summaryrefslogtreecommitdiffstats
path: root/src/misc/util/utilIsop.c
diff options
context:
space:
mode:
authorAlan Mishchenko <alanmi@berkeley.edu>2014-10-10 12:59:30 -0700
committerAlan Mishchenko <alanmi@berkeley.edu>2014-10-10 12:59:30 -0700
commitb8bd21c82df3e610d9df2dbe6945cc20db02216d (patch)
treeb00b9965afa179c51c0d44e7fde4c63a7253efb6 /src/misc/util/utilIsop.c
parent5cf92f32a5da522c9c9d1810a503795f259eb59e (diff)
downloadabc-b8bd21c82df3e610d9df2dbe6945cc20db02216d.tar.gz
abc-b8bd21c82df3e610d9df2dbe6945cc20db02216d.tar.bz2
abc-b8bd21c82df3e610d9df2dbe6945cc20db02216d.zip
Improvements to ISOP.
Diffstat (limited to 'src/misc/util/utilIsop.c')
-rw-r--r--src/misc/util/utilIsop.c1062
1 files changed, 784 insertions, 278 deletions
diff --git a/src/misc/util/utilIsop.c b/src/misc/util/utilIsop.c
index a62fc84d..ea03c027 100644
--- a/src/misc/util/utilIsop.c
+++ b/src/misc/util/utilIsop.c
@@ -32,7 +32,11 @@ ABC_NAMESPACE_IMPL_START
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
-typedef int FUNC_ISOP( word *, word *, word *, int *, int );
+#define ABC_ISOP_MAX_VAR 16
+#define ABC_ISOP_MAX_WORD (ABC_ISOP_MAX_VAR > 6 ? (1 << (ABC_ISOP_MAX_VAR-6)) : 1)
+#define ABC_ISOP_MAX_CUBE 0xFFFF
+
+typedef word FUNC_ISOP( word *, word *, word *, word, int * );
static FUNC_ISOP Abc_Isop7Cover;
static FUNC_ISOP Abc_Isop8Cover;
@@ -66,8 +70,12 @@ static FUNC_ISOP * s_pFuncIsopCover[17] =
Abc_Isop16Cover // 16
};
-extern int Abc_IsopCheck( word * pOn, word * pOnDc, word * pRes, int nVars, int nCostLim, int * pCover );
-extern int Abc_EsopCheck( word * pOn, int nVars, int nCostLim, int * pCover );
+extern word Abc_IsopCheck( word * pOn, word * pOnDc, word * pRes, int nVars, word CostLim, int * pCover );
+extern word Abc_EsopCheck( word * pOn, int nVars, word CostLim, int * pCover );
+
+static inline word Abc_Cube2Cost( int nCubes ) { return (word)nCubes << 32; }
+static inline int Abc_CostCubes( word Cost ) { return (int)(Cost >> 32); }
+static inline int Abc_CostLits( word Cost ) { return (int)(Cost & 0xFFFFFFFF); }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
@@ -84,21 +92,23 @@ extern int Abc_EsopCheck( word * pOn, int nVars, int nCostLim, int * pCover );
SeeAlso []
***********************************************************************/
-static inline void Abc_IsopAddLits( int * pCover, int nCost0, int nCost1, int Var )
+static inline void Abc_IsopAddLits( int * pCover, word Cost0, word Cost1, int Var )
{
- int c;
- if ( pCover == NULL ) return;
- nCost0 >>= 16;
- nCost1 >>= 16;
- for ( c = 0; c < nCost0; c++ )
- pCover[c] |= (1 << Abc_Var2Lit(Var,0));
- for ( c = 0; c < nCost1; c++ )
- pCover[nCost0+c] |= (1 << Abc_Var2Lit(Var,1));
+ if ( pCover )
+ {
+ int c, nCubes0, nCubes1;
+ nCubes0 = Abc_CostCubes( Cost0 );
+ nCubes1 = Abc_CostCubes( Cost1 );
+ for ( c = 0; c < nCubes0; c++ )
+ pCover[c] |= (1 << Abc_Var2Lit(Var,0));
+ for ( c = 0; c < nCubes1; c++ )
+ pCover[nCubes0+c] |= (1 << Abc_Var2Lit(Var,1));
+ }
}
-int Abc_Isop6Cover( word uOn, word uOnDc, word * pRes, int nVars, int nCostLim, int * pCover )
+word Abc_Isop6Cover( word uOn, word uOnDc, word * pRes, int nVars, word CostLim, int * pCover )
{
word uOn0, uOn1, uOnDc0, uOnDc1, uRes0, uRes1, uRes2;
- int Var, nCost0, nCost1, nCost2;
+ word Cost0, Cost1, Cost2; int Var;
assert( nVars <= 6 );
assert( (uOn & ~uOnDc) == 0 );
if ( uOn == 0 )
@@ -110,7 +120,7 @@ int Abc_Isop6Cover( word uOn, word uOnDc, word * pRes, int nVars, int nCostLim,
{
pRes[0] = ~(word)0;
if ( pCover ) pCover[0] = 0;
- return (1 << 16);
+ return Abc_Cube2Cost(1);
}
assert( nVars > 0 );
// find the topmost var
@@ -124,64 +134,63 @@ int Abc_Isop6Cover( word uOn, word uOnDc, word * pRes, int nVars, int nCostLim,
uOnDc0 = Abc_Tt6Cofactor0( uOnDc, Var );
uOnDc1 = Abc_Tt6Cofactor1( uOnDc, Var );
// solve for cofactors
- nCost0 = Abc_Isop6Cover( uOn0 & ~uOnDc1, uOnDc0, &uRes0, Var, nCostLim, pCover );
- if ( nCost0 >= nCostLim ) return nCostLim;
- nCost1 = Abc_Isop6Cover( uOn1 & ~uOnDc0, uOnDc1, &uRes1, Var, nCostLim, pCover ? pCover + (nCost0 >> 16) : NULL );
- if ( nCost0 + nCost1 >= nCostLim ) return nCostLim;
- nCost2 = Abc_Isop6Cover( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, &uRes2, Var, nCostLim, pCover ? pCover + (nCost0 >> 16) + (nCost1 >> 16) : NULL );
- if ( nCost0 + nCost1 + nCost2 >= nCostLim ) return nCostLim;
+ Cost0 = Abc_Isop6Cover( uOn0 & ~uOnDc1, uOnDc0, &uRes0, Var, CostLim, pCover );
+ if ( Cost0 >= CostLim ) return CostLim;
+ Cost1 = Abc_Isop6Cover( uOn1 & ~uOnDc0, uOnDc1, &uRes1, Var, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) : NULL );
+ if ( Cost0 + Cost1 >= CostLim ) return CostLim;
+ Cost2 = Abc_Isop6Cover( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, &uRes2, Var, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1) : NULL );
+ if ( Cost0 + Cost1 + Cost2 >= CostLim ) return CostLim;
// derive the final truth table
*pRes = uRes2 | (uRes0 & s_Truths6Neg[Var]) | (uRes1 & s_Truths6[Var]);
assert( (uOn & ~*pRes) == 0 && (*pRes & ~uOnDc) == 0 );
- Abc_IsopAddLits( pCover, nCost0, nCost1, Var );
- return nCost0 + nCost1 + nCost2 + (nCost0 >> 16) + (nCost1 >> 16);
+ Abc_IsopAddLits( pCover, Cost0, Cost1, Var );
+ return Cost0 + Cost1 + Cost2 + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1);
}
-int Abc_Isop7Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
+word Abc_Isop7Cover( word * pOn, word * pOnDc, word * pRes, word CostLim, int * pCover )
{
word uOn0, uOn1, uOn2, uOnDc2, uRes0, uRes1, uRes2;
- int nCost0, nCost1, nCost2, nVars = 6;
+ word Cost0, Cost1, Cost2; int nVars = 6;
assert( (pOn[0] & ~pOnDc[0]) == 0 );
assert( (pOn[1] & ~pOnDc[1]) == 0 );
// cofactor
uOn0 = pOn[0] & ~pOnDc[1];
uOn1 = pOn[1] & ~pOnDc[0];
// solve for cofactors
- nCost0 = Abc_IsopCheck( &uOn0, pOnDc, &uRes0, nVars, nCostLim, pCover );
- if ( nCost0 >= nCostLim ) return nCostLim;
- nCost1 = Abc_IsopCheck( &uOn1, pOnDc+1, &uRes1, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) : NULL );
- if ( nCost0 + nCost1 >= nCostLim ) return nCostLim;
+ Cost0 = Abc_IsopCheck( &uOn0, pOnDc, &uRes0, nVars, CostLim, pCover );
+ if ( Cost0 >= CostLim ) return CostLim;
+ Cost1 = Abc_IsopCheck( &uOn1, pOnDc+1, &uRes1, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) : NULL );
+ if ( Cost0 + Cost1 >= CostLim ) return CostLim;
uOn2 = (pOn[0] & ~uRes0) | (pOn[1] & ~uRes1);
uOnDc2 = pOnDc[0] & pOnDc[1];
- nCost2 = Abc_IsopCheck( &uOn2, &uOnDc2, &uRes2, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) + (nCost1 >> 16) : NULL );
- if ( nCost0 + nCost1 + nCost2 >= nCostLim ) return nCostLim;
+ Cost2 = Abc_IsopCheck( &uOn2, &uOnDc2, &uRes2, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1) : NULL );
+ if ( Cost0 + Cost1 + Cost2 >= CostLim ) return CostLim;
// derive the final truth table
pRes[0] = uRes2 | uRes0;
pRes[1] = uRes2 | uRes1;
