol->last_row = NIL(sm_element);
+ sm_col_free(pcol);
+ }
+}
+
+void
+sm_copy_row(dest, dest_row, prow)
+register sm_matrix *dest;
+int dest_row;
+sm_row *prow;
+{
+ register sm_element *p;
+
+ for(p = prow->first_col; p != 0; p = p->next_col) {
+ (void) sm_insert(dest, dest_row, p->col_num);
+ }
+}
+
+
+void
+sm_copy_col(dest, dest_col, pcol)
+register sm_matrix *dest;
+int dest_col;
+sm_col *pcol;
+{
+ register sm_element *p;
+
+ for(p = pcol->first_row; p != 0; p = p->next_row) {
+ (void) sm_insert(dest, dest_col, p->row_num);
+ }
+}
+
+
+sm_row *
+sm_longest_row(A)
+sm_matrix *A;
+{
+ register sm_row *large_row, *prow;
+ register int max_length;
+
+ max_length = 0;
+ large_row = NIL(sm_row);
+ for(prow = A->first_row; prow != 0; prow = prow->next_row) {
+ if (prow->length > max_length) {
+ max_length = prow->length;
+ large_row = prow;
+ }
+ }
+ return large_row;
+}
+
+
+sm_col *
+sm_longest_col(A)
+sm_matrix *A;
+{
+ register sm_col *large_col, *pcol;
+ register int max_length;
+
+ max_length = 0;
+ large_col = NIL(sm_col);
+ for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) {
+ if (pcol->length > max_length) {
+ max_length = pcol->length;
+ large_col = pcol;
+ }
+ }
+ return large_col;
+}
+
+int
+sm_num_elements(A)
+sm_matrix *A;
+{
+ register sm_row *prow;
+ register int num;
+
+ num = 0;
+ sm_foreach_row(A, prow) {
+ num += prow->length;
+ }
+ return num;
+}
+
+int
+sm_read(fp, A)
+FILE *fp;
+sm_matrix **A;
+{
+ int i, j, err;
+
+ *A = sm_alloc();
+ while (! feof(fp)) {
+ err = fscanf(fp, "%d %d", &i, &j);
+ if (err == EOF) {
+ return 1;
+ } else if (err != 2) {
+ return 0;
+ }
+ (void) sm_insert(*A, i, j);
+ }
+ return 1;
+}
+
+
+int
+sm_read_compressed(fp, A)
+FILE *fp;
+sm_matrix **A;
+{
+ int i, j, k, nrows, ncols;
+ unsigned long x;
+
+ *A = sm_alloc();
+ if (fscanf(fp, "%d %d", &nrows, &ncols) != 2) {
+ return 0;
+ }
+ sm_resize(*A, nrows, ncols);
+
+ for(i = 0; i < nrows; i++) {
+ if (fscanf(fp, "%lx", &x) != 1) {
+ return 0;
+ }
+ for(j = 0; j < ncols; j += 32) {
+ if (fscanf(fp, "%lx", &x) != 1) {
+ return 0;
+ }
+ for(k = j; x != 0; x >>= 1, k++) {
+ if (x & 1) {
+ (void) sm_insert(*A, i, k);
+ }
+ }
+ }
+ }
+ return 1;
+}
+
+
+void
+sm_write(fp, A)
+FILE *fp;
+sm_matrix *A;
+{
+ register sm_row *prow;
+ register sm_element *p;
+
+ for(prow = A->first_row; prow != 0; prow = prow->next_row) {
+ for(p = prow->first_col; p != 0; p = p->next_col) {
+ (void) fprintf(fp, "%d %d\n", p->row_num, p->col_num);
+ }
+ }
+}
+
+void
+sm_print(fp, A)
+FILE *fp;
+sm_matrix *A;
+{
+ register sm_row *prow;
+ register sm_col *pcol;
+ int c;
+
+ if (A->last_col->col_num >= 100) {
+ (void) fprintf(fp, " ");
+ for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) {
+ (void) fprintf(fp, "%d", (pcol->col_num / 100)%10);
+ }
+ putc('\n', fp);
+ }
+
+ if (A->last_col->col_num >= 10) {
+ (void) fprintf(fp, " ");
+ for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) {
+ (void) fprintf(fp, "%d", (pcol->col_num / 10)%10);
+ }
+ putc('\n', fp);
+ }
+
+ (void) fprintf(fp, " ");
+ for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) {
+ (void) fprintf(fp, "%d", pcol->col_num % 10);
+ }
+ putc('\n', fp);
+
+ (void) fprintf(fp, " ");
+ for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) {
+ (void) fprintf(fp, "-");
+ }
+ putc('\n', fp);
+
+ for(prow = A->first_row; prow != 0; prow = prow->next_row) {
+ (void) fprintf(fp, "%3d:", prow->row_num);
+
+ for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) {
+ c = sm_row_find(prow, pcol->col_num) ? '1' : '.';
+ putc(c, fp);
+ }
+ putc('\n', fp);
+ }
+}
+
+
+void
+sm_dump(A, s, max)
+sm_matrix *A;
+char *s;
+int max;
+{
+ FILE *fp = stdout;
+
+ (void) fprintf(fp, "%s %d rows by %d cols\n", s, A->nrows, A->ncols);
+ if (A->nrows < max) {
+ sm_print(fp, A);
+ }
+}
+
+void
+sm_cleanup()
+{
+#ifdef FAST_AND_LOOSE
+ register sm_element *p, *pnext;
+ register sm_row *prow, *pnextrow;
+ register sm_col *pcol, *pnextcol;
+
+ for(p = sm_element_freelist; p != 0; p = pnext) {
+ pnext = p->next_col;
+ FREE(p);
+ }
+ sm_element_freelist = 0;
+
+ for(prow = sm_row_freelist; prow != 0; prow = pnextrow) {
+ pnextrow = prow->next_row;
+ FREE(prow);
+ }
+ sm_row_freelist = 0;
+
+ for(pcol = sm_col_freelist; pcol != 0; pcol = pnextcol) {
+ pnextcol = pcol->next_col;
+ FREE(pcol);
+ }
+ sm_col_freelist = 0;
+#endif
+}
diff --git a/src/misc/espresso/mincov.c b/src/misc/espresso/mincov.c
new file mode 100644
index 00000000..ee18a3f1
--- /dev/null
+++ b/src/misc/espresso/mincov.c
@@ -0,0 +1,378 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "mincov_int.h"
+
+/*
+ * mincov.c
+ */
+
+#define USE_GIMPEL
+#define USE_INDEP_SET
+
+static int select_column();
+static void select_essential();
+static int verify_cover();
+
+#define fail(why) {\
+ (void) fprintf(stderr, "Fatal error: file %s, line %d\n%s\n",\
+ __FILE__, __LINE__, why);\
+ (void) fflush(stdout);\
+ abort();\
+}
+
+sm_row *
+sm_minimum_cover(A, weight, heuristic, debug_level)
+sm_matrix *A;
+int *weight;
+int heuristic; /* set to 1 for a heuristic covering */
+int debug_level; /* how deep in the recursion to provide info */
+{
+ stats_t stats;
+ solution_t *best, *select;
+ sm_row *prow, *sol;
+ sm_col *pcol;
+ sm_matrix *dup_A;
+ int nelem, bound;
+ double sparsity;
+
+ /* Avoid sillyness */
+ if (A->nrows <= 0) {
+ return sm_row_alloc(); /* easy to cover */
+ }
+
+ /* Initialize debugging structure */
+ stats.start_time = util_cpu_time();
+ stats.debug = debug_level > 0;
+ stats.max_print_depth = debug_level;
+ stats.max_depth = -1;
+ stats.nodes = 0;
+ stats.component = stats.comp_count = 0;
+ stats.gimpel = stats.gimpel_count = 0;
+ stats.no_branching = heuristic != 0;
+ stats.lower_bound = -1;
+
+ /* Check the matrix sparsity */
+ nelem = 0;
+ sm_foreach_row(A, prow) {
+ nelem += prow->length;
+ }
+ sparsity = (double) nelem / (double) (A->nrows * A->ncols);
+
+ /* Determine an upper bound on the solution */
+ bound = 1;
+ sm_foreach_col(A, pcol) {
+ bound += WEIGHT(weight, pcol->col_num);
+ }
+
+ /* Perform the covering */
+ select = solution_alloc();
+ dup_A = sm_dup(A);
+ best = sm_mincov(dup_A, select, weight, 0, bound, 0, &stats);
+ sm_free(dup_A);
+ solution_free(select);
+
+ if (stats.debug) {
+ if (stats.no_branching) {
+ (void) printf("**** heuristic covering ...\n");
+ (void) printf("lower bound = %d\n", stats.lower_bound);
+ }
+ (void) printf("matrix = %d by %d with %d elements (%4.3f%%)\n",
+ A->nrows, A->ncols, nelem, sparsity * 100.0);
+ (void) printf("cover size = %d elements\n", best->row->length);
+ (void) printf("cover cost = %d\n", best->cost);
+ (void) printf("time = %s\n",
+ util_print_time(util_cpu_time() - stats.start_time));
+ (void) printf("components = %d\n", stats.comp_count);
+ (void) printf("gimpel = %d\n", stats.gimpel_count);
+ (void) printf("nodes = %d\n", stats.nodes);
+ (void) printf("max_depth = %d\n", stats.max_depth);
+ }
+
+ sol = sm_row_dup(best->row);
+ if (! verify_cover(A, sol)) {
+ fail("mincov: internal error -- cover verification failed\n");
+ }
+ solution_free(best);
+ return sol;
+}
+
+/*
+ * Find the best cover for 'A' (given that 'select' already selected);
+ *
+ * - abort search if a solution cannot be found which beats 'bound'
+ *
+ * - if any solution meets 'lower_bound', then it is the optimum solution
+ * and can be returned without further work.
+ */
+
+solution_t *
+sm_mincov(A, select, weight, lb, bound, depth, stats)
+sm_matrix *A;
+solution_t *select;
+int *weight;
+int lb;
+int bound;
+int depth;
+stats_t *stats;
+{
+ sm_matrix *A1, *A2, *L, *R;
+ sm_element *p;
+ solution_t *select1, *select2, *best, *best1, *best2, *indep;
+ int pick, lb_new, debug;
+
+ /* Start out with some debugging information */
+ stats->nodes++;
+ if (depth > stats->max_depth) stats->max_depth = depth;
+ debug = stats->debug && (depth <= stats->max_print_depth);
+
+ /* Apply row dominance, column dominance, and select essentials */
+ select_essential(A, select, weight, bound);
+ if (select->cost >= bound) {
+ return NIL(solution_t);
+ }
+
+ /* See if gimpel's reduction technique applies ... */
+#ifdef USE_GIMPEL
+ if ( weight == NIL(int)) { /* hack until we fix it */
+ if (gimpel_reduce(A, select, weight, lb, bound, depth, stats, &best)) {
+ return best;
+ }
+ }
+#endif
+
+#ifdef USE_INDEP_SET
+ /* Determine bound from here to final solution using independent-set */
+ indep = sm_maximal_independent_set(A, weight);
+
+ /* make sure the lower bound is monotonically increasing */
+ lb_new = MAX(select->cost + indep->cost, lb);
+ pick = select_column(A, weight, indep);
+ solution_free(indep);
+#else
+ lb_new = select->cost + (A->nrows > 0);
+ pick = select_column(A, weight, NIL(solution_t));
+#endif
+
+ if (depth == 0) {
+ stats->lower_bound = lb_new + stats->gimpel;
+ }
+
+ if (debug) {
+ (void) printf("ABSMIN[%2d]%s", depth, stats->component ? "*" : " ");
+ (void) printf(" %3dx%3d sel=%3d bnd=%3d lb=%3d %12s ",
+ A->nrows, A->ncols, select->cost + stats->gimpel,
+ bound + stats->gimpel, lb_new + stats->gimpel,
+ util_print_time(util_cpu_time()-stats->start_time));
+ }
+
+ /* Check for bounding based on no better solution possible */
+ if (lb_new >= bound) {
+ if (debug) (void) printf("bounded\n");
+ best = NIL(solution_t);
+
+
+ /* Check for new best solution */
+ } else if (A->nrows == 0) {
+ best = solution_dup(select);
+ if (debug) (void) printf("BEST\n");
+ if (stats->debug && stats->component == 0) {
+ (void) printf("new 'best' solution %d at level %d (time is %s)\n",
+ best->cost + stats->gimpel, depth,
+ util_print_time(util_cpu_time() - stats->start_time));
+ }
+
+
+ /* Check for a partition of the problem */
+ } else if (sm_block_partition(A, &L, &R)) {
+ /* Make L the smaller problem */
+ if (L->ncols > R->ncols) {
+ A1 = L;
+ L = R;
+ R = A1;
+ }
+ if (debug) (void) printf("comp %d %d\n", L->nrows, R->nrows);
+ stats->comp_count++;
+
+ /* Solve problem for L */
+ select1 = solution_alloc();
+ stats->component++;
+ best1 = sm_mincov(L, select1, weight, 0,
+ bound-select->cost, depth+1, stats);
+ stats->component--;
+ solution_free(select1);
+ sm_free(L);
+
+ /* Add best solution to the selected set */
+ if (best1 == NIL(solution_t)) {
+ best = NIL(solution_t);
+ } else {
+ for(p = best1->row->first_col; p != 0; p = p->next_col) {
+ solution_add(select, weight, p->col_num);
+ }
+ solution_free(best1);
+
+ /* recur for the remaining block */
+ best = sm_mincov(R, select, weight, lb_new, bound, depth+1, stats);
+ }
+ sm_free(R);
+
+ /* We've tried as hard as possible, but now we must split and recur */
+ } else {
+ if (debug) (void) printf("pick=%d\n", pick);
+
+ /* Assume we choose this column to be in the covering set */
+ A1 = sm_dup(A);
+ select1 = solution_dup(select);
+ solution_accept(select1, A1, weight, pick);
+ best1 = sm_mincov(A1, select1, weight, lb_new, bound, depth+1, stats);
+ solution_free(select1);
+ sm_free(A1);
+
+ /* Update the upper bound if we found a better solution */
+ if (best1 != NIL(solution_t) && bound > best1->cost) {
+ bound = best1->cost;
+ }
+
+ /* See if this is a heuristic covering (no branching) */
+ if (stats->no_branching) {
+ return best1;
+ }
+
+ /* Check for reaching lower bound -- if so, don't actually branch */
+ if (best1 != NIL(solution_t) && best1->cost == lb_new) {
+ return best1;
+ }
+
+ /* Now assume we cannot have that column */
+ A2 = sm_dup(A);
+ select2 = solution_dup(select);
+ solution_reject(select2, A2, weight, pick);
+ best2 = sm_mincov(A2, select2, weight, lb_new, bound, depth+1, stats);
+ solution_free(select2);
+ sm_free(A2);
+
+ best = solution_choose_best(best1, best2);
+ }
+
+ return best;
+}
+
+static int
+select_column(A, weight, indep)
+sm_matrix *A;
+int *weight;
+solution_t *indep;
+{
+ register sm_col *pcol;
+ register sm_row *prow, *indep_cols;
+ register sm_element *p, *p1;
+ double w, best;
+ int best_col;
+
+ indep_cols = sm_row_alloc();
+ if (indep != NIL(solution_t)) {
+ /* Find which columns are in the independent sets */
+ for(p = indep->row->first_col; p != 0; p = p->next_col) {
+ prow = sm_get_row(A, p->col_num);
+ for(p1 = prow->first_col; p1 != 0; p1 = p1->next_col) {
+ (void) sm_row_insert(indep_cols, p1->col_num);
+ }
+ }
+ } else {
+ /* select out of all columns */
+ sm_foreach_col(A, pcol) {
+ (void) sm_row_insert(indep_cols, pcol->col_num);
+ }
+ }
+
+ /* Find the best column */
+ best_col = -1;
+ best = -1;
+
+ /* Consider only columns which are in some independent row */
+ sm_foreach_row_element(indep_cols, p1) {
+ pcol = sm_get_col(A, p1->col_num);
+
+ /* Compute the total 'value' of all things covered by the column */
+ w = 0.0;
+ for(p = pcol->first_row; p != 0; p = p->next_row) {
+ prow = sm_get_row(A, p->row_num);
+ w += 1.0 / ((double) prow->length - 1.0);
+ }
+
+ /* divide this by the relative cost of choosing this column */
+ w = w / (double) WEIGHT(weight, pcol->col_num);
+
+ /* maximize this ratio */
+ if (w > best) {
+ best_col = pcol->col_num;
+ best = w;
+ }
+ }
+
+ sm_row_free(indep_cols);
+ return best_col;
+}
+
+static void
+select_essential(A, select, weight, bound)
+sm_matrix *A;
+solution_t *select;
+int *weight;
+int bound; /* must beat this solution */
+{
+ register sm_element *p;
+ register sm_row *prow, *essen;
+ int delcols, delrows, essen_count;
+
+ do {
+ /* Check for dominated columns */
+ delcols = sm_col_dominance(A, weight);
+
+ /* Find the rows with only 1 element (the essentials) */
+ essen = sm_row_alloc();
+ sm_foreach_row(A, prow) {
+ if (prow->length == 1) {
+ (void) sm_row_insert(essen, prow->first_col->col_num);
+ }
+ }
+
+ /* Select all of the elements */
+ sm_foreach_row_element(essen, p) {
+ solution_accept(select, A, weight, p->col_num);
+ /* Make sure solution still looks good */
+ if (select->cost >= bound) {
+ sm_row_free(essen);
+ return;
+ }
+ }
+ essen_count = essen->length;
+ sm_row_free(essen);
+
+ /* Check for dominated rows */
+ delrows = sm_row_dominance(A);
+
+ } while (delcols > 0 || delrows > 0 || essen_count > 0);
+}
+
+static int
+verify_cover(A, cover)
+sm_matrix *A;
+sm_row *cover;
+{
+ sm_row *prow;
+
+ sm_foreach_row(A, prow) {
+ if (! sm_row_intersects(prow, cover)) {
+ return 0;
+ }
+ }
+ return 1;
+}
diff --git a/src/misc/espresso/mincov.h b/src/misc/espresso/mincov.h
new file mode 100644
index 00000000..95310774
--- /dev/null
+++ b/src/misc/espresso/mincov.h
@@ -0,0 +1,11 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/* exported */
+extern sm_row *sm_minimum_cover();
diff --git a/src/misc/espresso/mincov_int.h b/src/misc/espresso/mincov_int.h
new file mode 100644
index 00000000..e81850f2
--- /dev/null
+++ b/src/misc/espresso/mincov_int.h
@@ -0,0 +1,55 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+//#include "port.h"
+//#include "utility.h"
+#include "sparse.h"
+#include "mincov.h"
+
+#include "util_hack.h" // added
+
+
+typedef struct stats_struct stats_t;
+struct stats_struct {
+ int debug; /* 1 if debugging is enabled */
+ int max_print_depth; /* dump stats for levels up to this level */
+ int max_depth; /* deepest the recursion has gone */
+ int nodes; /* total nodes visited */
+ int component; /* currently solving a component */
+ int comp_count; /* number of components detected */
+ int gimpel_count; /* number of times Gimpel reduction applied */
+ int gimpel; /* currently inside Gimpel reduction */
+ long start_time; /* cpu time when the covering started */
+ int no_branching;
+ int lower_bound;
+};
+
+
+
+typedef struct solution_struct solution_t;
+struct solution_struct {
+ sm_row *row;
+ int cost;
+};
+
+
+extern solution_t *solution_alloc();
+extern void solution_free();
+extern solution_t *solution_dup();
+extern void solution_accept();
+extern void solution_reject();
+extern void solution_add();
+extern solution_t *solution_choose_best();
+
+extern solution_t *sm_maximal_independent_set();
+extern solution_t *sm_mincov();
+extern int gimpel_reduce();
+
+
+#define WEIGHT(weight, col) (weight == NIL(int) ? 1 : weight[col])
diff --git a/src/misc/espresso/module.make b/src/misc/espresso/module.make
new file mode 100644
index 00000000..53ce982a
--- /dev/null
+++ b/src/misc/espresso/module.make
@@ -0,0 +1,39 @@
+SRC += src/misc/espresso/cofactor.c \
+ src/misc/espresso/cols.c \
+ src/misc/espresso/compl.c \
+ src/misc/espresso/contain.c \
+ src/misc/espresso/cubehack.c \
+ src/misc/espresso/cubestr.c \
+ src/misc/espresso/cvrin.c \
+ src/misc/espresso/cvrm.c \
+ src/misc/espresso/cvrmisc.c \
+ src/misc/espresso/cvrout.c \
+ src/misc/espresso/dominate.c \
+ src/misc/espresso/equiv.c \
+ src/misc/espresso/espresso.c \
+ src/misc/espresso/essen.c \
+ src/misc/espresso/exact.c \
+ src/misc/espresso/expand.c \
+ src/misc/espresso/gasp.c \
+ src/misc/espresso/gimpel.c \
+ src/misc/espresso/globals.c \
+ src/misc/espresso/hack.c \
+ src/misc/espresso/indep.c \
+ src/misc/espresso/irred.c \
+ src/misc/espresso/map.c \
+ src/misc/espresso/matrix.c \
+ src/misc/espresso/mincov.c \
+ src/misc/espresso/opo.c \
+ src/misc/espresso/pair.c \
+ src/misc/espresso/part.c \
+ src/misc/espresso/primes.c \
+ src/misc/espresso/reduce.c \
+ src/misc/espresso/rows.c \
+ src/misc/espresso/set.c \
+ src/misc/espresso/setc.c \
+ src/misc/espresso/sharp.c \
+ src/misc/espresso/sminterf.c \
+ src/misc/espresso/solution.c \
+ src/misc/espresso/sparse.c \
+ src/misc/espresso/unate.c \
+ src/misc/espresso/verify.c
diff --git a/src/misc/espresso/opo.c b/src/misc/espresso/opo.c
new file mode 100644
index 00000000..8daa0771
--- /dev/null
+++ b/src/misc/espresso/opo.c
@@ -0,0 +1,624 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+/*
+ * Phase assignment technique (T. Sasao):
+ *
+ * 1. create a function with 2*m outputs which implements the
+ * original function and its complement for each output
+ *
+ * 2. minimize this function
+ *
+ * 3. choose the minimum number of prime implicants from the
+ * result of step 2 which are needed to realize either a function
+ * or its complement for each output
+ *
+ * Step 3 is performed in a rather crude way -- by simply multiplying
+ * out a large expression of the form:
+ *
+ * I = (ab + cdef)(acd + bgh) ...
