summaryrefslogtreecommitdiffstats
path: root/src/sat/bsat2/XAlloc.h
diff options
context:
space:
mode:
authorAlan Mishchenko <alanmi@berkeley.edu>2020-04-03 23:35:47 -0700
committerAlan Mishchenko <alanmi@berkeley.edu>2020-04-03 23:35:47 -0700
commit71fd9165e39b5bda06e88d5bb545a3ef38c94e96 (patch)
treea46a891100a51c7d74a3f7a447ae57688d9e6ce2 /src/sat/bsat2/XAlloc.h
parent5a20a27c620563e90694462df299dc3933844670 (diff)
downloadabc-71fd9165e39b5bda06e88d5bb545a3ef38c94e96.tar.gz
abc-71fd9165e39b5bda06e88d5bb545a3ef38c94e96.tar.bz2
abc-71fd9165e39b5bda06e88d5bb545a3ef38c94e96.zip
Correctly updating the failed output when recording the CEX in bmc3 -a.
Diffstat (limited to 'src/sat/bsat2/XAlloc.h')
0 files changed, 0 insertions, 0 deletions
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *                2019  Eddie Hung <eddie@fpgeh.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

// [[CITE]] The AIGER And-Inverter Graph (AIG) Format Version 20071012
// Armin Biere. The AIGER And-Inverter Graph (AIG) Format Version 20071012. Technical Report 07/1, October 2011, FMV Reports Series, Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria.
// http://fmv.jku.at/papers/Biere-FMV-TR-07-1.pdf

// https://stackoverflow.com/a/46137633
#ifdef _MSC_VER
#include <stdlib.h>
#define __builtin_bswap32 _byteswap_ulong
#elif defined(__APPLE__)
#include <libkern/OSByteOrder.h>
#define __builtin_bswap32 OSSwapInt32
#endif
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>

#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "aigerparse.h"

YOSYS_NAMESPACE_BEGIN

inline int32_t from_big_endian(int32_t i32) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
	return __builtin_bswap32(i32);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
	return i32;
#else
#error "Unknown endianness"
#endif
}

#define log_debug2(...) ;
//#define log_debug2(...) log_debug(__VA_ARGS__)

struct ConstEvalAig
{
	RTLIL::Module *module;
	dict<RTLIL::SigBit, RTLIL::State> values_map;
	dict<RTLIL::SigBit, RTLIL::Cell*> sig2driver;
	dict<SigBit, pool<RTLIL::SigBit>> sig2deps;

	ConstEvalAig(RTLIL::Module *module) : module(module)
	{
		for (auto &it : module->cells_) {
			if (!yosys_celltypes.cell_known(it.second->type))
				continue;
			for (auto &it2 : it.second->connections())
				if (yosys_celltypes.cell_output(it.second->type, it2.first)) {
					auto r = sig2driver.insert(std::make_pair(it2.second, it.second));
					log_assert(r.second);
				}
		}
	}

	void clear()
	{
		values_map.clear();
		sig2deps.clear();
	}

	void set(RTLIL::SigBit sig, RTLIL::State value)
	{
		auto it = values_map.find(sig);
#ifndef NDEBUG
		if (it != values_map.end()) {
			RTLIL::State current_val = it->second;
			log_assert(current_val == value);
		}
#endif
		if (it != values_map.end())
			it->second = value;
		else
			values_map[sig] = value;
	}

	void set_incremental(RTLIL::SigSpec sig, RTLIL::Const value)
	{
		log_assert(GetSize(sig) == GetSize(value));

		for (int i = 0; i < GetSize(sig); i++) {
			auto it = values_map.find(sig[i]);
			if (it != values_map.end()) {
				RTLIL::State current_val = it->second;
				if (current_val != value[i])
					for (auto dep : sig2deps[sig[i]])
						values_map.erase(dep);
				it->second = value[i];
			}
			else
				values_map[sig[i]] = value[i];
		}
	}

	void compute_deps(RTLIL::SigBit output, const pool<RTLIL::SigBit> &inputs)
	{
		sig2deps[output].insert(output);