assert( (pOn[0] & ~pRes[0]) == 0 && (pRes[0] & ~pOnDc[0]) == 0 );
assert( (pOn[1] & ~pRes[1]) == 0 && (pRes[1] & ~pOnDc[1]) == 0 );
- Abc_IsopAddLits( pCover, nCost0, nCost1, nVars );
- return nCost0 + nCost1 + nCost2 + (nCost0 >> 16) + (nCost1 >> 16);
+ Abc_IsopAddLits( pCover, Cost0, Cost1, nVars );
+ return Cost0 + Cost1 + Cost2 + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1);
}
-int Abc_Isop8Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
+word Abc_Isop8Cover( word * pOn, word * pOnDc, word * pRes, word CostLim, int * pCover )
{
- word uOn0[2], uOn1[2], uOn2[2], uOnDc2[2], uRes0[2], uRes1[2], uRes2[2];
- int nCost0, nCost1, nCost2, nVars = 7;
- // cofactor
- uOn0[0] = pOn[0] & ~pOnDc[2];
- uOn0[1] = pOn[1] & ~pOnDc[3];
- uOn1[0] = pOn[2] & ~pOnDc[0];
- uOn1[1] = pOn[3] & ~pOnDc[1];
- // solve for cofactors
- nCost0 = Abc_IsopCheck( uOn0, pOnDc, uRes0, nVars, nCostLim, pCover );
- if ( nCost0 >= nCostLim ) return nCostLim;
- nCost1 = Abc_IsopCheck( uOn1, pOnDc+2, uRes1, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) : NULL );
- if ( nCost0 + nCost1 >= nCostLim ) return nCostLim;
- uOn2[0] = (pOn[0] & ~uRes0[0]) | (pOn[2] & ~uRes1[0]);
- uOn2[1] = (pOn[1] & ~uRes0[1]) | (pOn[3] & ~uRes1[1]);
- uOnDc2[0] = pOnDc[0] & pOnDc[2];
- uOnDc2[1] = pOnDc[1] & pOnDc[3];
- nCost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) + (nCost1 >> 16) : NULL );
- if ( nCost0 + nCost1 + nCost2 >= nCostLim ) return nCostLim;
+ word uOn2[2], uOnDc2[2], uRes0[2], uRes1[2], uRes2[2];
+ word Cost0, Cost1, Cost2; int nVars = 7;
+ // negative cofactor
+ uOn2[0] = pOn[0] & ~pOnDc[2];
+ uOn2[1] = pOn[1] & ~pOnDc[3];
+ Cost0 = Abc_IsopCheck( uOn2, pOnDc, uRes0, nVars, CostLim, pCover );
+ if ( Cost0 >= CostLim ) return CostLim;
+ // positive cofactor
+ uOn2[0] = pOn[2] & ~pOnDc[0];
+ uOn2[1] = pOn[3] & ~pOnDc[1];
+ Cost1 = Abc_IsopCheck( uOn2, pOnDc+2, uRes1, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) : NULL );
+ if ( Cost0 + Cost1 >= CostLim ) return CostLim;
+ // middle cofactor
+ uOn2[0] = (pOn[0] & ~uRes0[0]) | (pOn[2] & ~uRes1[0]); uOnDc2[0] = pOnDc[0] & pOnDc[2];
+ uOn2[1] = (pOn[1] & ~uRes0[1]) | (pOn[3] & ~uRes1[1]); uOnDc2[1] = pOnDc[1] & pOnDc[3];
+ Cost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1) : NULL );
+ if ( Cost0 + Cost1 + Cost2 >= CostLim ) return CostLim;
// derive the final truth table
pRes[0] = uRes2[0] | uRes0[0];
pRes[1] = uRes2[1] | uRes0[1];
@@ -189,101 +198,358 @@ int Abc_Isop8Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCo
pRes[3] = uRes2[1] | uRes1[1];
assert( (pOn[0] & ~pRes[0]) == 0 && (pOn[1] & ~pRes[1]) == 0 && (pOn[2] & ~pRes[2]) == 0 && (pOn[3] & ~pRes[3]) == 0 );
assert( (pRes[0] & ~pOnDc[0])==0 && (pRes[1] & ~pOnDc[1])==0 && (pRes[2] & ~pOnDc[2])==0 && (pRes[3] & ~pOnDc[3])==0 );
- Abc_IsopAddLits( pCover, nCost0, nCost1, nVars );
- return nCost0 + nCost1 + nCost2 + (nCost0 >> 16) + (nCost1 >> 16);
+ Abc_IsopAddLits( pCover, Cost0, Cost1, nVars );
+ return Cost0 + Cost1 + Cost2 + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1);
}
-int Abc_Isop9Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
+word Abc_Isop9Cover( word * pOn, word * pOnDc, word * pRes, word CostLim, int * pCover )
{
- word uOn0[4], uOn1[4], uOn2[4], uOnDc2[4], uRes0[4], uRes1[4], uRes2[4];
- int c, nCost0, nCost1, nCost2, nVars = 8, nWords = 4;
- // cofactor
+ word uOn2[4], uOnDc2[4], uRes0[4], uRes1[4], uRes2[4];
+ word Cost0, Cost1, Cost2; int c, nVars = 8, nWords = 4;
+ // negative cofactor
for ( c = 0; c < nWords; c++ )
- uOn0[c] = pOn[c] & ~pOnDc[c+nWords], uOn1[c] = pOn[c+nWords] & ~pOnDc[c];
- // solve for cofactors
- nCost0 = Abc_IsopCheck( uOn0, pOnDc, uRes0, nVars, nCostLim, pCover );
- if ( nCost0 >= nCostLim ) return nCostLim;
- nCost1 = Abc_IsopCheck( uOn1, pOnDc+nWords, uRes1, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) : NULL );
- if ( nCost0 + nCost1 >= nCostLim ) return nCostLim;
+ uOn2[c] = pOn[c] & ~pOnDc[c+nWords];
+ Cost0 = Abc_IsopCheck( uOn2, pOnDc, uRes0, nVars, CostLim, pCover );
+ if ( Cost0 >= CostLim ) return CostLim;
+ // positive cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c+nWords] & ~pOnDc[c];
+ Cost1 = Abc_IsopCheck( uOn2, pOnDc+nWords, uRes1, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) : NULL );
+ if ( Cost0 + Cost1 >= CostLim ) return CostLim;
+ // middle cofactor
for ( c = 0; c < nWords; c++ )
uOn2[c] = (pOn[c] & ~uRes0[c]) | (pOn[c+nWords] & ~uRes1[c]), uOnDc2[c] = pOnDc[c] & pOnDc[c+nWords];
- nCost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) + (nCost1 >> 16) : NULL );
- if ( nCost0 + nCost1 + nCost2 >= nCostLim ) return nCostLim;
+ Cost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1) : NULL );
+ if ( Cost0 + Cost1 + Cost2 >= CostLim ) return CostLim;
// derive the final truth table
for ( c = 0; c < nWords; c++ )
pRes[c] = uRes2[c] | uRes0[c], pRes[c+nWords] = uRes2[c] | uRes1[c];
// verify
for ( c = 0; c < (nWords<<1); c++ )
assert( (pOn[c] & ~pRes[c] ) == 0 && (pRes[c] & ~pOnDc[c]) == 0 );
- Abc_IsopAddLits( pCover, nCost0, nCost1, nVars );
- return nCost0 + nCost1 + nCost2 + (nCost0 >> 16) + (nCost1 >> 16);
+ Abc_IsopAddLits( pCover, Cost0, Cost1, nVars );
+ return Cost0 + Cost1 + Cost2 + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1);
}
-int Abc_Isop10Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
+word Abc_Isop10Cover( word * pOn, word * pOnDc, word * pRes, word CostLim, int * pCover )
{
- word uOn0[8], uOn1[8], uOn2[8], uOnDc2[8], uRes0[8], uRes1[8], uRes2[8];
- int c, nCost0, nCost1, nCost2, nVars = 9, nWords = 8;
- // cofactor
+ word uOn2[8], uOnDc2[8], uRes0[8], uRes1[8], uRes2[8];
+ word Cost0, Cost1, Cost2; int c, nVars = 9, nWords = 8;
+ // negative cofactor
for ( c = 0; c < nWords; c++ )
- uOn0[c] = pOn[c] & ~pOnDc[c+nWords], uOn1[c] = pOn[c+nWords] & ~pOnDc[c];
- // solve for cofactors
- nCost0 = Abc_IsopCheck( uOn0, pOnDc, uRes0, nVars, nCostLim, pCover );
- if ( nCost0 >= nCostLim ) return nCostLim;
- nCost1 = Abc_IsopCheck( uOn1, pOnDc+nWords, uRes1, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) : NULL );
- if ( nCost0 + nCost1 >= nCostLim ) return nCostLim;
+ uOn2[c] = pOn[c] & ~pOnDc[c+nWords];
+ Cost0 = Abc_IsopCheck( uOn2, pOnDc, uRes0, nVars, CostLim, pCover );
+ if ( Cost0 >= CostLim ) return CostLim;
+ // positive cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c+nWords] & ~pOnDc[c];
+ Cost1 = Abc_IsopCheck( uOn2, pOnDc+nWords, uRes1, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) : NULL );
+ if ( Cost0 + Cost1 >= CostLim ) return CostLim;
+ // middle cofactor
for ( c = 0; c < nWords; c++ )
uOn2[c] = (pOn[c] & ~uRes0[c]) | (pOn[c+nWords] & ~uRes1[c]), uOnDc2[c] = pOnDc[c] & pOnDc[c+nWords];
- nCost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, nCostLim, pCover ? pCover + (nCost0 >> 16) + (nCost1 >> 16) : NULL );