+ *
+ * which is a product of m expressions where each expression has two
+ * product terms -- one representing which primes are needed for the
+ * function, and one representing which primes are needed for the
+ * complement. The largest product term resulting shows which primes
+ * to keep to implement one function or the other for each output.
+ * For problems with many outputs, this may grind to a
+ * halt.
+ *
+ * Untried: form complement of I and use unate_complement ...
+ *
+ * I have unsuccessfully tried several modifications to the basic
+ * algorithm. The first is quite simple: use Sasao's technique, but
+ * only commit to a single output at a time (rather than all
+ * outputs). The goal would be that the later minimizations can "take
+ * into account" the partial assignment at each step. This is
+ * expensive (m+1 minimizations rather than 2), and the results are
+ * discouraging.
+ *
+ * The second modification is rather complicated. The result from the
+ * minimization in step 2 is guaranteed to be minimal. Hence, for
+ * each output, the set of primes with a 1 in that output are both
+ * necessary and sufficient to implement the function. Espresso
+ * achieves the minimality using the routine MAKE_SPARSE. The
+ * modification is to prevent MAKE_SPARSE from running. Hence, there
+ * are potentially many subsets of the set of primes with a 1 in a
+ * column which can be used to implement that output. We use
+ * IRREDUNDANT to enumerate all possible subsets and then proceed as
+ * before.
+ */
+
+static int opo_no_make_sparse;
+static int opo_repeated;
+static int opo_exact;
+static void minimize();
+
+void phase_assignment(PLA, opo_strategy)
+pPLA PLA;
+int opo_strategy;
+{
+ opo_no_make_sparse = opo_strategy % 2;
+ skip_make_sparse = opo_no_make_sparse;
+ opo_repeated = (opo_strategy / 2) % 2;
+ opo_exact = (opo_strategy / 4) % 2;
+
+ /* Determine a phase assignment */
+ if (PLA->phase != NULL) {
+ FREE(PLA->phase);
+ }
+
+ if (opo_repeated) {
+ PLA->phase = set_save(cube.fullset);
+ repeated_phase_assignment(PLA);
+ } else {
+ PLA->phase = find_phase(PLA, 0, (pcube) NULL);
+ }
+
+ /* Now minimize with this assignment */
+ skip_make_sparse = FALSE;
+ (void) set_phase(PLA);
+ minimize(PLA);
+}
+
+/*
+ * repeated_phase_assignment -- an alternate strategy which commits
+ * to a single phase assignment a step at a time. Performs m + 1
+ * minimizations !
+ */
+void repeated_phase_assignment(PLA)
+pPLA PLA;
+{
+ int i;
+ pcube phase;
+
+ for(i = 0; i < cube.part_size[cube.output]; i++) {
+
+ /* Find best assignment for all undecided outputs */
+ phase = find_phase(PLA, i, PLA->phase);
+
+ /* Commit for only a single output ... */
+ if (! is_in_set(phase, cube.first_part[cube.output] + i)) {
+ set_remove(PLA->phase, cube.first_part[cube.output] + i);
+ }
+
+ if (trace || summary) {
+ printf("\nOPO loop for output #%d\n", i);
+ printf("PLA->phase is %s\n", pc1(PLA->phase));
+ printf("phase is %s\n", pc1(phase));
+ }
+ set_free(phase);
+ }
+}
+
+
+/*
+ * find_phase -- find a phase assignment for the PLA for all outputs starting
+ * with output number first_output.
+ */
+pcube find_phase(PLA, first_output, phase1)
+pPLA PLA;
+int first_output;
+pcube phase1;
+{
+ pcube phase;
+ pPLA PLA1;
+
+ phase = set_save(cube.fullset);
+
+ /* setup the double-phase characteristic function, resize the cube */
+ PLA1 = new_PLA();
+ PLA1->F = sf_save(PLA->F);
+ PLA1->R = sf_save(PLA->R);
+ PLA1->D = sf_save(PLA->D);
+ if (phase1 != NULL) {
+ PLA1->phase = set_save(phase1);
+ (void) set_phase(PLA1);
+ }
+ EXEC_S(output_phase_setup(PLA1, first_output), "OPO-SETUP ", PLA1->F);
+
+ /* minimize the double-phase function */
+ minimize(PLA1);
+
+ /* set the proper phases according to what gives a minimum solution */
+ EXEC_S(PLA1->F = opo(phase, PLA1->F, PLA1->D, PLA1->R, first_output),
+ "OPO ", PLA1->F);
+ free_PLA(PLA1);
+
+ /* set the cube structure to reflect the old size */
+ setdown_cube();
+ cube.part_size[cube.output] -=
+ (cube.part_size[cube.output] - first_output) / 2;
+ cube_setup();
+
+ return phase;
+}
+
+/*
+ * opo -- multiply the expression out to determine a minimum subset of
+ * primes.
+ */
+
+/*ARGSUSED*/
+pcover opo(phase, T, D, R, first_output)
+pcube phase;
+pcover T, D, R;
+int first_output;
+{
+ int offset, output, i, last_output, ind;
+ pset pdest, select, p, p1, last, last1, not_covered, tmp;
+ pset_family temp, T1, T2;
+
+ /* must select all primes for outputs [0 .. first_output-1] */
+ select = set_full(T->count);
+ for(output = 0; output < first_output; output++) {
+ ind = cube.first_part[cube.output] + output;
+ foreachi_set(T, i, p) {
+ if (is_in_set(p, ind)) {
+ set_remove(select, i);
+ }
+ }
+ }
+
+ /* Recursively perform the intersections */
+ offset = (cube.part_size[cube.output] - first_output) / 2;
+ last_output = first_output + offset - 1;
+ temp = opo_recur(T, D, select, offset, first_output, last_output);
+
+ /* largest set is on top -- select primes which are inferred from it */
+ pdest = temp->data;
+ T1 = new_cover(T->count);
+ foreachi_set(T, i, p) {
+ if (! is_in_set(pdest, i)) {
+ T1 = sf_addset(T1, p);
+ }
+ }
+
+ set_free(select);
+ sf_free(temp);
+
+ /* finding phases is difficult -- see which functions are not covered */
+ T2 = complement(cube1list(T1));
+ not_covered = new_cube();
+ tmp = new_cube();
+ foreach_set(T, last, p) {
+ foreach_set(T2, last1, p1) {
+ if (cdist0(p, p1)) {
+ (void) set_or(not_covered, not_covered, set_and(tmp, p, p1));
+ }
+ }
+ }
+ free_cover(T);
+ free_cover(T2);
+ set_free(tmp);
+
+ /* Now reflect the phase choice in a single cube */
+ for(output = first_output; output <= last_output; output++) {
+ ind = cube.first_part[cube.output] + output;
+ if (is_in_set(not_covered, ind)) {
+ if (is_in_set(not_covered, ind + offset)) {
+ fatal("error in output phase assignment");
+ } else {
+ set_remove(phase, ind);
+ }
+ }
+ }
+ set_free(not_covered);
+ return T1;
+}
+
+pset_family opo_recur(T, D, select, offset, first, last)
+pcover T, D;
+pcube select;
+int offset, first, last;
+{
+ static int level = 0;
+ int middle;
+ pset_family sl, sr, temp;
+
+ level++;
+ if (first == last) {
+#if 0
+ if (opo_no_make_sparse) {
+ temp = form_cover_table(T, D, select, first, first + offset);
+ } else {
+ temp = opo_leaf(T, select, first, first + offset);
+ }
+#else
+ temp = opo_leaf(T, select, first, first + offset);
+#endif
+ } else {
+ middle = (first + last) / 2;
+ sl = opo_recur(T, D, select, offset, first, middle);
+ sr = opo_recur(T, D, select, offset, middle+1, last);
+ temp = unate_intersect(sl, sr, level == 1);
+ if (trace) {
+ printf("# OPO[%d]: %4d = %4d x %4d, time = %s\n", level - 1,
+ temp->count, sl->count, sr->count, print_time(ptime()));
+ (void) fflush(stdout);
+ }
+ free_cover(sl);
+ free_cover(sr);
+ }
+ level--;
+ return temp;
+}
+
+
+pset_family opo_leaf(T, select, out1, out2)
+register pcover T;
+pset select;
+int out1, out2;
+{
+ register pset_family temp;
+ register pset p, pdest;
+ register int i;
+
+ out1 += cube.first_part[cube.output];
+ out2 += cube.first_part[cube.output];
+
+ /* Allocate space for the result */
+ temp = sf_new(2, T->count);
+
+ /* Find which primes are needed for the ON-set of this fct */
+ pdest = GETSET(temp, temp->count++);
+ (void) set_copy(pdest, select);
+ foreachi_set(T, i, p) {
+ if (is_in_set(p, out1)) {
+ set_remove(pdest, i);
+ }
+ }
+
+ /* Find which primes are needed for the OFF-set of this fct */
+ pdest = GETSET(temp, temp->count++);
+ (void) set_copy(pdest, select);
+ foreachi_set(T, i, p) {
+ if (is_in_set(p, out2)) {
+ set_remove(pdest, i);
+ }
+ }
+
+ return temp;
+}
+
+#if 0
+pset_family form_cover_table(F, D, select, f, fbar)
+pcover F, D;
+pset select;
+int f, fbar; /* indices of f and fbar in the output part */
+{
+ register int i;
+ register pcube p;
+ pset_family f_table, fbar_table;
+
+ /* setup required for fcube_is_covered */
+ Rp_size = F->count;
+ Rp_start = set_new(Rp_size);
+ foreachi_set(F, i, p) {
+ PUTSIZE(p, i);
+ }
+ foreachi_set(D, i, p) {
+ RESET(p, REDUND);
+ }
+
+ f_table = find_covers(F, D, select, f);
+ fbar_table = find_covers(F, D, select, fbar);
+ f_table = sf_append(f_table, fbar_table);
+
+ set_free(Rp_start);
+ return f_table;
+}
+
+
+pset_family find_covers(F, D, select, n)
+pcover F, D;
+register pset select;
+int n;
+{
+ register pset p, last, new;
+ pcover F1;
+ pcube *Flist;
+ pset_family f_table, table;
+ int i;
+
+ n += cube.first_part[cube.output];
+
+ /* save cubes in this output, and remove the output variable */
+ F1 = new_cover(F->count);
+ foreach_set(F, last, p)
+ if (is_in_set(p, n)) {
+ new = GETSET(F1, F1->count++);
+ set_or(new, p, cube.var_mask[cube.output]);
+ PUTSIZE(new, SIZE(p));
+ SET(new, REDUND);
+ }
+
+ /* Find ways (sop form) to fail to cover output indexed by n */
+ Flist = cube2list(F1, D);
+ table = sf_new(10, Rp_size);
+ foreach_set(F1, last, p) {
+ set_fill(Rp_start, Rp_size);
+ set_remove(Rp_start, SIZE(p));
+ table = sf_append(table, fcube_is_covered(Flist, p));
+ RESET(p, REDUND);
+ }
+ set_fill(Rp_start, Rp_size);
+ foreach_set(table, last, p) {
+ set_diff(p, Rp_start, p);
+ }
+
+ /* complement this to get possible ways to cover the function */
+ for(i = 0; i < Rp_size; i++) {
+ if (! is_in_set(select, i)) {
+ p = set_new(Rp_size);
+ set_insert(p, i);
+ table = sf_addset(table, p);
+ set_free(p);
+ }
+ }
+ f_table = unate_compl(table);
+
+ /* what a pain, but we need bitwise complement of this */
+ set_fill(Rp_start, Rp_size);
+ foreach_set(f_table, last, p) {
+ set_diff(p, Rp_start, p);
+ }
+
+ free_cubelist(Flist);
+ sf_free(F1);
+ return f_table;
+}
+#endif
+
+/*
+ * Take a PLA (ON-set, OFF-set and DC-set) and create the
+ * "double-phase characteristic function" which is merely a new
+ * function which has twice as many outputs and realizes both the
+ * function and the complement.
+ *
+ * The cube structure is assumed to represent the PLA upon entering.
+ * It will be modified to represent the double-phase function upon
+ * exit.
+ *
+ * Only the outputs numbered starting with "first_output" are
+ * duplicated in the output part
+ */
+
+output_phase_setup(PLA, first_output)
+INOUT pPLA PLA;
+int first_output;
+{
+ pcover F, R, D;
+ pcube mask, mask1, last;
+ int first_part, offset;
+ bool save;
+ register pcube p, pr, pf;
+ register int i, last_part;
+
+ if (cube.output == -1)
+ fatal("output_phase_setup: must have an output");
+
+ F = PLA->F;
+ D = PLA->D;
+ R = PLA->R;
+ first_part = cube.first_part[cube.output] + first_output;
+ last_part = cube.last_part[cube.output];
+ offset = cube.part_size[cube.output] - first_output;
+
+ /* Change the output size, setup the cube structure */
+ setdown_cube();
+ cube.part_size[cube.output] += offset;
+ cube_setup();
+
+ /* Create a mask to select that part of the cube which isn't changing */
+ mask = set_save(cube.fullset);
+ for(i = first_part; i < cube.size; i++)
+ set_remove(mask, i);
+ mask1 = set_save(mask);
+ for(i = cube.first_part[cube.output]; i < first_part; i++) {
+ set_remove(mask1, i);
+ }
+
+ PLA->F = new_cover(F->count + R->count);
+ PLA->R = new_cover(F->count + R->count);
+ PLA->D = new_cover(D->count);
+
+ foreach_set(F, last, p) {
+ pf = GETSET(PLA->F, (PLA->F)->count++);
+ pr = GETSET(PLA->R, (PLA->R)->count++);
+ INLINEset_and(pf, mask, p);
+ INLINEset_and(pr, mask1, p);
+ for(i = first_part; i <= last_part; i++)
+ if (is_in_set(p, i))
+ set_insert(pf, i);
+ save = FALSE;
+ for(i = first_part; i <= last_part; i++)
+ if (is_in_set(p, i))
+ save = TRUE, set_insert(pr, i+offset);
+ if (! save) PLA->R->count--;
+ }
+
+ foreach_set(R, last, p) {
+ pf = GETSET(PLA->F, (PLA->F)->count++);
+ pr = GETSET(PLA->R, (PLA->R)->count++);
+ INLINEset_and(pf, mask1, p);
+ INLINEset_and(pr, mask, p);
+ save = FALSE;
+ for(i = first_part; i <= last_part; i++)
+ if (is_in_set(p, i))
+ save = TRUE, set_insert(pf, i+offset);
+ if (! save) PLA->F->count--;
+ for(i = first_part; i <= last_part; i++)
+ if (is_in_set(p, i))
+ set_insert(pr, i);
+ }
+
+ foreach_set(D, last, p) {
+ pf = GETSET(PLA->D, (PLA->D)->count++);
+ INLINEset_and(pf, mask, p);
+ for(i = first_part; i <= last_part; i++)
+ if (is_in_set(p, i)) {
+ set_insert(pf, i);
+ set_insert(pf, i+offset);
+ }
+ }
+
+ free_cover(F);
+ free_cover(D);
+ free_cover(R);
+ set_free(mask);
+ set_free(mask1);
+}
+
+/*
+ * set_phase -- given a "cube" which describes which phases of the output
+ * are to be implemented, compute the appropriate on-set and off-set
+ */
+pPLA set_phase(PLA)
+INOUT pPLA PLA;
+{
+ pcover F1, R1;
+ register pcube last, p, outmask;
+ register pcube temp=cube.temp[0], phase=PLA->phase, phase1=cube.temp[1];
+
+ outmask = cube.var_mask[cube.num_vars - 1];
+ set_diff(phase1, outmask, phase);
+ set_or(phase1, set_diff(temp, cube.fullset, outmask), phase1);
+ F1 = new_cover((PLA->F)->count + (PLA->R)->count);
+ R1 = new_cover((PLA->F)->count + (PLA->R)->count);
+
+ foreach_set(PLA->F, last, p) {
+ if (! setp_disjoint(set_and(temp, p, phase), outmask))
+ set_copy(GETSET(F1, F1->count++), temp);
+ if (! setp_disjoint(set_and(temp, p, phase1), outmask))
+ set_copy(GETSET(R1, R1->count++), temp);
+ }
+ foreach_set(PLA->R, last, p) {
+ if (! setp_disjoint(set_and(temp, p, phase), outmask))
+ set_copy(GETSET(R1, R1->count++), temp);
+ if (! setp_disjoint(set_and(temp, p, phase1), outmask))
+ set_copy(GETSET(F1, F1->count++), temp);
+ }
+ free_cover(PLA->F);
+ free_cover(PLA->R);
+ PLA->F = F1;
+ PLA->R = R1;
+ return PLA;
+}
+
+#define POW2(x) (1 << (x))
+
+void opoall(PLA, first_output, last_output, opo_strategy)
+pPLA PLA;
+int first_output, last_output;
+int opo_strategy;
+{
+ pcover F, D, R, best_F, best_D, best_R;
+ int i, j, ind, num;
+ pcube bestphase;
+
+ opo_exact = opo_strategy;
+
+ if (PLA->phase != NULL) {
+ set_free(PLA->phase);
+ }
+
+ bestphase = set_save(cube.fullset);
+ best_F = sf_save(PLA->F);
+ best_D = sf_save(PLA->D);
+ best_R = sf_save(PLA->R);
+
+ for(i = 0; i < POW2(last_output - first_output + 1); i++) {
+
+ /* save the initial PLA covers */
+ F = sf_save(PLA->F);
+ D = sf_save(PLA->D);
+ R = sf_save(PLA->R);
+
+ /* compute the phase cube for this iteration */
+ PLA->phase = set_save(cube.fullset);
+ num = i;
+ for(j = last_output; j >= first_output; j--) {
+ if (num % 2 == 0) {
+ ind = cube.first_part[cube.output] + j;
+ set_remove(PLA->phase, ind);
+ }
+ num /= 2;
+ }
+
+ /* set the phase and minimize */
+ (void) set_phase(PLA);
+ printf("# phase is %s\n", pc1(PLA->phase));
+ summary = TRUE;
+ minimize(PLA);
+
+ /* see if this is the best so far */
+ if (PLA->F->count < best_F->count) {
+ /* save new best solution */
+ set_copy(bestphase, PLA->phase);
+ sf_free(best_F);
+ sf_free(best_D);
+ sf_free(best_R);
+ best_F = PLA->F;
+ best_D = PLA->D;
+ best_R = PLA->R;
+ } else {
+ /* throw away the solution */
+ free_cover(PLA->F);
+ free_cover(PLA->D);
+ free_cover(PLA->R);
+ }
+ set_free(PLA->phase);
+
+ /* restore the initial PLA covers */
+ PLA->F = F;
+ PLA->D = D;
+ PLA->R = R;
+ }
+
+ /* one more minimization to restore the best answer */
+ PLA->phase = bestphase;
+ sf_free(PLA->F);
+ sf_free(PLA->D);
+ sf_free(PLA->R);
+ PLA->F = best_F;
+ PLA->D = best_D;
+ PLA->R = best_R;
+}
+
+static void minimize(PLA)
+pPLA PLA;
+{
+ if (opo_exact) {
+ EXEC_S(PLA->F = minimize_exact(PLA->F,PLA->D,PLA->R,1), "EXACT", PLA->F);
+ } else {
+ EXEC_S(PLA->F = espresso(PLA->F, PLA->D, PLA->R), "ESPRESSO ",PLA->F);
+ }
+}
diff --git a/src/misc/espresso/pair.c b/src/misc/espresso/pair.c
new file mode 100644
index 00000000..a8077176
--- /dev/null
+++ b/src/misc/espresso/pair.c
@@ -0,0 +1,675 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+void set_pair(PLA)
+pPLA PLA;
+{
+ set_pair1(PLA, TRUE);
+}
+
+void set_pair1(PLA, adjust_labels)
+pPLA PLA;
+bool adjust_labels;
+{
+ int i, var, *paired, newvar;
+ int old_num_vars, old_num_binary_vars, old_size, old_mv_start;
+ int *new_part_size, new_num_vars, new_num_binary_vars, new_mv_start;
+ ppair pair = PLA->pair;
+ char scratch[1000], **oldlabel, *var1, *var1bar, *var2, *var2bar;
+
+ if (adjust_labels)
+ makeup_labels(PLA);
+
+ /* Check the pair structure for valid entries and see which binary
+ variables are left unpaired
+ */
+ paired = ALLOC(bool, cube.num_binary_vars);
+ for(var = 0; var < cube.num_binary_vars; var++)
+ paired[var] = FALSE;
+ for(i = 0; i < pair->cnt; i++)
+ if ((pair->var1[i] > 0 && pair->var1[i] <= cube.num_binary_vars) &&
+ (pair->var2[i] > 0 && pair->var2[i] <= cube.num_binary_vars)) {
+ paired[pair->var1[i]-1] = TRUE;
+ paired[pair->var2[i]-1] = TRUE;
+ } else
+ fatal("can only pair binary-valued variables");
+
+ PLA->F = delvar(pairvar(PLA->F, pair), paired);
+ PLA->R = delvar(pairvar(PLA->R, pair), paired);
+ PLA->D = delvar(pairvar(PLA->D, pair), paired);
+
+ /* Now painfully adjust the cube size */
+ old_size = cube.size;
+ old_num_vars = cube.num_vars;
+ old_num_binary_vars = cube.num_binary_vars;
+ old_mv_start = cube.first_part[cube.num_binary_vars];
+ /* Create the new cube.part_size vector and setup the cube structure */
+ new_num_binary_vars = 0;
+ for(var = 0; var < old_num_binary_vars; var++)
+ new_num_binary_vars += (paired[var] == FALSE);
+ new_num_vars = new_num_binary_vars + pair->cnt;
+ new_num_vars += old_num_vars - old_num_binary_vars;
+ new_part_size = ALLOC(int, new_num_vars);
+ for(var = 0; var < pair->cnt; var++)
+ new_part_size[new_num_binary_vars + var] = 4;
+ for(var = 0; var < old_num_vars - old_num_binary_vars; var++)
+ new_part_size[new_num_binary_vars + pair->cnt + var] =
+ cube.part_size[old_num_binary_vars + var];
+ setdown_cube();
+ FREE(cube.part_size);
+ cube.num_vars = new_num_vars;
+ cube.num_binary_vars = new_num_binary_vars;
+ cube.part_size = new_part_size;
+ cube_setup();
+
+ /* hack with the labels to get them correct */
+ if (adjust_labels) {
+ oldlabel = PLA->label;
+ PLA->label = ALLOC(char *, cube.size);
+ for(var = 0; var < pair->cnt; var++) {
+ newvar = cube.num_binary_vars*2 + var*4;
+ var1 = oldlabel[ (pair->var1[var]-1) * 2 + 1];
+ var2 = oldlabel[ (pair->var2[var]-1) * 2 + 1];
+ var1bar = oldlabel[ (pair->var1[var]-1) * 2];
+ var2bar = oldlabel[ (pair->var2[var]-1) * 2];
+ (void) sprintf(scratch, "%s+%s", var1bar, var2bar);
+ PLA->label[newvar] = util_strsav(scratch);
+ (void) sprintf(scratch, "%s+%s", var1bar, var2);
+ PLA->label[newvar+1] = util_strsav(scratch);
+ (void) sprintf(scratch, "%s+%s", var1, var2bar);
+ PLA->label[newvar+2] = util_strsav(scratch);
+ (void) sprintf(scratch, "%s+%s", var1, var2);
+ PLA->label[newvar+3] = util_strsav(scratch);
+ }
+ /* Copy the old labels for the unpaired binary vars */
+ i = 0;
+ for(var = 0; var < old_num_binary_vars; var++) {
+ if (paired[var] == FALSE) {
+ PLA->label[2*i] = oldlabel[2*var];
+ PLA->label[2*i+1] = oldlabel[2*var+1];
+ oldlabel[2*var] = oldlabel[2*var+1] = (char *) NULL;
+ i++;
+ }
+ }
+ /* Copy the old labels for the remaining unpaired vars */
+ new_mv_start = cube.num_binary_vars*2 + pair->cnt*4;
+ for(i = old_mv_start; i < old_size; i++) {
+ PLA->label[new_mv_start + i - old_mv_start] = oldlabel[i];
+ oldlabel[i] = (char *) NULL;
+ }
+ /* free remaining entries in oldlabel */
+ for(i = 0; i < old_size; i++)
+ if (oldlabel[i] != (char *) NULL)
+ FREE(oldlabel[i]);
+ FREE(oldlabel);
+ }
+
+ /* the paired variables should not be sparse (cf. mv_reduce/raise_in)*/
+ for(var = 0; var < pair->cnt; var++)
+ cube.sparse[cube.num_binary_vars + var] = 0;
+ FREE(paired);
+}
+
+pcover pairvar(A, pair)
+pcover A;
+ppair pair;
+{
+ register pcube last, p;
+ register int val, p1, p2, b1, b0;
+ int insert_col, pairnum;
+
+ insert_col = cube.first_part[cube.num_vars - 1];
+
+ /* stretch the cover matrix to make room for the paired variables */
+ A = sf_delcol(A, insert_col, -4*pair->cnt);
+
+ /* compute the paired values */
+ foreach_set(A, last, p) {
+ for(pairnum = 0; pairnum < pair->cnt; pairnum++) {
+ p1 = cube.first_part[pair->var1[pairnum] - 1];
+ p2 = cube.first_part[pair->var2[pairnum] - 1];
+ b1 = is_in_set(p, p2+1);
+ b0 = is_in_set(p, p2);
+ val = insert_col + pairnum * 4;
+ if (/* a0 */ is_in_set(p, p1)) {
+ if (b0)
+ set_insert(p, val + 3);
+ if (b1)
+ set_insert(p, val + 2);
+ }
+ if (/* a1 */ is_in_set(p, p1+1)) {
+ if (b0)
+ set_insert(p, val + 1);
+ if (b1)
+ set_insert(p, val);
+ }
+ }
+ }
+ return A;
+}
+
+
+/* delvar -- delete variables from A, minimize the number of column shifts */
+pcover delvar(A, paired)
+pcover A;
+bool paired[];
+{
+ bool run;
+ int first_run, run_length, var, offset = 0;
+
+ run = FALSE; run_length = 0;
+ for(var = 0; var < cube.num_binary_vars; var++)
+ if (paired[var])
+ if (run)
+ run_length += cube.part_size[var];
+ else {
+ run = TRUE;
+ first_run = cube.first_part[var];
+ run_length = cube.part_size[var];
+ }
+ else
+ if (run) {
+ A = sf_delcol(A, first_run-offset, run_length);
+ run = FALSE;
+ offset += run_length;
+ }
+ if (run)
+ A = sf_delcol(A, first_run-offset, run_length);
+ return A;
+}
+
+/*
+ find_optimal_pairing -- find which binary variables should be paired
+ to maximally reduce the number of terms
+
+ This is essentially the technique outlined by T. Sasao in the
+ Trans. on Comp., Oct 1984. We estimate the cost of pairing each
+ pair individually using 1 of 4 strategies: (1) algebraic division
+ of F by the pair (exactly T. Sasao technique); (2) strong division
+ of F by the paired variables (using REDUCE/EXPAND/ IRREDUNDANT from
+ espresso); (3) full minimization using espresso; (4) exact
+ minimization. These are in order of both increasing accuracy and
+ increasing difficulty (!)