		RTLIL::Cell *cell = sig2driver.at(output);
		RTLIL::SigBit sig_a = cell->getPort(ID::A);
		sig2deps[sig_a].reserve(sig2deps[sig_a].size() + sig2deps[output].size()); // Reserve so that any invalidation
											   // that may occur does so here, and
											   // not mid insertion (below)
		sig2deps[sig_a].insert(sig2deps[output].begin(), sig2deps[output].end());
		if (!inputs.count(sig_a))
			compute_deps(sig_a, inputs);

		if (cell->type == ID($_AND_)) {
			RTLIL::SigSpec sig_b = cell->getPort(ID::B);
			sig2deps[sig_b].reserve(sig2deps[sig_b].size() + sig2deps[output].size()); // Reserve so that any invalidation
												   // that may occur does so here, and
												   // not mid insertion (below)
			sig2deps[sig_b].insert(sig2deps[output].begin(), sig2deps[output].end());

			if (!inputs.count(sig_b))
				compute_deps(sig_b, inputs);
		}
		else if (cell->type == ID($_NOT_)) {
		}
		else log_abort();
	}

	bool eval(RTLIL::Cell *cell)
	{
		RTLIL::SigBit sig_y = cell->getPort(ID::Y);
		if (values_map.count(sig_y))
			return true;

		RTLIL::SigBit sig_a = cell->getPort(ID::A);
		if (!eval(sig_a))
			return false;

		RTLIL::State eval_ret = RTLIL::Sx;
		if (cell->type == ID($_NOT_)) {
			if (sig_a == State::S0) eval_ret = State::S1;
			else if (sig_a == State::S1) eval_ret = State::S0;
		}
		else if (cell->type == ID($_AND_)) {
			if (sig_a == State::S0) {
				eval_ret = State::S0;
				goto eval_end;
			}

			{
				RTLIL::SigBit sig_b = cell->getPort(ID::B);
				if (!eval(sig_b))
					return false;
				if (sig_b == State::S0) {
					eval_ret = State::S0;
					goto eval_end;
				}

				if (sig_a != State::S1 || sig_b != State::S1)
					goto eval_end;

				eval_ret = State::S1;
			}
		}
		else log_abort();

eval_end:
		set(sig_y, eval_ret);
		return true;
	}

	bool eval(RTLIL::SigBit &sig)
	{
		auto it = values_map.find(sig);
		if (it != values_map.end()) {
			sig = it->second;
			return true;
		}

		RTLIL::Cell *cell = sig2driver.at(sig);
		if (!eval(cell))
			return false;

		it = values_map.find(sig);
		if (it != values_map.end()) {
			sig = it->second;
			return true;
		}

		return false;
	}
};

AigerReader::AigerReader(RTLIL::Design *design, std::istream &f, RTLIL::IdString module_name, RTLIL::IdString clk_name, std::string map_filename, bool wideports)
	: design(design), f(f), clk_name(clk_name), map_filename(map_filename), wideports(wideports), aiger_autoidx(autoidx++)
{
	module = new RTLIL::Module;
	module->name = module_name;
	if (design->module(module->name))
		log_error("Duplicate definition of module %s!\n", log_id(module->name));
}

void AigerReader::parse_aiger()
{
	std::string header;
	f >> header;
	if (header != "aag" && header != "aig")
		log_error("Unsupported AIGER file!\n");

	// Parse rest of header
	if (!(f >> M >> I >> L >> O >> A))
		log_error("Invalid AIGER header\n");

	// Optional values
	B = C = J = F = 0;
	if (f.peek() != ' ') goto end_of_header;
	if (!(f >> B)) log_error("Invalid AIGER header\n");
	if (f.peek() != ' ') goto end_of_header;
	if (!(f >> C)) log_error("Invalid AIGER header\n");
	if (f.peek() != ' ') goto end_of_header;
	if (!(f >> J)) log_error("Invalid AIGER header\n");
	if (f.peek() != ' ') goto end_of_header;
	if (!(f >> F)) log_error("Invalid AIGER header\n");
end_of_header:

	std::string line;
	std::getline(f, line); // Ignore up to start of next line, as standard
	// says anything that follows could be used for
	// optional sections

	log_debug("M=%u I=%u L=%u O=%u A=%u B=%u C=%u J=%u F=%u\n", M, I, L, O, A, B, C, J, F);

	line_count = 1;
	piNum = 0;
	flopNum = 0;

	if (header == "aag")
		parse_aiger_ascii();
	else if (header == "aig")
		parse_aiger_binary();
	else
		log_abort();