- if ( nCost0 + nCost1 + nCost2 >= nCostLim ) return nCostLim;
+ Cost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1) : NULL );
+ if ( Cost0 + Cost1 + Cost2 >= CostLim ) return CostLim;
// derive the final truth table
for ( c = 0; c < nWords; c++ )
pRes[c] = uRes2[c] | uRes0[c], pRes[c+nWords] = uRes2[c] | uRes1[c];
// verify
for ( c = 0; c < (nWords<<1); c++ )
assert( (pOn[c] & ~pRes[c] ) == 0 && (pRes[c] & ~pOnDc[c]) == 0 );
- Abc_IsopAddLits( pCover, nCost0, nCost1, nVars );
- return nCost0 + nCost1 + nCost2 + (nCost0 >> 16) + (nCost1 >> 16);
+ Abc_IsopAddLits( pCover, Cost0, Cost1, nVars );
+ return Cost0 + Cost1 + Cost2 + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1);
}
-int Abc_Isop11Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
+word Abc_Isop11Cover( word * pOn, word * pOnDc, word * pRes, word CostLim, int * pCover )
{
- return 0;
+ word uOn2[16], uOnDc2[16], uRes0[16], uRes1[16], uRes2[16];
+ word Cost0, Cost1, Cost2; int c, nVars = 10, nWords = 16;
+ // negative cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c] & ~pOnDc[c+nWords];
+ Cost0 = Abc_IsopCheck( uOn2, pOnDc, uRes0, nVars, CostLim, pCover );
+ if ( Cost0 >= CostLim ) return CostLim;
+ // positive cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c+nWords] & ~pOnDc[c];
+ Cost1 = Abc_IsopCheck( uOn2, pOnDc+nWords, uRes1, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) : NULL );
+ if ( Cost0 + Cost1 >= CostLim ) return CostLim;
+ // middle cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = (pOn[c] & ~uRes0[c]) | (pOn[c+nWords] & ~uRes1[c]), uOnDc2[c] = pOnDc[c] & pOnDc[c+nWords];
+ Cost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1) : NULL );
+ if ( Cost0 + Cost1 + Cost2 >= CostLim ) return CostLim;
+ // derive the final truth table
+ for ( c = 0; c < nWords; c++ )
+ pRes[c] = uRes2[c] | uRes0[c], pRes[c+nWords] = uRes2[c] | uRes1[c];
+ // verify
+ for ( c = 0; c < (nWords<<1); c++ )
+ assert( (pOn[c] & ~pRes[c] ) == 0 && (pRes[c] & ~pOnDc[c]) == 0 );
+ Abc_IsopAddLits( pCover, Cost0, Cost1, nVars );
+ return Cost0 + Cost1 + Cost2 + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1);
}
-int Abc_Isop12Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
+word Abc_Isop12Cover( word * pOn, word * pOnDc, word * pRes, word CostLim, int * pCover )
{
- return 0;
+ word uOn2[32], uOnDc2[32], uRes0[32], uRes1[32], uRes2[32];
+ word Cost0, Cost1, Cost2; int c, nVars = 11, nWords = 32;
+ // negative cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c] & ~pOnDc[c+nWords];
+ Cost0 = Abc_IsopCheck( uOn2, pOnDc, uRes0, nVars, CostLim, pCover );
+ if ( Cost0 >= CostLim ) return CostLim;
+ // positive cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c+nWords] & ~pOnDc[c];
+ Cost1 = Abc_IsopCheck( uOn2, pOnDc+nWords, uRes1, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) : NULL );
+ if ( Cost0 + Cost1 >= CostLim ) return CostLim;
+ // middle cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = (pOn[c] & ~uRes0[c]) | (pOn[c+nWords] & ~uRes1[c]), uOnDc2[c] = pOnDc[c] & pOnDc[c+nWords];
+ Cost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1) : NULL );
+ if ( Cost0 + Cost1 + Cost2 >= CostLim ) return CostLim;
+ // derive the final truth table
+ for ( c = 0; c < nWords; c++ )
+ pRes[c] = uRes2[c] | uRes0[c], pRes[c+nWords] = uRes2[c] | uRes1[c];
+ // verify
+ for ( c = 0; c < (nWords<<1); c++ )
+ assert( (pOn[c] & ~pRes[c] ) == 0 && (pRes[c] & ~pOnDc[c]) == 0 );
+ Abc_IsopAddLits( pCover, Cost0, Cost1, nVars );
+ return Cost0 + Cost1 + Cost2 + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1);
}
-int Abc_Isop13Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
+word Abc_Isop13Cover( word * pOn, word * pOnDc, word * pRes, word CostLim, int * pCover )
{
- return 0;
+ word uOn2[64], uOnDc2[64], uRes0[64], uRes1[64], uRes2[64];
+ word Cost0, Cost1, Cost2; int c, nVars = 12, nWords = 64;
+ // negative cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c] & ~pOnDc[c+nWords];
+ Cost0 = Abc_IsopCheck( uOn2, pOnDc, uRes0, nVars, CostLim, pCover );
+ if ( Cost0 >= CostLim ) return CostLim;
+ // positive cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c+nWords] & ~pOnDc[c];
+ Cost1 = Abc_IsopCheck( uOn2, pOnDc+nWords, uRes1, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) : NULL );
+ if ( Cost0 + Cost1 >= CostLim ) return CostLim;
+ // middle cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = (pOn[c] & ~uRes0[c]) | (pOn[c+nWords] & ~uRes1[c]), uOnDc2[c] = pOnDc[c] & pOnDc[c+nWords];
+ Cost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1) : NULL );
+ if ( Cost0 + Cost1 + Cost2 >= CostLim ) return CostLim;
+ // derive the final truth table
+ for ( c = 0; c < nWords; c++ )
+ pRes[c] = uRes2[c] | uRes0[c], pRes[c+nWords] = uRes2[c] | uRes1[c];
+ // verify
+ for ( c = 0; c < (nWords<<1); c++ )
+ assert( (pOn[c] & ~pRes[c] ) == 0 && (pRes[c] & ~pOnDc[c]) == 0 );
+ Abc_IsopAddLits( pCover, Cost0, Cost1, nVars );
+ return Cost0 + Cost1 + Cost2 + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1);
}
-int Abc_Isop14Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
+word Abc_Isop14Cover( word * pOn, word * pOnDc, word * pRes, word CostLim, int * pCover )
{
- return 0;
+ word uOn2[128], uOnDc2[128], uRes0[128], uRes1[128], uRes2[128];
+ word Cost0, Cost1, Cost2; int c, nVars = 13, nWords = 128;
+ // negative cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c] & ~pOnDc[c+nWords];
+ Cost0 = Abc_IsopCheck( uOn2, pOnDc, uRes0, nVars, CostLim, pCover );
+ if ( Cost0 >= CostLim ) return CostLim;
+ // positive cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c+nWords] & ~pOnDc[c];
+ Cost1 = Abc_IsopCheck( uOn2, pOnDc+nWords, uRes1, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) : NULL );
+ if ( Cost0 + Cost1 >= CostLim ) return CostLim;
+ // middle cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = (pOn[c] & ~uRes0[c]) | (pOn[c+nWords] & ~uRes1[c]), uOnDc2[c] = pOnDc[c] & pOnDc[c+nWords];
+ Cost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1) : NULL );
+ if ( Cost0 + Cost1 + Cost2 >= CostLim ) return CostLim;
+ // derive the final truth table
+ for ( c = 0; c < nWords; c++ )
+ pRes[c] = uRes2[c] | uRes0[c], pRes[c+nWords] = uRes2[c] | uRes1[c];
+ // verify
+ for ( c = 0; c < (nWords<<1); c++ )
+ assert( (pOn[c] & ~pRes[c] ) == 0 && (pRes[c] & ~pOnDc[c]) == 0 );
+ Abc_IsopAddLits( pCover, Cost0, Cost1, nVars );
+ return Cost0 + Cost1 + Cost2 + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1);
}
-int Abc_Isop15Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
+word Abc_Isop15Cover( word * pOn, word * pOnDc, word * pRes, word CostLim, int * pCover )
{
- return 0;
+ word uOn2[256], uOnDc2[256], uRes0[256], uRes1[256], uRes2[256];
+ word Cost0, Cost1, Cost2; int c, nVars = 14, nWords = 256;
