diff options
Diffstat (limited to 'src/aig/kit')
-rw-r--r-- | src/aig/kit/cloud.c | 987 | ||||
-rw-r--r-- | src/aig/kit/cloud.h | 269 | ||||
-rw-r--r-- | src/aig/kit/kit.h | 594 | ||||
-rw-r--r-- | src/aig/kit/kitAig.c | 121 | ||||
-rw-r--r-- | src/aig/kit/kitBdd.c | 231 | ||||
-rw-r--r-- | src/aig/kit/kitCloud.c | 368 | ||||
-rw-r--r-- | src/aig/kit/kitDsd.c | 2621 | ||||
-rw-r--r-- | src/aig/kit/kitFactor.c | 338 | ||||
-rw-r--r-- | src/aig/kit/kitGraph.c | 397 | ||||
-rw-r--r-- | src/aig/kit/kitHop.c | 144 | ||||
-rw-r--r-- | src/aig/kit/kitIsop.c | 325 | ||||
-rw-r--r-- | src/aig/kit/kitSop.c | 570 | ||||
-rw-r--r-- | src/aig/kit/kitTruth.c | 1729 | ||||
-rw-r--r-- | src/aig/kit/kit_.c | 48 | ||||
-rw-r--r-- | src/aig/kit/module.make | 10 |
15 files changed, 0 insertions, 8752 deletions
diff --git a/src/aig/kit/cloud.c b/src/aig/kit/cloud.c deleted file mode 100644 index 6e6691f0..00000000 --- a/src/aig/kit/cloud.c +++ /dev/null @@ -1,987 +0,0 @@ -/**CFile**************************************************************** - - FileName [cloudCore.c] - - PackageName [Fast application-specific BDD package.] - - Synopsis [The package core.] - - Author [Alan Mishchenko <alanmi@ece.pdx.edu>] - - Affiliation [ECE Department. Portland State University, Portland, Oregon.] - - Date [Ver. 1.0. Started - June 10, 2002.] - - Revision [$Id: cloudCore.c,v 1.0 2002/06/10 03:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "cloud.h" - -// the number of operators using cache -static int CacheOperNum = 4; - -// the ratio of cache size to the unique table size for each operator -static int CacheLogRatioDefault[4] = { - 2, // CLOUD_OPER_AND, - 8, // CLOUD_OPER_XOR, - 8, // CLOUD_OPER_BDIFF, - 8 // CLOUD_OPER_LEQ -}; - -// the ratio of cache size to the unique table size for each operator -static int CacheSize[4] = { - 2, // CLOUD_OPER_AND, - 2, // CLOUD_OPER_XOR, - 2, // CLOUD_OPER_BDIFF, - 2 // CLOUD_OPER_LEQ -}; - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -// static functions -static CloudNode * cloudMakeNode( CloudManager * dd, CloudVar v, CloudNode * t, CloudNode * e ); -static void cloudCacheAllocate( CloudManager * dd, CloudOper oper ); - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function******************************************************************** - - Synopsis [Starts the cloud manager.] - - Description [The first arguments is the number of elementary variables used. - The second arguments is the number of bits of the unsigned integer used to - represent nodes in the unique table. If the second argument is 0, the package - assumes 23 to represent nodes, which is equivalent to 2^23 = 8,388,608 nodes.] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -CloudManager * Cloud_Init( int nVars, int nBits ) -{ - CloudManager * dd; - int i; - int clk1, clk2; - - assert( nVars <= 100000 ); - assert( nBits < 32 ); - - // assign the defaults - if ( nBits == 0 ) - nBits = CLOUD_NODE_BITS; - - // start the manager - dd = CALLOC( CloudManager, 1 ); - dd->nMemUsed += sizeof(CloudManager); - - // variables - dd->nVars = nVars; // the number of variables allocated - // bits - dd->bitsNode = nBits; // the number of bits used for the node - for ( i = 0; i < CacheOperNum; i++ ) - dd->bitsCache[i] = nBits - CacheLogRatioDefault[i]; - // shifts - dd->shiftUnique = 8*sizeof(unsigned) - (nBits + 1); // gets node index in the hash table - for ( i = 0; i < CacheOperNum; i++ ) - dd->shiftCache[i] = 8*sizeof(unsigned) - dd->bitsCache[i]; - // nodes - dd->nNodesAlloc = (1 << (nBits + 1)); // 2 ^ (nBits + 1) - dd->nNodesLimit = (1 << nBits); // 2 ^ nBits - - // unique table -clk1 = clock(); - dd->tUnique = CALLOC( CloudNode, dd->nNodesAlloc ); - dd->nMemUsed += sizeof(CloudNode) * dd->nNodesAlloc; -clk2 = clock(); -//PRT( "calloc() time", clk2 - clk1 ); - - // set up the constant node (the only node that is not in the hash table) - dd->nSignCur = 1; - dd->tUnique[0].s = dd->nSignCur; - dd->tUnique[0].v = CLOUD_CONST_INDEX; - dd->tUnique[0].e = CLOUD_VOID; - dd->tUnique[0].t = CLOUD_VOID; - dd->one = dd->tUnique; - dd->zero = Cloud_Not(dd->one); - dd->nNodesCur = 1; - - // special nodes - dd->pNodeStart = dd->tUnique + 1; - dd->pNodeEnd = dd->tUnique + dd->nNodesAlloc; - - // set up the elementary variables - dd->vars = ALLOC( CloudNode *, dd->nVars ); - dd->nMemUsed += sizeof(CloudNode *) * dd->nVars; - for ( i = 0; i < dd->nVars; i++ ) - dd->vars[i] = cloudMakeNode( dd, i, dd->one, dd->zero ); - - return dd; -}; - -/**Function******************************************************************** - - Synopsis [Stops the cloud manager.] - - Description [The first arguments tells show many elementary variables are used. - The second arguments tells how many bits of the unsigned integer are used - to represent regular nodes in the unique table.] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -void Cloud_Quit( CloudManager * dd ) -{ - int i; - FREE( dd->ppNodes ); - free( dd->tUnique ); - free( dd->vars ); - for ( i = 0; i < 4; i++ ) - FREE( dd->tCaches[i] ); - free( dd ); -} - -/**Function******************************************************************** - - Synopsis [Prepares the manager for another run.] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -void Cloud_Restart( CloudManager * dd ) -{ - int i; - assert( dd->one->s == dd->nSignCur ); - dd->nSignCur++; - dd->one->s++; - for ( i = 0; i < dd->nVars; i++ ) - dd->vars[i]->s++; - dd->nNodesCur = 1 + dd->nVars; -} - -/**Function******************************************************************** - - Synopsis [This optional function allocates operation cache of the given size.] - - Description [Cache for each operation is allocated independently when the first - operation of the given type is performed. The user can allocate cache of his/her - preferred size by calling Cloud_CacheAllocate before the first operation of the - given type is performed, but this call is optional. Argument "logratio" gives - the binary logarithm of the ratio of the size of the unique table to that of cache. - For example, if "logratio" is equal to 3, and the unique table will be 2^3=8 times - larger than cache; so, if unique table is 2^23 = 8,388,608 nodes, the cache size - will be 2^3=8 times smaller and equal to 2^20 = 1,048,576 entries.] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -void Cloud_CacheAllocate( CloudManager * dd, CloudOper oper, int logratio ) -{ - assert( logratio > 0 ); // cache cannot be larger than the unique table - assert( logratio < dd->bitsNode ); // cache cannot be smaller than 2 entries - - if ( logratio ) - { - dd->bitsCache[oper] = dd->bitsNode - logratio; - dd->shiftCache[oper] = 8*sizeof(unsigned) - dd->bitsCache[oper]; - } - cloudCacheAllocate( dd, oper ); -} - -/**Function******************************************************************** - - Synopsis [Internal cache allocation.] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -void cloudCacheAllocate( CloudManager * dd, CloudOper oper ) -{ - int nCacheEntries = (1 << dd->bitsCache[oper]); - - if ( CacheSize[oper] == 1 ) - { - dd->tCaches[oper] = (CloudCacheEntry2 *)CALLOC( CloudCacheEntry1, nCacheEntries ); - dd->nMemUsed += sizeof(CloudCacheEntry1) * nCacheEntries; - } - else if ( CacheSize[oper] == 2 ) - { - dd->tCaches[oper] = (CloudCacheEntry2 *)CALLOC( CloudCacheEntry2, nCacheEntries ); - dd->nMemUsed += sizeof(CloudCacheEntry2) * nCacheEntries; - } - else if ( CacheSize[oper] == 3 ) - { - dd->tCaches[oper] = (CloudCacheEntry2 *)CALLOC( CloudCacheEntry3, nCacheEntries ); - dd->nMemUsed += sizeof(CloudCacheEntry3) * nCacheEntries; - } -} - - - -/**Function******************************************************************** - - Synopsis [Returns or creates a new node] - - Description [Checks the unique table for the existance of the node. If the node is - present, returns the node. If the node is absent, creates a new node.] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -CloudNode * Cloud_MakeNode( CloudManager * dd, CloudVar v, CloudNode * t, CloudNode * e ) -{ - CloudNode * pRes; - CLOUD_ASSERT(t); - CLOUD_ASSERT(e); - assert( v < Cloud_V(t) && v < Cloud_V(e) ); // variable should be above in the order - if ( Cloud_IsComplement(t) ) - { - pRes = cloudMakeNode( dd, v, Cloud_Not(t), Cloud_Not(e) ); - if ( pRes != CLOUD_VOID ) - pRes = Cloud_Not(pRes); - } - else - pRes = cloudMakeNode( dd, v, t, e ); - return pRes; -} - -/**Function******************************************************************** - - Synopsis [Returns or creates a new node] - - Description [Checks the unique table for the existance of the node. If the node is - present, returns the node. If the node is absent, creates a new node.] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -CloudNode * cloudMakeNode( CloudManager * dd, CloudVar v, CloudNode * t, CloudNode * e ) -{ - CloudNode * entryUnique; - - CLOUD_ASSERT(t); - CLOUD_ASSERT(e); - - assert( ((int)v) >= 0 && ((int)v) < dd->nVars ); // the variable must be in the range - assert( v < Cloud_V(t) && v < Cloud_V(e) ); // variable should be above in the order - assert( !Cloud_IsComplement(t) ); // the THEN edge must not be complemented - - // make sure we are not searching for the constant node - assert( t && e ); - - // get the unique entry - entryUnique = dd->tUnique + cloudHashCudd3(v, t, e, dd->shiftUnique); - while ( entryUnique->s == dd->nSignCur ) - { - // compare the node - if ( entryUnique->v == v && entryUnique->t == t && entryUnique->e == e ) - { // the node is found - dd->nUniqueHits++; - return entryUnique; // returns the node - } - // increment the hash value modulus the hash table size - if ( ++entryUnique - dd->tUnique == dd->nNodesAlloc ) - entryUnique = dd->tUnique + 1; - // increment the number of steps through the table - dd->nUniqueSteps++; - } - dd->nUniqueMisses++; - - // check if the new node can be created - if ( ++dd->nNodesCur == dd->nNodesLimit ) - { // initiate the restart - printf( "Cloud needs restart!