	RTLIL::Wire* n0 = module->wire(stringf("$aiger%d$0", aiger_autoidx));
	if (n0)
		module->connect(n0, State::S0);

	// Parse footer (symbol table, comments, etc.)
	unsigned l1;
	std::string s;
	for (int c = f.peek(); c != EOF; c = f.peek(), ++line_count) {
		if (c == 'i' || c == 'l' || c == 'o' || c == 'b') {
			f.ignore(1);
			if (!(f >> l1 >> s))
				log_error("Line %u cannot be interpreted as a symbol entry!\n", line_count);

			if ((c == 'i' && l1 > inputs.size()) || (c == 'l' && l1 > latches.size()) || (c == 'o' && l1 > outputs.size()))
				log_error("Line %u has invalid symbol position!\n", line_count);

			RTLIL::IdString escaped_s = stringf("\\%s", s.c_str());
			RTLIL::Wire* wire;
			if (c == 'i') wire = inputs[l1];
			else if (c == 'l') wire = latches[l1];
			else if (c == 'o') {
				wire = module->wire(escaped_s);
				if (wire) {
					// Could have been renamed by a latch
					module->swap_names(wire, outputs[l1]);
					module->connect(outputs[l1], wire);
					goto next;
				}
				wire = outputs[l1];
			}
			else if (c == 'b') wire = bad_properties[l1];
			else log_abort();

			module->rename(wire, escaped_s);
		}
		else if (c == 'j' || c == 'f') {
			// TODO
		}
		else if (c == 'c') {
			f.ignore(1);
			if (f.peek() == '\r')
				f.ignore(1);
			if (f.peek() == '\n')
				break;
			// Else constraint (TODO)
		}
		else
			log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c);
next:
		std::getline(f, line); // Ignore up to start of next line
	}

	post_process();
}

static uint32_t parse_xaiger_literal(std::istream &f)
{
	uint32_t l;
	f.read(reinterpret_cast<char*>(&l), sizeof(l));
	if (f.gcount() != sizeof(l))
#if defined(_WIN32) && defined(__MINGW32__)
		log_error("Offset %I64d: unable to read literal!\n", static_cast<int64_t>(f.tellg()));
#else
		log_error("Offset %" PRId64 ": unable to read literal!\n", static_cast<int64_t>(f.tellg()));
#endif
	return from_big_endian(l);
}

RTLIL::Wire* AigerReader::createWireIfNotExists(RTLIL::Module *module, unsigned literal)
{
	const unsigned variable = literal >> 1;
	const bool invert = literal & 1;
	RTLIL::IdString wire_name(stringf("$aiger%d$%d%s", aiger_autoidx, variable, invert ? "b" : ""));
	RTLIL::Wire *wire = module->wire(wire_name);
	if (wire) return wire;
	log_debug2("Creating %s\n", wire_name.c_str());
	wire = module->addWire(wire_name);
	wire->port_input = wire->port_output = false;
	if (!invert) return wire;
	RTLIL::IdString wire_inv_name(stringf("$aiger%d$%d", aiger_autoidx, variable));
	RTLIL::Wire *wire_inv = module->wire(wire_inv_name);
	if (wire_inv) {
		if (module->cell(wire_inv_name)) return wire;
	}
	else {
		log_debug2("Creating %s\n", wire_inv_name.c_str());
		wire_inv = module->addWire(wire_inv_name);
		wire_inv->port_input = wire_inv->port_output = false;
	}

	log_debug2("Creating %s = ~%s\n", wire_name.c_str(), wire_inv_name.c_str());
	module->addNotGate(stringf("$not$aiger%d$%d", aiger_autoidx, variable), wire_inv, wire);

	return wire;
}

void AigerReader::parse_xaiger()
{
	std::string header;
	f >> header;
	if (header != "aag" && header != "aig")
		log_error("Unsupported AIGER file!\n");

	// Parse rest of header
	if (!(f >> M >> I >> L >> O >> A))
		log_error("Invalid AIGER header\n");