+ // negative cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c] & ~pOnDc[c+nWords];
+ Cost0 = Abc_IsopCheck( uOn2, pOnDc, uRes0, nVars, CostLim, pCover );
+ if ( Cost0 >= CostLim ) return CostLim;
+ // positive cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c+nWords] & ~pOnDc[c];
+ Cost1 = Abc_IsopCheck( uOn2, pOnDc+nWords, uRes1, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) : NULL );
+ if ( Cost0 + Cost1 >= CostLim ) return CostLim;
+ // middle cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = (pOn[c] & ~uRes0[c]) | (pOn[c+nWords] & ~uRes1[c]), uOnDc2[c] = pOnDc[c] & pOnDc[c+nWords];
+ Cost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1) : NULL );
+ if ( Cost0 + Cost1 + Cost2 >= CostLim ) return CostLim;
+ // derive the final truth table
+ for ( c = 0; c < nWords; c++ )
+ pRes[c] = uRes2[c] | uRes0[c], pRes[c+nWords] = uRes2[c] | uRes1[c];
+ // verify
+ for ( c = 0; c < (nWords<<1); c++ )
+ assert( (pOn[c] & ~pRes[c] ) == 0 && (pRes[c] & ~pOnDc[c]) == 0 );
+ Abc_IsopAddLits( pCover, Cost0, Cost1, nVars );
+ return Cost0 + Cost1 + Cost2 + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1);
}
-int Abc_Isop16Cover( word * pOn, word * pOnDc, word * pRes, int * pCover, int nCostLim )
+word Abc_Isop16Cover( word * pOn, word * pOnDc, word * pRes, word CostLim, int * pCover )
{
- return 0;
+ word uOn2[512], uOnDc2[512], uRes0[512], uRes1[512], uRes2[512];
+ word Cost0, Cost1, Cost2; int c, nVars = 15, nWords = 512;
+ // negative cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c] & ~pOnDc[c+nWords];
+ Cost0 = Abc_IsopCheck( uOn2, pOnDc, uRes0, nVars, CostLim, pCover );
+ if ( Cost0 >= CostLim ) return CostLim;
+ // positive cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = pOn[c+nWords] & ~pOnDc[c];
+ Cost1 = Abc_IsopCheck( uOn2, pOnDc+nWords, uRes1, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) : NULL );
+ if ( Cost0 + Cost1 >= CostLim ) return CostLim;
+ // middle cofactor
+ for ( c = 0; c < nWords; c++ )
+ uOn2[c] = (pOn[c] & ~uRes0[c]) | (pOn[c+nWords] & ~uRes1[c]), uOnDc2[c] = pOnDc[c] & pOnDc[c+nWords];
+ Cost2 = Abc_IsopCheck( uOn2, uOnDc2, uRes2, nVars, CostLim, pCover ? pCover + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1) : NULL );
+ if ( Cost0 + Cost1 + Cost2 >= CostLim ) return CostLim;
+ // derive the final truth table
+ for ( c = 0; c < nWords; c++ )
+ pRes[c] = uRes2[c] | uRes0[c], pRes[c+nWords] = uRes2[c] | uRes1[c];
+ // verify
+ for ( c = 0; c < (nWords<<1); c++ )
+ assert( (pOn[c] & ~pRes[c] ) == 0 && (pRes[c] & ~pOnDc[c]) == 0 );
+ Abc_IsopAddLits( pCover, Cost0, Cost1, nVars );
+ return Cost0 + Cost1 + Cost2 + Abc_CostCubes(Cost0) + Abc_CostCubes(Cost1);
}
-int Abc_IsopCheck( word * pOn, word * pOnDc, word * pRes, int nVars, int nCostLim, int * pCover )
+word Abc_IsopCheck( word * pOn, word * pOnDc, word * pRes, int nVars, word CostLim, int * pCover )
{
- int nVarsNew, Cost;
+ int nVarsNew; word Cost;
if ( nVars <= 6 )
- return Abc_Isop6Cover( *pOn, *pOnDc, pRes, nVars, nCostLim, pCover );
+ return Abc_Isop6Cover( *pOn, *pOnDc, pRes, nVars, CostLim, pCover );
for ( nVarsNew = nVars; nVarsNew > 6; nVarsNew-- )
if ( Abc_TtHasVar( pOn, nVars, nVarsNew-1 ) || Abc_TtHasVar( pOnDc, nVars, nVarsNew-1 ) )
break;
if ( nVarsNew == 6 )
- Cost = Abc_Isop6Cover( *pOn, *pOnDc, pRes, nVarsNew, nCostLim, pCover );
+ Cost = Abc_Isop6Cover( *pOn, *pOnDc, pRes, nVarsNew, CostLim, pCover );
else
- Cost = s_pFuncIsopCover[nVarsNew]( pOn, pOnDc, pRes, pCover, nCostLim );
+ Cost = s_pFuncIsopCover[nVarsNew]( pOn, pOnDc, pRes, CostLim, pCover );
Abc_TtStretch6( pRes, nVarsNew, nVars );
return Cost;
}
/**Function*************************************************************
+ Synopsis [Create truth table for the given cover.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+static inline word ** Abc_IsopTtElems()
+{
+ static word TtElems[ABC_ISOP_MAX_VAR+1][ABC_ISOP_MAX_WORD], * pTtElems[ABC_ISOP_MAX_VAR+1] = {NULL};
+ if ( pTtElems[0] == NULL )
+ {
+ int v;
+ for ( v = 0; v <= ABC_ISOP_MAX_VAR; v++ )
+ pTtElems[v] = TtElems[v];
+ Abc_TtElemInit( pTtElems, ABC_ISOP_MAX_VAR );
+ }
+ return pTtElems;
+}
+void Abc_IsopBuildTruth( Vec_Int_t * vCover, int nVars, word * pRes, int fXor, int fCompl )
+{
+ word ** pTtElems = Abc_IsopTtElems();
+ word pCube[ABC_ISOP_MAX_WORD];
+ int nWords = Abc_TtWordNum( nVars );
+ int c, v, Cube;
+ assert( nVars <= ABC_ISOP_MAX_VAR );
+ Abc_TtClear( pRes, nWords );
+ Vec_IntForEachEntry( vCover, Cube, c )
+ {
+ Abc_TtFill( pCube, nWords );
+ for ( v = 0; v < nVars; v++ )
+ if ( ((Cube >> (v << 1)) & 3) == 1 )
+ Abc_TtSharp( pCube, pCube, pTtElems[v], nWords );
+ else if ( ((Cube >> (v << 1)) & 3) == 2 )
+ Abc_TtAnd( pCube, pCube, pTtElems[v], nWords, 0 );
+ if ( fXor )
+ Abc_TtXor( pRes, pRes, pCube, nWords, 0 );
+ else
+ Abc_TtOr( pRes, pRes, pCube, nWords );
+ }
+ if ( fCompl )
+ Abc_TtNot( pRes, nWords );
+}
+static inline void Abc_IsopVerify( word * pFunc, int nVars, word * pRes, Vec_Int_t * vCover, int fXor, int fCompl )
+{
+ Abc_IsopBuildTruth( vCover, nVars, pRes, fXor, fCompl );
+ if ( !Abc_TtEqual( pFunc, pRes, Abc_TtWordNum(nVars) ) )
+ printf( "Verification failed.\n" );
+// else
+// printf( "Verification succeeded.\n" );
+}
+
+/**Function*************************************************************
+
+ Synopsis [This procedure assumes that function has exact support.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Abc_Isop( word * pFunc, int nVars, int nCubeLim, Vec_Int_t * vCover, int fTryBoth )
+{
+ word pRes[ABC_ISOP_MAX_WORD];
+ word Cost0, Cost1, Cost, CostInit = Abc_Cube2Cost(nCubeLim);
+ assert( nVars <= ABC_ISOP_MAX_VAR );
+ Vec_IntGrow( vCover, 1 << (nVars-1) );
+ if ( fTryBoth )
+ {
+ Cost0 = Abc_IsopCheck( pFunc, pFunc, pRes, nVars, CostInit, NULL );
+ Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
+ Cost1 = Abc_IsopCheck( pFunc, pFunc, pRes, nVars, Cost0, NULL );
+ Cost = Abc_MinWord( Cost0, Cost1 );
+ if ( Cost == CostInit )
+ {
+ Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
+ return -1;
+ }
+ if ( Cost == Cost0 )
+ {
+ Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
+ Abc_IsopCheck( pFunc, pFunc, pRes, nVars, CostInit, Vec_IntArray(vCover) );
+ }
+ else // if ( Cost == Cost1 )
+ {
+ Abc_IsopCheck( pFunc, pFunc, pRes, nVars, CostInit, Vec_IntArray(vCover) );
+ Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
+ }
+ }
+ else
+ {
+ Cost = Cost0 = Abc_IsopCheck( pFunc, pFunc, pRes, nVars, CostInit, Vec_IntArray(vCover) );
+ if ( Cost == CostInit )
+ return -1;
+ }
+ vCover->nSize = Abc_CostCubes(Cost);
+ assert( vCover->nSize <= vCover->nCap );
+// Abc_IsopVerify( pFunc, nVars, pRes, vCover, 0, Cost != Cost0 );
+ return Cost != Cost0;
+}
+
+/**Function*************************************************************
+
Synopsis [Compute CNF assuming it does not exceed the limit.]