\n" ); -// fflush( stdout ); -// exit(1); - return CLOUD_VOID; - } - // create the node - entryUnique->s = dd->nSignCur; - entryUnique->v = v; - entryUnique->t = t; - entryUnique->e = e; - return entryUnique; // returns the node -} - - -/**Function******************************************************************** - - Synopsis [Performs the AND or two BDDs] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -CloudNode * cloudBddAnd( CloudManager * dd, CloudNode * f, CloudNode * g ) -{ - CloudNode * F, * G, * r; - CloudCacheEntry2 * cacheEntry; - CloudNode * fv, * fnv, * gv, * gnv, * t, * e; - CloudVar var; - - assert( f <= g ); - - // terminal cases - F = Cloud_Regular(f); - G = Cloud_Regular(g); - if ( F == G ) - { - if ( f == g ) - return f; - else - return dd->zero; - } - if ( F == dd->one ) - { - if ( f == dd->one ) - return g; - else - return f; - } - - // check cache - cacheEntry = dd->tCaches[CLOUD_OPER_AND] + cloudHashCudd2(f, g, dd->shiftCache[CLOUD_OPER_AND]); -// cacheEntry = dd->tCaches[CLOUD_OPER_AND] + cloudHashBuddy2(f, g, dd->shiftCache[CLOUD_OPER_AND]); - r = cloudCacheLookup2( cacheEntry, dd->nSignCur, f, g ); - if ( r != CLOUD_VOID ) - { - dd->nCacheHits++; - return r; - } - dd->nCacheMisses++; - - - // compute cofactors - if ( cloudV(F) <= cloudV(G) ) - { - var = cloudV(F); - if ( Cloud_IsComplement(f) ) - { - fnv = Cloud_Not(cloudE(F)); - fv = Cloud_Not(cloudT(F)); - } - else - { - fnv = cloudE(F); - fv = cloudT(F); - } - } - else - { - var = cloudV(G); - fv = fnv = f; - } - - if ( cloudV(G) <= cloudV(F) ) - { - if ( Cloud_IsComplement(g) ) - { - gnv = Cloud_Not(cloudE(G)); - gv = Cloud_Not(cloudT(G)); - } - else - { - gnv = cloudE(G); - gv = cloudT(G); - } - } - else - { - gv = gnv = g; - } - - if ( fv <= gv ) - t = cloudBddAnd( dd, fv, gv ); - else - t = cloudBddAnd( dd, gv, fv ); - - if ( t == CLOUD_VOID ) - return CLOUD_VOID; - - if ( fnv <= gnv ) - e = cloudBddAnd( dd, fnv, gnv ); - else - e = cloudBddAnd( dd, gnv, fnv ); - - if ( e == CLOUD_VOID ) - return CLOUD_VOID; - - if ( t == e ) - r = t; - else - { - if ( Cloud_IsComplement(t) ) - { - r = cloudMakeNode( dd, var, Cloud_Not(t), Cloud_Not(e) ); - if ( r == CLOUD_VOID ) - return CLOUD_VOID; - r = Cloud_Not(r); - } - else - { - r = cloudMakeNode( dd, var, t, e ); - if ( r == CLOUD_VOID ) - return CLOUD_VOID; - } - } - cloudCacheInsert2( cacheEntry, dd->nSignCur, f, g, r ); - return r; -} - -/**Function******************************************************************** - - Synopsis [Performs the AND or two BDDs] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -static inline CloudNode * cloudBddAnd_gate( CloudManager * dd, CloudNode * f, CloudNode * g ) -{ - if ( f <= g ) - return cloudBddAnd(dd,f,g); - else - return cloudBddAnd(dd,g,f); -} - -/**Function******************************************************************** - - Synopsis [Performs the AND or two BDDs] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -CloudNode * Cloud_bddAnd( CloudManager * dd, CloudNode * f, CloudNode * g ) -{ - if ( Cloud_Regular(f) == CLOUD_VOID || Cloud_Regular(g) == CLOUD_VOID ) - return CLOUD_VOID; - CLOUD_ASSERT(f); - CLOUD_ASSERT(g); - if ( dd->tCaches[CLOUD_OPER_AND] == NULL ) - cloudCacheAllocate( dd, CLOUD_OPER_AND ); - return cloudBddAnd_gate( dd, f, g ); -} - -/**Function******************************************************************** - - Synopsis [Performs the OR or two BDDs] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -CloudNode * Cloud_bddOr( CloudManager * dd, CloudNode * f, CloudNode * g ) -{ - CloudNode * res; - if ( Cloud_Regular(f) == CLOUD_VOID || Cloud_Regular(g) == CLOUD_VOID ) - return CLOUD_VOID; - CLOUD_ASSERT(f); - CLOUD_ASSERT(g); - if ( dd->tCaches[CLOUD_OPER_AND] == NULL ) - cloudCacheAllocate( dd, CLOUD_OPER_AND ); - res = cloudBddAnd_gate( dd, Cloud_Not(f), Cloud_Not(g) ); - res = Cloud_NotCond( res, res != CLOUD_VOID ); - return res; -} - -/**Function******************************************************************** - - Synopsis [Performs the XOR or two BDDs] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -CloudNode * Cloud_bddXor( CloudManager * dd, CloudNode * f, CloudNode * g ) -{ - CloudNode * t0, * t1, * r; - if ( Cloud_Regular(f) == CLOUD_VOID || Cloud_Regular(g) == CLOUD_VOID ) - return CLOUD_VOID; - CLOUD_ASSERT(f); - CLOUD_ASSERT(g); - if ( dd->tCaches[CLOUD_OPER_AND] == NULL ) - cloudCacheAllocate( dd, CLOUD_OPER_AND ); - t0 = cloudBddAnd_gate( dd, f, Cloud_Not(g) ); - if ( t0 == CLOUD_VOID ) - return CLOUD_VOID; - t1 = cloudBddAnd_gate( dd, Cloud_Not(f), g ); - if ( t1 == CLOUD_VOID ) - return CLOUD_VOID; - r = Cloud_bddOr( dd, t0, t1 ); - return r; -} - - - -/**Function******************************************************************** - - Synopsis [Performs a DFS from f, clearing the LSB of the next - pointers.] - - Description [] - - SideEffects [None] - - SeeAlso [cloudSupport cloudDagSize] - -******************************************************************************/ -static void cloudClearMark( CloudManager * dd, CloudNode * n ) -{ - if ( !cloudNodeIsMarked(n) ) - return; - // clear visited flag - cloudNodeUnmark(n); - if ( cloudIsConstant(n) ) - return; - cloudClearMark( dd, cloudT(n) ); - cloudClearMark( dd, Cloud_Regular(cloudE(n)) ); -} - -/**Function******************************************************************** - - Synopsis [Performs the recursive step of Cloud_Support.] - - Description [Performs the recursive step of Cloud_Support. Performs a - DFS from f. The support is accumulated in supp as a side effect. Uses - the LSB of the then pointer as visited flag.] - - SideEffects [None] - - SeeAlso [] - -******************************************************************************/ -static void cloudSupport( CloudManager * dd, CloudNode * n, int * support ) -{ - if ( cloudIsConstant(n) || cloudNodeIsMarked(n) ) - return; - // set visited flag - cloudNodeMark(n); - support[cloudV(n)] = 1; - cloudSupport( dd, cloudT(n), support ); - cloudSupport( dd, Cloud_Regular(cloudE(n)), support ); -} - -/**Function******************************************************************** - - Synopsis [Finds the variables on which a DD depends.] - - Description [Finds the variables on which a DD depends. - Returns a BDD consisting of the product of the variables if - successful; NULL otherwise.] - - SideEffects [None] - - SeeAlso [] - -******************************************************************************/ -CloudNode * Cloud_Support( CloudManager * dd, CloudNode * n ) -{ - CloudNode * res; - int * support, i; - - CLOUD_ASSERT(n); - - // allocate and initialize support array for cloudSupport - support = CALLOC( int, dd->nVars ); - - // compute support and clean up markers - cloudSupport( dd, Cloud_Regular(n), support ); - cloudClearMark( dd, Cloud_Regular(n) ); - - // transform support from array to cube - res = dd->one; - for ( i = dd->nVars - 1; i >= 0; i-- ) // for each level bottom-up - if ( support[i] == 1 ) - { - res = Cloud_bddAnd( dd, res, dd->vars[i] ); - if ( res == CLOUD_VOID ) - break; - } - FREE( support ); - return res; -} - -/**Function******************************************************************** - - Synopsis [Counts the variables on which a DD depends.] - - Description [Counts the variables on which a DD depends. - Returns the number of the variables if successful; Cloud_OUT_OF_MEM - otherwise.] - - SideEffects [None] - - SeeAlso [] - -******************************************************************************/ -int Cloud_SupportSize( CloudManager * dd, CloudNode * n ) -{ - int * support, i, count; - - CLOUD_ASSERT(n); - - // allocate and initialize support array for cloudSupport - support = CALLOC( int, dd->nVars ); - - // compute support and clean up markers - cloudSupport( dd, Cloud_Regular(n), support ); - cloudClearMark( dd, Cloud_Regular(n) ); - - // count support variables - count = 0; - for ( i = 0; i < dd->nVars; i++ ) - { - if ( support[i] == 1 ) - count++; - } - - FREE( support ); - return count; -} - - -/**Function******************************************************************** - - Synopsis [Performs the recursive step of Cloud_DagSize.] - - Description [Performs the recursive step of Cloud_DagSize. Returns the - number of nodes in the graph rooted at n.] - - SideEffects [None] - -******************************************************************************/ -static int cloudDagSize( CloudManager * dd, CloudNode * n ) -{ - int tval, eval; - if ( cloudNodeIsMarked(n) ) - return 0; - // set visited flag - cloudNodeMark(n); - if ( cloudIsConstant(n) ) - return 1; - tval = cloudDagSize( dd, cloudT(n) ); - eval = cloudDagSize( dd, Cloud_Regular(cloudE(n)) ); - return tval + eval + 1; - -} - -/**Function******************************************************************** - - Synopsis [Counts the number of nodes in a DD.] - - Description [Counts the number of nodes in a DD. Returns the number - of nodes in the graph rooted at node.] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -int Cloud_DagSize( CloudManager * dd, CloudNode * n ) -{ - int res; - res = cloudDagSize( dd, Cloud_Regular( n ) ); - cloudClearMark( dd, Cloud_Regular( n ) ); - return res; - -} - - -/**Function******************************************************************** - - Synopsis [Performs the recursive step of Cloud_DagSize.] - - Description [Performs the recursive step of Cloud_DagSize. Returns the - number of nodes in the graph rooted at n.] - - SideEffects [None] - -******************************************************************************/ -static int Cloud_DagCollect_rec( CloudManager * dd, CloudNode * n, int * pCounter ) -{ - int tval, eval; - if ( cloudNodeIsMarked(n) ) - return 0; - // set visited flag - cloudNodeMark(n); - if ( cloudIsConstant(n) ) - { - dd->ppNodes[(*pCounter)++] = n; - return 1; - } - tval = Cloud_DagCollect_rec( dd, cloudT(n), pCounter ); - eval = Cloud_DagCollect_rec( dd, Cloud_Regular(cloudE(n)), pCounter ); - dd->ppNodes[(*pCounter)++] = n; - return tval + eval + 1; - -} - -/**Function******************************************************************** - - Synopsis [Counts the number of nodes in a DD.] - - Description [Counts the number of nodes in a DD. Returns the number - of nodes in the graph rooted at node.] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -int Cloud_DagCollect( CloudManager * dd, CloudNode * n ) -{ - int res, Counter = 0; - if ( dd->ppNodes == NULL ) - dd->ppNodes = ALLOC( CloudNode *, dd->nNodesLimit ); - res = Cloud_DagCollect_rec( dd, Cloud_Regular( n ), &Counter ); - cloudClearMark( dd, Cloud_Regular( n ) ); - assert( res == Counter ); - return res; - -} - -/**Function******************************************************************** - - Synopsis [Counts the number of nodes in an array of DDs.] - - Description [Counts the number of nodes in a DD. Returns the number - of nodes in the graph rooted at node.] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -int Cloud_SharingSize( CloudManager * dd, CloudNode ** pn, int nn ) -{ - int res, i; - res = 0; - for ( i = 0; i < nn; i++ ) - res += cloudDagSize( dd, Cloud_Regular( pn[i] ) ); - for ( i = 0; i < nn; i++ ) - cloudClearMark( dd, Cloud_Regular( pn[i] ) ); - return res; -} - - -/**Function******************************************************************** - - Synopsis [Returns one cube contained in the given BDD.] - - Description [] - - SideEffects [] - -******************************************************************************/ -CloudNode * Cloud_GetOneCube( CloudManager * dd, CloudNode * bFunc ) -{ - CloudNode * bFunc0, * bFunc1, * res; - - if ( Cloud_IsConstant(bFunc) ) - return bFunc; - - // cofactor - if ( Cloud_IsComplement(bFunc) ) - { - bFunc0 = Cloud_Not( cloudE(bFunc) ); - bFunc1 = Cloud_Not( cloudT(bFunc) ); - } - else - { - bFunc0 = cloudE(bFunc); - bFunc1 = cloudT(bFunc); - } - - // try to find the cube with the negative literal - res = Cloud_GetOneCube( dd, bFunc0 ); - if ( res == CLOUD_VOID ) - return CLOUD_VOID; - - if ( res != dd->zero ) - { - res = Cloud_bddAnd( dd, res, Cloud_Not(dd->vars[Cloud_V(bFunc)]) ); - } - else - { - // try to find the cube with the positive literal - res = Cloud_GetOneCube( dd, bFunc1 ); - if ( res == CLOUD_VOID ) - return CLOUD_VOID; - assert( res != dd->zero ); - res = Cloud_bddAnd( dd, res, dd->vars[Cloud_V(bFunc)] ); - } - return res; -} - -/**Function******************************************************************** - - Synopsis [Prints the BDD as a set of disjoint cubes to the standard output.] - - Description [] - - SideEffects [] - -******************************************************************************/ -void Cloud_bddPrint( CloudManager * dd, CloudNode * Func ) -{ - CloudNode * Cube; - int fFirst = 1; - - if ( Func == dd->zero ) - printf( "Constant 0." ); - else if ( Func == dd->one ) - printf( "Constant 1." ); - else - { - while ( 1 ) - { - Cube = Cloud_GetOneCube( dd, Func ); - if ( Cube == CLOUD_VOID || Cube == dd->zero ) - break; - if ( fFirst ) fFirst = 0; - else printf( " + " ); - Cloud_bddPrintCube( dd, Cube ); - Func = Cloud_bddAnd( dd, Func, Cloud_Not(Cube) ); - } - } - printf( "\n" ); -} - -/**Function******************************************************************** - - Synopsis [Prints one cube.] - - Description [] - - SideEffects [] - -******************************************************************************/ -void Cloud_bddPrintCube( CloudManager * dd, CloudNode * bCube ) -{ - CloudNode * bCube0, * bCube1; - - assert( !Cloud_IsConstant(bCube) ); - while ( 1 ) - { - // get the node structure - if ( Cloud_IsConstant(bCube) ) - break; - - // cofactor the cube - if ( Cloud_IsComplement(bCube) ) - { - bCube0 = Cloud_Not( cloudE(bCube) ); - bCube1 = Cloud_Not( cloudT(bCube) ); - } - else - { - bCube0 = cloudE(bCube); - bCube1 = cloudT(bCube); - } - - if ( bCube0 != dd->zero ) - { - assert( bCube1 == dd->zero ); - printf( "[%d]'", cloudV(bCube) ); - bCube = bCube0; - } - else - { - assert( bCube1 != dd->zero ); - printf( "[%d]", cloudV(bCube) ); - bCube = bCube1; - } - } -} - - -/**Function******************************************************************** - - Synopsis [Prints info.] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -void Cloud_PrintInfo( CloudManager * dd ) -{ - if ( dd == NULL ) return; - printf( "The number of unique table nodes allocated = %12d.\n", dd->nNodesAlloc ); - printf( "The number of unique table nodes present = %12d.\n", dd->nNodesCur ); - printf( "The number of unique table hits = %12d.\n", dd->nUniqueHits ); - printf( "The number of unique table misses = %12d.\n", dd->nUniqueMisses ); - printf( "The number of unique table steps = %12d.\n", dd->nUniqueSteps ); - printf( "The number of cache hits = %12d.\n", dd->nCacheHits ); - printf( "The number of cache misses = %12d.\n", dd->nCacheMisses ); - printf( "The current signature = %12d.\n", dd->nSignCur ); - printf( "The total memory in use = %12d.\n", dd->nMemUsed ); -} - -/**Function******************************************************************** - - Synopsis [Prints the state of the hash table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -void Cloud_PrintHashTable( CloudManager * dd ) -{ - int i; - - for ( i = 0; i < dd->nNodesAlloc; i++ ) - if ( dd->tUnique[i].v == CLOUD_CONST_INDEX ) - printf( "-" ); - else - printf( "+" ); - printf( "\n" ); -} - - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - diff --git a/src/aig/kit/cloud.h b/src/aig/kit/cloud.h deleted file mode 100644 index ac9d45f4..00000000 --- a/src/aig/kit/cloud.h +++ /dev/null @@ -1,269 +0,0 @@ -/**CFile**************************************************************** - - FileName [cloud.h] - - PackageName [Fast application-specific BDD package.] - - Synopsis [Interface of the package.] - - Author [Alan Mishchenko <alanmi@ece.pdx.edu>] - - Affiliation [ECE Department. Portland State University, Portland, Oregon.] - - Date [Ver. 1.0. Started - June 10, 2002.] - - Revision [$Id: cloud.h,v 1.0 2002/06/10 03:00:00 alanmi Exp $] - -***********************************************************************/ - -#ifndef __CLOUD_H__ -#define __CLOUD_H__ - -#ifdef __cplusplus -extern "C" { -#endif - -#include <stdio.h> -#include <stdlib.h> -#include <assert.h> -#include <time.h> - -#ifdef _WIN32 -#define inline __inline // compatible with MS VS 6.0 -#endif - -//////////////////////////////////////////////////////////////////////// -// n | 2^n || n | 2^n || n | 2^n || n | 2^n // -//====================================================================// -// 1 | 2 || 9 | 512 || 17 | 131,072 || 25 | 33,554,432 // -// 2 | 4 || 10 | 1,024 || 18 | 262,144 || 26 | 67,108,864 // -// 3 | 8 || 11 | 2,048 || 19 | 524,288 || 27 | 134,217,728 // -// 4 | 16 || 12 | 4,096 || 20 | 1,048,576 || 28 | 268,435,456 // -// 5 | 32 || 13 | 8,192 || 21 | 2,097,152 || 29 | 536,870,912 // -// 6 | 64 || 14 | 16,384 || 22 | 4,194,304 || 30 | 1,073,741,824 // -// 7 | 128 || 15 | 32,768 || 23 | 8,388,608 || 31 | 2,147,483,648 // -// 8 | 256 || 16 | 65,536 || 24 | 16,777,216 || 32 | 4,294,967,296 // -//////////////////////////////////////////////////////////////////////// - -// data structure typedefs -typedef struct cloudManager CloudManager; -typedef unsigned CloudVar; -typedef unsigned CloudSign; -typedef struct cloudNode CloudNode; -typedef struct cloudCacheEntry1 CloudCacheEntry1; -typedef struct cloudCacheEntry2 CloudCacheEntry2; -typedef struct cloudCacheEntry3 CloudCacheEntry3; - -// operation codes used to set up the cache -typedef enum { - CLOUD_OPER_AND, - CLOUD_OPER_XOR, - CLOUD_OPER_BDIFF, - CLOUD_OPER_LEQ -} CloudOper; - -/* -// the number of operators using cache -static int CacheOperNum = 4; - -// the ratio of cache size to the unique table size for each operator -static int CacheLogRatioDefault[4] = { - 4, // CLOUD_OPER_AND, - 8, // CLOUD_OPER_XOR, - 8, // CLOUD_OPER_BDIFF, - 8 // CLOUD_OPER_LEQ -}; - -// the ratio of cache size to the unique table size for each operator -static int CacheSize[4] = { - 2, // CLOUD_OPER_AND, - 2, // CLOUD_OPER_XOR, - 2, // CLOUD_OPER_BDIFF, - 2 // CLOUD_OPER_LEQ -}; -*/ - -// data structure definitions -struct cloudManager // the fast bdd manager -{ - // variables - int nVars; // the number of variables allocated - // bits - int bitsNode; // the number of bits used for the node - int bitsCache[4]; // default: bitsNode - CacheSizeRatio[i] - // shifts - int shiftUnique; // 8*sizeof(unsigned) - (bitsNode + 1) - int shiftCache[4]; // 8*sizeof(unsigned) - bitsCache[i] - // nodes - int nNodesAlloc; // 2 ^ (bitsNode + 1) - int nNodesLimit; // 2 ^ bitsNode - int nNodesCur; // the current number of nodes (including const1 and vars) - // signature - CloudSign nSignCur; - - // statistics - int nMemUsed; // memory usage in bytes - // cache stats - int nUniqueHits; // hits in the unique table - int nUniqueMisses; // misses in the unique table - int nCacheHits; // hits in the caches - int nCacheMisses; // misses in the caches - // the number of steps through the hash table - int nUniqueSteps; - - // tables - CloudNode * tUnique; // the unique table to store BDD nodes - - // special nodes - CloudNode * pNodeStart; // the pointer to the first node - CloudNode * pNodeEnd; // the pointer to the first node out of the table - - // constants and variables - CloudNode * one; // the one function - CloudNode * zero; // the zero function - CloudNode ** vars; // the elementary variables - - // temporary storage for nodes - CloudNode ** ppNodes; - - // caches - CloudCacheEntry2 * tCaches[20]; // caches -}; - -struct cloudNode // representation of the node in the unique table -{ - CloudSign s; // signature - CloudVar v; // variable - CloudNode * e; // negative cofactor - CloudNode * t; // positive cofactor -}; -struct cloudCacheEntry1 // one-argument cache -{ - CloudSign s; // signature - CloudNode * a; // argument 1 - CloudNode * r; // result -}; -struct cloudCacheEntry2 // the two-argument cache -{ - CloudSign s; // signature - CloudNode * a; - CloudNode * b; - CloudNode * r; -}; -struct cloudCacheEntry3 // the three-argument cache -{ - CloudSign s; // signature - CloudNode * a; - CloudNode * b; - CloudNode * c; - CloudNode * r; -}; - - -// parameters -#define CLOUD_NODE_BITS 23 -#define CLOUD_ONE ((unsigned)0x00000001) -#define CLOUD_NOT_ONE ((unsigned)0xfffffffe) -#define CLOUD_VOID ((unsigned)0x00000000) - -#define CLOUD_CONST_INDEX ((unsigned)0x0fffffff) -#define CLOUD_MARK_ON ((unsigned)0x10000000) -#define CLOUD_MARK_OFF ((unsigned)0xefffffff) - -// hash functions a la Buddy -#define cloudHashBuddy2(x,y,s) ((((x)+(y))*((x)+(y)+1)/2) & ((1<<(32-(s)))-1)) -#define cloudHashBuddy3(x,y,z,s) (cloudHashBuddy2((cloudHashBuddy2((x),(y),(s))),(z),(s)) & ((1<<(32-(s)))-1)) -// hash functions a la Cudd -#define DD_P1 12582917 -#define DD_P2 4256249 -#define DD_P3 741457 -#define DD_P4 1618033999 -#define cloudHashCudd2(f,g,s) ((((unsigned)(f) * DD_P1 + (unsigned)(g)) * DD_P2) >> (s)) -#define cloudHashCudd3(f,g,h,s) (((((unsigned)(f) * DD_P1 + (unsigned)(g)) * DD_P2 + (unsigned)(h)) * DD_P3) >> (s)) - -// node complementation (using node) -#define Cloud_Regular(p) ((CloudNode*)(((unsigned)(p)) & CLOUD_NOT_ONE)) // get the regular node (w/o bubble) -#define Cloud_Not(p) ((CloudNode*)(((unsigned)(p)) ^ CLOUD_ONE)) // complement the node -#define Cloud_NotCond(p,c) (((int)(c))? Cloud_Not(p):(p)) // complement the node conditionally -#define Cloud_IsComplement(p) ((int)(((unsigned)(p)) & CLOUD_ONE)) // check if complemented -// checking constants (using node) -#define Cloud_IsConstant(p) (((Cloud_Regular(p))->v & CLOUD_MARK_OFF) == CLOUD_CONST_INDEX) -#define cloudIsConstant(p) (((p)->v & CLOUD_MARK_OFF) == CLOUD_CONST_INDEX) - -// retrieving values from the node (using node structure) -#define Cloud_V(p) ((Cloud_Regular(p))->v) -#define Cloud_E(p) ((Cloud_Regular(p))->e) -#define Cloud_T(p) ((Cloud_Regular(p))->t) -// retrieving values from the regular node (using node structure) -#define cloudV(p) ((p)->v) -#define cloudE(p) ((p)->e) -#define cloudT(p) ((p)->t) -// marking/unmarking (using node structure) -#define cloudNodeMark(p) ((p)->v |= CLOUD_MARK_ON) -#define cloudNodeUnmark(p) ((p)->v &= CLOUD_MARK_OFF) -#define cloudNodeIsMarked(p) ((int)((p)->v & CLOUD_MARK_ON)) - -// cache lookups and inserts (using node) -#define cloudCacheLookup1(p,sign,f) (((p)->s == (sign) && (p)->a == (f))? ((p)->r): (CLOUD_VOID)) -#define cloudCacheLookup2(p,sign,f,g) (((p)->s == (sign) && (p)->a == (f) && (p)->b == (g))? ((p)->r): (CLOUD_VOID)) -#define cloudCacheLookup3(p,sign,f,g,h) (((p)->s == (sign) && (p)->a == (f) && (p)->b == (g) && (p)->c == (h))? ((p)->r): (CLOUD_VOID)) -// cache inserts -#define cloudCacheInsert1(p,sign,f,r) (((p)->s = (sign)), ((p)->a = (f)), ((p)->r = (r))) -#define cloudCacheInsert2(p,sign,f,g,r) (((p)->s = (sign)), ((p)->a = (f)), ((p)->b = (g)), ((p)->r = (r))) -#define cloudCacheInsert3(p,sign,f,g,h,r) (((p)->s = (sign)), ((p)->a = (f)), ((p)->b = (g)), ((p)->c = (h)), ((p)->r = (r))) - -//#define CLOUD_ASSERT(p) (assert((p) >= (dd->pNodeStart-1) && (p) < dd->pNodeEnd)) -#define CLOUD_ASSERT(p) assert((p) >= dd->tUnique && (p) < dd->tUnique+dd->nNodesAlloc) - -// utility macros -#ifndef ALLOC -#define ALLOC(type, num) ((type *) malloc(sizeof(type) * (num))) -#endif - -#ifndef CALLOC -#define CALLOC(type, num) ((type *) calloc((num), sizeof(type))) -#endif - -#ifndef FREE -#define FREE(obj) ((obj) ? (free((char *) (obj)), (obj) = 0) : 0) -#endif - -#ifndef PRT -#define PRT(a,t) fprintf( stdout, "%s = ", (a)); printf( "%.2f sec\n", (float)(t)/(float)(CLOCKS_PER_SEC) ) -#endif - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// -// starting/stopping -extern CloudManager * Cloud_Init( int nVars, int nBits ); -extern void Cloud_Quit( CloudManager * dd ); -extern void Cloud_Restart( CloudManager * dd ); -extern void Cloud_CacheAllocate( CloudManager * dd, CloudOper oper, int size ); -extern CloudNode * Cloud_MakeNode( CloudManager * dd, CloudVar v, CloudNode * t, CloudNode * e ); -// support and node count -extern CloudNode * Cloud_Support( CloudManager * dd, CloudNode * n ); -extern int Cloud_SupportSize( CloudManager * dd, CloudNode * n ); -extern int Cloud_DagSize( CloudManager * dd, CloudNode * n ); -extern int Cloud_DagCollect( CloudManager * dd, CloudNode * n ); -extern int Cloud_SharingSize( CloudManager * dd, CloudNode * * pn, int nn ); -// cubes -extern CloudNode * Cloud_GetOneCube( CloudManager * dd, CloudNode * n ); -extern void Cloud_bddPrint( CloudManager * dd, CloudNode * Func ); -extern void Cloud_bddPrintCube( CloudManager * dd, CloudNode * Cube ); -// operations -extern CloudNode * Cloud_bddAnd( CloudManager * dd, CloudNode * f, CloudNode * g ); -extern CloudNode * Cloud_bddOr( CloudManager * dd, CloudNode * f, CloudNode * g ); -// stats -extern void Cloud_PrintInfo( CloudManager * dd ); -extern void Cloud_PrintHashTable( CloudManager * dd ); - -#ifdef __cplusplus -} -#endif - -#endif - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// diff --git a/src/aig/kit/kit.h b/src/aig/kit/kit.h deleted file mode 100644 index 06a93cf0..00000000 --- a/src/aig/kit/kit.h +++ /dev/null @@ -1,594 +0,0 @@ -/**CFile**************************************************************** - - FileName [kit.h] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [Computation kit.] - - Synopsis [External declarations.] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - Dec 6, 2006.] - - Revision [$Id: kit.h,v 1.00 2006/12/06 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#ifndef __KIT_H__ -#define __KIT_H__ - -#ifdef __cplusplus -extern "C" { -#endif - -//////////////////////////////////////////////////////////////////////// -/// INCLUDES /// -//////////////////////////////////////////////////////////////////////// - -#include <stdio.h> -#include <stdlib.h> -#include <string.h> -#include <assert.h> -#include <time.h> -#include "vec.h" -#include "extra.h" -#include "cloud.h" - -//////////////////////////////////////////////////////////////////////// -/// PARAMETERS /// -//////////////////////////////////////////////////////////////////////// - -//////////////////////////////////////////////////////////////////////// -/// BASIC TYPES /// -//////////////////////////////////////////////////////////////////////// - -typedef struct Kit_Sop_t_ Kit_Sop_t; -struct Kit_Sop_t_ -{ - int nCubes; // the number of cubes - unsigned * pCubes; // the storage for cubes -}; - -typedef struct Kit_Edge_t_ Kit_Edge_t; -struct Kit_Edge_t_ -{ - unsigned fCompl : 1; // the complemented bit - unsigned Node : 30; // the decomposition node pointed by the edge -}; - -typedef struct Kit_Node_t_ Kit_Node_t; -struct Kit_Node_t_ -{ - Kit_Edge_t eEdge0; // the left child of the node - Kit_Edge_t eEdge1; // the right child of the node - // other info - void * pFunc; // the function of the node (BDD or AIG) - unsigned Level : 14; // the level of this node in the global AIG - // printing info - unsigned fNodeOr : 1; // marks the original OR node - unsigned fCompl0 : 1; // marks the original complemented edge - unsigned fCompl1 : 1; // marks the original complemented edge - // latch info - unsigned nLat0 : 5; // the number of latches on the first edge - unsigned nLat1 : 5; // the number of latches on the second edge - unsigned nLat2 : 5; // the number of latches on the output edge -}; - -typedef struct Kit_Graph_t_ Kit_Graph_t; -struct Kit_Graph_t_ -{ - int fConst; // marks the constant 1 graph - int nLeaves; // the number of leaves - int nSize; // the number of nodes (including the leaves) - int nCap; // the number of allocated nodes - Kit_Node_t * pNodes; // the array of leaves and internal nodes - Kit_Edge_t eRoot; // the pointer to the topmost node -}; - - -// DSD node types -typedef enum { - KIT_DSD_NONE = 0, // 0: unknown - KIT_DSD_CONST1, // 1: constant 1 - KIT_DSD_VAR, // 2: elementary variable - KIT_DSD_AND, // 3: multi-input AND - KIT_DSD_XOR, // 4: multi-input XOR - KIT_DSD_PRIME // 5: arbitrary function of 3+ variables -} Kit_Dsd_t; - -// DSD node -typedef struct Kit_DsdObj_t_ Kit_DsdObj_t; -struct Kit_DsdObj_t_ -{ - unsigned Id : 6; // the number of this node - unsigned Type : 3; // none, const, var, AND, XOR, MUX, PRIME - unsigned fMark : 1; // finished checking output - unsigned Offset : 8; // offset to the truth table - unsigned nRefs : 8; // offset to the truth table - unsigned nFans : 6; // the number of fanins of this node - unsigned char pFans[0]; // the fanin literals -}; - -// DSD network -typedef struct Kit_DsdNtk_t_ Kit_DsdNtk_t; -struct Kit_DsdNtk_t_ -{ - unsigned char nVars; // at most 16 (perhaps 18?) - unsigned char nNodesAlloc; // the number of allocated nodes (at most nVars) - unsigned char nNodes; // the number of nodes - unsigned char Root; // the root of the tree - unsigned * pMem; // memory for the truth tables (memory manager?) - unsigned * pSupps; // supports of the nodes - Kit_DsdObj_t** pNodes; // the nodes -}; - -// DSD manager -typedef struct Kit_DsdMan_t_ Kit_DsdMan_t; -struct Kit_DsdMan_t_ -{ - int nVars; // the maximum number of variables - int nWords; // the number of words in TTs - Vec_Ptr_t * vTtElems; // elementary truth tables - Vec_Ptr_t * vTtNodes; // the node truth tables - // BDD representation - CloudManager * dd; // BDD package - Vec_Ptr_t * vTtBdds; // the node truth tables - Vec_Int_t * vNodes; // temporary array for BDD nodes -}; - -static inline int Kit_DsdVar2Lit( int Var, int fCompl ) { return Var + Var + fCompl; } -static inline int Kit_DsdLit2Var( int Lit ) { return Lit >> 1; } -static inline int Kit_DsdLitIsCompl( int Lit ) { return Lit & 1; } -static inline int Kit_DsdLitNot( int Lit ) { return Lit ^ 1; } -static inline int Kit_DsdLitNotCond( int Lit, int c ) { return Lit ^ (int)(c > 0); } -static inline int Kit_DsdLitRegular( int Lit ) { return Lit & 0xfe; } - -static inline unsigned Kit_DsdObjOffset( int nFans ) { return (nFans >> 2) + ((nFans & 3) > 0); } -static inline unsigned * Kit_DsdObjTruth( Kit_DsdObj_t * pObj ) { return pObj->Type == KIT_DSD_PRIME ? (unsigned *)pObj->pFans + pObj->Offset: NULL; } -static inline int Kit_DsdNtkObjNum( Kit_DsdNtk_t * pNtk ){ return pNtk->nVars + pNtk->nNodes; } -static inline Kit_DsdObj_t * Kit_DsdNtkObj( Kit_DsdNtk_t * pNtk, int Id ) { assert( Id >= 0 && Id < pNtk->nVars + pNtk->nNodes ); return Id < pNtk->nVars ? NULL : pNtk->pNodes[Id - pNtk->nVars]; } -static inline Kit_DsdObj_t * Kit_DsdNtkRoot( Kit_DsdNtk_t * pNtk ) { return Kit_DsdNtkObj( pNtk, Kit_DsdLit2Var(pNtk->Root) ); } -static inline int Kit_DsdLitIsLeaf( Kit_DsdNtk_t * pNtk, int Lit ) { int Id = Kit_DsdLit2Var(Lit); assert( Id >= 0 && Id < pNtk->nVars + pNtk->nNodes ); return Id < pNtk->nVars; } -static inline unsigned Kit_DsdLitSupport( Kit_DsdNtk_t * pNtk, int Lit ) { int Id = Kit_DsdLit2Var(Lit); assert( Id >= 0 && Id < pNtk->nVars + pNtk->nNodes ); return pNtk->pSupps? (Id < pNtk->nVars? (1 << Id) : pNtk->pSupps[Id - pNtk->nVars]) : 0; } - -#define Kit_DsdNtkForEachObj( pNtk, pObj, i ) \ - for ( i = 0; (i < (pNtk)->nNodes) && ((pObj) = (pNtk)->pNodes[i]); i++ ) -#define Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) \ - for ( i = 0; (i < (pObj)->nFans) && ((iLit) = (pObj)->pFans[i], 1); i++ ) - -//////////////////////////////////////////////////////////////////////// -/// MACRO DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -#define KIT_MIN(a,b) (((a) < (b))? (a) : (b)) -#define KIT_MAX(a,b) (((a) > (b))? (a) : (b)) -#define KIT_INFINITY (100000000) - -#ifndef ALLOC -#define ALLOC(type, num) ((type *) malloc(sizeof(type) * (num))) -#endif - -#ifndef FREE -#define FREE(obj) ((obj) ? (free((char *) (obj)), (obj) = 0) : 0) -#endif - -#ifndef REALLOC -#define REALLOC(type, obj, num) \ - ((obj) ? ((type *) realloc((char *)(obj), sizeof(type) * (num))) : \ - ((type *) malloc(sizeof(type) * (num)))) -#endif - -static inline int Kit_CubeHasLit( unsigned uCube, int i ) { return(uCube & (unsigned)(1<<i)) > 0; } -static inline unsigned Kit_CubeSetLit( unsigned uCube, int i ) { return uCube | (unsigned)(1<<i); } -static inline unsigned Kit_CubeXorLit( unsigned uCube, int i ) { return uCube ^ (unsigned)(1<<i); } -static inline unsigned Kit_CubeRemLit( unsigned uCube, int i ) { return uCube & ~(unsigned)(1<<i); } - -static inline int Kit_CubeContains( unsigned uLarge, unsigned uSmall ) { return (uLarge & uSmall) == uSmall; } -static inline unsigned Kit_CubeSharp( unsigned uCube, unsigned uMask ) { return uCube & ~uMask; } -static inline unsigned Kit_CubeMask( int nVar ) { return (~(unsigned)0) >> (32-nVar); } - -static inline int Kit_CubeIsMarked( unsigned uCube ) { return Kit_CubeHasLit( uCube, 31 ); } -static inline unsigned Kit_CubeMark( unsigned uCube ) { return Kit_CubeSetLit( uCube, 31 ); } -static inline unsigned Kit_CubeUnmark( unsigned uCube ) { return Kit_CubeRemLit( uCube, 31 ); } - -static inline int Kit_SopCubeNum( Kit_Sop_t * cSop ) { return cSop->nCubes; } -static inline unsigned Kit_SopCube( Kit_Sop_t * cSop, int i ) { return cSop->pCubes[i]; } -static inline void Kit_SopShrink( Kit_Sop_t * cSop, int nCubesNew ) { cSop->nCubes = nCubesNew; } -static