	// Optional values
	B = C = J = F = 0;

	std::string line;
	std::getline(f, line); // Ignore up to start of next line, as standard
	// says anything that follows could be used for
	// optional sections

	log_debug("M=%u I=%u L=%u O=%u A=%u\n", M, I, L, O, A);

	line_count = 1;
	piNum = 0;
	flopNum = 0;

	if (header == "aag")
		parse_aiger_ascii();
	else if (header == "aig")
		parse_aiger_binary();
	else
		log_abort();

	RTLIL::Wire* n0 = module->wire(stringf("$aiger%d$0", aiger_autoidx));
	if (n0)
		module->connect(n0, State::S0);

	int c = f.get();
	if (c != 'c')
		log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c);
	if (f.peek() == '\n')
		f.get();

	// Parse footer (symbol table, comments, etc.)
	std::string s;
	for (int c = f.get(); c != EOF; c = f.get()) {
		// XAIGER extensions
		if (c == 'm') {
			uint32_t dataSize = parse_xaiger_literal(f);
			uint32_t lutNum = parse_xaiger_literal(f);
			uint32_t lutSize = parse_xaiger_literal(f);
			log_debug("m: dataSize=%u lutNum=%u lutSize=%u\n", dataSize, lutNum, lutSize);
			ConstEvalAig ce(module);
			for (unsigned i = 0; i < lutNum; ++i) {
				uint32_t rootNodeID = parse_xaiger_literal(f);
				uint32_t cutLeavesM = parse_xaiger_literal(f);
				log_debug2("rootNodeID=%d cutLeavesM=%d\n", rootNodeID, cutLeavesM);
				RTLIL::Wire *output_sig = module->wire(stringf("$aiger%d$%d", aiger_autoidx, rootNodeID));
				log_assert(output_sig);
				uint32_t nodeID;
				RTLIL::SigSpec input_sig;
				for (unsigned j = 0; j < cutLeavesM; ++j) {
					nodeID = parse_xaiger_literal(f);
					log_debug2("\t%u\n", nodeID);
					if (nodeID == 0) {
						log_debug("\tLUT '$lut$aiger%d$%d' input %d is constant!\n", aiger_autoidx, rootNodeID, cutLeavesM);
						continue;
					}
					RTLIL::Wire *wire = module->wire(stringf("$aiger%d$%d", aiger_autoidx, nodeID));
					log_assert(wire);
					input_sig.append(wire);
				}
				// Reverse input order as fastest input is returned first
				input_sig.reverse();
				// TODO: Compute LUT mask from AIG in less than O(2 ** input_sig.size())
				ce.clear();
				ce.compute_deps(output_sig, input_sig.to_sigbit_pool());
				RTLIL::Const lut_mask(RTLIL::State::Sx, 1 << GetSize(input_sig));
				for (int j = 0; j < GetSize(lut_mask); ++j) {
					int gray = j ^ (j >> 1);
					ce.set_incremental(input_sig, RTLIL::Const{gray, GetSize(input_sig)});
					RTLIL::SigBit o(output_sig);
					bool success = ce.eval(o);
					log_assert(success);
					log_assert(o.wire == nullptr);
					lut_mask[gray] = o.data;
				}
				RTLIL::Cell *output_cell = module->cell(stringf("$and$aiger%d$%d", aiger_autoidx, rootNodeID));
				log_assert(output_cell);
				module->remove(output_cell);
				module->addLut(stringf("$lut$aiger%d$%d", aiger_autoidx, rootNodeID), input_sig, output_sig, std::move(lut_mask));
			}
		}
		else if (c == 'r') {
			uint32_t dataSize = parse_xaiger_literal(f);
			flopNum = parse_xaiger_literal(f);
			log_debug("flopNum = %u\n", flopNum);
			log_assert(dataSize == (flopNum+1) * sizeof(uint32_t));
			mergeability.reserve(flopNum);
			for (unsigned i = 0; i < flopNum; i++)
				mergeability.emplace_back(parse_xaiger_literal(f));
		}
		else if (c == 's') {
			uint32_t dataSize = parse_xaiger_literal(f);
			flopNum = parse_xaiger_literal(f);
			log_assert(dataSize == (flopNum+1) * sizeof(uint32_t));
			initial_state.reserve(flopNum);
			for (unsigned i = 0; i < flopNum; i++)
				initial_state.emplace_back(parse_xaiger_literal(f));
		}
		else if (c == 'n') {
			parse_xaiger_literal(f);
			f >> s;
			log_debug("n: '%s'\n", s.c_str());
		}
		else if (c == 'h') {
			f.ignore(sizeof(uint32_t));
			uint32_t version = parse_xaiger_literal(f);
			log_assert(version == 1);
			uint32_t ciNum = parse_xaiger_literal(f);
			log_debug("ciNum = %u\n", ciNum);
			uint32_t coNum = parse_xaiger_literal(f);
			log_debug("coNum = %u\n", coNum);
			piNum = parse_xaiger_literal(f);
			log_debug("piNum = %u\n", piNum);
			uint32_t poNum = parse_xaiger_literal(f);
			log_debug("poNum = %u\n", poNum);
			uint32_t boxNum = parse_xaiger_literal(f);
			log_debug("boxNum = %u\n", boxNum);
			for (unsigned i = 0; i < boxNum; i++) {
				uint32_t boxInputs = parse_xaiger_literal(f);
				uint32_t boxOutputs = parse_xaiger_literal(f);
				uint32_t boxUniqueId = parse_xaiger_literal(f);
				log_assert(boxUniqueId > 0);
				uint32_t oldBoxNum = parse_xaiger_literal(f);
				RTLIL::Cell* cell = module->addCell(stringf("$box%u", oldBoxNum), stringf("$__boxid%u", boxUniqueId));
				cell->setPort(ID(i), SigSpec(State::S0, boxInputs));
				cell->setPort(ID(o), SigSpec(State::S0, boxOutputs));
				cell->attributes[ID::abc9_box_seq] = oldBoxNum;
				boxes.emplace_back(cell);
			}
		}
		else if (c == 'a' || c == 'i' || c == 'o' || c == 's') {
			uint32_t dataSize = parse_xaiger_literal(f);
			f.ignore(dataSize);
			log_debug("ignoring '%c'\n", c);
		}
		else {
			break;
		}
	}