Description [Please note that pCover should have at least 32 extra entries!]
@@ -295,30 +561,97 @@ int Abc_IsopCheck( word * pOn, word * pOnDc, word * pRes, int nVars, int nCostLi
***********************************************************************/
int Abc_IsopCnf( word * pFunc, int nVars, int nCubeLim, int * pCover )
{
- word pRes[1024];
- int c, Cost0, Cost1, CostLim = nCubeLim << 16;
+ word pRes[ABC_ISOP_MAX_WORD];
+ word Cost0, Cost1, CostInit = Abc_Cube2Cost(nCubeLim);
+ int c, nCubes0, nCubes1;
+ assert( nVars <= ABC_ISOP_MAX_VAR );
assert( Abc_TtHasVar( pFunc, nVars, nVars - 1 ) );
if ( nVars > 6 )
- Cost0 = s_pFuncIsopCover[nVars]( pFunc, pFunc, pRes, pCover, CostLim );
+ Cost0 = s_pFuncIsopCover[nVars]( pFunc, pFunc, pRes, CostInit, pCover );
else
- Cost0 = Abc_Isop6Cover( *pFunc, *pFunc, pRes, nVars, CostLim, pCover );
- if ( Cost0 >= CostLim )
- return CostLim;
+ Cost0 = Abc_Isop6Cover( *pFunc, *pFunc, pRes, nVars, CostInit, pCover );
+ if ( Cost0 >= CostInit )
+ return CostInit;
Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
if ( nVars > 6 )
- Cost1 = s_pFuncIsopCover[nVars]( pFunc, pFunc, pRes, pCover ? pCover + (Cost0 >> 16) : NULL, CostLim );
+ Cost1 = s_pFuncIsopCover[nVars]( pFunc, pFunc, pRes, CostInit, pCover ? pCover + Abc_CostCubes(Cost0) : NULL );
else
- Cost1 = Abc_Isop6Cover( *pFunc, *pFunc, pRes, nVars, CostLim, pCover ? pCover + (Cost0 >> 16) : NULL );
+ Cost1 = Abc_Isop6Cover( *pFunc, *pFunc, pRes, nVars, CostInit, pCover ? pCover + Abc_CostCubes(Cost0) : NULL );
Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
- if ( Cost0 + Cost1 >= CostLim )
- return CostLim;
- if ( pCover == NULL )
- return Cost0 + Cost1;
- for ( c = 0; c < (Cost0 >> 16); c++ )
- pCover[c] |= (1 << Abc_Var2Lit(nVars, 0));
- for ( c = 0; c < (Cost1 >> 16); c++ )
- pCover[c+(Cost0 >> 16)] |= (1 << Abc_Var2Lit(nVars, 1));
- return Cost0 + Cost1;
+ if ( Cost0 + Cost1 >= CostInit )
+ return CostInit;
+ nCubes0 = Abc_CostCubes(Cost0);
+ nCubes1 = Abc_CostCubes(Cost1);
+ if ( pCover )
+ {
+ for ( c = 0; c < nCubes0; c++ )
+ pCover[c] |= (1 << Abc_Var2Lit(nVars, 0));
+ for ( c = 0; c < nCubes1; c++ )
+ pCover[c+nCubes0] |= (1 << Abc_Var2Lit(nVars, 1));
+ }
+ return nCubes0 + nCubes1;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Abc_IsopCountLits( Vec_Int_t * vCover, int nVars )
+{
+ int i, k, Entry, Literal, nLits = 0;
+ if ( Vec_IntSize(vCover) == 0 || (Vec_IntSize(vCover) == 1 && Vec_IntEntry(vCover, 0) == 0) )
+ return 0;
+ Vec_IntForEachEntry( vCover, Entry, i )
+ {
+ for ( k = 0; k < nVars; k++ )
+ {
+ Literal = 3 & (Entry >> (k << 1));
+ if ( Literal == 1 ) // neg literal
+ nLits++;
+ else if ( Literal == 2 ) // pos literal
+ nLits++;
+ else if ( Literal != 0 )
+ assert( 0 );
+ }
+ }
+ return nLits;
+}
+void Abc_IsopPrintCover( Vec_Int_t * vCover, int nVars, int fCompl )
+{
+ int i, k, Entry, Literal;
+ if ( Vec_IntSize(vCover) == 0 || (Vec_IntSize(vCover) == 1 && Vec_IntEntry(vCover, 0) == 0) )
+ {
+ printf( "Constant %d\n", Vec_IntSize(vCover) );
+ return;
+ }
+ Vec_IntForEachEntry( vCover, Entry, i )
+ {
+ for ( k = 0; k < nVars; k++ )
+ {
+ Literal = 3 & (Entry >> (k << 1));
+ if ( Literal == 1 ) // neg literal
+ printf( "0" );
+ else if ( Literal == 2 ) // pos literal
+ printf( "1" );
+ else if ( Literal == 0 )
+ printf( "-" );
+ else assert( 0 );
+ }
+ printf( " %d\n", !fCompl );
+ }
+}
+void Abc_IsopPrint( word * t, int nVars, Vec_Int_t * vCover, int fTryBoth )
+{
+ int fCompl = Abc_Isop( t, nVars, ABC_ISOP_MAX_CUBE, vCover, fTryBoth );
+ Abc_IsopPrintCover( vCover, nVars, fCompl );
}
@@ -333,61 +666,62 @@ int Abc_IsopCnf( word * pFunc, int nVars, int nCubeLim, int * pCover )
SeeAlso []
***********************************************************************/
-static inline int Abc_EsopAddLits( int * pCover, int r0, int r1, int r2, int Max, int Var )
+static inline int Abc_EsopAddLits( int * pCover, word r0, word r1, word r2, word Max, int Var )
{
- int i;
+ int i, c0, c1, c2;
if ( Max == r0 )
{
- r2 >>= 16;
+ c2 = Abc_CostCubes(r2);
if ( pCover )
{
- r0 >>= 16;
- r1 >>= 16;
- for ( i = 0; i < r1; i++ )
- pCover[i] = pCover[r0+i];
- for ( i = 0; i < r2; i++ )
- pCover[r1+i] = pCover[r0+r1+i] | (1 << Abc_Var2Lit(Var,0));
+ c0 = Abc_CostCubes(r0);
+ c1 = Abc_CostCubes(r1);
+ for ( i = 0; i < c1; i++ )
+ pCover[i] = pCover[c0+i];
+ for ( i = 0; i < c2; i++ )
+ pCover[c1+i] = pCover[c0+c1+i] | (1 << Abc_Var2Lit(Var,0));
}
- return r2;
+ return c2;
}
else if ( Max == r1 )
{
- r2 >>= 16;
+ c2 = Abc_CostCubes(r2);
if ( pCover )
{
- r0 >>= 16;
- r1 >>= 16;
- for ( i = 0; i < r2; i++ )
- pCover[r0+i] = pCover[r0+r1+i] | (1 << Abc_Var2Lit(Var,1));
+ c0 = Abc_CostCubes(r0);
+ c1 = Abc_CostCubes(r1);
+ for ( i = 0; i < c2; i++ )
+ pCover[c0+i] = pCover[c0+c1+i] | (1 << Abc_Var2Lit(Var,1));
}
- return r2;
+ return c2;
}
else
{
- r0 >>= 16;
- r1 >>= 16;
+ c0 = Abc_CostCubes(r0);
+ c1 = Abc_CostCubes(r1);
if ( pCover )
{
- r2 >>= 16;
- for ( i = 0; i < r0; i++ )
+ c2 = Abc_CostCubes(r2);
+ for ( i = 0; i < c0; i++ )
pCover[i] |= (1 << Abc_Var2Lit(Var,0));
- for ( i = 0; i < r1; i++ )
- pCover[r0+i] |= (1 << Abc_Var2Lit(Var,1));
+ for ( i = 0; i < c1; i++ )
+ pCover[c0+i] |= (1 << Abc_Var2Lit(Var,1));
}
- return r0 + r1;
+ return c0 + c1;
}
}
-int Abc_Esop6Cover( word t, int nVars, int nCostLim, int * pCover )
+word Abc_Esop6Cover( word t, int nVars, word CostLim, int * pCover )
{
word c0, c1;
- int Var, r0, r1, r2, Max;
+ word r0, r1, r2, Max;
+ int Var;
assert( nVars <= 6 );
if ( t == 0 )
return 0;
if ( t == ~(word)0 )
{
if ( pCover ) *pCover = 0;
- return 1 << 16;
+ return Abc_Cube2Cost(1);
}
assert( nVars > 0 );
// find the topmost var
@@ -399,53 +733,55 @@ int Abc_Esop6Cover( word t, int nVars, int nCostLim, int * pCover )
c0 = Abc_Tt6Cofactor0( t, Var );
c1 = Abc_Tt6Cofactor1( t, Var );
// call recursively
- r0 = Abc_Esop6Cover( c0, Var, nCostLim, pCover ? pCover : NULL );
- if ( r0 >= nCostLim ) return nCostLim;
- r1 = Abc_Esop6Cover( c1, Var, nCostLim, pCover ? pCover + (r0 >> 16) : NULL );
- if ( r1 >= nCostLim ) return nCostLim;
- r2 = Abc_Esop6Cover( c0 ^ c1, Var, nCostLim, pCover ? pCover + (r0 >> 16) + (r1 >> 16) : NULL );
- if ( r2 >= nCostLim ) return nCostLim;
- Max = Abc_MaxInt( r0, Abc_MaxInt(r1, r2) );
- if ( r0 + r1 + r2 - Max >= nCostLim ) return nCostLim;