+
+ Once the n squared pairs have been evaluated, T. Sasao proposes a
+ graph covering of nodes by disjoint edges. For now, I solve this
+ problem exhaustively (complexity = (n-1)*(n-3)*...*3*1 for n
+ variables when n is even). Note that solving this problem exactly
+ is the same as evaluating the cost function for all possible
+ pairings.
+
+ n pairs
+
+ 1, 2 1
+ 3, 4 3
+ 5, 6 15
+ 7, 8 105
+ 9,10 945
+ 11,12 10,395
+ 13,14 135,135
+ 15,16 2,027,025
+ 17,18 34,459,425
+ 19,20 654,729,075
+*/
+void find_optimal_pairing(PLA, strategy)
+pPLA PLA;
+int strategy;
+{
+ int i, j, **cost_array;
+
+ cost_array = find_pairing_cost(PLA, strategy);
+
+ if (summary) {
+ printf(" ");
+ for(i = 0; i < cube.num_binary_vars; i++)
+ printf("%3d ", i+1);
+ printf("\n");
+ for(i = 0; i < cube.num_binary_vars; i++) {
+ printf("%3d ", i+1);
+ for(j = 0; j < cube.num_binary_vars; j++)
+ printf("%3d ", cost_array[i][j]);
+ printf("\n");
+ }
+ }
+
+ if (cube.num_binary_vars <= 14) {
+ PLA->pair = pair_best_cost(cost_array);
+ } else {
+ (void) greedy_best_cost(cost_array, &(PLA->pair));
+ }
+ printf("# ");
+ print_pair(PLA->pair);
+
+ for(i = 0; i < cube.num_binary_vars; i++)
+ FREE(cost_array[i]);
+ FREE(cost_array);
+
+ set_pair(PLA);
+ EXEC_S(PLA->F=espresso(PLA->F,PLA->D,PLA->R),"ESPRESSO ",PLA->F);
+}
+
+int **find_pairing_cost(PLA, strategy)
+pPLA PLA;
+int strategy;
+{
+ int var1, var2, **cost_array;
+ int i, j, xnum_binary_vars, xnum_vars, *xpart_size, cost;
+ pcover T, Fsave, Dsave, Rsave;
+ pset mask;
+/* char *s;*/
+
+ /* data is returned in the cost array */
+ cost_array = ALLOC(int *, cube.num_binary_vars);
+ for(i = 0; i < cube.num_binary_vars; i++)
+ cost_array[i] = ALLOC(int, cube.num_binary_vars);
+ for(i = 0; i < cube.num_binary_vars; i++)
+ for(j = 0; j < cube.num_binary_vars; j++)
+ cost_array[i][j] = 0;
+
+ /* Setup the pair structure for pairing variables together */
+ PLA->pair = pair_new(1);
+ PLA->pair->cnt = 1;
+
+ for(var1 = 0; var1 < cube.num_binary_vars-1; var1++) {
+ for(var2 = var1+1; var2 < cube.num_binary_vars; var2++) {
+ /* if anything but simple strategy, perform setup */
+ if (strategy > 0) {
+ /* save the original covers */
+ Fsave = sf_save(PLA->F);
+ Dsave = sf_save(PLA->D);
+ Rsave = sf_save(PLA->R);
+
+ /* save the original cube structure */
+ xnum_binary_vars = cube.num_binary_vars;
+ xnum_vars = cube.num_vars;
+ xpart_size = ALLOC(int, cube.num_vars);
+ for(i = 0; i < cube.num_vars; i++)
+ xpart_size[i] = cube.part_size[i];
+
+ /* pair two variables together */
+ PLA->pair->var1[0] = var1 + 1;
+ PLA->pair->var2[0] = var2 + 1;
+ set_pair1(PLA, /* adjust_labels */ FALSE);
+ }
+
+
+ /* decide how to best estimate worth of this pairing */
+ switch(strategy) {
+ case 3:
+ /*s = "exact minimization";*/
+ PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, 1);
+ cost = Fsave->count - PLA->F->count;
+ break;
+ case 2:
+ /*s = "full minimization";*/
+ PLA->F = espresso(PLA->F, PLA->D, PLA->R);
+ cost = Fsave->count - PLA->F->count;
+ break;
+ case 1:
+ /*s = "strong division";*/
+ PLA->F = reduce(PLA->F, PLA->D);
+ PLA->F = expand(PLA->F, PLA->R, FALSE);
+ PLA->F = irredundant(PLA->F, PLA->D);
+ cost = Fsave->count - PLA->F->count;
+ break;
+ case 0:
+ /*s = "weak division";*/
+ mask = new_cube();
+ set_or(mask, cube.var_mask[var1], cube.var_mask[var2]);
+ T = dist_merge(sf_save(PLA->F), mask);
+ cost = PLA->F->count - T->count;
+ sf_free(T);
+ set_free(mask);
+ }
+
+ cost_array[var1][var2] = cost;
+
+ if (strategy > 0) {
+ /* restore the original cube structure -- free the new ones */
+ setdown_cube();
+ FREE(cube.part_size);
+ cube.num_binary_vars = xnum_binary_vars;
+ cube.num_vars = xnum_vars;
+ cube.part_size = xpart_size;
+ cube_setup();
+
+ /* restore the original cover(s) -- free the new ones */
+ sf_free(PLA->F);
+ sf_free(PLA->D);
+ sf_free(PLA->R);
+ PLA->F = Fsave;
+ PLA->D = Dsave;
+ PLA->R = Rsave;
+ }
+ }
+ }
+
+ pair_free(PLA->pair);
+ PLA->pair = NULL;
+ return cost_array;
+}
+
+static int best_cost;
+static int **cost_array;
+static ppair best_pair;
+static pset best_phase;
+static pPLA global_PLA;
+static pcover best_F, best_D, best_R;
+static int pair_minim_strategy;
+
+
+print_pair(pair)
+ppair pair;
+{
+ int i;
+
+ printf("pair is");
+ for(i = 0; i < pair->cnt; i++)
+ printf (" (%d %d)", pair->var1[i], pair->var2[i]);
+ printf("\n");
+}
+
+
+int greedy_best_cost(cost_array_local, pair_p)
+int **cost_array_local;
+ppair *pair_p;
+{
+ int i, j, besti, bestj, maxcost, total_cost;
+ pset cand;
+ ppair pair;
+
+ pair = pair_new(cube.num_binary_vars);
+ cand = set_full(cube.num_binary_vars);
+ total_cost = 0;
+
+ while (set_ord(cand) >= 2) {
+ maxcost = -1;
+ for(i = 0; i < cube.num_binary_vars; i++) {
+ if (is_in_set(cand, i)) {
+ for(j = i+1; j < cube.num_binary_vars; j++) {
+ if (is_in_set(cand, j)) {
+ if (cost_array_local[i][j] > maxcost) {
+ maxcost = cost_array_local[i][j];
+ besti = i;
+ bestj = j;
+ }
+ }
+ }
+ }
+ }
+ pair->var1[pair->cnt] = besti+1;
+ pair->var2[pair->cnt] = bestj+1;
+ pair->cnt++;
+ set_remove(cand, besti);
+ set_remove(cand, bestj);
+ total_cost += maxcost;
+ }
+ set_free(cand);
+ *pair_p = pair;
+ return total_cost;
+}
+
+
+ppair pair_best_cost(cost_array_local)
+int **cost_array_local;
+{
+ ppair pair;
+ pset candidate;
+
+ best_cost = -1;
+ best_pair = NULL;
+ cost_array = cost_array_local;
+
+ pair = pair_new(cube.num_binary_vars);
+ candidate = set_full(cube.num_binary_vars);
+ generate_all_pairs(pair, cube.num_binary_vars, candidate, find_best_cost);
+ pair_free(pair);
+ set_free(candidate);
+ return best_pair;
+}
+
+
+int find_best_cost(pair)
+register ppair pair;
+{
+ register int i, cost;
+
+ cost = 0;
+ for(i = 0; i < pair->cnt; i++)
+ cost += cost_array[pair->var1[i]-1][pair->var2[i]-1];
+ if (cost > best_cost) {
+ best_cost = cost;
+ best_pair = pair_save(pair, pair->cnt);
+ }
+ if ((debug & MINCOV) && trace) {
+ printf("cost is %d ", cost);
+ print_pair(pair);
+ }
+}
+
+/*
+ pair_all: brute-force approach to try all possible pairings
+
+ pair_strategy is:
+ 2) for espresso
+ 3) for minimize_exact
+ 4) for phase assignment
+*/
+
+pair_all(PLA, pair_strategy)
+pPLA PLA;
+int pair_strategy;
+{
+ ppair pair;
+ pset candidate;
+
+ global_PLA = PLA;
+ pair_minim_strategy = pair_strategy;
+ best_cost = PLA->F->count + 1;
+ best_pair = NULL;
+ best_phase = NULL;
+ best_F = best_D = best_R = NULL;
+ pair = pair_new(cube.num_binary_vars);
+ candidate = set_fill(set_new(cube.num_binary_vars), cube.num_binary_vars);
+
+ generate_all_pairs(pair, cube.num_binary_vars, candidate, minimize_pair);
+
+ pair_free(pair);
+ set_free(candidate);
+
+ PLA->pair = best_pair;
+ PLA->phase = best_phase;
+/* not really necessary
+ if (phase != NULL)
+ (void) set_phase(PLA->phase);
+*/
+ set_pair(PLA);
+ printf("# ");
+ print_pair(PLA->pair);
+
+ sf_free(PLA->F);
+ sf_free(PLA->D);
+ sf_free(PLA->R);
+ PLA->F = best_F;
+ PLA->D = best_D;
+ PLA->R = best_R;
+}
+
+
+/*
+ * minimize_pair -- called as each pair is generated
+ */
+int minimize_pair(pair)
+ppair pair;
+{
+ pcover Fsave, Dsave, Rsave;
+ int i, xnum_binary_vars, xnum_vars, *xpart_size;
+
+ /* save the original covers */
+ Fsave = sf_save(global_PLA->F);
+ Dsave = sf_save(global_PLA->D);
+ Rsave = sf_save(global_PLA->R);
+
+ /* save the original cube structure */
+ xnum_binary_vars = cube.num_binary_vars;
+ xnum_vars = cube.num_vars;
+ xpart_size = ALLOC(int, cube.num_vars);
+ for(i = 0; i < cube.num_vars; i++)
+ xpart_size[i] = cube.part_size[i];
+
+ /* setup the paired variables */
+ global_PLA->pair = pair;
+ set_pair1(global_PLA, /* adjust_labels */ FALSE);
+
+ /* call the minimizer */
+ if (summary)
+ print_pair(pair);
+ switch(pair_minim_strategy) {
+ case 2:
+ EXEC_S(phase_assignment(global_PLA,0), "OPO ", global_PLA->F);
+ if (summary)
+ printf("# phase is %s\n", pc1(global_PLA->phase));
+ break;
+ case 1:
+ EXEC_S(global_PLA->F = minimize_exact(global_PLA->F, global_PLA->D,
+ global_PLA->R, 1), "EXACT ", global_PLA->F);
+ break;
+ case 0:
+ EXEC_S(global_PLA->F = espresso(global_PLA->F, global_PLA->D,
+ global_PLA->R), "ESPRESSO ", global_PLA->F);
+ break;
+ default:
+ break;
+ }
+
+ /* see if we have a new best solution */
+ if (global_PLA->F->count < best_cost) {
+ best_cost = global_PLA->F->count;
+ best_pair = pair_save(pair, pair->cnt);
+ best_phase = global_PLA->phase!=NULL?set_save(global_PLA->phase):NULL;
+ if (best_F != NULL) sf_free(best_F);
+ if (best_D != NULL) sf_free(best_D);
+ if (best_R != NULL) sf_free(best_R);
+ best_F = sf_save(global_PLA->F);
+ best_D = sf_save(global_PLA->D);
+ best_R = sf_save(global_PLA->R);
+ }
+
+ /* restore the original cube structure -- free the new ones */
+ setdown_cube();
+ FREE(cube.part_size);
+ cube.num_binary_vars = xnum_binary_vars;
+ cube.num_vars = xnum_vars;
+ cube.part_size = xpart_size;
+ cube_setup();
+
+ /* restore the original cover(s) -- free the new ones */
+ sf_free(global_PLA->F);
+ sf_free(global_PLA->D);
+ sf_free(global_PLA->R);
+ global_PLA->F = Fsave;
+ global_PLA->D = Dsave;
+ global_PLA->R = Rsave;
+ global_PLA->pair = NULL;
+ global_PLA->phase = NULL;
+}
+
+generate_all_pairs(pair, n, candidate, action)
+ppair pair;
+int n;
+pset candidate;
+int (*action)();
+{
+ int i, j;
+ pset recur_candidate;
+ ppair recur_pair;
+
+ if (set_ord(candidate) < 2) {
+ (*action)(pair);
+ return;
+ }
+
+ recur_pair = pair_save(pair, n);
+ recur_candidate = set_save(candidate);
+
+ /* Find first variable still in the candidate set */
+ for(i = 0; i < n; i++)
+ if (is_in_set(candidate, i))
+ break;
+
+ /* Try all pairs of i with other variables */
+ for(j = i+1; j < n; j++)
+ if (is_in_set(candidate, j)) {
+ /* pair (i j) -- remove from candidate set for future pairings */
+ set_remove(recur_candidate, i);
+ set_remove(recur_candidate, j);
+
+ /* add to the pair array */
+ recur_pair->var1[recur_pair->cnt] = i+1;
+ recur_pair->var2[recur_pair->cnt] = j+1;
+ recur_pair->cnt++;
+
+ /* recur looking for the end ... */
+ generate_all_pairs(recur_pair, n, recur_candidate, action);
+
+ /* now break this pair, and restore candidate set */
+ recur_pair->cnt--;
+ set_insert(recur_candidate, i);
+ set_insert(recur_candidate, j);
+ }
+
+ /* if odd, generate all pairs which do NOT include i */
+ if ((set_ord(candidate) % 2) == 1) {
+ set_remove(recur_candidate, i);
+ generate_all_pairs(recur_pair, n, recur_candidate, action);
+ }
+
+ pair_free(recur_pair);
+ set_free(recur_candidate);
+}
+
+ppair pair_new(n)
+register int n;
+{
+ register ppair pair1;
+
+ pair1 = ALLOC(pair_t, 1);
+ pair1->cnt = 0;
+ pair1->var1 = ALLOC(int, n);
+ pair1->var2 = ALLOC(int, n);
+ return pair1;
+}
+
+
+ppair pair_save(pair, n)
+register ppair pair;
+register int n;
+{
+ register int k;
+ register ppair pair1;
+
+ pair1 = pair_new(n);
+ pair1->cnt = pair->cnt;
+ for(k = 0; k < pair->cnt; k++) {
+ pair1->var1[k] = pair->var1[k];
+ pair1->var2[k] = pair->var2[k];
+ }
+ return pair1;
+}
+
+
+int pair_free(pair)
+register ppair pair;
+{
+ FREE(pair->var1);
+ FREE(pair->var2);
+ FREE(pair);
+}
diff --git a/src/misc/espresso/part.c b/src/misc/espresso/part.c
new file mode 100644
index 00000000..42843aeb
--- /dev/null
+++ b/src/misc/espresso/part.c
@@ -0,0 +1,122 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "mincov_int.h"
+
+static int visit_col();
+
+static void
+copy_row(A, prow)
+register sm_matrix *A;
+register sm_row *prow;
+{
+ register sm_element *p;
+
+ for(p = prow->first_col; p != 0; p = p->next_col) {
+ (void) sm_insert(A, p->row_num, p->col_num);
+ }
+}
+
+
+static int
+visit_row(A, prow, rows_visited, cols_visited)
+sm_matrix *A;
+sm_row *prow;
+int *rows_visited;
+int *cols_visited;
+{
+ sm_element *p;
+ sm_col *pcol;
+
+ if (! prow->flag) {
+ prow->flag = 1;
+ (*rows_visited)++;
+ if (*rows_visited == A->nrows) {
+ return 1;
+ }
+ for(p = prow->first_col; p != 0; p = p->next_col) {
+ pcol = sm_get_col(A, p->col_num);
+ if (! pcol->flag) {
+ if (visit_col(A, pcol, rows_visited, cols_visited)) {
+ return 1;
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+
+static int
+visit_col(A, pcol, rows_visited, cols_visited)
+sm_matrix *A;
+sm_col *pcol;
+int *rows_visited;
+int *cols_visited;
+{
+ sm_element *p;
+ sm_row *prow;
+
+ if (! pcol->flag) {
+ pcol->flag = 1;
+ (*cols_visited)++;
+ if (*cols_visited == A->ncols) {
+ return 1;
+ }
+ for(p = pcol->first_row; p != 0; p = p->next_row) {
+ prow = sm_get_row(A, p->row_num);
+ if (! prow->flag) {
+ if (visit_row(A, prow, rows_visited, cols_visited)) {
+ return 1;
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+int
+sm_block_partition(A, L, R)
+sm_matrix *A;
+sm_matrix **L, **R;
+{
+ int cols_visited, rows_visited;
+ register sm_row *prow;
+ register sm_col *pcol;
+
+ /* Avoid the trivial case */
+ if (A->nrows == 0) {
+ return 0;
+ }
+
+ /* Reset the visited flags for each row and column */
+ for(prow = A->first_row; prow != 0; prow = prow->next_row) {
+ prow->flag = 0;
+ }
+ for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) {
+ pcol->flag = 0;
+ }
+
+ cols_visited = rows_visited = 0;
+ if (visit_row(A, A->first_row, &rows_visited, &cols_visited)) {
+ /* we found all of the rows */
+ return 0;
+ } else {
+ *L = sm_alloc();
+ *R = sm_alloc();
+ for(prow = A->first_row; prow != 0; prow = prow->next_row) {
+ if (prow->flag) {
+ copy_row(*L, prow);
+ } else {
+ copy_row(*R, prow);
+ }
+ }
+ return 1;
+ }
+}
diff --git a/src/misc/espresso/primes.c b/src/misc/espresso/primes.c
new file mode 100644
index 00000000..3e40da27
--- /dev/null
+++ b/src/misc/espresso/primes.c
@@ -0,0 +1,170 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+static bool primes_consensus_special_cases();
+static pcover primes_consensus_merge();
+static pcover and_with_cofactor();
+
+
+/* primes_consensus -- generate primes using consensus */
+pcover primes_consensus(T)
+pcube *T; /* T will be disposed of */
+{
+ register pcube cl, cr;
+ register int best;
+ pcover Tnew, Tl, Tr;
+
+ if (primes_consensus_special_cases(T, &Tnew) == MAYBE) {
+ cl = new_cube();
+ cr = new_cube();
+ best = binate_split_select(T, cl, cr, COMPL);
+
+ Tl = primes_consensus(scofactor(T, cl, best));
+ Tr = primes_consensus(scofactor(T, cr, best));
+ Tnew = primes_consensus_merge(Tl, Tr, cl, cr);
+
+ free_cube(cl);
+ free_cube(cr);
+ free_cubelist(T);
+ }
+
+ return Tnew;
+}
+
+static bool
+primes_consensus_special_cases(T, Tnew)
+pcube *T; /* will be disposed if answer is determined */
+pcover *Tnew; /* returned only if answer determined */
+{
+ register pcube *T1, p, ceil, cof=T[0];
+ pcube last;
+ pcover A;
+
+ /* Check for no cubes in the cover */
+ if (T[2] == NULL) {
+ *Tnew = new_cover(0);
+ free_cubelist(T);
+ return TRUE;
+ }
+
+ /* Check for only a single cube in the cover */
+ if (T[3] == NULL) {
+ *Tnew = sf_addset(new_cover(1), set_or(cof, cof, T[2]));
+ free_cubelist(T);
+ return TRUE;
+ }
+
+ /* Check for a row of all 1's (implies function is a tautology) */
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ if (full_row(p, cof)) {
+ *Tnew = sf_addset(new_cover(1), cube.fullset);
+ free_cubelist(T);
+ return TRUE;
+ }
+ }
+
+ /* Check for a column of all 0's which can be factored out */
+ ceil = set_save(cof);
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ INLINEset_or(ceil, ceil, p);
+ }
+ if (! setp_equal(ceil, cube.fullset)) {
+ p = new_cube();
+ (void) set_diff(p, cube.fullset, ceil);
+ (void) set_or(cof, cof, p);
+ free_cube(p);
+
+ A = primes_consensus(T);
+ foreach_set(A, last, p) {
+ INLINEset_and(p, p, ceil);
+ }
+ *Tnew = A;
+ set_free(ceil);
+ return TRUE;
+ }
+ set_free(ceil);
+
+ /* Collect column counts, determine unate variables, etc. */
+ massive_count(T);
+
+ /* If single active variable not factored out above, then tautology ! */
+ if (cdata.vars_active == 1) {
+ *Tnew = sf_addset(new_cover(1), cube.fullset);
+ free_cubelist(T);
+ return TRUE;
+
+ /* Check for unate cover */
+ } else if (cdata.vars_unate == cdata.vars_active) {
+ A = cubeunlist(T);
+ *Tnew = sf_contain(A);
+ free_cubelist(T);
+ return TRUE;
+
+ /* Not much we can do about it */
+ } else {
+ return MAYBE;
+ }
+}
+
+static pcover
+primes_consensus_merge(Tl, Tr, cl, cr)
+pcover Tl, Tr;
+pcube cl, cr;
+{
+ register pcube pl, pr, lastl, lastr, pt;
+ pcover T, Tsave;
+
+ Tl = and_with_cofactor(Tl, cl);
+ Tr = and_with_cofactor(Tr, cr);
+
+ T = sf_new(500, Tl->sf_size);
+ pt = T->data;
+ Tsave = sf_contain(sf_join(Tl, Tr));
+
+ foreach_set(Tl, lastl, pl) {
+ foreach_set(Tr, lastr, pr) {
+ if (cdist01(pl, pr) == 1) {
+ consensus(pt, pl, pr);
+ if (++T->count >= T->capacity) {
+ Tsave = sf_union(Tsave, sf_contain(T));
+ T = sf_new(500, Tl->sf_size);
+ pt = T->data;
+ } else {
+ pt += T->wsize;
+ }
+ }
+ }
+ }
+ free_cover(Tl);
+ free_cover(Tr);
+
+ Tsave = sf_union(Tsave, sf_contain(T));
+ return Tsave;
+}
+
+
+static pcover
+and_with_cofactor(A, cof)
+pset_family A;
+register pset cof;
+{
+ register pset last, p;
+
+ foreach_set(A, last, p) {
+ INLINEset_and(p, p, cof);
+ if (cdist(p, cube.fullset) > 0) {
+ RESET(p, ACTIVE);
+ } else {
+ SET(p, ACTIVE);
+ }
+ }
+ return sf_inactive(A);
+}
diff --git a/src/misc/espresso/reduce.c b/src/misc/espresso/reduce.c
new file mode 100644
index 00000000..00e4507f
--- /dev/null
+++ b/src/misc/espresso/reduce.c
@@ -0,0 +1,258 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ module: reduce.c
+ purpose: Perform the Espresso-II reduction step
+
+ Reduction is a technique used to explore larger regions of the
+ optimization space. We replace each cube of F with a smaller
+ cube while still maintaining a cover of the same logic function.