	post_process();
}

void AigerReader::parse_aiger_ascii()
{
	std::string line;
	std::stringstream ss;

	unsigned l1, l2, l3;

	// Parse inputs
	int digits = ceil(log10(I));
	for (unsigned i = 1; i <= I; ++i, ++line_count) {
		if (!(f >> l1))
			log_error("Line %u cannot be interpreted as an input!\n", line_count);
		log_debug2("%d is an input\n", l1);
		log_assert(!(l1 & 1)); // Inputs can't be inverted
		RTLIL::Wire *wire = module->addWire(stringf("$i%0*d", digits, l1 >> 1));
		wire->port_input = true;
		module->connect(createWireIfNotExists(module, l1), wire);
		inputs.push_back(wire);
	}

	// Parse latches
	RTLIL::Wire *clk_wire = nullptr;
	if (L > 0 && !clk_name.empty()) {
		clk_wire = module->wire(clk_name);
		log_assert(!clk_wire);
		log_debug2("Creating %s\n", clk_name.c_str());
		clk_wire = module->addWire(clk_name);
		clk_wire->port_input = true;
		clk_wire->port_output = false;
	}
	digits = ceil(log10(L));
	for (unsigned i = 0; i < L; ++i, ++line_count) {
		if (!(f >> l1 >> l2))
			log_error("Line %u cannot be interpreted as a latch!\n", line_count);
		log_debug2("%d %d is a latch\n", l1, l2);
		log_assert(!(l1 & 1));
		RTLIL::Wire *q_wire = module->addWire(stringf("$l%0*d", digits, l1 >> 1));
		module->connect(createWireIfNotExists(module, l1), q_wire);
		RTLIL::Wire *d_wire = createWireIfNotExists(module, l2);

		if (clk_wire)
			module->addDffGate(NEW_ID, clk_wire, d_wire, q_wire);
		else
			module->addFfGate(NEW_ID, d_wire, q_wire);

		// Reset logic is optional in AIGER 1.9
		if (f.peek() == ' ') {
			if (!(f >> l3))
				log_error("Line %u cannot be interpreted as a latch!\n", line_count);

			if (l3 == 0)
				q_wire->attributes[ID::init] = State::S0;
			else if (l3 == 1)
				q_wire->attributes[ID::init] = State::S1;
			else if (l3 == l1) {
				//q_wire->attributes[ID::init] = RTLIL::Sx;
			}
			else
				log_error("Line %u has invalid reset literal for latch!\n", line_count);
		}
		else {
			// AIGER latches are assumed to be initialized to zero
			q_wire->attributes[ID::init] = State::S0;
		}
		latches.push_back(q_wire);
	}