+ r0 = Abc_Esop6Cover( c0, Var, CostLim, pCover ? pCover : NULL );
+ if ( r0 >= CostLim ) return CostLim;
+ r1 = Abc_Esop6Cover( c1, Var, CostLim, pCover ? pCover + Abc_CostCubes(r0) : NULL );
+ if ( r1 >= CostLim ) return CostLim;
+ r2 = Abc_Esop6Cover( c0 ^ c1, Var, CostLim, pCover ? pCover + Abc_CostCubes(r0) + Abc_CostCubes(r1) : NULL );
+ if ( r2 >= CostLim ) return CostLim;
+ Max = Abc_MaxWord( r0, Abc_MaxWord(r1, r2) );
+ if ( r0 + r1 + r2 - Max >= CostLim ) return CostLim;
return r0 + r1 + r2 - Max + Abc_EsopAddLits( pCover, r0, r1, r2, Max, Var );
}
-int Abc_EsopCover( word * pOn, int nVars, int nCostLim, int * pCover )
+word Abc_EsopCover( word * pOn, int nVars, word CostLim, int * pCover )
{
- int c, r0, r1, r2, Max, nWords = (1 << (nVars - 7));
+ word r0, r1, r2, Max;
+ int c, nWords = (1 << (nVars - 7));
assert( nVars > 6 );
assert( Abc_TtHasVar( pOn, nVars, nVars - 1 ) );
- r0 = Abc_EsopCheck( pOn, nVars-1, nCostLim, pCover );
- if ( r0 >= nCostLim ) return nCostLim;
- r1 = Abc_EsopCheck( pOn+nWords, nVars-1, nCostLim, pCover ? pCover + (r0 >> 16) : NULL );
- if ( r1 >= nCostLim ) return nCostLim;
+ r0 = Abc_EsopCheck( pOn, nVars-1, CostLim, pCover );
+ if ( r0 >= CostLim ) return CostLim;
+ r1 = Abc_EsopCheck( pOn+nWords, nVars-1, CostLim, pCover ? pCover + Abc_CostCubes(r0) : NULL );
+ if ( r1 >= CostLim ) return CostLim;
for ( c = 0; c < nWords; c++ )
pOn[c] ^= pOn[nWords+c];
- r2 = Abc_EsopCheck( pOn, nVars-1, nCostLim, pCover ? pCover + (r0 >> 16) + (r1 >> 16) : NULL );
+ r2 = Abc_EsopCheck( pOn, nVars-1, CostLim, pCover ? pCover + Abc_CostCubes(r0) + Abc_CostCubes(r1) : NULL );
for ( c = 0; c < nWords; c++ )
pOn[c] ^= pOn[nWords+c];
- if ( r2 >= nCostLim ) return nCostLim;
- Max = Abc_MaxInt( r0, Abc_MaxInt(r1, r2) );
- if ( r0 + r1 + r2 - Max >= nCostLim ) return nCostLim;
+ if ( r2 >= CostLim ) return CostLim;
+ Max = Abc_MaxWord( r0, Abc_MaxWord(r1, r2) );
+ if ( r0 + r1 + r2 - Max >= CostLim ) return CostLim;
return r0 + r1 + r2 - Max + Abc_EsopAddLits( pCover, r0, r1, r2, Max, nVars-1 );
}
-int Abc_EsopCheck( word * pOn, int nVars, int nCostLim, int * pCover )
+word Abc_EsopCheck( word * pOn, int nVars, word CostLim, int * pCover )
{
- int nVarsNew, Cost;
+ int nVarsNew; word Cost;
if ( nVars <= 6 )
- return Abc_Esop6Cover( *pOn, nVars, nCostLim, pCover );
+ return Abc_Esop6Cover( *pOn, nVars, CostLim, pCover );
for ( nVarsNew = nVars; nVarsNew > 6; nVarsNew-- )
if ( Abc_TtHasVar( pOn, nVars, nVarsNew-1 ) )
break;
if ( nVarsNew == 6 )
- Cost = Abc_Esop6Cover( *pOn, nVarsNew, nCostLim, pCover );
+ Cost = Abc_Esop6Cover( *pOn, nVarsNew, CostLim, pCover );
else
- Cost = Abc_EsopCover( pOn, nVarsNew, nCostLim, pCover );
+ Cost = Abc_EsopCover( pOn, nVarsNew, CostLim, pCover );
return Cost;
}
+
/**Function*************************************************************
- Synopsis [This procedure assumes that function has exact support.]
+ Synopsis [Perform ISOP computation by subtracting cubes.]
Description []
@@ -454,114 +790,222 @@ int Abc_EsopCheck( word * pOn, int nVars, int nCostLim, int * pCover )
SeeAlso []
***********************************************************************/
-#define ABC_ISOP_MAX_VAR 12
-static inline word ** Abc_IsopTtElems()
+static inline int Abc_TtIntersect( word * pIn1, word * pIn2, int nWords )
{
- static word TtElems[ABC_ISOP_MAX_VAR+1][ABC_ISOP_MAX_VAR > 6 ? (1 << (ABC_ISOP_MAX_VAR-6)) : 1], * pTtElems[ABC_ISOP_MAX_VAR+1] = {NULL};
- if ( pTtElems[0] == NULL )
+ int w;
+ for ( w = 0; w < nWords; w++ )
+ if ( pIn1[w] & pIn2[w] )
+ return 1;
+ return 0;
+}
+static inline int Abc_TtCheckWithCubePos2Neg( word * t, word * c, int nWords, int iVar )
+{
+ if ( iVar < 6 )
{
- int v;
- for ( v = 0; v <= ABC_ISOP_MAX_VAR; v++ )
- pTtElems[v] = TtElems[v];
- Abc_TtElemInit( pTtElems, ABC_ISOP_MAX_VAR );
+ int i, Shift = (1 << iVar);
+ for ( i = 0; i < nWords; i++ )
+ if ( t[i] & (c[i] >> Shift) )
+ return 0;
+ return 1;
+ }
+ else
+ {
+ int i, Step = (1 << (iVar - 6));
+ word * tLimit = t + nWords;
+ for ( ; t < tLimit; t += 2*Step )
+ for ( i = 0; i < Step; i++ )
+ if ( t[Step+i] & c[i] )
+ return 0;
+ return 1;
}
- return pTtElems;
}
-
-/**Function*************************************************************
-
- Synopsis [Create truth table for the given cover.]
-
- Description []
-
- SideEffects []
-
- SeeAlso []
-
-***********************************************************************/
-void Abc_IsopBuildTruth( Vec_Int_t * vCover, int nVars, word * pRes, int fXor, int fCompl )
+static inline int Abc_TtCheckWithCubeNeg2Pos( word * t, word * c, int nWords, int iVar )
{
- word ** pTtElems = Abc_IsopTtElems();
- word pCube[1024];
- int nWords = Abc_TtWordNum( nVars );
- int c, v, Cube;
- Abc_TtClear( pRes, nWords );
- Vec_IntForEachEntry( vCover, Cube, c )
+ if ( iVar < 6 )
{
- Abc_TtFill( pCube, nWords );
- for ( v = 0; v < nVars; v++ )
- if ( ((Cube >> (v << 1)) & 3) == 1 )
- Abc_TtSharp( pCube, pCube, pTtElems[v], nWords );
- else if ( ((Cube >> (v << 1)) & 3) == 2 )
- Abc_TtAnd( pCube, pCube, pTtElems[v], nWords, 0 );
- if ( fXor )
- Abc_TtXor( pRes, pRes, pCube, nWords, 0 );
- else
- Abc_TtOr( pRes, pRes, pCube, nWords );
+ int i, Shift = (1 << iVar);
+ for ( i = 0; i < nWords; i++ )
+ if ( t[i] & (c[i] << Shift) )
+ return 0;
+ return 1;
+ }
+ else
+ {
+ int i, Step = (1 << (iVar - 6));
+ word * tLimit = t + nWords;
+ for ( ; t < tLimit; t += 2*Step )
+ for ( i = 0; i < Step; i++ )
+ if ( t[i] & c[Step+i] )
+ return 0;
+ return 1;
}
- if ( fCompl )
- Abc_TtNot( pRes, nWords );
}
-static inline void Abc_IsopVerify( word * pFunc, int nVars, word * pRes, Vec_Int_t * vCover, int fXor, int fCompl )
+static inline void Abc_TtExpandCubePos2Neg( word * t, int nWords, int iVar )
{
- Abc_IsopBuildTruth( vCover, nVars, pRes, fXor, fCompl );
- if ( !Abc_TtEqual( pFunc, pRes, Abc_TtWordNum(nVars) ) )
- printf( "Verification failed.\n" );
+ if ( iVar < 6 )
+ {
+ int i, Shift = (1 << iVar);
+ for ( i = 0; i < nWords; i++ )
+ t[i] |= (t[i] >> Shift);
+ }
+ else
+ {
+ int i, Step = (1 << (iVar - 6));
+ word * tLimit = t + nWords;
+ for ( ; t < tLimit; t += 2*Step )
+ for ( i = 0; i < Step; i++ )
+ t[i] = t[Step+i];
+ }
}
-
-/**Function*************************************************************
-
- Synopsis [This procedure assumes that function has exact support.]