+*/
+
+#include "espresso.h"
+
+static bool toggle = TRUE;
+
+
+/*
+ reduce -- replace each cube in F with its reduction
+
+ The reduction of a cube is the smallest cube contained in the cube
+ which can replace the cube in the original cover without changing
+ the cover. This is equivalent to the super cube of all of the
+ essential points in the cube. This can be computed directly.
+
+ The problem is that the order in which the cubes are reduced can
+ greatly affect the final result. We alternate between two ordering
+ strategies:
+
+ (1) Order the cubes in ascending order of distance from the
+ largest cube breaking ties by ordering cubes of equal distance
+ in descending order of size (sort_reduce)
+
+ (2) Order the cubes in descending order of the inner-product of
+ the cube and the column sums (mini_sort)
+
+ The real workhorse of this section is the routine SCCC which is
+ used to find the Smallest Cube Containing the Complement of a cover.
+ Reduction as proposed by Espresso-II takes a cube and computes its
+ maximal reduction as the intersection between the cube and the
+ smallest cube containing the complement of (F u D - {c}) cofactored
+ against c.
+
+ As usual, the unate-recursive paradigm is used to compute SCCC.
+ The SCCC of a unate cover is trivial to compute, and thus we perform
+ Shannon Cofactor expansion attempting to drive the cover to be unate
+ as fast as possible.
+*/
+
+pcover reduce(F, D)
+INOUT pcover F;
+IN pcover D;
+{
+ register pcube last, p, cunder, *FD;
+
+ /* Order the cubes */
+ if (use_random_order)
+ F = random_order(F);
+ else {
+ F = toggle ? sort_reduce(F) : mini_sort(F, descend);
+ toggle = ! toggle;
+ }
+
+ /* Try to reduce each cube */
+ FD = cube2list(F, D);
+ foreach_set(F, last, p) {
+ cunder = reduce_cube(FD, p); /* reduce the cube */
+ if (setp_equal(cunder, p)) { /* see if it actually did */
+ SET(p, ACTIVE); /* cube remains active */
+ SET(p, PRIME); /* cube remains prime ? */
+ } else {
+ if (debug & REDUCE) {
+ printf("REDUCE: %s to %s %s\n",
+ pc1(p), pc2(cunder), print_time(ptime()));
+ }
+ set_copy(p, cunder); /* save reduced version */
+ RESET(p, PRIME); /* cube is no longer prime */
+ if (setp_empty(cunder))
+ RESET(p, ACTIVE); /* if null, kill the cube */
+ else
+ SET(p, ACTIVE); /* cube is active */
+ }
+ free_cube(cunder);
+ }
+ free_cubelist(FD);
+
+ /* Delete any cubes of F which reduced to the empty cube */
+ return sf_inactive(F);
+}
+
+/* reduce_cube -- find the maximal reduction of a cube */
+pcube reduce_cube(FD, p)
+IN pcube *FD, p;
+{
+ pcube cunder;
+
+ cunder = sccc(cofactor(FD, p));
+ return set_and(cunder, cunder, p);
+}
+
+
+/* sccc -- find Smallest Cube Containing the Complement of a cover */
+pcube sccc(T)
+INOUT pcube *T; /* T will be disposed of */
+{
+ pcube r;
+ register pcube cl, cr;
+ register int best;
+ static int sccc_level = 0;
+
+ if (debug & REDUCE1) {
+ debug_print(T, "SCCC", sccc_level++);
+ }
+
+ if (sccc_special_cases(T, &r) == MAYBE) {
+ cl = new_cube();
+ cr = new_cube();
+ best = binate_split_select(T, cl, cr, REDUCE1);
+ r = sccc_merge(sccc(scofactor(T, cl, best)),
+ sccc(scofactor(T, cr, best)), cl, cr);
+ free_cubelist(T);
+ }
+
+ if (debug & REDUCE1)
+ printf("SCCC[%d]: result is %s\n", --sccc_level, pc1(r));
+ return r;
+}
+
+
+pcube sccc_merge(left, right, cl, cr)
+INOUT register pcube left, right; /* will be disposed of ... */
+INOUT register pcube cl, cr; /* will be disposed of ... */
+{
+ INLINEset_and(left, left, cl);
+ INLINEset_and(right, right, cr);
+ INLINEset_or(left, left, right);
+ free_cube(right);
+ free_cube(cl);
+ free_cube(cr);
+ return left;
+}
+
+
+/*
+ sccc_cube -- find the smallest cube containing the complement of a cube
+
+ By DeMorgan's law and the fact that the smallest cube containing a
+ cover is the "or" of the positional cubes, it is simple to see that
+ the SCCC is the universe if the cube has more than two active
+ variables. If there is only a single active variable, then the
+ SCCC is merely the bitwise complement of the cube in that
+ variable. A last special case is no active variables, in which
+ case the SCCC is empty.
+
+ This is "anded" with the incoming cube result.
+*/
+pcube sccc_cube(result, p)
+register pcube result, p;
+{
+ register pcube temp=cube.temp[0], mask;
+ int var;
+
+ if ((var = cactive(p)) >= 0) {
+ mask = cube.var_mask[var];
+ INLINEset_xor(temp, p, mask);
+ INLINEset_and(result, result, temp);
+ }
+ return result;
+}
+
+/*
+ * sccc_special_cases -- check the special cases for sccc
+ */
+
+bool sccc_special_cases(T, result)
+INOUT pcube *T; /* will be disposed if answer is determined */
+OUT pcube *result; /* returned only if answer determined */
+{
+ register pcube *T1, p, temp = cube.temp[1], ceil, cof = T[0];
+ pcube *A, *B;
+
+ /* empty cover => complement is universe => SCCC is universe */
+ if (T[2] == NULL) {
+ *result = set_save(cube.fullset);
+ free_cubelist(T);
+ return TRUE;
+ }
+
+ /* row of 1's => complement is empty => SCCC is empty */
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ if (full_row(p, cof)) {
+ *result = new_cube();
+ free_cubelist(T);
+ return TRUE;
+ }
+ }
+
+ /* Collect column counts, determine unate variables, etc. */
+ massive_count(T);
+
+ /* If cover is unate (or single cube), apply simple rules to find SCCCU */
+ if (cdata.vars_unate == cdata.vars_active || T[3] == NULL) {
+ *result = set_save(cube.fullset);
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ (void) sccc_cube(*result, set_or(temp, p, cof));
+ }
+ free_cubelist(T);
+ return TRUE;
+ }
+
+ /* Check for column of 0's (which can be easily factored( */
+ ceil = set_save(cof);
+ for(T1 = T+2; (p = *T1++) != NULL; ) {
+ INLINEset_or(ceil, ceil, p);
+ }
+ if (! setp_equal(ceil, cube.fullset)) {
+ *result = sccc_cube(set_save(cube.fullset), ceil);
+ if (setp_equal(*result, cube.fullset)) {
+ free_cube(ceil);
+ } else {
+ *result = sccc_merge(sccc(cofactor(T,ceil)),
+ set_save(cube.fullset), ceil, *result);
+ }
+ free_cubelist(T);
+ return TRUE;
+ }
+ free_cube(ceil);
+
+ /* Single active column at this point => tautology => SCCC is empty */
+ if (cdata.vars_active == 1) {
+ *result = new_cube();
+ free_cubelist(T);
+ return TRUE;
+ }
+
+ /* Check for components */
+ if (cdata.var_zeros[cdata.best] < CUBELISTSIZE(T)/2) {
+ if (cubelist_partition(T, &A, &B, debug & REDUCE1) == 0) {
+ return MAYBE;
+ } else {
+ free_cubelist(T);
+ *result = sccc(A);
+ ceil = sccc(B);
+ (void) set_and(*result, *result, ceil);
+ set_free(ceil);
+ return TRUE;
+ }
+ }
+
+ /* Not much we can do about it */
+ return MAYBE;
+}
diff --git a/src/misc/espresso/rows.c b/src/misc/espresso/rows.c
new file mode 100644
index 00000000..bf0c0baa
--- /dev/null
+++ b/src/misc/espresso/rows.c
@@ -0,0 +1,314 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+//#include "port.h"
+#include "sparse_int.h"
+
+
+/*
+ * allocate a new row vector
+ */
+sm_row *
+sm_row_alloc()
+{
+ register sm_row *prow;
+
+#ifdef FAST_AND_LOOSE
+ if (sm_row_freelist == NIL(sm_row)) {
+ prow = ALLOC(sm_row, 1);
+ } else {
+ prow = sm_row_freelist;
+ sm_row_freelist = prow->next_row;
+ }
+#else
+ prow = ALLOC(sm_row, 1);
+#endif
+
+ prow->row_num = 0;
+ prow->length = 0;
+ prow->first_col = prow->last_col = NIL(sm_element);
+ prow->next_row = prow->prev_row = NIL(sm_row);
+ prow->flag = 0;
+ prow->user_word = NIL(char); /* for our user ... */
+ return prow;
+}
+
+
+/*
+ * free a row vector -- for FAST_AND_LOOSE, this is real cheap for rows;
+ * however, freeing a column must still walk down the column discarding
+ * the elements one-by-one; that is the only use for the extra '-DCOLS'
+ * compile flag ...
+ */
+void
+sm_row_free(prow)
+register sm_row *prow;
+{
+#if defined(FAST_AND_LOOSE) && ! defined(COLS)
+ if (prow->first_col != NIL(sm_element)) {
+ /* Add the linked list of row items to the free list */
+ prow->last_col->next_col = sm_element_freelist;
+ sm_element_freelist = prow->first_col;
+ }
+
+ /* Add the row to the free list of rows */
+ prow->next_row = sm_row_freelist;
+ sm_row_freelist = prow;
+#else
+ register sm_element *p, *pnext;
+
+ for(p = prow->first_col; p != 0; p = pnext) {
+ pnext = p->next_col;
+ sm_element_free(p);
+ }
+ FREE(prow);
+#endif
+}
+
+
+/*
+ * duplicate an existing row
+ */
+sm_row *
+sm_row_dup(prow)
+register sm_row *prow;
+{
+ register sm_row *pnew;
+ register sm_element *p;
+
+ pnew = sm_row_alloc();
+ for(p = prow->first_col; p != 0; p = p->next_col) {
+ (void) sm_row_insert(pnew, p->col_num);
+ }
+ return pnew;
+}
+
+
+/*
+ * insert an element into a row vector
+ */
+sm_element *
+sm_row_insert(prow, col)
+register sm_row *prow;
+register int col;
+{
+ register sm_element *test, *element;
+
+ /* get a new item, save its address */
+ sm_element_alloc(element);
+ test = element;
+ sorted_insert(sm_element, prow->first_col, prow->last_col, prow->length,
+ next_col, prev_col, col_num, col, test);
+
+ /* if item was not used, free it */
+ if (element != test) {
+ sm_element_free(element);
+ }
+
+ /* either way, return the current new value */
+ return test;
+}
+
+
+/*
+ * remove an element from a row vector
+ */
+void
+sm_row_remove(prow, col)
+register sm_row *prow;
+register int col;
+{
+ register sm_element *p;
+
+ for(p = prow->first_col; p != 0 && p->col_num < col; p = p->next_col)
+ ;
+ if (p != 0 && p->col_num == col) {
+ dll_unlink(p, prow->first_col, prow->last_col,
+ next_col, prev_col, prow->length);
+ sm_element_free(p);
+ }
+}
+
+
+/*
+ * find an element (if it is in the row vector)
+ */
+sm_element *
+sm_row_find(prow, col)
+sm_row *prow;
+int col;
+{
+ register sm_element *p;
+
+ for(p = prow->first_col; p != 0 && p->col_num < col; p = p->next_col)
+ ;
+ if (p != 0 && p->col_num == col) {
+ return p;
+ } else {
+ return NIL(sm_element);
+ }
+}
+
+/*
+ * return 1 if row p2 contains row p1; 0 otherwise
+ */
+int
+sm_row_contains(p1, p2)
+sm_row *p1, *p2;
+{
+ register sm_element *q1, *q2;
+
+ q1 = p1->first_col;
+ q2 = p2->first_col;
+ while (q1 != 0) {
+ if (q2 == 0 || q1->col_num < q2->col_num) {
+ return 0;
+ } else if (q1->col_num == q2->col_num) {
+ q1 = q1->next_col;
+ q2 = q2->next_col;
+ } else {
+ q2 = q2->next_col;
+ }
+ }
+ return 1;
+}
+
+
+/*
+ * return 1 if row p1 and row p2 share an element in common
+ */
+int
+sm_row_intersects(p1, p2)
+sm_row *p1, *p2;
+{
+ register sm_element *q1, *q2;
+
+ q1 = p1->first_col;
+ q2 = p2->first_col;
+ if (q1 == 0 || q2 == 0) return 0;
+ for(;;) {
+ if (q1->col_num < q2->col_num) {
+ if ((q1 = q1->next_col) == 0) {
+ return 0;
+ }
+ } else if (q1->col_num > q2->col_num) {
+ if ((q2 = q2->next_col) == 0) {
+ return 0;
+ }
+ } else {
+ return 1;
+ }
+ }
+}
+
+
+/*
+ * compare two rows, lexical ordering
+ */
+int
+sm_row_compare(p1, p2)
+sm_row *p1, *p2;
+{
+ register sm_element *q1, *q2;
+
+ q1 = p1->first_col;
+ q2 = p2->first_col;
+ while(q1 != 0 && q2 != 0) {
+ if (q1->col_num != q2->col_num) {
+ return q1->col_num - q2->col_num;
+ }
+ q1 = q1->next_col;
+ q2 = q2->next_col;
+ }
+
+ if (q1 != 0) {
+ return 1;
+ } else if (q2 != 0) {
+ return -1;
+ } else {
+ return 0;
+ }
+}
+
+
+/*
+ * return the intersection
+ */
+sm_row *
+sm_row_and(p1, p2)
+sm_row *p1, *p2;
+{
+ register sm_element *q1, *q2;
+ register sm_row *result;
+
+ result = sm_row_alloc();
+ q1 = p1->first_col;
+ q2 = p2->first_col;
+ if (q1 == 0 || q2 == 0) return result;
+ for(;;) {
+ if (q1->col_num < q2->col_num) {
+ if ((q1 = q1->next_col) == 0) {
+ return result;
+ }
+ } else if (q1->col_num > q2->col_num) {
+ if ((q2 = q2->next_col) == 0) {
+ return result;
+ }
+ } else {
+ (void) sm_row_insert(result, q1->col_num);
+ if ((q1 = q1->next_col) == 0) {
+ return result;
+ }
+ if ((q2 = q2->next_col) == 0) {
+ return result;
+ }
+ }
+ }
+}
+
+int
+sm_row_hash(prow, modulus)
+sm_row *prow;
+int modulus;
+{
+ register int sum;
+ register sm_element *p;
+
+ sum = 0;
+ for(p = prow->first_col; p != 0; p = p->next_col) {
+ sum = (sum*17 + p->col_num) % modulus;
+ }
+ return sum;
+}
+
+/*
+ * remove an element from a row vector (given a pointer to the element)
+ */
+void
+sm_row_remove_element(prow, p)
+register sm_row *prow;
+register sm_element *p;
+{
+ dll_unlink(p, prow->first_col, prow->last_col,
+ next_col, prev_col, prow->length);
+ sm_element_free(p);
+}
+
+
+void
+sm_row_print(fp, prow)
+FILE *fp;
+sm_row *prow;
+{
+ sm_element *p;
+
+ for(p = prow->first_col; p != 0; p = p->next_col) {
+ (void) fprintf(fp, " %d", p->col_num);
+ }
+}
diff --git a/src/misc/espresso/set.c b/src/misc/espresso/set.c
new file mode 100644
index 00000000..fce88288
--- /dev/null
+++ b/src/misc/espresso/set.c
@@ -0,0 +1,820 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ * set.c -- routines for maniuplating sets and set families
+ */
+
+/* LINTLIBRARY */
+
+#include "espresso.h"
+static pset_family set_family_garbage = NULL;
+
+static int intcpy(d, s, n)
+register unsigned int *d, *s;
+register long n;
+{
+ register int i;
+ for(i = 0; i < n; i++) {
+ *d++ = *s++;
+ }
+}
+
+
+/* bit_index -- find first bit (from LSB) in a word (MSB=bit n, LSB=bit 0) */
+int bit_index(a)
+register unsigned int a;
+{
+ register int i;
+ if (a == 0)
+ return -1;
+ for(i = 0; (a & 1) == 0; a >>= 1, i++)
+ ;
+ return i;
+}
+
+
+/* set_ord -- count number of elements in a set */
+int set_ord(a)
+register pset a;
+{
+ register int i, sum = 0;
+ register unsigned int val;
+ for(i = LOOP(a); i > 0; i--)
+ if ((val = a[i]) != 0)
+ sum += count_ones(val);
+ return sum;
+}
+
+/* set_dist -- distance between two sets (# elements in common) */
+int set_dist(a, b)
+register pset a, b;
+{
+ register int i, sum = 0;
+ register unsigned int val;
+ for(i = LOOP(a); i > 0; i--)
+ if ((val = a[i] & b[i]) != 0)
+ sum += count_ones(val);
+ return sum;
+}
+
+/* set_clear -- make "r" the empty set of "size" elements */
+pset set_clear(r, size)
+register pset r;
+int size;
+{
+ register int i = LOOPINIT(size);
+ *r = i; do r[i] = 0; while (--i > 0);
+ return r;
+}
+
+/* set_fill -- make "r" the universal set of "size" elements */
+pset set_fill(r, size)
+register pset r;
+register int size;
+{
+ register int i = LOOPINIT(size);
+ *r = i;
+ r[i] = ~ (unsigned) 0;
+ r[i] >>= i * BPI - size;
+ while (--i > 0)
+ r[i] = ~ (unsigned) 0;
+ return r;
+}
+
+/* set_copy -- copy set a into set r */
+pset set_copy(r, a)
+register pset r, a;
+{
+ register int i = LOOPCOPY(a);
+ do r[i] = a[i]; while (--i >= 0);
+ return r;
+}
+
+/* set_and -- compute intersection of sets "a" and "b" */
+pset set_and(r, a, b)
+register pset r, a, b;
+{
+ register int i = LOOP(a);
+ PUTLOOP(r,i); do r[i] = a[i] & b[i]; while (--i > 0);
+ return r;
+}
+
+/* set_or -- compute union of sets "a" and "b" */
+pset set_or(r, a, b)
+register pset r, a, b;
+{
+ register int i = LOOP(a);
+ PUTLOOP(r,i); do r[i] = a[i] | b[i]; while (--i > 0);