	// Parse outputs
	digits = ceil(log10(O));
	for (unsigned i = 0; i < O; ++i, ++line_count) {
		if (!(f >> l1))
			log_error("Line %u cannot be interpreted as an output!\n", line_count);

		log_debug2("%d is an output\n", l1);
		RTLIL::Wire *wire = module->addWire(stringf("$o%0*d", digits, i));
		wire->port_output = true;
		module->connect(wire, createWireIfNotExists(module, l1));
		outputs.push_back(wire);
	}
	//std::getline(f, line); // Ignore up to start of next line

	// Parse bad properties
	for (unsigned i = 0; i < B; ++i, ++line_count) {
		if (!(f >> l1))
			log_error("Line %u cannot be interpreted as a bad state property!\n", line_count);

		log_debug2("%d is a bad state property\n", l1);
		RTLIL::Wire *wire = createWireIfNotExists(module, l1);
		wire->port_output = true;
		bad_properties.push_back(wire);
	}
	//if (B > 0)
	//	std::getline(f, line); // Ignore up to start of next line

	// TODO: Parse invariant constraints
	for (unsigned i = 0; i < C; ++i, ++line_count)
		std::getline(f, line); // Ignore up to start of next line

	// TODO: Parse justice properties
	for (unsigned i = 0; i < J; ++i, ++line_count)
		std::getline(f, line); // Ignore up to start of next line

	// TODO: Parse fairness constraints
	for (unsigned i = 0; i < F; ++i, ++line_count)
		std::getline(f, line); // Ignore up to start of next line

	// Parse AND
	for (unsigned i = 0; i < A; ++i) {
		if (!(f >> l1 >> l2 >> l3))
			log_error("Line %u cannot be interpreted as an AND!\n", line_count);

		log_debug2("%d %d %d is an AND\n", l1, l2, l3);
		log_assert(!(l1 & 1));
		RTLIL::Wire *o_wire = createWireIfNotExists(module, l1);
		RTLIL::Wire *i1_wire = createWireIfNotExists(module, l2);
		RTLIL::Wire *i2_wire = createWireIfNotExists(module, l3);
		module->addAndGate("$and" + o_wire->name.str(), i1_wire, i2_wire, o_wire);
	}
	std::getline(f, line); // Ignore up to start of next line
}

static unsigned parse_next_delta_literal(std::istream &f, unsigned ref)
{
	unsigned x = 0, i = 0;
	unsigned char ch;
	while ((ch = f.get()) & 0x80)
		x |= (ch & 0x7f) << (7 * i++);
	return ref - (x | (ch << (7 * i)));
}

void AigerReader::parse_aiger_binary()
{
	unsigned l1, l2, l3;
	std::string line;

	// Parse inputs
	int digits = ceil(log10(I));
	for (unsigned i = 1; i <= I; ++i) {
		log_debug2("%d is an input\n", i);
		RTLIL::Wire *wire = module->addWire(stringf("$i%0*d", digits, i));
		wire->port_input = true;
		module->connect(createWireIfNotExists(module, i << 1), wire);
		inputs.push_back(wire);
	}

	// Parse latches
	RTLIL::Wire *clk_wire = nullptr;
	if (L > 0 && !clk_name.empty()) {
		clk_wire = module->wire(clk_name);
		log_assert(!clk_wire);
		log_debug2("Creating %s\n", clk_name.c_str());
		clk_wire = module->addWire(clk_name);
		clk_wire->port_input = true;
		clk_wire->port_output = false;
	}
	digits = ceil(log10(L));
	l1 = (I+1) * 2;
	for (unsigned i = 0; i < L; ++i, ++line_count, l1 += 2) {
		if (!(f >> l2))
			log_error("Line %u cannot be interpreted as a latch!\n", line_count);
		log_debug("%d %d is a latch\n", l1, l2);
		RTLIL::Wire *q_wire = module->addWire(stringf("$l%0*d", digits, l1 >> 1));
		module->connect(createWireIfNotExists(module, l1), q_wire);
		RTLIL::Wire *d_wire = createWireIfNotExists(module, l2);

		if (clk_wire)
			module->addDff(NEW_ID, clk_wire, d_wire, q_wire);
		else
			module->addFf(NEW_ID, d_wire, q_wire);