-
- Description []
-
- SideEffects []
-
- SeeAlso []
-
-***********************************************************************/
-int Abc_Isop( word * pFunc, int nVars, int Type, int nCubeLim, Vec_Int_t * vCover )
+static inline void Abc_TtExpandCubeNeg2Pos( word * t, int nWords, int iVar )
{
- word pRes[1024];
- int Limit = nCubeLim ? nCubeLim : 0xFFFF;
- int LimitXor = nCubeLim ? 3 * Limit : 3 * (nVars + 1);
- int nCost0 = -1, nCost1 = -1, nCost2 = -1;
- assert( nVars <= 16 );
- assert( Abc_TtHasVar( pFunc, nVars, nVars - 1 ) );
- assert( !(Type & 4) );
- // xor polarity
- if ( Type & 4 )
- nCost2 = Abc_EsopCheck( pFunc, nVars, LimitXor << 16, NULL );
- // direct polarity
- if ( Type & 1 )
- nCost0 = Abc_IsopCheck( pFunc, pFunc, pRes, nVars, Abc_MinInt(Limit, 3*nCost2) << 16, NULL );
- // opposite polarity
- if ( Type & 2 )
+ if ( iVar < 6 )
{
- Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
- nCost1 = Abc_IsopCheck( pFunc, pFunc, pRes, nVars, Abc_MinInt(nCost0, Abc_MinInt(Limit, 3*nCost2)) << 16, NULL );
- Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
+ int i, Shift = (1 << iVar);
+ for ( i = 0; i < nWords; i++ )
+ t[i] |= (t[i] << Shift);
}
- assert( nCost0 >= 0 || nCost1 >= 0 );
- // find minimum cover
- if ( nCost0 <= nCost1 || nCost0 != -1 )
+ else
{
- Vec_IntFill( vCover, -1, nCost0 >> 16 );
- Abc_IsopCheck( pFunc, pFunc, pRes, nVars, ABC_INFINITY, Vec_IntArray(vCover) );
- Abc_IsopVerify( pFunc, nVars, pRes, vCover, 0, 0 );
- return 0;
+ int i, Step = (1 << (iVar - 6));
+ word * tLimit = t + nWords;
+ for ( ; t < tLimit; t += 2*Step )
+ for ( i = 0; i < Step; i++ )
+ t[Step+i] = t[i];
}
- if ( nCost1 < nCost0 || nCost1 != -1 )
+}
+word Abc_IsopNew( word * pOn, word * pOnDc, word * pRes, int nVars, word CostLim, int * pCover )
+{
+ word pCube[ABC_ISOP_MAX_WORD];
+ word pOnset[ABC_ISOP_MAX_WORD];
+ word pOffset[ABC_ISOP_MAX_WORD];
+ int pBlocks[16], nBlocks, vTwo, uTwo;
+ int nWords = Abc_TtWordNum(nVars);
+ int c, v, u, iMint, Cube, nLits = 0;
+ assert( nVars <= ABC_ISOP_MAX_VAR );
+ Abc_TtClear( pRes, nWords );
+ Abc_TtCopy( pOnset, pOn, nWords, 0 );
+ Abc_TtCopy( pOffset, pOnDc, nWords, 1 );
+ if ( nVars < 6 )
+ pOnset[0] >>= (64 - (1 << nVars));
+ for ( c = 0; !Abc_TtIsConst0(pOnset, nWords); c++ )
{
- Vec_IntFill( vCover, -1, nCost1 >> 16 );
- Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
- Abc_IsopCheck( pFunc, pFunc, pRes, nVars, ABC_INFINITY, Vec_IntArray(vCover) );
- Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
- Abc_IsopVerify( pFunc, nVars, pRes, vCover, 0, 1 );
- return 1;
+ // pick one minterm
+ iMint = Abc_TtFindFirstBit(pOnset, nVars);
+ for ( Cube = v = 0; v < nVars; v++ )
+ Cube |= (1 << Abc_Var2Lit(v, (iMint >> v) & 1));
+ // check expansion for the minterm
+ nBlocks = 0;
+ for ( v = 0; v < nVars; v++ )
+ if ( (pBlocks[v] = Abc_TtGetBit(pOffset, iMint ^ (1 << v))) )
+ nBlocks++;
+ // check second step
+ if ( nBlocks == nVars ) // cannot expand
+ {
+ Abc_TtSetBit( pRes, iMint );
+ Abc_TtXorBit( pOnset, iMint );
+ pCover[c] = Cube;
+ nLits += nVars;
+ continue;
+ }
+ // check dual expansion
+ vTwo = uTwo = -1;
+ if ( nBlocks < nVars - 1 )
+ {
+ for ( v = 0; v < nVars && vTwo == -1; v++ )
+ if ( !pBlocks[v] )
+ for ( u = v + 1; u < nVars; u++ )
+ if ( !pBlocks[u] )
+ {
+ if ( Abc_TtGetBit( pOffset, iMint ^ (1 << v) ^ (1 << u) ) )
+ continue;
+ // can expand both directions
+ vTwo = v;
+ uTwo = u;
+ break;
+ }
+ }
+ if ( vTwo == -1 ) // can expand only one
+ {
+ for ( v = 0; v < nVars; v++ )
+ if ( !pBlocks[v] )
+ break;
+ Abc_TtSetBit( pRes, iMint );
+ Abc_TtSetBit( pRes, iMint ^ (1 << v) );
+ Abc_TtXorBit( pOnset, iMint );
+ if ( Abc_TtGetBit(pOnset, iMint ^ (1 << v)) )
+ Abc_TtXorBit( pOnset, iMint ^ (1 << v) );
+ pCover[c] = Cube & ~(3 << Abc_Var2Lit(v, 0));
+ nLits += nVars - 1;
+ continue;
+ }
+ if ( nBlocks == nVars - 2 && vTwo >= 0 ) // can expand only these two
+ {
+ Abc_TtSetBit( pRes, iMint );
+ Abc_TtSetBit( pRes, iMint ^ (1 << vTwo) );
+ Abc_TtSetBit( pRes, iMint ^ (1 << uTwo) );
+ Abc_TtSetBit( pRes, iMint ^ (1 << vTwo) ^ (1 << uTwo) );
+ Abc_TtXorBit( pOnset, iMint );
+ if ( Abc_TtGetBit(pOnset, iMint ^ (1 << vTwo)) )
+ Abc_TtXorBit( pOnset, iMint ^ (1 << vTwo) );
+ if ( Abc_TtGetBit(pOnset, iMint ^ (1 << uTwo)) )
+ Abc_TtXorBit( pOnset, iMint ^ (1 << uTwo) );
+ if ( Abc_TtGetBit(pOnset, iMint ^ (1 << vTwo) ^ (1 << uTwo)) )
+ Abc_TtXorBit( pOnset, iMint ^ (1 << vTwo) ^ (1 << uTwo) );
+ pCover[c] = Cube & ~(3 << Abc_Var2Lit(vTwo, 0)) & ~(3 << Abc_Var2Lit(uTwo, 0));
+ nLits += nVars - 2;
+ continue;
+ }
+ // can expand others as well
+ Abc_TtClear( pCube, nWords );
+ Abc_TtSetBit( pCube, iMint );
+ Abc_TtSetBit( pCube, iMint ^ (1 << vTwo) );
+ Abc_TtSetBit( pCube, iMint ^ (1 << uTwo) );
+ Abc_TtSetBit( pCube, iMint ^ (1 << vTwo) ^ (1 << uTwo) );
+ Cube &= ~(3 << Abc_Var2Lit(vTwo, 0)) & ~(3 << Abc_Var2Lit(uTwo, 0));
+ assert( !Abc_TtIntersect(pCube, pOffset, nWords) );
+ // expand against offset
+ for ( v = 0; v < nVars; v++ )
+ if ( v != vTwo && v != uTwo )
+ {
+ int Shift = Abc_Var2Lit( v, 0 );
+ if ( (Cube >> Shift) == 2 && Abc_TtCheckWithCubePos2Neg(pOffset, pCube, nWords, v) ) // pos literal
+ {
+ Abc_TtExpandCubePos2Neg( pCube, nWords, v );
+ Cube &= ~(3 << Shift);
+ }
+ else if ( (Cube >> Shift) == 1 && Abc_TtCheckWithCubeNeg2Pos(pOffset, pCube, nWords, v) ) // neg literal
+ {
+ Abc_TtExpandCubeNeg2Pos( pCube, nWords, v );
+ Cube &= ~(3 << Shift);
+ }
+ else
+ nLits++;
+ }
+ // add cube to solution
+ Abc_TtOr( pRes, pRes, pCube, nWords );
+ Abc_TtSharp( pOnset, pOnset, pCube, nWords );
+ pCover[c] = Cube;
}
- assert( 0 );
- return -1;
+ pRes[0] = Abc_Tt6Stretch( pRes[0], nVars );
+ return Abc_Cube2Cost(c) | nLits;
+}
+void Abc_IsopTestNew()
+{
+ int nVars = 4;
+ Vec_Int_t * vCover = Vec_IntAlloc( 1000 );
+ word r, t = (s_Truths6[0] & s_Truths6[1]) ^ (s_Truths6[2] & s_Truths6[3]), copy = t;