+ return r;
+}
+
+/* set_diff -- compute difference of sets "a" and "b" */
+pset set_diff(r, a, b)
+register pset r, a, b;
+{
+ register int i = LOOP(a);
+ PUTLOOP(r,i); do r[i] = a[i] & ~b[i]; while (--i > 0);
+ return r;
+}
+
+/* set_xor -- compute exclusive-or of sets "a" and "b" */
+pset set_xor(r, a, b)
+register pset r, a, b;
+{
+ register int i = LOOP(a);
+#ifdef IBM_WATC
+ PUTLOOP(r,i); do r[i] = (a[i]&~b[i]) | (~a[i]&b[i]); while (--i > 0);
+#else
+ PUTLOOP(r,i); do r[i] = a[i] ^ b[i]; while (--i > 0);
+#endif
+ return r;
+}
+
+/* set_merge -- compute "a" & "mask" | "b" & ~ "mask" */
+pset set_merge(r, a, b, mask)
+register pset r, a, b, mask;
+{
+ register int i = LOOP(a);
+ PUTLOOP(r,i); do r[i] = (a[i]&mask[i]) | (b[i]&~mask[i]); while (--i > 0);
+ return r;
+}
+
+/* set_andp -- compute intersection of sets "a" and "b" , TRUE if nonempty */
+bool set_andp(r, a, b)
+register pset r, a, b;
+{
+ register int i = LOOP(a);
+ register unsigned int x = 0;
+ PUTLOOP(r,i); do {r[i] = a[i] & b[i]; x |= r[i];} while (--i > 0);
+ return x != 0;
+}
+
+/* set_orp -- compute union of sets "a" and "b" , TRUE if nonempty */
+bool set_orp(r, a, b)
+register pset r, a, b;
+{
+ register int i = LOOP(a);
+ register unsigned int x = 0;
+ PUTLOOP(r,i); do {r[i] = a[i] | b[i]; x |= r[i];} while (--i > 0);
+ return x != 0;
+}
+
+/* setp_empty -- check if the set "a" is empty */
+bool setp_empty(a)
+register pset a;
+{
+ register int i = LOOP(a);
+ do if (a[i]) return FALSE; while (--i > 0);
+ return TRUE;
+}
+
+/* setp_full -- check if the set "a" is the full set of "size" elements */
+bool setp_full(a, size)
+register pset a;
+register int size;
+{
+ register int i = LOOP(a);
+ register unsigned int test;
+ test = ~ (unsigned) 0;
+ test >>= i * BPI - size;
+ if (a[i] != test)
+ return FALSE;
+ while (--i > 0)
+ if (a[i] != (~(unsigned) 0))
+ return FALSE;
+ return TRUE;
+}
+
+/* setp_equal -- check if the set "a" equals set "b" */
+bool setp_equal(a, b)
+register pset a, b;
+{
+ register int i = LOOP(a);
+ do if (a[i] != b[i]) return FALSE; while (--i > 0);
+ return TRUE;
+}
+
+/* setp_disjoint -- check if intersection of "a" and "b" is empty */
+bool setp_disjoint(a, b)
+register pset a, b;
+{
+ register int i = LOOP(a);
+ do if (a[i] & b[i]) return FALSE; while (--i > 0);
+ return TRUE;
+}
+
+/* setp_implies -- check if "a" implies "b" ("b" contains "a") */
+bool setp_implies(a, b)
+register pset a, b;
+{
+ register int i = LOOP(a);
+ do if (a[i] & ~b[i]) return FALSE; while (--i > 0);
+ return TRUE;
+}
+
+/* sf_or -- form the "or" of all sets in a set family */
+pset sf_or(A)
+pset_family A;
+{
+ register pset or, last, p;
+
+ or = set_new(A->sf_size);
+ foreach_set(A, last, p)
+ INLINEset_or(or, or, p);
+ return or;
+}
+
+/* sf_and -- form the "and" of all sets in a set family */
+pset sf_and(A)
+pset_family A;
+{
+ register pset and, last, p;
+
+ and = set_fill(set_new(A->sf_size), A->sf_size);
+ foreach_set(A, last, p)
+ INLINEset_and(and, and, p);
+ return and;
+}
+
+/* sf_active -- make all members of the set family active */
+pset_family sf_active(A)
+pset_family A;
+{
+ register pset p, last;
+ foreach_set(A, last, p) {
+ SET(p, ACTIVE);
+ }
+ A->active_count = A->count;
+ return A;
+}
+
+
+/* sf_inactive -- remove all inactive cubes in a set family */
+pset_family sf_inactive(A)
+pset_family A;
+{
+ register pset p, last, pdest;
+
+ pdest = A->data;
+ foreach_set(A, last, p) {
+ if (TESTP(p, ACTIVE)) {
+ if (pdest != p) {
+ INLINEset_copy(pdest, p);
+ }
+ pdest += A->wsize;
+ } else {
+ A->count--;
+ }
+ }
+ return A;
+}
+
+
+/* sf_copy -- copy a set family */
+pset_family sf_copy(R, A)
+pset_family R, A;
+{
+ R->sf_size = A->sf_size;
+ R->wsize = A->wsize;
+/*R->capacity = A->count;*/
+/*R->data = REALLOC(unsigned int, R->data, (long) R->capacity * R->wsize);*/
+ R->count = A->count;
+ R->active_count = A->active_count;
+ intcpy(R->data, A->data, (long) A->wsize * A->count);
+ return R;
+}
+
+
+/* sf_join -- join A and B into a single set_family */
+pset_family sf_join(A, B)
+pset_family A, B;
+{
+ pset_family R;
+ long asize = A->count * A->wsize;
+ long bsize = B->count * B->wsize;
+
+ if (A->sf_size != B->sf_size) fatal("sf_join: sf_size mismatch");
+ R = sf_new(A->count + B->count, A->sf_size);
+ R->count = A->count + B->count;
+ R->active_count = A->active_count + B->active_count;
+ intcpy(R->data, A->data, asize);
+ intcpy(R->data + asize, B->data, bsize);
+ return R;
+}
+
+
+/* sf_append -- append the sets of B to the end of A, and dispose of B */
+pset_family sf_append(A, B)
+pset_family A, B;
+{
+ long asize = A->count * A->wsize;
+ long bsize = B->count * B->wsize;
+
+ if (A->sf_size != B->sf_size) fatal("sf_append: sf_size mismatch");
+ A->capacity = A->count + B->count;
+ A->data = REALLOC(unsigned int, A->data, (long) A->capacity * A->wsize);
+ intcpy(A->data + asize, B->data, bsize);
+ A->count += B->count;
+ A->active_count += B->active_count;
+ sf_free(B);
+ return A;
+}
+
+
+/* sf_new -- allocate "num" sets of "size" elements each */
+pset_family sf_new(num, size)
+int num, size;
+{
+ pset_family A;
+ if (set_family_garbage == NULL) {
+ A = ALLOC(set_family_t, 1);
+ } else {
+ A = set_family_garbage;
+ set_family_garbage = A->next;
+ }
+ A->sf_size = size;
+ A->wsize = SET_SIZE(size);
+ A->capacity = num;
+ A->data = ALLOC(unsigned int, (long) A->capacity * A->wsize);
+ A->count = 0;
+ A->active_count = 0;
+ return A;
+}
+
+
+/* sf_save -- create a duplicate copy of a set family */
+pset_family sf_save(A)
+register pset_family A;
+{
+ return sf_copy(sf_new(A->count, A->sf_size), A);
+}
+
+
+/* sf_free -- free the storage allocated for a set family */
+void sf_free(A)
+pset_family A;
+{
+ FREE(A->data);
+ A->next = set_family_garbage;
+ set_family_garbage = A;
+}
+
+
+/* sf_cleanup -- free all of the set families from the garbage list */
+void sf_cleanup()
+{
+ register pset_family p, pnext;
+ for(p = set_family_garbage; p != (pset_family) NULL; p = pnext) {
+ pnext = p->next;
+ FREE(p);
+ }
+ set_family_garbage = (pset_family) NULL;
+}
+
+
+/* sf_addset -- add a set to the end of a set family */
+pset_family sf_addset(A, s)
+pset_family A;
+pset s;
+{
+ register pset p;
+
+ if (A->count >= A->capacity) {
+ A->capacity = A->capacity + A->capacity/2 + 1;
+ A->data = REALLOC(unsigned int, A->data, (long) A->capacity * A->wsize);
+ }
+ p = GETSET(A, A->count++);
+ INLINEset_copy(p, s);
+ return A;
+}
+
+/* sf_delset -- delete a set from a set family */
+void sf_delset(A, i)
+pset_family A;
+int i;
+{ (void) set_copy(GETSET(A,i), GETSET(A, --A->count));}
+
+/* sf_print -- print a set_family as a set (list the element numbers) */
+void sf_print(A)
+pset_family A;
+{
+ char *ps1();
+ register pset p;
+ register int i;
+ foreachi_set(A, i, p)
+ printf("A[%d] = %s\n", i, ps1(p));
+}
+
+/* sf_bm_print -- print a set_family as a bit-matrix */
+void sf_bm_print(A)
+pset_family A;
+{
+ char *pbv1();
+ register pset p;
+ register int i;
+ foreachi_set(A, i, p)
+ printf("[%4d] %s\n", i, pbv1(p, A->sf_size));
+}
+
+
+/* sf_write -- output a set family in an unintelligable manner */
+void sf_write(fp, A)
+FILE *fp;
+pset_family A;
+{
+ register pset p, last;
+ (void) fprintf(fp, "%d %d\n", A->count, A->sf_size);
+ foreach_set(A, last, p)
+ set_write(fp, p);
+ (void) fflush(fp);
+}
+
+
+/* sf_read -- read a set family written by sf_write */
+pset_family sf_read(fp)
+FILE *fp;
+{
+ int i, j;
+ register pset p, last;
+ pset_family A;
+
+ (void) fscanf(fp, "%d %d\n", &i, &j);
+ A = sf_new(i, j);
+ A->count = i;
+ foreach_set(A, last, p) {
+ (void) fscanf(fp, "%x", p);
+ for(j = 1; j <= LOOP(p); j++)
+ (void) fscanf(fp, "%x", p+j);
+ }
+ return A;
+}
+
+
+/* set_write -- output a set in an unintelligable manner */
+void set_write(fp, a)
+register FILE *fp;
+register pset a;
+{
+ register int n = LOOP(a), j;
+
+ for(j = 0; j <= n; j++) {
+ (void) fprintf(fp, "%x ", a[j]);
+ if ((j+1) % 8 == 0 && j != n)
+ (void) fprintf(fp, "\n\t");
+ }
+ (void) fprintf(fp, "\n");
+}
+
+
+/* sf_bm_read -- read a set family written by sf_bm_print (almost) */
+pset_family sf_bm_read(fp)
+FILE *fp;
+{
+ int i, j, rows, cols;
+ register pset pdest;
+ pset_family A;
+
+ (void) fscanf(fp, "%d %d\n", &rows, &cols);
+ A = sf_new(rows, cols);
+ for(i = 0; i < rows; i++) {
+ pdest = GETSET(A, A->count++);
+ (void) set_clear(pdest, A->sf_size);
+ for(j = 0; j < cols; j++) {
+ switch(getc(fp)) {
+ case '0':
+ break;
+ case '1':
+ set_insert(pdest, j);
+ break;
+ default:
+ fatal("Error reading set family");
+ }
+ }
+ if (getc(fp) != '\n') {
+ fatal("Error reading set family (at end of line)");
+ }
+ }
+ return A;
+}
+
+
+
+/* ps1 -- convert a set into a printable string */
+#define largest_string 120
+static char s1[largest_string];
+char *ps1(a)
+register pset a;
+{
+ register int i, num, l, len = 0, n = NELEM(a);
+ char temp[20];
+ bool first = TRUE;
+
+ s1[len++] = '[';
+ for(i = 0; i < n; i++)
+ if (is_in_set(a,i)) {
+ if (! first)
+ s1[len++] = ',';
+ first = FALSE; num = i;
+ /* Generate digits (reverse order) */
+ l = 0; do temp[l++] = num % 10 + '0'; while ((num /= 10) > 0);
+ /* Copy them back in correct order */
+ do s1[len++] = temp[--l]; while (l > 0);
+ if (len > largest_string-15) {
+ s1[len++] = '.'; s1[len++] = '.'; s1[len++] = '.';
+ break;
+ }
+ }
+
+ s1[len++] = ']';
+ s1[len++] = '\0';
+ return s1;
+}
+
+/* pbv1 -- print bit-vector */
+char *pbv1(s, n)
+pset s;
+int n;
+{
+ register int i;
+ for(i = 0; i < n; i++)
+ s1[i] = is_in_set(s,i) ? '1' : '0';
+ s1[n] = '\0';
+ return s1;
+}
+
+
+/* set_adjcnt -- adjust the counts for a set by "weight" */
+void
+set_adjcnt(a, count, weight)
+register pset a;
+register int *count, weight;
+{
+ register int i, base;
+ register unsigned int val;
+
+ for(i = LOOP(a); i > 0; ) {
+ for(val = a[i], base = --i << LOGBPI; val != 0; base++, val >>= 1) {
+ if (val & 1) {
+ count[base] += weight;
+ }
+ }
+ }
+}
+
+
+
+/* sf_count -- perform a column sum over a set family */
+int *sf_count(A)
+pset_family A;
+{
+ register pset p, last;
+ register int i, base, *count;
+ register unsigned int val;
+
+ count = ALLOC(int, A->sf_size);
+ for(i = A->sf_size - 1; i >= 0; i--) {
+ count[i] = 0;
+ }
+
+ foreach_set(A, last, p) {
+ for(i = LOOP(p); i > 0; ) {
+ for(val = p[i], base = --i << LOGBPI; val != 0; base++, val >>= 1) {
+ if (val & 1) {
+ count[base]++;
+ }
+ }
+ }
+ }
+ return count;
+}
+
+
+/* sf_count_restricted -- perform a column sum over a set family, restricting
+ * to only the columns which are in r; also, the columns are weighted by the
+ * number of elements which are in each row
+ */
+int *sf_count_restricted(A, r)
+pset_family A;
+register pset r;
+{
+ register pset p;
+ register int i, base, *count;
+ register unsigned int val;
+ int weight;
+ pset last;
+
+ count = ALLOC(int, A->sf_size);
+ for(i = A->sf_size - 1; i >= 0; i--) {
+ count[i] = 0;
+ }
+
+ /* Loop for each set */
+ foreach_set(A, last, p) {
+ weight = 1024 / (set_ord(p) - 1);
+ for(i = LOOP(p); i > 0; ) {
+ for(val=p[i]&r[i], base= --i<<LOGBPI; val!=0; base++, val >>= 1) {
+ if (val & 1) {
+ count[base] += weight;
+ }
+ }
+ }
+ }
+ return count;
+}
+
+
+/*
+ * sf_delc -- delete columns first ... last of A
+ */
+pset_family sf_delc(A, first, last)
+pset_family A;
+int first, last;
+{
+ return sf_delcol(A, first, last-first + 1);
+}
+
+
+/*
+ * sf_addcol -- add columns to a set family; includes a quick check to see
+ * if there is already enough room (and hence, can avoid copying)
+ */
+pset_family sf_addcol(A, firstcol, n)
+pset_family A;
+int firstcol, n;
+{
+ int maxsize;
+
+ /* Check if adding columns at the end ... */
+ if (firstcol == A->sf_size) {
+ /* If so, check if there is already enough room */
+ maxsize = BPI * LOOPINIT(A->sf_size);
+ if ((A->sf_size + n) <= maxsize) {
+ A->sf_size += n;
+ return A;
+ }
+ }
+ return sf_delcol(A, firstcol, -n);
+}
+
+/*
+ * sf_delcol -- add/delete columns to/from a set family
+ *
+ * if n > 0 then n columns starting from firstcol are deleted if n < 0
+ * then n blank columns are inserted starting at firstcol
+ * (i.e., the first new column number is firstcol)
+ *
+ * This is done by copying columns in the array which is a relatively
+ * slow operation.
+ */
+pset_family sf_delcol(A, firstcol, n)
+pset_family A;
+register int firstcol, n;
+{
+ register pset p, last, pdest;
+ register int i;
+ pset_family B;
+
+ B = sf_new(A->count, A->sf_size - n);
+ foreach_set(A, last, p) {
+ pdest = GETSET(B, B->count++);
+ INLINEset_clear(pdest, B->sf_size);
+ for(i = 0; i < firstcol; i++)
+ if (is_in_set(p, i))
+ set_insert(pdest, i);
+ for(i = n > 0 ? firstcol + n : firstcol; i < A->sf_size; i++)
+ if (is_in_set(p, i))
+ set_insert(pdest, i - n);
+ }
+ sf_free(A);
+ return B;
+}
+
+
+/*
+ * sf_copy_col -- copy column "srccol" from "src" to column "dstcol" of "dst"
+ */
+pset_family sf_copy_col(dst, dstcol, src, srccol)
+pset_family dst, src;
+int dstcol, srccol;
+{
+ register pset last, p, pdest;
+ register int word_test, word_set;
+ unsigned int bit_set, bit_test;
+
+ /* CHEAT! form these constants outside the loop */
+ word_test = WHICH_WORD(srccol);
+ bit_test = 1 << WHICH_BIT(srccol);
+ word_set = WHICH_WORD(dstcol);
+ bit_set = 1 << WHICH_BIT(dstcol);
+
+ pdest = dst->data;
+ foreach_set(src, last, p) {
+ if ((p[word_test] & bit_test) != 0)
+ pdest[word_set] |= bit_set;
+/*
+ * equivalent code for this is ...
+ * if (is_in_set(p, srccol)) set_insert(pdest, destcol);
+ */
+ pdest += dst->wsize;
+ }
+ return dst;
+}
+
+
+
+/*
+ * sf_compress -- delete columns from a matrix
+ */
+pset_family sf_compress(A, c)
+pset_family A; /* will be freed */
+register pset c;
+{
+ register pset p;
+ register int i, bcol;
+ pset_family B;
+
+ /* create a clean set family for the result */
+ B = sf_new(A->count, set_ord(c));
+ for(i = 0; i < A->count; i++) {
+ p = GETSET(B, B->count++);
+ INLINEset_clear(p, B->sf_size);
+ }
+
+ /* copy each column of A which has a 1 in c */
+ bcol = 0;
+ for(i = 0; i < A->sf_size; i++) {
+ if (is_in_set(c, i)) {
+ (void) sf_copy_col(B, bcol++, A, i);
+ }
+ }
+ sf_free(A);
+ return B;
+}
+
+
+
+/*
+ * sf_transpose -- transpose a bit matrix
+ *
+ * There are trickier ways of doing this, but this works.
+ */
+pset_family sf_transpose(A)
+pset_family A;
+{
+ pset_family B;
+ register pset p;
+ register int i, j;
+
+ B = sf_new(A->sf_size, A->count);
+ B->count = A->sf_size;
+ foreachi_set(B, i, p) {
+ INLINEset_clear(p, B->sf_size);
+ }
+ foreachi_set(A, i, p) {
+ for(j = 0; j < A->sf_size; j++) {
+ if (is_in_set(p, j)) {
+ set_insert(GETSET(B, j), i);
+ }
+ }
+ }
+ sf_free(A);
+ return B;
+}
+
+
+/*
+ * sf_permute -- permute the columns of a set_family
+ *
+ * permute is an array of integers containing column numbers of A which
+ * are to be retained.