inline void Kit_SopPushCube( Kit_Sop_t * cSop, unsigned uCube ) { cSop->pCubes[cSop->nCubes++] = uCube; } -static inline void Kit_SopWriteCube( Kit_Sop_t * cSop, unsigned uCube, int i ) { cSop->pCubes[i] = uCube; } - -static inline Kit_Edge_t Kit_EdgeCreate( int Node, int fCompl ) { Kit_Edge_t eEdge = { fCompl, Node }; return eEdge; } -static inline unsigned Kit_EdgeToInt( Kit_Edge_t eEdge ) { return (eEdge.Node << 1) | eEdge.fCompl; } -static inline Kit_Edge_t Kit_IntToEdge( unsigned Edge ) { return Kit_EdgeCreate( Edge >> 1, Edge & 1 ); } -static inline unsigned Kit_EdgeToInt_( Kit_Edge_t eEdge ) { return *(unsigned *)&eEdge; } -static inline Kit_Edge_t Kit_IntToEdge_( unsigned Edge ) { return *(Kit_Edge_t *)&Edge; } - -static inline int Kit_GraphIsConst( Kit_Graph_t * pGraph ) { return pGraph->fConst; } -static inline int Kit_GraphIsConst0( Kit_Graph_t * pGraph ) { return pGraph->fConst && pGraph->eRoot.fCompl; } -static inline int Kit_GraphIsConst1( Kit_Graph_t * pGraph ) { return pGraph->fConst && !pGraph->eRoot.fCompl; } -static inline int Kit_GraphIsComplement( Kit_Graph_t * pGraph ) { return pGraph->eRoot.fCompl; } -static inline int Kit_GraphIsVar( Kit_Graph_t * pGraph ) { return pGraph->eRoot.Node < (unsigned)pGraph->nLeaves; } -static inline void Kit_GraphComplement( Kit_Graph_t * pGraph ) { pGraph->eRoot.fCompl ^= 1; } -static inline void Kit_GraphSetRoot( Kit_Graph_t * pGraph, Kit_Edge_t eRoot ) { pGraph->eRoot = eRoot; } -static inline int Kit_GraphLeaveNum( Kit_Graph_t * pGraph ) { return pGraph->nLeaves; } -static inline int Kit_GraphNodeNum( Kit_Graph_t * pGraph ) { return pGraph->nSize - pGraph->nLeaves; } -static inline Kit_Node_t * Kit_GraphNode( Kit_Graph_t * pGraph, int i ) { return pGraph->pNodes + i; } -static inline Kit_Node_t * Kit_GraphNodeLast( Kit_Graph_t * pGraph ) { return pGraph->pNodes + pGraph->nSize - 1; } -static inline int Kit_GraphNodeInt( Kit_Graph_t * pGraph, Kit_Node_t * pNode ) { return pNode - pGraph->pNodes; } -static inline int Kit_GraphNodeIsVar( Kit_Graph_t * pGraph, Kit_Node_t * pNode ) { return Kit_GraphNodeInt(pGraph,pNode) < pGraph->nLeaves; } -static inline Kit_Node_t * Kit_GraphVar( Kit_Graph_t * pGraph ) { assert( Kit_GraphIsVar( pGraph ) ); return Kit_GraphNode( pGraph, pGraph->eRoot.Node ); } -static inline int Kit_GraphVarInt( Kit_Graph_t * pGraph ) { assert( Kit_GraphIsVar( pGraph ) ); return Kit_GraphNodeInt( pGraph, Kit_GraphVar(pGraph) ); } -static inline Kit_Node_t * Kit_GraphNodeFanin0( Kit_Graph_t * pGraph, Kit_Node_t * pNode ){ return Kit_GraphNodeIsVar(pGraph, pNode)? NULL : Kit_GraphNode(pGraph, pNode->eEdge0.Node); } -static inline Kit_Node_t * Kit_GraphNodeFanin1( Kit_Graph_t * pGraph, Kit_Node_t * pNode ){ return Kit_GraphNodeIsVar(pGraph, pNode)? NULL : Kit_GraphNode(pGraph, pNode->eEdge1.Node); } -static inline int Kit_GraphRootLevel( Kit_Graph_t * pGraph ) { return Kit_GraphNode(pGraph, pGraph->eRoot.Node)->Level; } - -static inline int Kit_Float2Int( float Val ) { return *((int *)&Val); } -static inline float Kit_Int2Float( int Num ) { return *((float *)&Num); } -static inline int Kit_BitWordNum( int nBits ) { return nBits/(8*sizeof(unsigned)) + ((nBits%(8*sizeof(unsigned))) > 0); } -static inline int Kit_TruthWordNum( int nVars ) { return nVars <= 5 ? 1 : (1 << (nVars - 5)); } -static inline unsigned Kit_BitMask( int nBits ) { assert( nBits <= 32 ); return ~((~(unsigned)0) << nBits); } - -static inline void Kit_TruthSetBit( unsigned * p, int Bit ) { p[Bit>>5] |= (1<<(Bit & 31)); } -static inline void Kit_TruthXorBit( unsigned * p, int Bit ) { p[Bit>>5] ^= (1<<(Bit & 31)); } -static inline int Kit_TruthHasBit( unsigned * p, int Bit ) { return (p[Bit>>5] & (1<<(Bit & 31))) > 0; } - -static inline int Kit_WordFindFirstBit( unsigned uWord ) -{ - int i; - for ( i = 0; i < 32; i++ ) - if ( uWord & (1 << i) ) - return i; - return -1; -} -static inline int Kit_WordHasOneBit( unsigned uWord ) -{ - return (uWord & (uWord - 1)) == 0; -} -static inline int Kit_WordCountOnes( unsigned uWord ) -{ - uWord = (uWord & 0x55555555) + ((uWord>>1) & 0x55555555); - uWord = (uWord & 0x33333333) + ((uWord>>2) & 0x33333333); - uWord = (uWord & 0x0F0F0F0F) + ((uWord>>4) & 0x0F0F0F0F); - uWord = (uWord & 0x00FF00FF) + ((uWord>>8) & 0x00FF00FF); - return (uWord & 0x0000FFFF) + (uWord>>16); -} -static inline int Kit_TruthCountOnes( unsigned * pIn, int nVars ) -{ - int w, Counter = 0; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - Counter += Kit_WordCountOnes(pIn[w]); - return Counter; -} -static inline int Kit_TruthFindFirstBit( unsigned * pIn, int nVars ) -{ - int w; - for ( w = 0; w < Kit_TruthWordNum(nVars); w++ ) - if ( pIn[w] ) - return 32*w + Kit_WordFindFirstBit(pIn[w]); - return -1; -} -static inline int Kit_TruthFindFirstZero( unsigned * pIn, int nVars ) -{ - int w; - for ( w = 0; w < Kit_TruthWordNum(nVars); w++ ) - if ( ~pIn[w] ) - return 32*w + Kit_WordFindFirstBit(~pIn[w]); - return -1; -} -static inline int Kit_TruthIsEqual( unsigned * pIn0, unsigned * pIn1, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - if ( pIn0[w] != pIn1[w] ) - return 0; - return 1; -} -static inline int Kit_TruthIsOpposite( unsigned * pIn0, unsigned * pIn1, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - if ( pIn0[w] != ~pIn1[w] ) - return 0; - return 1; -} -static inline int Kit_TruthIsEqualWithPhase( unsigned * pIn0, unsigned * pIn1, int nVars ) -{ - int w; - if ( (pIn0[0] & 1) == (pIn1[0] & 1) ) - { - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - if ( pIn0[w] != pIn1[w] ) - return 0; - } - else - { - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - if ( pIn0[w] != ~pIn1[w] ) - return 0; - } - return 1; -} -static inline int Kit_TruthIsConst0( unsigned * pIn, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - if ( pIn[w] ) - return 0; - return 1; -} -static inline int Kit_TruthIsConst1( unsigned * pIn, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - if ( pIn[w] != ~(unsigned)0 ) - return 0; - return 1; -} -static inline int Kit_TruthIsImply( unsigned * pIn1, unsigned * pIn2, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - if ( pIn1[w] & ~pIn2[w] ) - return 0; - return 1; -} -static inline int Kit_TruthIsDisjoint( unsigned * pIn1, unsigned * pIn2, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - if ( pIn1[w] & pIn2[w] ) - return 0; - return 1; -} -static inline int Kit_TruthIsDisjoint3( unsigned * pIn1, unsigned * pIn2, unsigned * pIn3, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - if ( pIn1[w] & pIn2[w] & pIn3[w] ) - return 0; - return 1; -} -static inline void Kit_TruthCopy( unsigned * pOut, unsigned * pIn, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = pIn[w]; -} -static inline void Kit_TruthClear( unsigned * pOut, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = 0; -} -static inline void Kit_TruthFill( unsigned * pOut, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = ~(unsigned)0; -} -static inline void Kit_TruthNot( unsigned * pOut, unsigned * pIn, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = ~pIn[w]; -} -static inline void Kit_TruthAnd( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = pIn0[w] & pIn1[w]; -} -static inline void Kit_TruthOr( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = pIn0[w] | pIn1[w]; -} -static inline void Kit_TruthXor( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = pIn0[w] ^ pIn1[w]; -} -static inline void Kit_TruthSharp( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = pIn0[w] & ~pIn1[w]; -} -static inline void Kit_TruthNand( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = ~(pIn0[w] & pIn1[w]); -} -static inline void Kit_TruthAndPhase( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars, int fCompl0, int fCompl1 ) -{ - int w; - if ( fCompl0 && fCompl1 ) - { - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = ~(pIn0[w] | pIn1[w]); - } - else if ( fCompl0 && !fCompl1 ) - { - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = ~pIn0[w] & pIn1[w]; - } - else if ( !fCompl0 && fCompl1 ) - { - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = pIn0[w] & ~pIn1[w]; - } - else // if ( !fCompl0 && !fCompl1 ) - { - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = pIn0[w] & pIn1[w]; - } -} -static inline void Kit_TruthMux( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, unsigned * pCtrl, int nVars ) -{ - int w; - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = (pIn0[w] & ~pCtrl[w]) | (pIn1[w] & pCtrl[w]); -} -static inline void Kit_TruthMuxPhase( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, unsigned * pCtrl, int nVars, int fComp0 ) -{ - int w; - if ( fComp0 ) - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = (~pIn0[w] & ~pCtrl[w]) | (pIn1[w] & pCtrl[w]); - else - for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) - pOut[w] = (pIn0[w] & ~pCtrl[w]) | (pIn1[w] & pCtrl[w]); -} -static inline void Kit_TruthIthVar( unsigned * pTruth, int nVars, int iVar ) -{ - unsigned Masks[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; - int k, nWords = (nVars <= 5 ? 1 : (1 << (nVars - 5))); - if ( iVar < 5 ) - { - for ( k = 0; k < nWords; k++ ) - pTruth[k] = Masks[iVar]; - } - else - { - for ( k = 0; k < nWords; k++ ) - if ( k & (1 << (iVar-5)) ) - pTruth[k] = ~(unsigned)0; - else - pTruth[k] = 0; - } -} - - -//////////////////////////////////////////////////////////////////////// -/// ITERATORS /// -//////////////////////////////////////////////////////////////////////// - -#define Kit_SopForEachCube( cSop, uCube, i ) \ - for ( i = 0; (i < Kit_SopCubeNum(cSop)) && ((uCube) = Kit_SopCube(cSop, i)); i++ ) -#define Kit_CubeForEachLiteral( uCube, Lit, nLits, i ) \ - for ( i = 0; (i < (nLits)) && ((Lit) = Kit_CubeHasLit(uCube, i)); i++ ) - -#define Kit_GraphForEachLeaf( pGraph, pLeaf, i ) \ - for ( i = 0; (i < (pGraph)->nLeaves) && (((pLeaf) = Kit_GraphNode(pGraph, i)), 1); i++ ) -#define Kit_GraphForEachNode( pGraph, pAnd, i ) \ - for ( i = (pGraph)->nLeaves; (i < (pGraph)->nSize) && (((pAnd) = Kit_GraphNode(pGraph, i)), 1); i++ ) - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -/*=== kitBdd.c ==========================================================*/ -extern DdNode * Kit_SopToBdd( DdManager * dd, Kit_Sop_t * cSop, int nVars ); -extern DdNode * Kit_GraphToBdd( DdManager * dd, Kit_Graph_t * pGraph ); -extern DdNode * Kit_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars, int fMSBonTop ); -/*=== kitCloud.c ==========================================================*/ -extern CloudNode * Kit_TruthToCloud( CloudManager * dd, unsigned * pTruth, int nVars ); -extern unsigned * Kit_CloudToTruth( Vec_Int_t * vNodes, int nVars, Vec_Ptr_t * vStore, int fInv ); -extern int Kit_CreateCloud( CloudManager * dd, CloudNode * pFunc, Vec_Int_t * vNodes ); -extern int