		// Reset logic is optional in AIGER 1.9
		if (f.peek() == ' ') {
			if (!(f >> l3))
				log_error("Line %u cannot be interpreted as a latch!\n", line_count);

			if (l3 == 0)
				q_wire->attributes[ID::init] = State::S0;
			else if (l3 == 1)
				q_wire->attributes[ID::init] = State::S1;
			else if (l3 == l1) {
				//q_wire->attributes[ID::init] = RTLIL::Sx;
			}
			else
				log_error("Line %u has invalid reset literal for latch!\n", line_count);
		}
		else {
			// AIGER latches are assumed to be initialized to zero
			q_wire->attributes[ID::init] = State::S0;
		}
		latches.push_back(q_wire);
	}

	// Parse outputs
	digits = ceil(log10(O));
	for (unsigned i = 0; i < O; ++i, ++line_count) {
		if (!(f >> l1))
			log_error("Line %u cannot be interpreted as an output!\n", line_count);

		log_debug2("%d is an output\n", l1);
		RTLIL::Wire *wire = module->addWire(stringf("$o%0*d", digits, i));
		wire->port_output = true;
		module->connect(wire, createWireIfNotExists(module, l1));
		outputs.push_back(wire);
	}
	std::getline(f, line); // Ignore up to start of next line

	// Parse bad properties
	for (unsigned i = 0; i < B; ++i, ++line_count) {
		if (!(f >> l1))
			log_error("Line %u cannot be interpreted as a bad state property!\n", line_count);

		log_debug2("%d is a bad state property\n", l1);
		RTLIL::Wire *wire = createWireIfNotExists(module, l1);
		wire->port_output = true;
		bad_properties.push_back(wire);
	}
	if (B > 0)
		std::getline(f, line); // Ignore up to start of next line

	// TODO: Parse invariant constraints
	for (unsigned i = 0; i < C; ++i, ++line_count)
		std::getline(f, line); // Ignore up to start of next line

	// TODO: Parse justice properties
	for (unsigned i = 0; i < J; ++i, ++line_count)
		std::getline(f, line); // Ignore up to start of next line

	// TODO: Parse fairness constraints
	for (unsigned i = 0; i < F; ++i, ++line_count)
		std::getline(f, line); // Ignore up to start of next line

	// Parse AND
	l1 = (I+L+1) << 1;
	for (unsigned i = 0; i < A; ++i, ++line_count, l1 += 2) {
		l2 = parse_next_delta_literal(f, l1);
		l3 = parse_next_delta_literal(f, l2);

		log_debug2("%d %d %d is an AND\n", l1, l2, l3);
		log_assert(!(l1 & 1));
		RTLIL::Wire *o_wire = createWireIfNotExists(module, l1);
		RTLIL::Wire *i1_wire = createWireIfNotExists(module, l2);
		RTLIL::Wire *i2_wire = createWireIfNotExists(module, l3);
		module->addAndGate("$and" + o_wire->name.str(), i1_wire, i2_wire, o_wire);
	}
}

void AigerReader::post_process()
{
	unsigned ci_count = 0, co_count = 0;
	for (auto cell : boxes) {
		for (auto &bit : cell->connections_.at(ID(i))) {
			log_assert(bit == State::S0);
			log_assert(co_count < outputs.size());
			bit = outputs[co_count++];
			log_assert(bit.wire && GetSize(bit.wire) == 1);
			log_assert(bit.wire->port_output);
			bit.wire->port_output = false;
		}
		for (auto &bit : cell->connections_.at(ID(o))) {
			log_assert(bit == State::S0);
			log_assert((piNum + ci_count) < inputs.size());
			bit = inputs[piNum + ci_count++];
			log_assert(bit.wire && GetSize(bit.wire) == 1);
			log_assert(bit.wire->port_input);
			bit.wire->port_input = false;
		}
	}

	for (uint32_t i = 0; i < flopNum; i++) {
		RTLIL::Wire *d = outputs[outputs.size() - flopNum + i];
		log_assert(d);
		log_assert(d->port_output);
		d->port_output = false;