+ */
+pset_family sf_permute(A, permute, npermute)
+pset_family A;
+register int *permute, npermute;
+{
+ pset_family B;
+ register pset p, last, pdest;
+ register int j;
+
+ B = sf_new(A->count, npermute);
+ B->count = A->count;
+ foreach_set(B, last, p)
+ INLINEset_clear(p, npermute);
+
+ pdest = B->data;
+ foreach_set(A, last, p) {
+ for(j = 0; j < npermute; j++)
+ if (is_in_set(p, permute[j]))
+ set_insert(pdest, j);
+ pdest += B->wsize;
+ }
+ sf_free(A);
+ return B;
+}
diff --git a/src/misc/espresso/setc.c b/src/misc/espresso/setc.c
new file mode 100644
index 00000000..a6112ebc
--- /dev/null
+++ b/src/misc/espresso/setc.c
@@ -0,0 +1,483 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ setc.c -- massive bit-hacking for performing special "cube"-type
+ operations on a set
+
+ The basic trick used for binary valued variables is the following:
+
+ If a[w] and b[w] contain a full word of binary variables, then:
+
+ 1) to get the full word of their intersection, we use
+
+ x = a[w] & b[w];
+
+
+ 2) to see if the intersection is null in any variables, we examine
+
+ x = ~(x | x >> 1) & DISJOINT;
+
+ this will have a single 1 in each binary variable for which
+ the intersection is null. In particular, if this is zero,
+ then there are no disjoint variables; or, if this is nonzero,
+ then there is at least one disjoint variable. A "count_ones"
+ over x will tell in how many variables they have an null
+ intersection.
+
+
+ 3) to get a mask which selects the disjoint variables, we use
+
+ (x | x << 1)
+
+ this provides a selector which can be used to see where
+ they have an null intersection
+
+
+ cdist return distance between two cubes
+ cdist0 return true if two cubes are distance 0 apart
+ cdist01 return distance, or 2 if distance exceeds 1
+ consensus compute consensus of two cubes distance 1 apart
+ force_lower expand hack (for now), related to consensus
+*/
+
+#include "espresso.h"
+
+/* see if the cube has a full row of 1's (with respect to cof) */
+bool full_row(p, cof)
+IN register pcube p, cof;
+{
+ register int i = LOOP(p);
+ do if ((p[i] | cof[i]) != cube.fullset[i]) return FALSE; while (--i > 0);
+ return TRUE;
+}
+
+/*
+ cdist0 -- return TRUE if a and b are distance 0 apart
+*/
+
+bool cdist0(a, b)
+register pcube a, b;
+{
+ { /* Check binary variables */
+ register int w, last; register unsigned int x;
+ if ((last = cube.inword) != -1) {
+
+ /* Check the partial word of binary variables */
+ x = a[last] & b[last];
+ if (~(x | x >> 1) & cube.inmask)
+ return FALSE; /* disjoint in some variable */
+
+ /* Check the full words of binary variables */
+ for(w = 1; w < last; w++) {
+ x = a[w] & b[w];
+ if (~(x | x >> 1) & DISJOINT)
+ return FALSE; /* disjoint in some variable */
+ }
+ }
+ }
+
+ { /* Check the multiple-valued variables */
+ register int w, var, last; register pcube mask;
+ for(var = cube.num_binary_vars; var < cube.num_vars; var++) {
+ mask = cube.var_mask[var]; last = cube.last_word[var];
+ for(w = cube.first_word[var]; w <= last; w++)
+ if (a[w] & b[w] & mask[w])
+ goto nextvar;
+ return FALSE; /* disjoint in this variable */
+ nextvar: ;
+ }
+ }
+ return TRUE;
+}
+
+/*
+ cdist01 -- return the "distance" between two cubes (defined as the
+ number of null variables in their intersection). If the distance
+ exceeds 1, the value 2 is returned.
+*/
+
+int cdist01(a, b)
+register pset a, b;
+{
+ int dist = 0;
+
+ { /* Check binary variables */
+ register int w, last; register unsigned int x;
+ if ((last = cube.inword) != -1) {
+
+ /* Check the partial word of binary variables */
+ x = a[last] & b[last];
+ if (x = ~ (x | x >> 1) & cube.inmask)
+ if ((dist = count_ones(x)) > 1)
+ return 2;
+
+ /* Check the full words of binary variables */
+ for(w = 1; w < last; w++) {
+ x = a[w] & b[w];
+ if (x = ~ (x | x >> 1) & DISJOINT)
+ if (dist == 1 || (dist += count_ones(x)) > 1)
+ return 2;
+ }
+ }
+ }
+
+ { /* Check the multiple-valued variables */
+ register int w, var, last; register pcube mask;
+ for(var = cube.num_binary_vars; var < cube.num_vars; var++) {
+ mask = cube.var_mask[var]; last = cube.last_word[var];
+ for(w = cube.first_word[var]; w <= last; w++)
+ if (a[w] & b[w] & mask[w])
+ goto nextvar;
+ if (++dist > 1)
+ return 2;
+ nextvar: ;
+ }
+ }
+ return dist;
+}
+
+/*
+ cdist -- return the "distance" between two cubes (defined as the
+ number of null variables in their intersection).
+*/
+
+int cdist(a, b)
+register pset a, b;
+{
+ int dist = 0;
+
+ { /* Check binary variables */
+ register int w, last; register unsigned int x;
+ if ((last = cube.inword) != -1) {
+
+ /* Check the partial word of binary variables */
+ x = a[last] & b[last];
+ if (x = ~ (x | x >> 1) & cube.inmask)
+ dist = count_ones(x);
+
+ /* Check the full words of binary variables */
+ for(w = 1; w < last; w++) {
+ x = a[w] & b[w];
+ if (x = ~ (x | x >> 1) & DISJOINT)
+ dist += count_ones(x);
+ }
+ }
+ }
+
+ { /* Check the multiple-valued variables */
+ register int w, var, last; register pcube mask;
+ for(var = cube.num_binary_vars; var < cube.num_vars; var++) {
+ mask = cube.var_mask[var]; last = cube.last_word[var];
+ for(w = cube.first_word[var]; w <= last; w++)
+ if (a[w] & b[w] & mask[w])
+ goto nextvar;
+ dist++;
+ nextvar: ;
+ }
+ }
+ return dist;
+}
+
+/*
+ force_lower -- Determine which variables of a do not intersect b.
+*/
+
+pset force_lower(xlower, a, b)
+INOUT pset xlower;
+IN register pset a, b;
+{
+
+ { /* Check binary variables (if any) */
+ register int w, last; register unsigned int x;
+ if ((last = cube.inword) != -1) {
+
+ /* Check the partial word of binary variables */
+ x = a[last] & b[last];
+ if (x = ~(x | x >> 1) & cube.inmask)
+ xlower[last] |= (x | (x << 1)) & a[last];
+
+ /* Check the full words of binary variables */
+ for(w = 1; w < last; w++) {
+ x = a[w] & b[w];
+ if (x = ~(x | x >> 1) & DISJOINT)
+ xlower[w] |= (x | (x << 1)) & a[w];
+ }
+ }
+ }
+
+ { /* Check the multiple-valued variables */
+ register int w, var, last; register pcube mask;
+ for(var = cube.num_binary_vars; var < cube.num_vars; var++) {
+ mask = cube.var_mask[var]; last = cube.last_word[var];
+ for(w = cube.first_word[var]; w <= last; w++)
+ if (a[w] & b[w] & mask[w])
+ goto nextvar;
+ for(w = cube.first_word[var]; w <= last; w++)
+ xlower[w] |= a[w] & mask[w];
+ nextvar: ;
+ }
+ }
+ return xlower;
+}
+
+/*
+ consensus -- multiple-valued consensus
+
+ Although this looks very messy, the idea is to compute for r the
+ "and" of the cubes a and b for each variable, unless the "and" is
+ null in a variable, in which case the "or" of a and b is computed
+ for this variable.
+
+ Because we don't check how many variables are null in the
+ intersection of a and b, the returned value for r really only
+ represents the consensus when a and b are distance 1 apart.
+*/
+
+void consensus(r, a, b)
+INOUT pcube r;
+IN register pcube a, b;
+{
+ INLINEset_clear(r, cube.size);
+
+ { /* Check binary variables (if any) */
+ register int w, last; register unsigned int x;
+ if ((last = cube.inword) != -1) {
+
+ /* Check the partial word of binary variables */
+ r[last] = x = a[last] & b[last];
+ if (x = ~(x | x >> 1) & cube.inmask)
+ r[last] |= (x | (x << 1)) & (a[last] | b[last]);
+
+ /* Check the full words of binary variables */
+ for(w = 1; w < last; w++) {
+ r[w] = x = a[w] & b[w];
+ if (x = ~(x | x >> 1) & DISJOINT)
+ r[w] |= (x | (x << 1)) & (a[w] | b[w]);
+ }
+ }
+ }
+
+
+ { /* Check the multiple-valued variables */
+ bool empty; int var; unsigned int x;
+ register int w, last; register pcube mask;
+ for(var = cube.num_binary_vars; var < cube.num_vars; var++) {
+ mask = cube.var_mask[var];
+ last = cube.last_word[var];
+ empty = TRUE;
+ for(w = cube.first_word[var]; w <= last; w++)
+ if (x = a[w] & b[w] & mask[w])
+ empty = FALSE, r[w] |= x;
+ if (empty)
+ for(w = cube.first_word[var]; w <= last; w++)
+ r[w] |= mask[w] & (a[w] | b[w]);
+ }
+ }
+}
+
+/*
+ cactive -- return the index of the single active variable in
+ the cube, or return -1 if there are none or more than 2.
+*/
+
+int cactive(a)
+register pcube a;
+{
+ int active = -1, dist = 0, bit_index();
+
+ { /* Check binary variables */
+ register int w, last;
+ register unsigned int x;
+ if ((last = cube.inword) != -1) {
+
+ /* Check the partial word of binary variables */
+ x = a[last];
+ if (x = ~ (x & x >> 1) & cube.inmask) {
+ if ((dist = count_ones(x)) > 1)
+ return -1; /* more than 2 active variables */
+ active = (last-1)*(BPI/2) + bit_index(x) / 2;
+ }
+
+ /* Check the full words of binary variables */
+ for(w = 1; w < last; w++) {
+ x = a[w];
+ if (x = ~ (x & x >> 1) & DISJOINT) {
+ if ((dist += count_ones(x)) > 1)
+ return -1; /* more than 2 active variables */
+ active = (w-1)*(BPI/2) + bit_index(x) / 2;
+ }
+ }
+ }
+ }
+
+ { /* Check the multiple-valued variables */
+ register int w, var, last;
+ register pcube mask;
+ for(var = cube.num_binary_vars; var < cube.num_vars; var++) {
+ mask = cube.var_mask[var];
+ last = cube.last_word[var];
+ for(w = cube.first_word[var]; w <= last; w++)
+ if (mask[w] & ~ a[w]) {
+ if (++dist > 1)
+ return -1;
+ active = var;
+ break;
+ }
+ }
+ }
+ return active;
+}
+
+/*
+ ccommon -- return TRUE if a and b are share "active" variables
+ active variables include variables that are empty;
+*/
+
+bool ccommon(a, b, cof)
+register pcube a, b, cof;
+{
+ { /* Check binary variables */
+ int last;
+ register int w;
+ register unsigned int x, y;
+ if ((last = cube.inword) != -1) {
+
+ /* Check the partial word of binary variables */
+ x = a[last] | cof[last];
+ y = b[last] | cof[last];
+ if (~(x & x>>1) & ~(y & y>>1) & cube.inmask)
+ return TRUE;
+
+ /* Check the full words of binary variables */
+ for(w = 1; w < last; w++) {
+ x = a[w] | cof[w];
+ y = b[w] | cof[w];
+ if (~(x & x>>1) & ~(y & y>>1) & DISJOINT)
+ return TRUE;
+ }
+ }
+ }
+
+ { /* Check the multiple-valued variables */
+ int var;
+ register int w, last;
+ register pcube mask;
+ for(var = cube.num_binary_vars; var < cube.num_vars; var++) {
+ mask = cube.var_mask[var]; last = cube.last_word[var];
+ /* Check for some part missing from a */
+ for(w = cube.first_word[var]; w <= last; w++)
+ if (mask[w] & ~a[w] & ~cof[w]) {
+
+ /* If so, check for some part missing from b */
+ for(w = cube.first_word[var]; w <= last; w++)
+ if (mask[w] & ~b[w] & ~cof[w])
+ return TRUE; /* both active */
+ break;
+ }
+ }
+ }
+ return FALSE;
+}
+
+/*
+ These routines compare two sets (cubes) for the qsort() routine and
+ return:
+
+ -1 if set a is to precede set b
+ 0 if set a and set b are equal
+ 1 if set a is to follow set b
+
+ Usually the SIZE field of the set is assumed to contain the size
+ of the set (which will save recomputing the set size during the
+ sort). For distance-1 merging, the global variable cube.temp[0] is
+ a mask which mask's-out the merging variable.
+*/
+
+/* descend -- comparison for descending sort on set size */
+int descend(a, b)
+pset *a, *b;
+{
+ register pset a1 = *a, b1 = *b;
+ if (SIZE(a1) > SIZE(b1)) return -1;
+ else if (SIZE(a1) < SIZE(b1)) return 1;
+ else {
+ register int i = LOOP(a1);
+ do
+ if (a1[i] > b1[i]) return -1; else if (a1[i] < b1[i]) return 1;
+ while (--i > 0);
+ }
+ return 0;
+}
+
+/* ascend -- comparison for ascending sort on set size */
+int ascend(a, b)
+pset *a, *b;
+{
+ register pset a1 = *a, b1 = *b;
+ if (SIZE(a1) > SIZE(b1)) return 1;
+ else if (SIZE(a1) < SIZE(b1)) return -1;
+ else {
+ register int i = LOOP(a1);
+ do
+ if (a1[i] > b1[i]) return 1; else if (a1[i] < b1[i]) return -1;
+ while (--i > 0);
+ }
+ return 0;
+}
+
+
+/* lex_order -- comparison for "lexical" ordering of cubes */
+int lex_order(a, b)
+pset *a, *b;
+{
+ register pset a1 = *a, b1 = *b;
+ register int i = LOOP(a1);
+ do
+ if (a1[i] > b1[i]) return -1; else if (a1[i] < b1[i]) return 1;
+ while (--i > 0);
+ return 0;
+}
+
+
+/* d1_order -- comparison for distance-1 merge routine */
+int d1_order(a, b)
+pset *a, *b;
+{
+ register pset a1 = *a, b1 = *b, c1 = cube.temp[0];
+ register int i = LOOP(a1);
+ register unsigned int x1, x2;
+ do
+ if ((x1 = a1[i] | c1[i]) > (x2 = b1[i] | c1[i])) return -1;
+ else if (x1 < x2) return 1;
+ while (--i > 0);
+ return 0;
+}
+
+
+/* desc1 -- comparison (without indirection) for descending sort */
+/* also has effect of handling NULL pointers,and a NULL pointer has smallest
+order */
+int desc1(a, b)
+register pset a, b;
+{
+ if (a == (pset) NULL)
+ return (b == (pset) NULL) ? 0 : 1;
+ else if (b == (pset) NULL)
+ return -1;
+ if (SIZE(a) > SIZE(b)) return -1;
+ else if (SIZE(a) < SIZE(b)) return 1;
+ else {
+ register int i = LOOP(a);
+ do
+ if (a[i] > b[i]) return -1; else if (a[i] < b[i]) return 1;
+ while (--i > 0);
+ }
+ return 0;
+}
diff --git a/src/misc/espresso/sharp.c b/src/misc/espresso/sharp.c
new file mode 100644
index 00000000..53435078
--- /dev/null
+++ b/src/misc/espresso/sharp.c
@@ -0,0 +1,247 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ sharp.c -- perform sharp, disjoint sharp, and intersection
+*/
+
+#include "espresso.h"
+
+long start_time;
+
+
+/* cv_sharp -- form the sharp product between two covers */
+pcover cv_sharp(A, B)
+pcover A, B;
+{
+ pcube last, p;
+ pcover T;
+
+ T = new_cover(0);
+ foreach_set(A, last, p)
+ T = sf_union(T, cb_sharp(p, B));
+ return T;
+}
+
+
+/* cb_sharp -- form the sharp product between a cube and a cover */
+pcover cb_sharp(c, T)
+pcube c;
+pcover T;
+{
+ if (T->count == 0) {
+ T = sf_addset(new_cover(1), c);
+ } else {
+ start_time = ptime();
+ T = cb_recur_sharp(c, T, 0, T->count-1, 0);
+ }
+ return T;
+}
+
+
+/* recursive formulation to provide balanced merging */
+pcover cb_recur_sharp(c, T, first, last, level)
+pcube c;
+pcover T;
+int first, last, level;
+{
+ pcover temp, left, right;
+ int middle;
+
+ if (first == last) {
+ temp = sharp(c, GETSET(T, first));
+ } else {
+ middle = (first + last) / 2;
+ left = cb_recur_sharp(c, T, first, middle, level+1);
+ right = cb_recur_sharp(c, T, middle+1, last, level+1);
+ temp = cv_intersect(left, right);
+ if ((debug & SHARP) && level < 4) {
+ printf("# SHARP[%d]: %4d = %4d x %4d, time = %s\n",
+ level, temp->count, left->count, right->count,
+ print_time(ptime() - start_time));
+ (void) fflush(stdout);
+ }
+ free_cover(left);
+ free_cover(right);
+ }
+ return temp;
+}
+
+
+/* sharp -- form the sharp product between two cubes */
+pcover sharp(a, b)
+pcube a, b;
+{
+ register int var;
+ register pcube d=cube.temp[0], temp=cube.temp[1], temp1=cube.temp[2];
+ pcover r = new_cover(cube.num_vars);
+
+ if (cdist0(a, b)) {
+ set_diff(d, a, b);
+ for(var = 0; var < cube.num_vars; var++) {
+ if (! setp_empty(set_and(temp, d, cube.var_mask[var]))) {
+ set_diff(temp1, a, cube.var_mask[var]);
+ set_or(GETSET(r, r->count++), temp, temp1);
+ }
+ }
+ } else {
+ r = sf_addset(r, a);
+ }
+ return r;
+}
+
+pcover make_disjoint(A)
+pcover A;
+{
+ pcover R, new;
+ register pset last, p;
+
+ R = new_cover(0);
+ foreach_set(A, last, p) {
+ new = cb_dsharp(p, R);
+ R = sf_append(R, new);
+ }
+ return R;
+}
+
+
+/* cv_dsharp -- disjoint-sharp product between two covers */
+pcover cv_dsharp(A, B)
+pcover A, B;
+{
+ register pcube last, p;
+ pcover T;
+
+ T = new_cover(0);
+ foreach_set(A, last, p) {
+ T = sf_union(T, cb_dsharp(p, B));
+ }
+ return T;
+}
+
+
+/* cb1_dsharp -- disjoint-sharp product between a cover and a cube */
+pcover cb1_dsharp(T, c)
+pcover T;
+pcube c;
+{
+ pcube last, p;
+ pcover R;
+
+ R = new_cover(T->count);
+ foreach_set(T, last, p) {
+ R = sf_union(R, dsharp(p, c));
+ }
+ return R;
+}
+
+
+/* cb_dsharp -- disjoint-sharp product between a cube and a cover */
+pcover cb_dsharp(c, T)
+pcube c;
+pcover T;
+{
+ pcube last, p;
+ pcover Y, Y1;
+
+ if (T->count == 0) {
+ Y = sf_addset(new_cover(1), c);
+ } else {
+ Y = new_cover(T->count);
+ set_copy(GETSET(Y,Y->count++), c);
+ foreach_set(T, last, p) {
+ Y1 = cb1_dsharp(Y, p);
+ free_cover(Y);
+ Y = Y1;
+ }
+ }
+ return Y;
+}
+
+
+/* dsharp -- form the disjoint-sharp product between two cubes */
+pcover dsharp(a, b)
+pcube a, b;
+{
+ register pcube mask, diff, and, temp, temp1 = cube.temp[0];
+ int var;
+ pcover r;
+
+ r = new_cover(cube.num_vars);
+
+ if (cdist0(a, b)) {
+ diff = set_diff(new_cube(), a, b);
+ and = set_and(new_cube(), a, b);
+ mask = new_cube();
+ for(var = 0; var < cube.num_vars; var++) {
+ /* check if position var of "a and not b" is not empty */
+ if (! setp_disjoint(diff, cube.var_mask[var])) {
+
+ /* coordinate var equals the difference between a and b */
+ temp = GETSET(r, r->count++);
+ (void) set_and(temp, diff, cube.var_mask[var]);
+
+ /* coordinates 0 ... var-1 equal the intersection */
+ INLINEset_and(temp1, and, mask);
+ INLINEset_or(temp, temp, temp1);
+
+ /* coordinates var+1 .. cube.num_vars equal a */
+ set_or(mask, mask, cube.var_mask[var]);
+ INLINEset_diff(temp1, a, mask);
+ INLINEset_or(temp, temp, temp1);
+ }
+ }
+ free_cube(diff);
+ free_cube(and);
+ free_cube(mask);
+ } else {
+ r = sf_addset(r, a);
+ }
+ return r;
+}
+
+/* cv_intersect -- form the intersection of two covers */
+
+#define MAGIC 500 /* save 500 cubes before containment */
+
+pcover cv_intersect(A, B)
+pcover A, B;
+{
+ register pcube pi, pj, lasti, lastj, pt;
+ pcover T, Tsave = NULL;
+
+ /* How large should each temporary result cover be ? */
+ T = new_cover(MAGIC);
+ pt = T->data;
+
+ /* Form pairwise intersection of each cube of A with each cube of B */
+ foreach_set(A, lasti, pi) {
+ foreach_set(B, lastj, pj) {
+ if (cdist0(pi, pj)) {
+ (void) set_and(pt, pi, pj);
+ if (++T->count >= T->capacity) {
+ if (Tsave == NULL)
+ Tsave = sf_contain(T);
+ else
+ Tsave = sf_union(Tsave, sf_contain(T));
+ T = new_cover(MAGIC);
+ pt = T->data;
+ } else
+ pt += T->wsize;
+ }
+ }
+ }
+
+
+ if (Tsave == NULL)
+ Tsave = sf_contain(T);
+ else
+ Tsave = sf_union(Tsave, sf_contain(T));
+ return Tsave;
+}
diff --git a/src/misc/espresso/sminterf.c b/src/misc/espresso/sminterf.c
new file mode 100644
index 00000000..50a6db4e
--- /dev/null
+++ b/src/misc/espresso/sminterf.c
@@ -0,0 +1,44 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+
+pset
+do_sm_minimum_cover(A)
+pset_family A;
+{
+ sm_matrix *M;
+ sm_row *sparse_cover;
+ sm_element *pe;
+ pset cover;
+ register int i, base, rownum;
+ register unsigned val;
+ register pset last, p;
+
+ M = sm_alloc();
+ rownum = 0;
+ foreach_set(A, last, p) {
+ foreach_set_element(p, i, val, base) {
+ (void) sm_insert(M, rownum, base);
+ }
+ rownum++;
+ }
+
+ sparse_cover = sm_minimum_cover(M, NIL(int), 1, 0);
+ sm_free(M);
+
+ cover = set_new(A->sf_size);
+ sm_foreach_row_element(sparse_cover, pe) {
+ set_insert(cover, pe->col_num);
+ }
+ sm_row_free(sparse_cover);
+
+ return cover;
+}
diff --git a/src/misc/espresso/solution.c b/src/misc/espresso/solution.c
new file mode 100644
index 00000000..26119185
--- /dev/null
+++ b/src/misc/espresso/solution.c
@@ -0,0 +1,114 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "mincov_int.h"
+
+
+solution_t *
+solution_alloc()
+{
+ solution_t *sol;
+
+ sol = ALLOC(solution_t, 1);
+ sol->cost = 0;
+ sol->row = sm_row_alloc();
+ return sol;
+}
+
+
+void
+solution_free(sol)
+solution_t *sol;
+{
+ sm_row_free(sol->row);
+ FREE(sol);
+}
+
+
+solution_t *
+solution_dup(sol)
+solution_t *sol;
+{
+ solution_t *new_sol;
+
+ new_sol = ALLOC(solution_t, 1);
+ new_sol->cost = sol->cost;
+ new_sol->row = sm_row_dup(sol->row);
+ return new_sol;
+}
+
+
+void
+solution_add(sol, weight, col)
+solution_t *sol;
+int *weight;
+int col;
+{
+ (void) sm_row_insert(sol->row, col);
+ sol->cost += WEIGHT(weight, col);
+}
+
+
+void
+solution_accept(sol, A, weight, col)
+solution_t *sol;
+sm_matrix *A;
+int *weight;
+int col;
+{
+ register sm_element *p, *pnext;
+ sm_col *pcol;
+
+ solution_add(sol, weight, col);
+
+ /* delete rows covered by this column */
+ pcol = sm_get_col(A, col);
+ for(p = pcol->first_row; p != 0; p = pnext) {
+ pnext = p->next_row; /* grab it before it disappears */
+ sm_delrow(A, p->row_num);
+ }
+}
+
+
+/* ARGSUSED */
+void
+solution_reject(sol, A, weight, col)
+solution_t *sol;
+sm_matrix *A;
+int *weight;
+int col;
+{
+ sm_delcol(A, col);
+}
+
+
+solution_t *
+solution_choose_best(best1, best2)
+solution_t *best1, *best2;
+{
+ if (best1 != NIL(solution_t)) {
+ if (best2 != NIL(solution_t)) {
+ if (best1->cost <= best2->cost) {
+ solution_free(best2);
+ return best1;
+ } else {
+ solution_free(best1);
+ return best2;
+ }
+ } else {
+ return best1;
+ }
+ } else {
+ if (best2 != NIL(solution_t)) {
+ return best2;
+ } else {
+ return NIL(solution_t);
+ }
+ }
+}
diff --git a/src/misc/espresso/sparse.c b/src/misc/espresso/sparse.c
new file mode 100644
index 00000000..137ce7c1
--- /dev/null
+++ b/src/misc/espresso/sparse.c
@@ -0,0 +1,146 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ module: sparse.c
+
+ make_sparse is a last-step cleanup to reduce the total number
+ of literals in the cover.