+// word r, t = ~s_Truths6[0] | (s_Truths6[1] & s_Truths6[2] & s_Truths6[3]), copy = t;
+// word r, t = 0xABCDABCDABCDABCD, copy = t;
+// word r, t = 0x6996000000006996, copy = t;
+// word Cost = Abc_IsopNew( &t, &t, &r, nVars, Abc_Cube2Cost(ABC_ISOP_MAX_CUBE), Vec_IntArray(vCover) );
+ word Cost = Abc_EsopCheck( &t, nVars, Abc_Cube2Cost(ABC_ISOP_MAX_CUBE), Vec_IntArray(vCover) );
+ vCover->nSize = Abc_CostCubes(Cost);
+ assert( vCover->nSize <= vCover->nCap );
+ printf( "Cubes = %d. Lits = %d.\n", Abc_CostCubes(Cost), Abc_CostLits(Cost) );
+ Abc_IsopPrintCover( vCover, nVars, 0 );
+ Abc_IsopVerify( &copy, nVars, &r, vCover, 1, 0 );
+ Vec_IntFree( vCover );
}
/**Function*************************************************************
@@ -577,53 +1021,115 @@ int Abc_Isop( word * pFunc, int nVars, int Type, int nCubeLim, Vec_Int_t * vCove
***********************************************************************/
int Abc_IsopTest( word * pFunc, int nVars, Vec_Int_t * vCover )
{
- int Cost, fVerbose = 0;
- word pRes[1024];
+ int fVerbose = 0;
+ static word TotalCost[6] = {0};
+ static abctime TotalTime[6] = {0};
+ static int Counter;
+ word pRes[ABC_ISOP_MAX_WORD];
+ word Cost;
+ abctime clk;
+ Counter++;
+ if ( Counter == 9999 )
+ {
+ Abc_PrintTime( 1, "0", TotalTime[0] );
+ Abc_PrintTime( 1, "1", TotalTime[1] );
+ Abc_PrintTime( 1, "2", TotalTime[2] );
+ Abc_PrintTime( 1, "3", TotalTime[3] );
+ Abc_PrintTime( 1, "4", TotalTime[4] );
+ Abc_PrintTime( 1, "5", TotalTime[5] );
+ }
+ assert( nVars <= ABC_ISOP_MAX_VAR );
// if ( fVerbose )
// Dau_DsdPrintFromTruth( pFunc, nVars ), printf( " " );
- Cost = Abc_IsopCheck( pFunc, pFunc, pRes, nVars, ABC_INFINITY, Vec_IntArray(vCover) );
- vCover->nSize = Cost >> 16;
+ clk = Abc_Clock();
+ Cost = Abc_IsopCheck( pFunc, pFunc, pRes, nVars, Abc_Cube2Cost(ABC_ISOP_MAX_CUBE), Vec_IntArray(vCover) );
+ vCover->nSize = Abc_CostCubes(Cost);
assert( vCover->nSize <= vCover->nCap );
if ( fVerbose )
- printf( "%5d(%5d) ", Cost >> 16, Cost & 0xFFFF );
- Abc_IsopVerify( pFunc, nVars, pRes, vCover, 0, 0 );
+ printf( "%5d %7d ", Abc_CostCubes(Cost), Abc_CostLits(Cost) );
+// Abc_IsopVerify( pFunc, nVars, pRes, vCover, 0, 0 );
+ TotalCost[0] += Abc_CostCubes(Cost);
+ TotalTime[0] += Abc_Clock() - clk;
+ clk = Abc_Clock();
Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
- Cost = Abc_IsopCheck( pFunc, pFunc, pRes, nVars, ABC_INFINITY, Vec_IntArray(vCover) );
+ Cost = Abc_IsopCheck( pFunc, pFunc, pRes, nVars, Abc_Cube2Cost(ABC_ISOP_MAX_CUBE), Vec_IntArray(vCover) );
Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
- vCover->nSize = Cost >> 16;
+ vCover->nSize = Abc_CostCubes(Cost);
assert( vCover->nSize <= vCover->nCap );
if ( fVerbose )
- printf( "%5d(%5d) ", Cost >> 16, Cost & 0xFFFF );
- Abc_IsopVerify( pFunc, nVars, pRes, vCover, 0, 1 );
-
-
- Cost = Abc_EsopCheck( pFunc, nVars, ABC_INFINITY, Vec_IntArray(vCover) );
- vCover->nSize = Cost >> 16;
+ printf( "%5d %7d ", Abc_CostCubes(Cost), Abc_CostLits(Cost) );
+// Abc_IsopVerify( pFunc, nVars, pRes, vCover, 0, 1 );
+ TotalCost[1] += Abc_CostCubes(Cost);
+ TotalTime[1] += Abc_Clock() - clk;
+
+/*
+ clk = Abc_Clock();
+ Cost = Abc_EsopCheck( pFunc, nVars, Abc_Cube2Cost(ABC_ISOP_MAX_CUBE), Vec_IntArray(vCover) );
+ vCover->nSize = Abc_CostCubes(Cost);
assert( vCover->nSize <= vCover->nCap );
if ( fVerbose )
- printf( "%5d(%5d) ", Cost >> 16, Cost & 0xFFFF );
- Abc_IsopVerify( pFunc, nVars, pRes, vCover, 1, 0 );
+ printf( "%5d %7d ", Abc_CostCubes(Cost), Abc_CostLits(Cost) );
+// Abc_IsopVerify( pFunc, nVars, pRes, vCover, 1, 0 );
+ TotalCost[2] += Abc_CostCubes(Cost);
+ TotalTime[2] += Abc_Clock() - clk;
+ clk = Abc_Clock();
Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
- Cost = Abc_EsopCheck( pFunc, nVars, ABC_INFINITY, Vec_IntArray(vCover) );
+ Cost = Abc_EsopCheck( pFunc, nVars, Abc_Cube2Cost(ABC_ISOP_MAX_CUBE), Vec_IntArray(vCover) );
Abc_TtNot( pFunc, Abc_TtWordNum(nVars) );
- vCover->nSize = Cost >> 16;
+ vCover->nSize = Abc_CostCubes(Cost);
assert( vCover->nSize <= vCover->nCap );
if ( fVerbose )
- printf( "%5d(%5d) ", Cost >> 16, Cost & 0xFFFF );
- Abc_IsopVerify( pFunc, nVars, pRes, vCover, 1, 1 );
+ printf( "%5d %7d ", Abc_CostCubes(Cost), Abc_CostLits(Cost) );
+// Abc_IsopVerify( pFunc, nVars, pRes, vCover, 1, 1 );
+ TotalCost[3] += Abc_CostCubes(Cost);
+ TotalTime[3] += Abc_Clock() - clk;
+*/
+
+/*
+ // try new computation
+ clk = Abc_Clock();
+ Cost = Abc_IsopNew( pFunc, pFunc, pRes, nVars, Abc_Cube2Cost(ABC_ISOP_MAX_CUBE), Vec_IntArray(vCover) );
+ vCover->nSize = Abc_CostCubes(Cost);
+ assert( vCover->nSize <= vCover->nCap );
+ if ( fVerbose )
+ printf( "%5d %7d ", Abc_CostCubes(Cost), Abc_CostLits(Cost) );
+ Abc_IsopVerify( pFunc, nVars, pRes, vCover, 0, 0 );
+ TotalCost[4] += Abc_CostCubes(Cost);
+ TotalTime[4] += Abc_Clock() - clk;
+*/
+
+ // try old computation
+ clk = Abc_Clock();
+ Cost = Kit_TruthIsop( (unsigned *)pFunc, nVars, vCover, 1 );
+ vCover->nSize = Vec_IntSize(vCover);
+ assert( vCover->nSize <= vCover->nCap );
+ if ( fVerbose )
+ printf( "%5d %7d ", Vec_IntSize(vCover), Abc_IsopCountLits(vCover, nVars) );
+ TotalCost[4] += Vec_IntSize(vCover);
+ TotalTime[4] += Abc_Clock() - clk;
+ clk = Abc_Clock();
+ Cost = Abc_Isop( pFunc, nVars, ABC_ISOP_MAX_CUBE, vCover, 1 );
+ if ( fVerbose )
+ printf( "%5d %7d ", Vec_IntSize(vCover), Abc_IsopCountLits(vCover, nVars) );
+ TotalCost[5] += Vec_IntSize(vCover);
+ TotalTime[5] += Abc_Clock() - clk;
+
+ if ( fVerbose )
+ printf( " | %8d %8d %8d %8d %8d %8d", (int)TotalCost[0], (int)TotalCost[1], (int)TotalCost[2], (int)TotalCost[3], (int)TotalCost[4], (int)TotalCost[5] );
if ( fVerbose )
printf( "\n" );
-//Kit_TruthIsopPrintCover( vCover, nVars, 0 );
+//Abc_IsopPrintCover( vCover, nVars, 0 );
return 1;
}
+
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////