		RTLIL::Wire *q = inputs[piNum - flopNum + i];
		log_assert(q);
		log_assert(q->port_input);
		q->port_input = false;

		Cell* ff = module->addFfGate(NEW_ID, d, q);
		ff->attributes[ID::abc9_mergeability] = mergeability[i];
		q->attributes[ID::init] = initial_state[i];
	}

	dict<RTLIL::IdString, std::pair<int,int>> wideports_cache;

	if (!map_filename.empty()) {
		std::ifstream mf(map_filename);
		std::string type, symbol;
		int variable, index;
		while (mf >> type >> variable >> index >> symbol) {
			RTLIL::IdString escaped_s = RTLIL::escape_id(symbol);
			if (type == "input") {
				log_assert(static_cast<unsigned>(variable) < inputs.size());
				RTLIL::Wire* wire = inputs[variable];
				log_assert(wire);
				log_assert(wire->port_input);
				log_debug("Renaming input %s", log_id(wire));

				RTLIL::Wire *existing = nullptr;
				if (index == 0) {
					// Cope with the fact that a CI might be identical
					// to a PI (necessary due to ABC); in those cases
					// simply connect the latter to the former
					existing = module->wire(escaped_s);
					if (!existing)
						module->rename(wire, escaped_s);
					else {
						wire->port_input = false;
						module->connect(wire, existing);
					}
					log_debug(" -> %s\n", log_id(escaped_s));
				}
				else {
					RTLIL::IdString indexed_name = stringf("%s[%d]", escaped_s.c_str(), index);
					existing = module->wire(indexed_name);
					if (!existing)
						module->rename(wire, indexed_name);
					else {
						module->connect(wire, existing);
						wire->port_input = false;
					}
					log_debug(" -> %s\n", log_id(indexed_name));
				}

				if (wideports && !existing) {
					auto r = wideports_cache.insert(escaped_s);
					if (r.second) {
						r.first->second.first = index;
						r.first->second.second = index;
					}
					else {
						r.first->second.first = std::min(r.first->second.first, index);
						r.first->second.second = std::max(r.first->second.second, index);
					}
				}
			}
			else if (type == "output") {
				log_assert(static_cast<unsigned>(variable + co_count) < outputs.size());
				RTLIL::Wire* wire = outputs[variable + co_count];
				log_assert(wire);
				log_assert(wire->port_output);
				log_debug("Renaming output %s", log_id(wire));

				RTLIL::Wire *existing;
				if (index == 0) {
					// Cope with the fact that a CO might be identical
					// to a PO (necessary due to ABC); in those cases
					// simply connect the latter to the former
					existing = module->wire(escaped_s);
					if (!existing)
						module->rename(wire, escaped_s);
					else {
						wire->port_output = false;
						existing->port_output = true;
						module->connect(wire, existing);
						wire = existing;
					}
					log_debug(" -> %s\n", log_id(escaped_s));
				}
				else {
					RTLIL::IdString indexed_name = stringf("%s[%d]", escaped_s.c_str(), index);
					existing = module->wire(indexed_name);
					if (!existing)
						module->rename(wire, indexed_name);
					else {
						wire->port_output = false;
						existing->port_output = true;
						module->connect(wire, existing);
					}
					log_debug(" -> %s\n", log_id(indexed_name));
				}

				if (wideports && !existing) {
					auto r = wideports_cache.insert(escaped_s);
					if (r.second) {
						r.first->second.first = index;
						r.first->second.second = index;
					}
					else {
						r.first->second.first = std::min(r.first->second.first, index);
						r.first->second.second = std::max(r.first->second.second, index);
					}
				}
			}
			else if (type == "box") {
				RTLIL::Cell* cell = module->cell(stringf("$box%d", variable));
				if (!cell)
					log_debug("Box %d (%s) no longer exists.\n", variable, log_id(escaped_s));
				else
					module->rename(cell, escaped_s);
			}
			else
				log_error("Symbol type '%s' not recognised.\n", type.c_str());
		}
	}

	for (auto &wp : wideports_cache) {
		auto name = wp.first;
		int min = wp.second.first;
		int max = wp.second.second;
		if (min == 0 && max == 0)
			continue;

		RTLIL::Wire *wire = module->wire(name);