+
+ This is done by reducing the "sparse" variables (using a modified
+ version of irredundant rather than reduce), followed by expanding
+ the "dense" variables (using modified version of expand).
+*/
+
+#include "espresso.h"
+
+pcover make_sparse(F, D, R)
+pcover F, D, R;
+{
+ cost_t cost, best_cost;
+
+ cover_cost(F, &best_cost);
+
+ do {
+ EXECUTE(F = mv_reduce(F, D), MV_REDUCE_TIME, F, cost);
+ if (cost.total == best_cost.total)
+ break;
+ copy_cost(&cost, &best_cost);
+
+ EXECUTE(F = expand(F, R, TRUE), RAISE_IN_TIME, F, cost);
+ if (cost.total == best_cost.total)
+ break;
+ copy_cost(&cost, &best_cost);
+ } while (force_irredundant);
+
+ return F;
+}
+
+/*
+ mv_reduce -- perform an "optimal" reduction of the variables which
+ we desire to be sparse
+
+ This could be done using "reduce" and then saving just the desired
+ part of the reduction. Instead, this version uses IRRED to find
+ which cubes of an output are redundant. Note that this gets around
+ the cube-ordering problem.
+
+ In normal use, it is expected that the cover is irredundant and
+ hence no cubes will be reduced to the empty cube (however, this is
+ checked for and such cubes will be deleted)
+*/
+
+pcover
+mv_reduce(F, D)
+pcover F, D;
+{
+ register int i, var;
+ register pcube p, p1, last;
+ int index;
+ pcover F1, D1;
+ pcube *F_cube_table;
+
+ /* loop for each multiple-valued variable */
+ for(var = 0; var < cube.num_vars; var++) {
+
+ if (cube.sparse[var]) {
+
+ /* loop for each part of the variable */
+ for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
+
+ /* remember mapping of F1 cubes back to F cubes */
+ F_cube_table = ALLOC(pcube, F->count);
+
+ /* 'cofactor' against part #i of variable #var */
+ F1 = new_cover(F->count);
+ foreach_set(F, last, p) {
+ if (is_in_set(p, i)) {
+ F_cube_table[F1->count] = p;
+ p1 = GETSET(F1, F1->count++);
+ (void) set_diff(p1, p, cube.var_mask[var]);
+ set_insert(p1, i);
+ }
+ }
+
+ /* 'cofactor' against part #i of variable #var */
+ /* not really necessary -- just more efficient ? */
+ D1 = new_cover(D->count);
+ foreach_set(D, last, p) {
+ if (is_in_set(p, i)) {
+ p1 = GETSET(D1, D1->count++);
+ (void) set_diff(p1, p, cube.var_mask[var]);
+ set_insert(p1, i);
+ }
+ }
+
+ mark_irredundant(F1, D1);
+
+ /* now remove part i from cubes which are redundant */
+ index = 0;
+ foreach_set(F1, last, p1) {
+ if (! TESTP(p1, ACTIVE)) {
+ p = F_cube_table[index];
+
+ /* don't reduce a variable which is full
+ * (unless it is the output variable)
+ */
+ if (var == cube.num_vars-1 ||
+ ! setp_implies(cube.var_mask[var], p)) {
+ set_remove(p, i);
+ }
+ RESET(p, PRIME);
+ }
+ index++;
+ }
+
+ free_cover(F1);
+ free_cover(D1);
+ FREE(F_cube_table);
+ }
+ }
+ }
+
+ /* Check if any cubes disappeared */
+ (void) sf_active(F);
+ for(var = 0; var < cube.num_vars; var++) {
+ if (cube.sparse[var]) {
+ foreach_active_set(F, last, p) {
+ if (setp_disjoint(p, cube.var_mask[var])) {
+ RESET(p, ACTIVE);
+ F->active_count--;
+ }
+ }
+ }
+ }
+
+ if (F->count != F->active_count) {
+ F = sf_inactive(F);
+ }
+ return F;
+}
diff --git a/src/misc/espresso/sparse.h b/src/misc/espresso/sparse.h
new file mode 100644
index 00000000..212a32ed
--- /dev/null
+++ b/src/misc/espresso/sparse.h
@@ -0,0 +1,135 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#ifndef SPARSE_H
+#define SPARSE_H
+
+/*
+ * sparse.h -- sparse matrix package header file
+ */
+
+typedef struct sm_element_struct sm_element;
+typedef struct sm_row_struct sm_row;
+typedef struct sm_col_struct sm_col;
+typedef struct sm_matrix_struct sm_matrix;
+
+
+/*
+ * sparse matrix element
+ */
+struct sm_element_struct {
+ int row_num; /* row number of this element */
+ int col_num; /* column number of this element */
+ sm_element *next_row; /* next row in this column */
+ sm_element *prev_row; /* previous row in this column */
+ sm_element *next_col; /* next column in this row */
+ sm_element *prev_col; /* previous column in this row */
+ char *user_word; /* user-defined word */
+};
+
+
+/*
+ * row header
+ */
+struct sm_row_struct {
+ int row_num; /* the row number */
+ int length; /* number of elements in this row */
+ int flag; /* user-defined word */
+ sm_element *first_col; /* first element in this row */
+ sm_element *last_col; /* last element in this row */
+ sm_row *next_row; /* next row (in sm_matrix linked list) */
+ sm_row *prev_row; /* previous row (in sm_matrix linked list) */
+ char *user_word; /* user-defined word */
+};
+
+
+/*
+ * column header
+ */
+struct sm_col_struct {
+ int col_num; /* the column number */
+ int length; /* number of elements in this column */
+ int flag; /* user-defined word */
+ sm_element *first_row; /* first element in this column */
+ sm_element *last_row; /* last element in this column */
+ sm_col *next_col; /* next column (in sm_matrix linked list) */
+ sm_col *prev_col; /* prev column (in sm_matrix linked list) */
+ char *user_word; /* user-defined word */
+};
+
+
+/*
+ * A sparse matrix
+ */
+struct sm_matrix_struct {
+ sm_row **rows; /* pointer to row headers (by row #) */
+ int rows_size; /* alloc'ed size of above array */
+ sm_col **cols; /* pointer to column headers (by col #) */
+ int cols_size; /* alloc'ed size of above array */
+ sm_row *first_row; /* first row (linked list of all rows) */
+ sm_row *last_row; /* last row (linked list of all rows) */
+ int nrows; /* number of rows */
+ sm_col *first_col; /* first column (linked list of columns) */
+ sm_col *last_col; /* last column (linked list of columns) */
+ int ncols; /* number of columns */
+ char *user_word; /* user-defined word */
+};
+
+
+#define sm_get_col(A, colnum) \
+ (((colnum) >= 0 && (colnum) < (A)->cols_size) ? \
+ (A)->cols[colnum] : (sm_col *) 0)
+
+#define sm_get_row(A, rownum) \
+ (((rownum) >= 0 && (rownum) < (A)->rows_size) ? \
+ (A)->rows[rownum] : (sm_row *) 0)
+
+#define sm_foreach_row(A, prow) \
+ for(prow = A->first_row; prow != 0; prow = prow->next_row)
+
+#define sm_foreach_col(A, pcol) \
+ for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col)
+
+#define sm_foreach_row_element(prow, p) \
+ for(p = prow->first_col; p != 0; p = p->next_col)
+
+#define sm_foreach_col_element(pcol, p) \
+ for(p = pcol->first_row; p != 0; p = p->next_row)
+
+#define sm_put(x, val) \
+ (x->user_word = (char *) val)
+
+#define sm_get(type, x) \
+ ((type) (x->user_word))
+
+extern sm_matrix *sm_alloc(), *sm_alloc_size(), *sm_dup();
+extern void sm_free(), sm_delrow(), sm_delcol(), sm_resize();
+extern void sm_write(), sm_print(), sm_dump(), sm_cleanup();
+extern void sm_copy_row(), sm_copy_col();
+extern void sm_remove(), sm_remove_element();
+extern sm_element *sm_insert(), *sm_find();
+extern sm_row *sm_longest_row();
+extern sm_col *sm_longest_col();
+extern int sm_read(), sm_read_compressed();
+
+extern sm_row *sm_row_alloc(), *sm_row_dup(), *sm_row_and();
+extern void sm_row_free(), sm_row_remove(), sm_row_print();
+extern sm_element *sm_row_insert(), *sm_row_find();
+extern int sm_row_contains(), sm_row_intersects();
+extern int sm_row_compare(), sm_row_hash();
+
+extern sm_col *sm_col_alloc(), *sm_col_dup(), *sm_col_and();
+extern void sm_col_free(), sm_col_remove(), sm_col_print();
+extern sm_element *sm_col_insert(), *sm_col_find();
+extern int sm_col_contains(), sm_col_intersects();
+extern int sm_col_compare(), sm_col_hash();
+
+extern int sm_row_dominance(), sm_col_dominance(), sm_block_partition();
+
+#endif
diff --git a/src/misc/espresso/sparse_int.h b/src/misc/espresso/sparse_int.h
new file mode 100644
index 00000000..49b2509a
--- /dev/null
+++ b/src/misc/espresso/sparse_int.h
@@ -0,0 +1,121 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+//#include "port.h"
+//#include "utility.h"
+#include "sparse.h"
+
+#include "util_hack.h" // added
+
+
+
+/*
+ * sorted, double-linked list insertion
+ *
+ * type: object type
+ *
+ * first, last: fields (in header) to head and tail of the list
+ * count: field (in header) of length of the list
+ *
+ * next, prev: fields (in object) to link next and previous objects
+ * value: field (in object) which controls the order
+ *
+ * newval: value field for new object
+ * e: an object to use if insertion needed (set to actual value used)
+ */
+
+#define sorted_insert(type, first, last, count, next, prev, value, newval, e) \
+ if (last == 0) { \
+ e->value = newval; \
+ first = e; \
+ last = e; \
+ e->next = 0; \
+ e->prev = 0; \
+ count++; \
+ } else if (last->value < newval) { \
+ e->value = newval; \
+ last->next = e; \
+ e->prev = last; \
+ last = e; \
+ e->next = 0; \
+ count++; \
+ } else if (first->value > newval) { \
+ e->value = newval; \
+ first->prev = e; \
+ e->next = first; \
+ first = e; \
+ e->prev = 0; \
+ count++; \
+ } else { \
+ type *p; \
+ for(p = first; p->value < newval; p = p->next) \
+ ; \
+ if (p->value > newval) { \
+ e->value = newval; \
+ p = p->prev; \
+ p->next->prev = e; \
+ e->next = p->next; \
+ p->next = e; \
+ e->prev = p; \
+ count++; \
+ } else { \
+ e = p; \
+ } \
+ }
+
+
+/*
+ * double linked-list deletion
+ */
+#define dll_unlink(p, first, last, next, prev, count) { \
+ if (p->prev == 0) { \
+ first = p->next; \
+ } else { \
+ p->prev->next = p->next; \
+ } \
+ if (p->next == 0) { \
+ last = p->prev; \
+ } else { \
+ p->next->prev = p->prev; \
+ } \
+ count--; \
+}
+
+
+#ifdef FAST_AND_LOOSE
+extern sm_element *sm_element_freelist;
+extern sm_row *sm_row_freelist;
+extern sm_col *sm_col_freelist;
+
+#define sm_element_alloc(newobj) \
+ if (sm_element_freelist == NIL(sm_element)) { \
+ newobj = ALLOC(sm_element, 1); \
+ } else { \
+ newobj = sm_element_freelist; \
+ sm_element_freelist = sm_element_freelist->next_col; \
+ } \
+ newobj->user_word = NIL(char); \
+
+#define sm_element_free(e) \
+ (e->next_col = sm_element_freelist, sm_element_freelist = e)
+
+#else
+
+#define sm_element_alloc(newobj) \
+ newobj = ALLOC(sm_element, 1); \
+ newobj->user_word = NIL(char);
+#define sm_element_free(e) \
+ FREE(e)
+#endif
+
+
+extern void sm_row_remove_element();
+extern void sm_col_remove_element();
+
+/* LINTLIBRARY */
diff --git a/src/misc/espresso/unate.c b/src/misc/espresso/unate.c
new file mode 100644
index 00000000..bd71207f
--- /dev/null
+++ b/src/misc/espresso/unate.c
@@ -0,0 +1,441 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ * unate.c -- routines for dealing with unate functions
+ */
+
+#include "espresso.h"
+
+static pset_family abs_covered();
+static pset_family abs_covered_many();
+static int abs_select_restricted();
+
+pcover map_cover_to_unate(T)
+pcube *T;
+{
+ register unsigned int word_test, word_set, bit_test, bit_set;
+ register pcube p, pA;
+ pset_family A;
+ pcube *T1;
+ int ncol, i;
+
+ A = sf_new(CUBELISTSIZE(T), cdata.vars_unate);
+ A->count = CUBELISTSIZE(T);
+ foreachi_set(A, i, p) {
+ (void) set_clear(p, A->sf_size);
+ }
+ ncol = 0;
+
+ for(i = 0; i < cube.size; i++) {
+ if (cdata.part_zeros[i] > 0) {
+ assert(ncol <= cdata.vars_unate);
+
+ /* Copy a column from T to A */
+ word_test = WHICH_WORD(i);
+ bit_test = 1 << WHICH_BIT(i);
+ word_set = WHICH_WORD(ncol);
+ bit_set = 1 << WHICH_BIT(ncol);
+
+ pA = A->data;
+ for(T1 = T+2; (p = *T1++) != 0; ) {
+ if ((p[word_test] & bit_test) == 0) {
+ pA[word_set] |= bit_set;
+ }
+ pA += A->wsize;
+ }
+
+ ncol++;
+ }
+ }
+
+ return A;
+}
+
+pcover map_unate_to_cover(A)
+pset_family A;
+{
+ register int i, ncol, lp;
+ register pcube p, pB;
+ int var, nunate, *unate;
+ pcube last;
+ pset_family B;
+
+ B = sf_new(A->count, cube.size);
+ B->count = A->count;
+
+ /* Find the unate variables */
+ unate = ALLOC(int, cube.num_vars);
+ nunate = 0;
+ for(var = 0; var < cube.num_vars; var++) {
+ if (cdata.is_unate[var]) {
+ unate[nunate++] = var;
+ }
+ }
+
+ /* Loop for each set of A */
+ pB = B->data;
+ foreach_set(A, last, p) {
+
+ /* Initialize this set of B */
+ INLINEset_fill(pB, cube.size);
+
+ /* Now loop for the unate variables; if the part is in A,
+ * then this variable of B should be a single 1 in the unate
+ * part.
+ */
+ for(ncol = 0; ncol < nunate; ncol++) {
+ if (is_in_set(p, ncol)) {
+ lp = cube.last_part[unate[ncol]];
+ for(i = cube.first_part[unate[ncol]]; i <= lp; i++) {
+ if (cdata.part_zeros[i] == 0) {
+ set_remove(pB, i);
+ }
+ }
+ }
+ }
+ pB += B->wsize;
+ }
+
+ FREE(unate);
+ return B;
+}
+
+/*
+ * unate_compl
+ */
+
+pset_family unate_compl(A)
+pset_family A;
+{
+ register pset p, last;
+
+ /* Make sure A is single-cube containment minimal */
+/* A = sf_rev_contain(A);*/
+
+ foreach_set(A, last, p) {
+ PUTSIZE(p, set_ord(p));
+ }
+
+ /* Recursively find the complement */
+ A = unate_complement(A);
+
+ /* Now, we can guarantee a minimal result by containing the result */
+ A = sf_rev_contain(A);
+ return A;
+}
+
+
+/*
+ * Assume SIZE(p) records the size of each set
+ */
+pset_family unate_complement(A)
+pset_family A; /* disposes of A */
+{
+ pset_family Abar;
+ register pset p, p1, restrict;
+ register int i;
+ int max_i, min_set_ord, j;
+
+ /* Check for no sets in the matrix -- complement is the universe */
+ if (A->count == 0) {
+ sf_free(A);
+ Abar = sf_new(1, A->sf_size);
+ (void) set_clear(GETSET(Abar, Abar->count++), A->sf_size);
+
+ /* Check for a single set in the maxtrix -- compute de Morgan complement */
+ } else if (A->count == 1) {
+ p = A->data;
+ Abar = sf_new(A->sf_size, A->sf_size);
+ for(i = 0; i < A->sf_size; i++) {
+ if (is_in_set(p, i)) {
+ p1 = set_clear(GETSET(Abar, Abar->count++), A->sf_size);
+ set_insert(p1, i);
+ }
+ }
+ sf_free(A);
+
+ } else {
+
+ /* Select splitting variable as the variable which belongs to a set
+ * of the smallest size, and which has greatest column count
+ */
+ restrict = set_new(A->sf_size);
+ min_set_ord = A->sf_size + 1;
+ foreachi_set(A, i, p) {
+ if (SIZE(p) < min_set_ord) {
+ set_copy(restrict, p);
+ min_set_ord = SIZE(p);
+ } else if (SIZE(p) == min_set_ord) {
+ set_or(restrict, restrict, p);
+ }
+ }
+
+ /* Check for no data (shouldn't happen ?) */
+ if (min_set_ord == 0) {
+ A->count = 0;
+ Abar = A;
+
+ /* Check for "essential" columns */
+ } else if (min_set_ord == 1) {
+ Abar = unate_complement(abs_covered_many(A, restrict));
+ sf_free(A);
+ foreachi_set(Abar, i, p) {
+ set_or(p, p, restrict);
+ }
+
+ /* else, recur as usual */
+ } else {
+ max_i = abs_select_restricted(A, restrict);
+
+ /* Select those rows of A which are not covered by max_i,
+ * recursively find all minimal covers of these rows, and
+ * then add back in max_i
+ */
+ Abar = unate_complement(abs_covered(A, max_i));
+ foreachi_set(Abar, i, p) {
+ set_insert(p, max_i);
+ }
+
+ /* Now recur on A with all zero's on column max_i */
+ foreachi_set(A, i, p) {
+ if (is_in_set(p, max_i)) {
+ set_remove(p, max_i);
+ j = SIZE(p) - 1;
+ PUTSIZE(p, j);
+ }
+ }
+
+ Abar = sf_append(Abar, unate_complement(A));
+ }
+ set_free(restrict);
+ }
+
+ return Abar;
+}
+
+pset_family exact_minimum_cover(T)
+IN pset_family T;
+{
+ register pset p, last, p1;
+ register int i, n;
+ int lev, lvl;
+ pset nlast;
+ pset_family temp;
+ long start = ptime();
+ struct {
+ pset_family sf;
+ int level;
+ } stack[32]; /* 32 suffices for 2 ** 32 cubes ! */
+
+ if (T->count <= 0)
+ return sf_new(1, T->sf_size);
+ for(n = T->count, lev = 0; n != 0; n >>= 1, lev++) ;
+
+ /* A simple heuristic ordering */
+ T = lex_sort(sf_save(T));
+
+ /* Push a full set on the stack to get things started */
+ n = 1;
+ stack[0].sf = sf_new(1, T->sf_size);
+ stack[0].level = lev;
+ set_fill(GETSET(stack[0].sf, stack[0].sf->count++), T->sf_size);
+
+ nlast = GETSET(T, T->count - 1);
+ foreach_set(T, last, p) {
+
+ /* "unstack" the set into a family */
+ temp = sf_new(set_ord(p), T->sf_size);
+ for(i = 0; i < T->sf_size; i++)
+ if (is_in_set(p, i)) {
+ p1 = set_fill(GETSET(temp, temp->count++), T->sf_size);
+ set_remove(p1, i);
+ }
+ stack[n].sf = temp;
+ stack[n++].level = lev;
+
+ /* Pop the stack and perform (leveled) intersections */
+ while (n > 1 && (stack[n-1].level==stack[n-2].level || p == nlast)) {
+ temp = unate_intersect(stack[n-1].sf, stack[n-2].sf, FALSE);
+ lvl = MIN(stack[n-1].level, stack[n-2].level) - 1;
+ if (debug & MINCOV && lvl < 10) {
+ printf("# EXACT_MINCOV[%d]: %4d = %4d x %4d, time = %s\n",
+ lvl, temp->count, stack[n-1].sf->count,
+ stack[n-2].sf->count, print_time(ptime() - start));
+ (void) fflush(stdout);
+ }
+ sf_free(stack[n-2].sf);
+ sf_free(stack[n-1].sf);
+ stack[n-2].sf = temp;
+ stack[n-2].level = lvl;
+ n--;
+ }
+ }
+
+ temp = stack[0].sf;
+ p1 = set_fill(set_new(T->sf_size), T->sf_size);
+ foreach_set(temp, last, p)
+ INLINEset_diff(p, p1, p);
+ set_free(p1);
+ if (debug & MINCOV1) {
+ printf("MINCOV: family of all minimal coverings is\n");
+ sf_print(temp);
+ }
+ sf_free(T); /* this is the copy of T we made ... */
+ return temp;
+}
+
+/*
+ * unate_intersect -- intersect two unate covers
+ *
+ * If largest_only is TRUE, then only the largest cube(s) are returned
+ */
+
+#define MAGIC 500 /* save 500 cubes before containment */
+
+pset_family unate_intersect(A, B, largest_only)
+pset_family A, B;
+bool largest_only;
+{
+ register pset pi, pj, lasti, lastj, pt;
+ pset_family T, Tsave;
+ bool save;
+ int maxord, ord;
+
+ /* How large should each temporary result cover be ? */
+ T = sf_new(MAGIC, A->sf_size);
+ Tsave = NULL;
+ maxord = 0;
+ pt = T->data;
+
+ /* Form pairwise intersection of each set of A with each cube of B */
+ foreach_set(A, lasti, pi) {
+
+ foreach_set(B, lastj, pj) {
+
+ save = set_andp(pt, pi, pj);
+
+ /* Check if we want the largest only */
+ if (save && largest_only) {
+ if ((ord = set_ord(pt)) > maxord) {
+ /* discard Tsave and T */
+ if (Tsave != NULL) {
+ sf_free(Tsave);
+ Tsave = NULL;
+ }
+ pt = T->data;
+ T->count = 0;
+ /* Re-create pt (which was just thrown away) */
+ (void) set_and(pt, pi, pj);
+ maxord = ord;
+ } else if (ord < maxord) {
+ save = FALSE;
+ }
+ }
+
+ if (save) {
+ if (++T->count >= T->capacity) {
+ T = sf_contain(T);
+ Tsave = (Tsave == NULL) ? T : sf_union(Tsave, T);
+ T = sf_new(MAGIC, A->sf_size);
+ pt = T->data;
+ } else {
+ pt += T->wsize;
+ }
+ }
+ }
+ }
+
+
+ /* Contain the final result and merge it into Tsave */
+ T = sf_contain(T);
+ Tsave = (Tsave == NULL) ? T : sf_union(Tsave, T);
+
+ return Tsave;
+}
+
+/*
+ * abs_covered -- after selecting a new column for the selected set,
+ * create a new matrix which is only those rows which are still uncovered
+ */
+static pset_family
+abs_covered(A, pick)
+pset_family A;
+register int pick;
+{
+ register pset last, p, pdest;
+ register pset_family Aprime;
+
+ Aprime = sf_new(A->count, A->sf_size);
+ pdest = Aprime->data;
+ foreach_set(A, last, p)
+ if (! is_in_set(p, pick)) {
+ INLINEset_copy(pdest, p);
+ Aprime->count++;
+ pdest += Aprime->wsize;
+ }
+ return Aprime;
+}
+
+
+/*
+ * abs_covered_many -- after selecting many columns for ther selected set,
+ * create a new matrix which is only those rows which are still uncovered
+ */
+static pset_family
+abs_covered_many(A, pick_set)
+pset_family A;
+register pset pick_set;
+{
+ register pset last, p, pdest;
+ register pset_family Aprime;
+
+ Aprime = sf_new(A->count, A->sf_size);
+ pdest = Aprime->data;
+ foreach_set(A, last, p)
+ if (setp_disjoint(p, pick_set)) {
+ INLINEset_copy(pdest, p);
+ Aprime->count++;
+ pdest += Aprime->wsize;
+ }
+ return Aprime;
+}
+
+
+/*
+ * abs_select_restricted -- select the column of maximum column count which
+ * also belongs to the set "restrict"; weight each column of a set as
+ * 1 / (set_ord(p) - 1).
+ */
+static int
+abs_select_restricted(A, restrict)
+pset_family A;
+pset restrict;
+{
+ register int i, best_var, best_count, *count;
+
+ /* Sum the elements in these columns */
+ count = sf_count_restricted(A, restrict);
+
+ /* Find which variable has maximum weight */
+ best_var = -1;
+ best_count = 0;
+ for(i = 0; i < A->sf_size; i++) {
+ if (count[i] > best_count) {
+ best_var = i;
+ best_count = count[i];
+ }
+ }
+ FREE(count);
+
+ if (best_var == -1)
+ fatal("abs_select_restricted: should not have best_var == -1");
+
+ return best_var;
+}
diff --git a/src/misc/espresso/util_old.h b/src/misc/espresso/util_old.h
new file mode 100644
index 00000000..5451cbe9
--- /dev/null
+++ b/src/misc/espresso/util_old.h
@@ -0,0 +1,301 @@
+/*
+ * Revision Control Information
+ *
+ * $Source: /vol/opua/opua2/sis/sis-1.2/common/src/sis/util/RCS/util.h,v $
+ * $Author: sis $
+ * $Revision: 1.9 $
+ * $Date: 1993/06/07 21:04:07 $
+ *
+ */
+#ifndef UTIL_H
+#define UTIL_H
+
+#if defined(_IBMR2)
+#ifndef _POSIX_SOURCE
+#define _POSIX_SOURCE /* Argh! IBM strikes again */
+#endif
+#ifndef _ALL_SOURCE
+#define _ALL_SOURCE /* Argh! IBM strikes again */
+#endif
+#ifndef _ANSI_C_SOURCE
+#define _ANSI_C_SOURCE /* Argh! IBM strikes again */
+#endif
+#endif
+
+#if defined(__STDC__) || defined(sprite) || defined(_IBMR2) || defined(__osf__)
+#include <unistd.h>
+#endif
+
+#if defined(_IBMR2) && !defined(__STDC__)
+#define _BSD
+#endif
+
+#include "ansi.h" /* since some files don't include sis.h */
+
+/* This was taken out and defined at compile time in the SIS Makefile
+ that uses the OctTools. When the OctTools are used, USE_MM is defined,
+ because the OctTools contain libmm.a. Otherwise, USE_MM is not defined,
+ since the mm package is not distributed with SIS, only with Oct. */
+
+/* #define USE_MM */ /* choose libmm.a as the memory allocator */
+
+#define NIL(type) ((type *) 0)
+
+#ifdef USE_MM
+/*
+ * assumes the memory manager is libmm.a
+ * - allows malloc(0) or realloc(obj, 0)
+ * - catches out of memory (and calls MMout_of_memory())
+ * - catch free(0) and realloc(0, size) in the macros
+ */
+#define ALLOC(type, num) \
+ ((type *) malloc(sizeof(type) * (num)))
+#define REALLOC(type, obj, num) \
+ (obj) ? ((type *) realloc((char *) obj, sizeof(type) * (num))) : \
+ ((type *) malloc(sizeof(type) * (num)))
+#define FREE(obj) \
+ ((obj) ? (free((char *) (obj)), (obj) = 0) : 0)
+#else
+/*
+ * enforce strict semantics on the memory allocator
+ * - when in doubt, delete the '#define USE_MM' above
+ */
+#define ALLOC(type, num) \
+ ((type *) MMalloc((long) sizeof(type) * (long) (num)))
+#define REALLOC(type, obj, num) \
+ ((type *) MMrealloc((char *) (obj), (long) sizeof(type) * (long) (num)))
+#define FREE(obj) \
+ ((obj) ? (free((void *) (obj)), (obj) = 0) : 0)
+#endif
+
+
+/* Ultrix (and SABER) have 'fixed' certain functions which used to be int */
+#if defined(ultrix) || defined(SABER) || defined(aiws) || defined(__hpux) || defined(__STDC__) || defined(apollo)
+#define VOID_HACK void
+#else
+#define VOID_HACK int
+#endif
+
+
+/* No machines seem to have much of a problem with these */
+#include <stdio.h>
+#include <ctype.h>
+
+
+/* Some machines fail to define some functions in stdio.h */
+#if !defined(__STDC__) && !defined(sprite) && !defined(_IBMR2) && !defined(__osf__)
+extern FILE *popen(), *tmpfile();
+extern int pclose();
+#ifndef clearerr /* is a macro on many machines, but not all */
+extern VOID_HACK clearerr();
+#endif
+#ifndef rewind
+extern VOID_HACK rewind();
+#endif
+#endif
+
+#ifndef PORT_H
+#include <sys/types.h>
+#include <signal.h>
+#if defined(ultrix)
+#if defined(_SIZE_T_)
+#define ultrix4
+#else
+#if defined(SIGLOST)
+#define ultrix3
+#else
+#define ultrix2
+#endif
+#endif
+#endif
+#endif
+
+/* most machines don't give us a header file for these */
+#if defined(__STDC__) || defined(sprite) || defined(_IBMR2) || defined(__osf__) || defined(sunos4) || defined(__hpux)
+#include <stdlib.h>
+#if defined(__hpux)
+#include <errno.h> /* For perror() defininition */
+#endif /* __hpux */
+#else
+extern VOID_HACK abort(), free(), exit(), perror();
+extern char *getenv();
+#ifdef ultrix4
+extern void *malloc(), *realloc(), *calloc();
+#else
+extern char *malloc(), *realloc(), *calloc();
+#endif
+#if defined(aiws)
+extern int sprintf();
+#else
+#ifndef _IBMR2
+extern char *sprintf();
+#endif
+#endif
+extern int system();
+extern double atof();
+#endif
+
+#ifndef PORT_H
+#if defined(ultrix3) || defined(sunos4) || defined(_IBMR2) || defined(__STDC__)
+#define SIGNAL_FN void
+#else
+/* sequent, ultrix2, 4.3BSD (vax, hp), sunos3 */
+#define SIGNAL_FN int
+#endif
+#endif
+
+/* some call it strings.h, some call it string.h; others, also have memory.h */
+#if defined(__STDC__) || defined(sprite)
+#include <string.h>
+#else
+#if defined(ultrix4) || defined(__hpux)
+#include <strings.h>
+#else
+#if defined(_IBMR2) || defined(__osf__)
+#include<string.h>
+#include<strings.h>
+#else
+/* ANSI C string.h -- 1/11/88 Draft Standard */
+/* ugly, awful hack */
+#ifndef PORT_H
+extern char *strcpy(), *strncpy(), *strcat(), *strncat(), *strerror();
+extern char *strpbrk(), *strtok(), *strchr(), *strrchr(), *strstr();
+extern int strcoll(), strxfrm(), strncmp(), strlen(), strspn(), strcspn();
+extern char *memmove(), *memccpy(), *memchr(), *memcpy(), *memset();
+extern int memcmp(), strcmp();
+#endif
+#endif
+#endif
+#endif
+
+/* a few extras */
+#if defined(__hpux)
+#define random() lrand48()
+#define srandom(a) srand48(a)
+#define bzero(a,b) memset(a, 0, b)
+#else
+#if !defined(__osf__) && !defined(linux)
+/* these are defined as macros in stdlib.h */
+extern VOID_HACK srandom();
+extern long random();
+#endif
+#endif
+
+/* code from sis-1.3 commented out below
+#if defined(__STDC__) || defined(sprite)
+#include <assert.h>
+#else
+#ifndef NDEBUG
+#define assert(ex) {\
+ if (! (ex)) {\
+ (void) fprintf(stderr,\
+ "Assertion failed: file %s, line %d\n\"%s\"\n",\
+ __FILE__, __LINE__, "ex");\
+ (void) fflush(stdout);\
+ abort();\
+ }\
+}
+#else
+#define assert(ex) {ex;}
+#endif
+#endif
+*/
+
+ /* Sunil 5/3/97:
+ sis-1.4: dont let the assert call go to the OS, since
+ much of the code in SIS has actual computation done in
+ the assert function. %$#$@@#! The OS version of assert
+ will do nothing if NDEBUG is set. We cant let that happen...
+ */
+# ifdef NDEBUG
+# define assert(ex) {ex;}
+# else
+# define assert(ex) {\
+ if (! (ex)) {\
+ (void) fprintf(stderr,\
+ "Assertion failed: file %s, line %d\n\"%s\"\n",\
+ __FILE__, __LINE__, "ex");\
+ (void) fflush(stdout);\
+ abort();\
+ }\
+}
+# endif
+
+
+#define fail(why) {\
+ (void) fprintf(stderr, "Fatal error: file %s, line %d\n%s\n",\
+ __FILE__, __LINE__, why);\
+ (void) fflush(stdout);\
+ abort();\
+}
+
+
+#ifdef lint
+#undef putc /* correct lint '_flsbuf' bug */
+#undef ALLOC /* allow for lint -h flag */
+#undef REALLOC
+#define ALLOC(type, num) (((type *) 0) + (num))
+#define REALLOC(type, obj, num) ((obj) + (num))
+#endif
+
+/*
+#if !defined(__osf__)
+#define MAXPATHLEN 1024
+#endif
+*/
+
+/* These arguably do NOT belong in util.h */
+#ifndef ABS
+#define ABS(a) ((a) < 0 ? -(a) : (a))
+#endif
+#ifndef MAX
+#define MAX(a,b) ((a) > (b) ? (a) : (b))
+#endif
+#ifndef MIN
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+#endif
+
+
+#ifndef USE_MM
+EXTERN void MMout_of_memory ARGS((long));
+EXTERN char *MMalloc ARGS((long));
+EXTERN char *MMrealloc ARGS((char *, long));
+EXTERN void MMfree ARGS((char *));
+#endif
+
+EXTERN void util_print_cpu_stats ARGS((FILE *));
+EXTERN long util_cpu_time ARGS((void));
+EXTERN void util_getopt_reset ARGS((void));
+EXTERN int util_getopt ARGS((int, char **, char *));
+EXTERN char *util_path_search ARGS((char *));
+EXTERN char *util_file_search ARGS((char *, char *, char *));
+EXTERN int util_pipefork ARGS((char **, FILE **, FILE **, int *));
+EXTERN char *util_print_time ARGS((long));
+EXTERN int util_save_image ARGS((char *, char *));
+EXTERN char *util_strsav ARGS((char *));
+EXTERN int util_do_nothing ARGS((void));
+EXTERN char *util_tilde_expand ARGS((char *));
+EXTERN char *util_tempnam ARGS((char *, char *));
+EXTERN FILE *util_tmpfile ARGS((void));
+EXTERN long getSoftDataLimit();
+
+#define ptime() util_cpu_time()
+#define print_time(t) util_print_time(t)
+
+/* util_getopt() global variables (ack !) */
+extern int util_optind;
+extern char *util_optarg;
+
+#include <math.h>
+#ifndef HUGE_VAL
+#ifndef HUGE
+#define HUGE 8.9884656743115790e+307
+#endif
+#define HUGE_VAL HUGE
+#endif
+#ifndef MAXINT
+#define MAXINT (1 << 30)
+#endif
+
+#include <varargs.h>
+#endif
diff --git a/src/misc/espresso/verify.c b/src/misc/espresso/verify.c
new file mode 100644
index 00000000..64342787
--- /dev/null
+++ b/src/misc/espresso/verify.c
@@ -0,0 +1,193 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+/*
+ */
+
+#include "espresso.h"
+
+/*
+ * verify -- check that all minterms of F are contained in (Fold u Dold)
+ * and that all minterms of Fold are contained in (F u Dold).
+ */
+bool verify(F, Fold, Dold)
+pcover F, Fold, Dold;
+{
+ pcube p, last, *FD;
+ bool verify_error = FALSE;
+
+ /* Make sure the function didn't grow too large */
+ FD = cube2list(Fold, Dold);
+ foreach_set(F, last, p)
+ if (! cube_is_covered(FD, p)) {
+ printf("some minterm in F is not covered by Fold u Dold\n");
+ verify_error = TRUE;
+ if (verbose_debug) printf("%s\n", pc1(p)); else break;
+ }
+ free_cubelist(FD);
+
+ /* Make sure minimized function covers the original function */
+ FD = cube2list(F, Dold);
+ foreach_set(Fold, last, p)
+ if (! cube_is_covered(FD, p)) {
+ printf("some minterm in Fold is not covered by F u Dold\n");
+ verify_error = TRUE;
+ if (verbose_debug) printf("%s\n", pc1(p)); else break;
+ }
+ free_cubelist(FD);
+
+ return verify_error;
+}
+
+
+
+/*
+ * PLA_verify -- verify that two PLA's are identical
+ *
+ * If names are given, row and column permutations are done to make
+ * the comparison meaningful.
+ *
+ */
+bool PLA_verify(PLA1, PLA2)
+pPLA PLA1, PLA2;
+{
+ /* Check if both have names given; if so, attempt to permute to
+ * match the names
+ */
+ if (PLA1->label != NULL && PLA1->label[0] != NULL &&
+ PLA2->label != NULL && PLA2->label[0] != NULL) {
+ PLA_permute(PLA1, PLA2);
+ } else {
+ (void) fprintf(stderr, "Warning: cannot permute columns without names\n");
+ return TRUE;
+ }
+
+ if (PLA1->F->sf_size != PLA2->F->sf_size) {
+ (void) fprintf(stderr, "PLA_verify: PLA's are not the same size\n");
+ return TRUE;
+ }
+
+ return verify(PLA2->F, PLA1->F, PLA1->D);
+}
+
+
+
+/*
+ * Permute the columns of PLA1 so that they match the order of PLA2
+ * Discard any columns of PLA1 which are not in PLA2
+ * Association is strictly by the names of the columns of the cover.
+ */
+PLA_permute(PLA1, PLA2)
+pPLA PLA1, PLA2;
+{
+ register int i, j, *permute, npermute;
+ register char *labi;
+ char **label;
+
+ /* determine which columns of PLA1 to save, and place these in the list
+ * "permute"; the order in this list is the final output order
+ */
+ npermute = 0;
+ permute = ALLOC(int, PLA2->F->sf_size);
+ for(i = 0; i < PLA2->F->sf_size; i++) {
+ labi = PLA2->label[i];
+ for(j = 0; j < PLA1->F->sf_size; j++) {
+ if (strcmp(labi, PLA1->label[j]) == 0) {
+ permute[npermute++] = j;
+ break;
+ }
+ }
+ }
+
+ /* permute columns */
+ if (PLA1->F != NULL) {
+ PLA1->F = sf_permute(PLA1->F, permute, npermute);
+ }
+ if (PLA1->R != NULL) {
+ PLA1->R = sf_permute(PLA1->R, permute, npermute);
+ }
+ if (PLA1->D != NULL) {
+ PLA1->D = sf_permute(PLA1->D, permute, npermute);
+ }
+
+ /* permute the labels */
+ label = ALLOC(char *, cube.size);
+ for(i = 0; i < npermute; i++) {
+ label[i] = PLA1->label[permute[i]];
+ }
+ for(i = npermute; i < cube.size; i++) {
+ label[i] = NULL;
+ }
+ FREE(PLA1->label);
+ PLA1->label = label;
+
+ FREE(permute);
+}
+
+
+
+/*
+ * check_consistency -- test that the ON-set, OFF-set and DC-set form
+ * a partition of the boolean space.
+ */
+bool check_consistency(PLA)
+pPLA PLA;
+{
+ bool verify_error = FALSE;
+ pcover T;
+
+ T = cv_intersect(PLA->F, PLA->D);
+ if (T->count == 0)
+ printf("ON-SET and DC-SET are disjoint\n");
+ else {
+ printf("Some minterm(s) belong to both the ON-SET and DC-SET !\n");
+ if (verbose_debug)
+ cprint(T);
+ verify_error = TRUE;
+ }
+ (void) fflush(stdout);
+ free_cover(T);
+
+ T = cv_intersect(PLA->F, PLA->R);
+ if (T->count == 0)
+ printf("ON-SET and OFF-SET are disjoint\n");
+ else {
+ printf("Some minterm(s) belong to both the ON-SET and OFF-SET !\n");
+ if (verbose_debug)
+ cprint(T);
+ verify_error = TRUE;
+ }
+ (void) fflush(stdout);
+ free_cover(T);
+
+ T = cv_intersect(PLA->D, PLA->R);
+ if (T->count == 0)
+ printf("DC-SET and OFF-SET are disjoint\n");
+ else {
+ printf("Some minterm(s) belong to both the OFF-SET and DC-SET !\n");
+ if (verbose_debug)
+ cprint(T);
+ verify_error = TRUE;
+ }
+ (void) fflush(stdout);
+ free_cover(T);
+
+ if (tautology(cube3list(PLA->F, PLA->D, PLA->R)))
+ printf("Union of ON-SET, OFF-SET and DC-SET is the universe\n");
+ else {
+ T = complement(cube3list(PLA->F, PLA->D, PLA->R));
+ printf("There are minterms left unspecified !\n");
+ if (verbose_debug)
+ cprint(T);
+ verify_error = TRUE;
+ free_cover(T);
+ }
+ (void) fflush(stdout);
+ return verify_error;
+}