Kit_CreateCloudFromTruth( CloudManager * dd, unsigned * pTruth, int nVars, Vec_Int_t * vNodes ); -extern unsigned * Kit_TruthCompose( CloudManager * dd, unsigned * pTruth, int nVars, unsigned ** pInputs, int nVarsAll, Vec_Ptr_t * vStore, Vec_Int_t * vNodes ); -extern void Kit_TruthCofSupports( Vec_Int_t * vBddDir, Vec_Int_t * vBddInv, int nVars, Vec_Int_t * vMemory, unsigned * puSupps ); -/*=== kitDsd.c ==========================================================*/ -extern Kit_DsdMan_t * Kit_DsdManAlloc( int nVars, int nNodes ); -extern void Kit_DsdManFree( Kit_DsdMan_t * p ); -extern Kit_DsdNtk_t * Kit_DsdDeriveNtk( unsigned * pTruth, int nVars, int nLutSize ); -extern unsigned * Kit_DsdTruthCompute( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk ); -extern void Kit_DsdTruth( Kit_DsdNtk_t * pNtk, unsigned * pTruthRes ); -extern void Kit_DsdTruthPartial( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned * pTruthRes, unsigned uSupp ); -extern void Kit_DsdTruthPartialTwo( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp, int iVar, unsigned * pTruthCo, unsigned * pTruthDec ); -extern void Kit_DsdPrint( FILE * pFile, Kit_DsdNtk_t * pNtk ); -extern void Kit_DsdPrintExpanded( Kit_DsdNtk_t * pNtk ); -extern void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars ); -extern Kit_DsdNtk_t * Kit_DsdDecompose( unsigned * pTruth, int nVars ); -extern Kit_DsdNtk_t * Kit_DsdDecomposeExpand( unsigned * pTruth, int nVars ); -extern Kit_DsdNtk_t * Kit_DsdDecomposeMux( unsigned * pTruth, int nVars, int nDecMux ); -extern void Kit_DsdVerify( Kit_DsdNtk_t * pNtk, unsigned * pTruth, int nVars ); -extern void Kit_DsdNtkFree( Kit_DsdNtk_t * pNtk ); -extern int Kit_DsdNonDsdSizeMax( Kit_DsdNtk_t * pNtk ); -extern unsigned Kit_DsdNonDsdSupports( Kit_DsdNtk_t * pNtk ); -extern unsigned Kit_DsdGetSupports( Kit_DsdNtk_t * p ); -extern Kit_DsdNtk_t * Kit_DsdExpand( Kit_DsdNtk_t * p ); -extern Kit_DsdNtk_t * Kit_DsdShrink( Kit_DsdNtk_t * p, int pPrios[] ); -extern void Kit_DsdRotate( Kit_DsdNtk_t * p, int pFreqs[] ); -extern int Kit_DsdCofactoring( unsigned * pTruth, int nVars, int * pCofVars, int nLimit, int fVerbose ); -/*=== kitFactor.c ==========================================================*/ -extern Kit_Graph_t * Kit_SopFactor( Vec_Int_t * vCover, int fCompl, int nVars, Vec_Int_t * vMemory ); -/*=== kitGraph.c ==========================================================*/ -extern Kit_Graph_t * Kit_GraphCreate( int nLeaves ); -extern Kit_Graph_t * Kit_GraphCreateConst0(); -extern Kit_Graph_t * Kit_GraphCreateConst1(); -extern Kit_Graph_t * Kit_GraphCreateLeaf( int iLeaf, int nLeaves, int fCompl ); -extern void Kit_GraphFree( Kit_Graph_t * pGraph ); -extern Kit_Node_t * Kit_GraphAppendNode( Kit_Graph_t * pGraph ); -extern Kit_Edge_t Kit_GraphAddNodeAnd( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ); -extern Kit_Edge_t Kit_GraphAddNodeOr( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ); -extern Kit_Edge_t Kit_GraphAddNodeXor( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1, int Type ); -extern Kit_Edge_t Kit_GraphAddNodeMux( Kit_Graph_t * pGraph, Kit_Edge_t eEdgeC, Kit_Edge_t eEdgeT, Kit_Edge_t eEdgeE, int Type ); -extern unsigned Kit_GraphToTruth( Kit_Graph_t * pGraph ); -extern Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars, Vec_Int_t * vMemory ); -extern int Kit_GraphLeafDepth_rec( Kit_Graph_t * pGraph, Kit_Node_t * pNode, Kit_Node_t * pLeaf ); -/*=== kitHop.c ==========================================================*/ -//extern Hop_Obj_t * Kit_GraphToHop( Hop_Man_t * pMan, Kit_Graph_t * pGraph ); -//extern Hop_Obj_t * Kit_TruthToHop( Hop_Man_t * pMan, unsigned * pTruth, int nVars, Vec_Int_t * vMemory ); -//extern Hop_Obj_t * Kit_CoverToHop( Hop_Man_t * pMan, Vec_Int_t * vCover, int nVars, Vec_Int_t * vMemory ); -/*=== kitIsop.c ==========================================================*/ -extern int Kit_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vMemory, int fTryBoth ); -/*=== kitSop.c ==========================================================*/ -extern void Kit_SopCreate( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory ); -extern void Kit_SopCreateInverse( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory ); -extern void Kit_SopDup( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ); -extern void Kit_SopDivideByLiteralQuo( Kit_Sop_t * cSop, int iLit ); -extern void Kit_SopDivideByCube( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ); -extern void Kit_SopDivideInternal( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ); -extern void Kit_SopMakeCubeFree( Kit_Sop_t * cSop ); -extern int Kit_SopIsCubeFree( Kit_Sop_t * cSop ); -extern void Kit_SopCommonCubeCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ); -extern int Kit_SopAnyLiteral( Kit_Sop_t * cSop, int nLits ); -extern int Kit_SopDivisor( Kit_Sop_t * cResult, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ); -extern void Kit_SopBestLiteralCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, unsigned uCube, int nLits, Vec_Int_t * vMemory ); -/*=== kitTruth.c ==========================================================*/ -extern void Kit_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int Start ); -extern void Kit_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn ); -extern void Kit_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn ); -extern int Kit_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar ); -extern int Kit_TruthSupportSize( unsigned * pTruth, int nVars ); -extern unsigned Kit_TruthSupport( unsigned * pTruth, int nVars ); -extern void Kit_TruthCofactor0( unsigned * pTruth, int nVars, int iVar ); -extern void Kit_TruthCofactor1( unsigned * pTruth, int nVars, int iVar ); -extern void Kit_TruthCofactor0New( unsigned * pOut, unsigned * pIn, int nVars, int iVar ); -extern void Kit_TruthCofactor1New( unsigned * pOut, unsigned * pIn, int nVars, int iVar ); -extern void Kit_TruthExist( unsigned * pTruth, int nVars, int iVar ); -extern void Kit_TruthExistNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ); -extern void Kit_TruthExistSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask ); -extern void Kit_TruthForall( unsigned * pTruth, int nVars, int iVar ); -extern void Kit_TruthForallNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ); -extern void Kit_TruthForallSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask ); -extern void Kit_TruthUniqueNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ); -extern void Kit_TruthMuxVar( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar ); -extern void Kit_TruthMuxVarPhase( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar, int fCompl0 ); -extern void Kit_TruthChangePhase( unsigned * pTruth, int nVars, int iVar ); -extern int Kit_TruthMinCofSuppOverlap( unsigned * pTruth, int nVars, int * pVarMin ); -extern int Kit_TruthBestCofVar( unsigned * pTruth, int nVars, unsigned * pCof0, unsigned * pCof1 ); -extern void Kit_TruthCountOnesInCofs( unsigned * pTruth, int nVars, short * pStore ); -extern void Kit_TruthCountOnesInCofsSlow( unsigned * pTruth, int nVars, short * pStore, unsigned * pAux ); -extern unsigned Kit_TruthHash( unsigned * pIn, int nWords ); -extern unsigned Kit_TruthSemiCanonicize( unsigned * pInOut, unsigned * pAux, int nVars, char * pCanonPerm, short * pStore ); -extern char * Kit_TruthDumpToFile( unsigned * pTruth, int nVars, int nFile ); - -#ifdef __cplusplus -} -#endif - -#endif - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - diff --git a/src/aig/kit/kitAig.c b/src/aig/kit/kitAig.c deleted file mode 100644 index 0d5c1686..00000000 --- a/src/aig/kit/kitAig.c +++ /dev/null @@ -1,121 +0,0 @@ -/**CFile**************************************************************** - - FileName [kitAig.c] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [Computation kit.] - - Synopsis [Procedures involving AIGs.] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - Dec 6, 2006.] - - Revision [$Id: kitAig.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "kit.h" -#include "aig.h" - -//////////////////////////////////////////////////////////////////////// -/// DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - - Synopsis [Transforms the decomposition graph into the AIG.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Aig_Obj_t * Kit_GraphToAigInternal( Aig_Man_t * pMan, Kit_Graph_t * pGraph ) -{ - Kit_Node_t * pNode; - Aig_Obj_t * pAnd0, * pAnd1; - int i; - // check for constant function - if ( Kit_GraphIsConst(pGraph) ) - return Aig_NotCond( Aig_ManConst1(pMan), Kit_GraphIsComplement(pGraph) ); - // check for a literal - if ( Kit_GraphIsVar(pGraph) ) - return Aig_NotCond( Kit_GraphVar(pGraph)->pFunc, Kit_GraphIsComplement(pGraph) ); - // build the AIG nodes corresponding to the AND gates of the graph - Kit_GraphForEachNode( pGraph, pNode, i ) - { - pAnd0 = Aig_NotCond( Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl ); - pAnd1 = Aig_NotCond( Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl ); - pNode->pFunc = Aig_And( pMan, pAnd0, pAnd1 ); - } - // complement the result if necessary - return Aig_NotCond( pNode->pFunc, Kit_GraphIsComplement(pGraph) ); -} - -/**Function************************************************************* - - Synopsis [Strashes one logic node using its SOP.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Aig_Obj_t * Kit_GraphToAig( Aig_Man_t * pMan, Aig_Obj_t ** pFanins, Kit_Graph_t * pGraph ) -{ - Kit_Node_t * pNode; - int i; - // collect the fanins - Kit_GraphForEachLeaf( pGraph, pNode, i ) - pNode->pFunc = pFanins[i]; - // perform strashing - return Kit_GraphToAigInternal( pMan, pGraph ); -} - -/**Function************************************************************* - - Synopsis [Strashed onen logic nodes using its truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Aig_Obj_t * Kit_TruthToAig( Aig_Man_t * pMan, Aig_Obj_t ** pFanins, unsigned * pTruth, int nVars, Vec_Int_t * vMemory ) -{ - Aig_Obj_t * pObj; - Kit_Graph_t * pGraph; - // transform truth table into the decomposition tree - if ( vMemory == NULL ) - { - vMemory = Vec_IntAlloc( 0 ); - pGraph = Kit_TruthToGraph( pTruth, nVars, vMemory ); - Vec_IntFree( vMemory ); - } - else - pGraph = Kit_TruthToGraph( pTruth, nVars, vMemory ); - // derive the AIG for the decomposition tree - pObj = Kit_GraphToAig( pMan, pFanins, pGraph ); - Kit_GraphFree( pGraph ); - return pObj; -} - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/kit/kitBdd.c b/src/aig/kit/kitBdd.c deleted file mode 100644 index 9c8d4f7a..00000000 --- a/src/aig/kit/kitBdd.c +++ /dev/null @@ -1,231 +0,0 @@ -/**CFile**************************************************************** - - FileName [kitBdd.c] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [Computation kit.] - - Synopsis [Procedures involving BDDs.] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - Dec 6, 2006.] - - Revision [$Id: kitBdd.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "kit.h" -#include "extra.h" - -//////////////////////////////////////////////////////////////////////// -/// DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - - Synopsis [Derives the BDD for the given SOP.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -DdNode * Kit_SopToBdd( DdManager * dd, Kit_Sop_t * cSop, int nVars ) -{ - DdNode * bSum, * bCube, * bTemp, * bVar; - unsigned uCube; - int Value, i, v; - assert( nVars < 16 ); - // start the cover - bSum = Cudd_ReadLogicZero(dd); Cudd_Ref( bSum ); - // check the logic function of the node - Kit_SopForEachCube( cSop, uCube, i ) - { - bCube = Cudd_ReadOne(dd); Cudd_Ref( bCube ); - for ( v = 0; v < nVars; v++ ) - { - Value = ((uCube >> 2*v) & 3); - if ( Value == 1 ) - bVar = Cudd_Not( Cudd_bddIthVar( dd, v ) ); - else if ( Value == 2 ) - bVar = Cudd_bddIthVar( dd, v ); - else - continue; - bCube = Cudd_bddAnd( dd, bTemp = bCube, bVar ); Cudd_Ref( bCube ); - Cudd_RecursiveDeref( dd, bTemp ); - } - bSum = Cudd_bddOr( dd, bTemp = bSum, bCube ); - Cudd_Ref( bSum ); - Cudd_RecursiveDeref( dd, bTemp ); - Cudd_RecursiveDeref( dd, bCube ); - } - // complement the result if necessary - Cudd_Deref( bSum ); - return bSum; -} - -/**Function************************************************************* - - Synopsis [Converts graph to BDD.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -DdNode * Kit_GraphToBdd( DdManager * dd, Kit_Graph_t * pGraph ) -{ - DdNode * bFunc, * bFunc0, * bFunc1; - Kit_Node_t * pNode; - int i; - - // sanity checks - assert( Kit_GraphLeaveNum(pGraph) >= 0 ); - assert( Kit_GraphLeaveNum(pGraph) <= pGraph->nSize ); - - // check for constant function - if ( Kit_GraphIsConst(pGraph) ) - return Cudd_NotCond( b1, Kit_GraphIsComplement(pGraph) ); - // check for a literal - if ( Kit_GraphIsVar(pGraph) ) - return Cudd_NotCond( Cudd_bddIthVar(dd, Kit_GraphVarInt(pGraph)), Kit_GraphIsComplement(pGraph) ); - - // assign the elementary variables - Kit_GraphForEachLeaf( pGraph, pNode, i ) - pNode->pFunc = Cudd_bddIthVar( dd, i ); - - // compute the function for each internal node - Kit_GraphForEachNode( pGraph, pNode, i ) - { - bFunc0 = Cudd_NotCond( Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl ); - bFunc1 = Cudd_NotCond( Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl ); - pNode->pFunc = Cudd_bddAnd( dd, bFunc0, bFunc1 ); Cudd_Ref( pNode->pFunc ); - } - - // deref the intermediate results - bFunc = pNode->pFunc; Cudd_Ref( bFunc ); - Kit_GraphForEachNode( pGraph, pNode, i ) - Cudd_RecursiveDeref( dd, pNode->pFunc ); - Cudd_Deref( bFunc ); - - // complement the result if necessary - return Cudd_NotCond( bFunc, Kit_GraphIsComplement(pGraph) ); -} - -/**Function************************************************************* - - Synopsis [] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -DdNode * Kit_TruthToBdd_rec( DdManager * dd, unsigned * pTruth, int iBit, int nVars, int nVarsTotal, int fMSBonTop ) -{ - DdNode * bF0, * bF1, * bF; - int Var; - if ( nVars <= 5 ) - { - unsigned uTruth, uMask; - uMask = ((~(unsigned)0) >> (32 - (1<<nVars))); - uTruth = (pTruth[iBit>>5] >> (iBit&31)) & uMask; - if ( uTruth == 0 ) - return b0; - if ( uTruth == uMask ) - return b1; - } - // find the variable to use - Var = fMSBonTop? nVarsTotal-nVars : nVars-1; - // other special cases can be added - bF0 = Kit_TruthToBdd_rec( dd, pTruth, iBit, nVars-1, nVarsTotal, fMSBonTop ); Cudd_Ref( bF0 ); - bF1 = Kit_TruthToBdd_rec( dd, pTruth, iBit+(1<<(nVars-1)), nVars-1, nVarsTotal, fMSBonTop ); Cudd_Ref( bF1 ); - bF = Cudd_bddIte( dd, dd->vars[Var], bF1, bF0 ); Cudd_Ref( bF ); - Cudd_RecursiveDeref( dd, bF0 ); - Cudd_RecursiveDeref( dd, bF1 ); - Cudd_Deref( bF ); - return bF; -} - -/**Function************************************************************* - - Synopsis [Compute BDD corresponding to the truth table.] - - Description [If truth table has N vars, the BDD depends on N topmost - variables of the BDD manager. The most significant variable of the table - is encoded by the topmost variable of the manager. BDD construction is - efficient in this case because BDD is constructed one node at a time, - by simply adding BDD nodes on top of existent BDD nodes.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -DdNode * Kit_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars, int fMSBonTop ) -{ - return Kit_TruthToBdd_rec( dd, pTruth, 0, nVars, nVars, fMSBonTop ); -} - -/**Function************************************************************* - - Synopsis [Verifies that the factoring is correct.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_SopFactorVerify( Vec_Int_t * vCover, Kit_Graph_t * pFForm, int nVars ) -{ - static DdManager * dd = NULL; - Kit_Sop_t Sop, * cSop = &Sop; - DdNode * bFunc1, * bFunc2; - Vec_Int_t * vMemory; - int RetValue; - // get the manager - if ( dd == NULL ) - dd = Cudd_Init( 16, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); - // derive SOP - vMemory = Vec_IntAlloc( Vec_IntSize(vCover) ); - Kit_SopCreate( cSop, vCover, nVars, vMemory ); - // get the functions - bFunc1 = Kit_SopToBdd( dd, cSop, nVars ); Cudd_Ref( bFunc1 ); - bFunc2 = Kit_GraphToBdd( dd, pFForm ); Cudd_Ref( bFunc2 ); -//Extra_bddPrint( dd, bFunc1 ); printf("\n"); -//Extra_bddPrint( dd, bFunc2 ); printf("\n"); - RetValue = (bFunc1 == bFunc2); - if ( bFunc1 != bFunc2 ) - { - int s; - Extra_bddPrint( dd, bFunc1 ); printf("\n"); - Extra_bddPrint( dd, bFunc2 ); printf("\n"); - s = 0; - } - Cudd_RecursiveDeref( dd, bFunc1 ); - Cudd_RecursiveDeref( dd, bFunc2 ); - Vec_IntFree( vMemory ); - return RetValue; -} - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/kit/kitCloud.c b/src/aig/kit/kitCloud.c deleted file mode 100644 index 7b160fea..00000000 --- a/src/aig/kit/kitCloud.c +++ /dev/null @@ -1,368 +0,0 @@ -/**CFile**************************************************************** - - FileName [kitCloud.c] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [Computation kit.] - - Synopsis [Procedures using BDD package CLOUD.] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - Dec 6, 2006.] - - Revision [$Id: kitCloud.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "kit.h" - -//////////////////////////////////////////////////////////////////////// -/// DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -// internal representation of the function to be decomposed -typedef struct Kit_Mux_t_ Kit_Mux_t; -struct Kit_Mux_t_ -{ - unsigned v : 5; // variable - unsigned t : 12; // then edge - unsigned e : 12; // else edge - unsigned c : 1; // complemented attr of else edge - unsigned i : 1; // complemented attr of top node -}; - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - - Synopsis [Derive BDD from the truth table for 5 variable functions.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -CloudNode * Kit_TruthToCloud5_rec( CloudManager * dd, unsigned uTruth, int nVars, int nVarsAll ) -{ - static unsigned uVars[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; - CloudNode * pCof0, * pCof1; - unsigned uCof0, uCof1; - assert( nVars <= 5 ); - if ( uTruth == 0 ) - return dd->zero; - if ( uTruth == ~0 ) - return dd->one; - if ( nVars == 1 ) - { - if ( uTruth == uVars[0] ) - return dd->vars[nVarsAll-1]; - if ( uTruth == ~uVars[0] ) - return Cloud_Not(dd->vars[nVarsAll-1]); - assert( 0 ); - } -// Count++; - assert( nVars > 1 ); - uCof0 = uTruth & ~uVars[nVars-1]; - uCof1 = uTruth & uVars[nVars-1]; - uCof0 |= uCof0 << (1<<(nVars-1)); - uCof1 |= uCof1 >> (1<<(nVars-1)); - if ( uCof0 == uCof1 ) - return Kit_TruthToCloud5_rec( dd, uCof0, nVars - 1, nVarsAll ); - if ( uCof0 == ~uCof1 ) - { - pCof0 = Kit_TruthToCloud5_rec( dd, uCof0, nVars - 1, nVarsAll ); - pCof1 = Cloud_Not( pCof0 ); - } - else - { - pCof0 = Kit_TruthToCloud5_rec( dd, uCof0, nVars - 1, nVarsAll ); - pCof1 = Kit_TruthToCloud5_rec( dd, uCof1, nVars - 1, nVarsAll ); - } - return Cloud_MakeNode( dd, nVarsAll - nVars, pCof1, pCof0 ); -} - -/**Function******************************************************************** - - Synopsis [Compute BDD for the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -CloudNode * Kit_TruthToCloud_rec( CloudManager * dd, unsigned * pTruth, int nVars, int nVarsAll ) -{ - CloudNode * pCof0, * pCof1; - unsigned * pTruth0, * pTruth1; - if ( nVars <= 5 ) - return Kit_TruthToCloud5_rec( dd, pTruth[0], nVars, nVarsAll ); - if ( Kit_TruthIsConst0(pTruth, nVars) ) - return dd->zero; - if ( Kit_TruthIsConst1(pTruth, nVars) ) - return dd->one; -// Count++; - pTruth0 = pTruth; - pTruth1 = pTruth + Kit_TruthWordNum(nVars-1); - if ( Kit_TruthIsEqual( pTruth0, pTruth1, nVars - 1 ) ) - return Kit_TruthToCloud_rec( dd, pTruth0, nVars - 1, nVarsAll ); - if ( Kit_TruthIsOpposite( pTruth0, pTruth1, nVars - 1 ) ) - { - pCof0 = Kit_TruthToCloud_rec( dd, pTruth0, nVars - 1, nVarsAll ); - pCof1 = Cloud_Not( pCof0 ); - } - else - { - pCof0 = Kit_TruthToCloud_rec( dd, pTruth0, nVars - 1, nVarsAll ); - pCof1 = Kit_TruthToCloud_rec( dd, pTruth1, nVars - 1, nVarsAll ); - } - return Cloud_MakeNode( dd, nVarsAll - nVars, pCof1, pCof0 ); -} - -/**Function******************************************************************** - - Synopsis [Compute BDD for the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -CloudNode * Kit_TruthToCloud( CloudManager * dd, unsigned * pTruth, int nVars ) -{ - CloudNode * pRes; - pRes = Kit_TruthToCloud_rec( dd, pTruth, nVars, nVars ); -// printf( "%d/%d ", Count, Cloud_DagSize(dd, pRes) ); - return pRes; -} - -/**Function******************************************************************** - - Synopsis [Transforms the array of BDDs into the integer array.] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -int Kit_CreateCloud( CloudManager * dd, CloudNode * pFunc, Vec_Int_t * vNodes ) -{ - Kit_Mux_t Mux; - int nNodes, i; - // collect BDD nodes - nNodes = Cloud_DagCollect( dd, pFunc ); - if ( nNodes >= (1<<12) ) // because in Kit_Mux_t edge is 12 bit - return 0; - assert( nNodes == Cloud_DagSize( dd, pFunc ) ); - assert( nNodes < dd->nNodesLimit ); - Vec_IntClear( vNodes ); - Vec_IntPush( vNodes, 0 ); // const1 node - dd->ppNodes[0]->s = 0; - for ( i = 1; i < nNodes; i++ ) - { - dd->ppNodes[i]->s = i; - Mux.v = dd->ppNodes[i]->v; - Mux.t = dd->ppNodes[i]->t->s; - Mux.e = Cloud_Regular(dd->ppNodes[i]->e)->s; - Mux.c = Cloud_IsComplement(dd->ppNodes[i]->e); - Mux.i = (i == nNodes - 1)? Cloud_IsComplement(pFunc) : 0; - // put the MUX into the array - Vec_IntPush( vNodes, *((int *)&Mux) ); - } - assert( Vec_IntSize(vNodes) == nNodes ); - // reset signatures - for ( i = 0; i < nNodes; i++ ) - dd->ppNodes[i]->s = dd->nSignCur; - return 1; -} - -/**Function******************************************************************** - - Synopsis [Transforms the array of BDDs into the integer array.] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -int Kit_CreateCloudFromTruth( CloudManager * dd, unsigned * pTruth, int nVars, Vec_Int_t * vNodes ) -{ - CloudNode * pFunc; - Cloud_Restart( dd ); - pFunc = Kit_TruthToCloud( dd, pTruth, nVars ); - Vec_IntClear( vNodes ); - return Kit_CreateCloud( dd, pFunc, vNodes ); -} - -/**Function************************************************************* - - Synopsis [Computes composition of truth tables.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned * Kit_CloudToTruth( Vec_Int_t * vNodes, int nVars, Vec_Ptr_t * vStore, int fInv ) -{ - unsigned * pThis, * pFan0, * pFan1; - Kit_Mux_t Mux; - int i, Entry; - assert( Vec_IntSize(vNodes) <= Vec_PtrSize(vStore) ); - pThis = Vec_PtrEntry( vStore, 0 ); - Kit_TruthFill( pThis, nVars ); - Vec_IntForEachEntryStart( vNodes, Entry, i, 1 ) - { - Mux = *((Kit_Mux_t *)&Entry); - assert( (int)Mux.e < i && (int)Mux.t < i && (int)Mux.v < nVars ); - pFan0 = Vec_PtrEntry( vStore, Mux.e ); - pFan1 = Vec_PtrEntry( vStore, Mux.t ); - pThis = Vec_PtrEntry( vStore, i ); - Kit_TruthMuxVarPhase( pThis, pFan0, pFan1, nVars, fInv? Mux.v : nVars-1-Mux.v, Mux.c ); - } - // complement the result - if ( Mux.i ) - Kit_TruthNot( pThis, pThis, nVars ); - return pThis; -} - -/**Function************************************************************* - - Synopsis [Computes composition of truth tables.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned * Kit_TruthCompose( CloudManager * dd, unsigned * pTruth, int nVars, - unsigned ** pInputs, int nVarsAll, Vec_Ptr_t * vStore, Vec_Int_t * vNodes ) -{ - CloudNode * pFunc; - unsigned * pThis, * pFan0, * pFan1; - Kit_Mux_t Mux; - int i, Entry, RetValue; - // derive BDD from truth table - Cloud_Restart( dd ); - pFunc = Kit_TruthToCloud( dd, pTruth, nVars ); - // convert it into nodes - RetValue = Kit_CreateCloud( dd, pFunc, vNodes ); - if ( RetValue == 0 ) - printf( "Kit_TruthCompose(): Internal failure!!!\n" ); - // verify the result -// pFan0 = Kit_CloudToTruth( vNodes, nVars, vStore, 0 ); -// if ( !Kit_TruthIsEqual( pTruth, pFan0, nVars ) ) -// printf( "Failed!\n" ); - // compute truth table from the BDD - assert( Vec_IntSize(vNodes) <= Vec_PtrSize(vStore) ); - pThis = Vec_PtrEntry( vStore, 0 ); - Kit_TruthFill( pThis, nVarsAll ); - Vec_IntForEachEntryStart( vNodes, Entry, i, 1 ) - { - Mux = *((Kit_Mux_t *)&Entry); - pFan0 = Vec_PtrEntry( vStore, Mux.e ); - pFan1 = Vec_PtrEntry( vStore, Mux.t ); - pThis = Vec_PtrEntry( vStore, i ); - Kit_TruthMuxPhase( pThis, pFan0, pFan1, pInputs[nVars-1-Mux.v], nVarsAll, Mux.c ); - } - // complement the result - if ( Mux.i ) - Kit_TruthNot( pThis, pThis, nVarsAll ); - return pThis; -} - -/**Function******************************************************************** - - Synopsis [Compute BDD for the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -******************************************************************************/ -void Kit_TruthCofSupports( Vec_Int_t * vBddDir, Vec_Int_t * vBddInv, int nVars, Vec_Int_t * vMemory, unsigned * puSupps ) -{ - Kit_Mux_t Mux; - unsigned * puSuppAll, * pThis, * pFan0, * pFan1; - int i, v, Var, Entry, nSupps; - nSupps = 2 * nVars; - - // extend storage - if ( Vec_IntSize( vMemory ) < nSupps * Vec_IntSize(vBddDir) ) - Vec_IntGrow( vMemory, nSupps * Vec_IntSize(vBddDir) ); - puSuppAll = Vec_IntArray( vMemory ); - // clear storage for the const node - memset( puSuppAll, 0, sizeof(unsigned) * nSupps ); - // compute supports from nodes - Vec_IntForEachEntryStart( vBddDir, Entry, i, 1 ) - { - Mux = *((Kit_Mux_t *)&Entry); - Var = nVars - 1 - Mux.v; - pFan0 = puSuppAll + nSupps * Mux.e; - pFan1 = puSuppAll + nSupps * Mux.t; - pThis = puSuppAll + nSupps * i; - for ( v = 0; v < nSupps; v++ ) - pThis[v] = pFan0[v] | pFan1[v] | (1<<Var); - assert( pFan0[2*Var + 0] == pFan0[2*Var + 1] ); - assert( pFan1[2*Var + 0] == pFan1[2*Var + 1] ); - pThis[2*Var + 0] = pFan0[2*Var + 0];// | pFan0[2*Var + 1]; - pThis[2*Var + 1] = pFan1[2*Var + 0];// | pFan1[2*Var + 1]; - } - // copy the result - memcpy( puSupps, pThis, sizeof(unsigned) * nSupps ); - // compute the inverse - - // extend storage - if ( Vec_IntSize( vMemory ) < nSupps * Vec_IntSize(vBddInv) ) - Vec_IntGrow( vMemory, nSupps * Vec_IntSize(vBddInv) ); - puSuppAll = Vec_IntArray( vMemory ); - // clear storage for the const node - memset( puSuppAll, 0, sizeof(unsigned) * nSupps ); - // compute supports from nodes - Vec_IntForEachEntryStart( vBddInv, Entry, i, 1 ) - { - Mux = *((Kit_Mux_t *)&Entry); -// Var = nVars - 1 - Mux.v; - Var = Mux.v; - pFan0 = puSuppAll + nSupps * Mux.e; - pFan1 = puSuppAll + nSupps * Mux.t; - pThis = puSuppAll + nSupps * i; - for ( v = 0; v < nSupps; v++ ) - pThis[v] = pFan0[v] | pFan1[v] | (1<<Var); - assert( pFan0[2*Var + 0] == pFan0[2*Var + 1] ); - assert( pFan1[2*Var + 0] == pFan1[2*Var + 1] ); - pThis[2*Var + 0] = pFan0[2*Var + 0];// | pFan0[2*Var + 1]; - pThis[2*Var + 1] = pFan1[2*Var + 0];// | pFan1[2*Var + 1]; - } - - // merge supports - for ( Var = 0; Var < nSupps; Var++ ) - puSupps[Var] = (puSupps[Var] & Kit_BitMask(Var/2)) | (pThis[Var] & ~Kit_BitMask(Var/2)); -} - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/kit/kitDsd.c b/src/aig/kit/kitDsd.c deleted file mode 100644 index e24a9964..00000000 --- a/src/aig/kit/kitDsd.c +++ /dev/null @@ -1,2621 +0,0 @@ -/**CFile**************************************************************** - - FileName [kitDsd.c] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [Computation kit.] - - Synopsis [Performs disjoint-support decomposition based on truth tables.] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - Dec 6, 2006.] - - Revision [$Id: kitDsd.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "kit.h" - -//////////////////////////////////////////////////////////////////////// -/// DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - - Synopsis [Allocates the DSD manager.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_DsdMan_t * Kit_DsdManAlloc( int nVars, int nNodes ) -{ - Kit_DsdMan_t * p; - p = ALLOC( Kit_DsdMan_t, 1 ); - memset( p, 0, sizeof(Kit_DsdMan_t) ); - p->nVars = nVars; - p->nWords = Kit_TruthWordNum( p->nVars ); - p->vTtElems = Vec_PtrAllocTruthTables( p->nVars ); - p->vTtNodes = Vec_PtrAllocSimInfo( nNodes, p->nWords ); - p->dd = Cloud_Init( 16, 14 ); - p->vTtBdds = Vec_PtrAllocSimInfo( (1<<12), p->nWords ); - p->vNodes = Vec_IntAlloc( 512 ); - return p; -} - -/**Function************************************************************* - - Synopsis [Deallocates the DSD manager.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdManFree( Kit_DsdMan_t * p ) -{ - Cloud_Quit( p->dd ); - Vec_IntFree( p->vNodes ); - Vec_PtrFree( p->vTtBdds ); - Vec_PtrFree( p->vTtElems ); - Vec_PtrFree( p->vTtNodes ); - free( p ); -} - -/**Function************************************************************* - - Synopsis [Allocates the DSD node.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_DsdObj_t * Kit_DsdObjAlloc( Kit_DsdNtk_t * pNtk, Kit_Dsd_t Type, int nFans ) -{ - Kit_DsdObj_t * pObj; - int nSize = sizeof(Kit_DsdObj_t) + sizeof(unsigned) * (Kit_DsdObjOffset(nFans) + (Type == KIT_DSD_PRIME) * Kit_TruthWordNum(nFans)); - pObj = (Kit_DsdObj_t *)ALLOC( char, nSize ); - memset( pObj, 0, nSize ); - pObj->Id = pNtk->nVars + pNtk->nNodes; - pObj->Type = Type; - pObj->nFans = nFans; - pObj->Offset = Kit_DsdObjOffset( nFans ); - // add the object - if ( pNtk->nNodes == pNtk->nNodesAlloc ) - { - pNtk->nNodesAlloc *= 2; - pNtk->pNodes = REALLOC( Kit_DsdObj_t *, pNtk->pNodes, pNtk->nNodesAlloc ); - } - assert( pNtk->nNodes < pNtk->nNodesAlloc ); - pNtk->pNodes[pNtk->nNodes++] = pObj; - return pObj; -} - -/**Function************************************************************* - - Synopsis [Deallocates the DSD node.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdObjFree( Kit_DsdNtk_t * p, Kit_DsdObj_t * pObj ) -{ - free( pObj ); -} - -/**Function************************************************************* - - Synopsis [Allocates the DSD network.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_DsdNtk_t * Kit_DsdNtkAlloc( int nVars ) -{ - Kit_DsdNtk_t * pNtk; - pNtk = ALLOC( Kit_DsdNtk_t, 1 ); - memset( pNtk, 0, sizeof(Kit_DsdNtk_t) ); - pNtk->pNodes = ALLOC( Kit_DsdObj_t *, nVars ); - pNtk->nVars = nVars; - pNtk->nNodesAlloc = nVars; - pNtk->pMem = ALLOC( unsigned, 6 * Kit_TruthWordNum(nVars) ); - return pNtk; -} - -/**Function************************************************************* - - Synopsis [Deallocate the DSD network.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdNtkFree( Kit_DsdNtk_t * pNtk ) -{ - Kit_DsdObj_t * pObj; - unsigned i; - Kit_DsdNtkForEachObj( pNtk, pObj, i ) - free( pObj ); - FREE( pNtk->pSupps ); - free( pNtk->pNodes ); - free( pNtk->pMem ); - free( pNtk ); -} - -/**Function************************************************************* - - Synopsis [Prints the hex unsigned into a file.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdPrintHex( FILE * pFile, unsigned * pTruth, int nFans ) -{ - int nDigits, Digit, k; - nDigits = (1 << nFans) / 4; - for ( k = nDigits - 1; k >= 0; k-- ) - { - Digit = ((pTruth[k/8] >> ((k%8) * 4)) & 15); - if ( Digit < 10 ) - fprintf( pFile, "%d", Digit ); - else - fprintf( pFile, "%c", 'A' + Digit-10 ); - } -} - -/**Function************************************************************* - - Synopsis [Recursively print the DSD formula.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdPrint_rec( FILE * pFile, Kit_DsdNtk_t * pNtk, int Id ) -{ - Kit_DsdObj_t * pObj; - unsigned iLit, i; - char Symbol; - - pObj = Kit_DsdNtkObj( pNtk, Id ); - if ( pObj == NULL ) - { - assert( Id < pNtk->nVars ); - fprintf( pFile, "%c", 'a' + Id ); - return; - } - - if ( pObj->Type == KIT_DSD_CONST1 ) - { - assert( pObj->nFans == 0 ); - fprintf( pFile, "Const1" ); - return; - } - - if ( pObj->Type == KIT_DSD_VAR ) - assert( pObj->nFans == 1 ); - - if ( pObj->Type == KIT_DSD_AND ) - Symbol = '*'; - else if ( pObj->Type == KIT_DSD_XOR ) - Symbol = '+'; - else - Symbol = ','; - - if ( pObj->Type == KIT_DSD_PRIME ) - Kit_DsdPrintHex( stdout, Kit_DsdObjTruth(pObj), pObj->nFans ); - - fprintf( pFile, "(" ); - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - { - if ( Kit_DsdLitIsCompl(iLit) ) - fprintf( pFile, "!" ); - Kit_DsdPrint_rec( pFile, pNtk, Kit_DsdLit2Var(iLit) ); - if ( i < pObj->nFans - 1 ) - fprintf( pFile, "%c", Symbol ); - } - fprintf( pFile, ")" ); -} - -/**Function************************************************************* - - Synopsis [Print the DSD formula.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdPrint( FILE * pFile, Kit_DsdNtk_t * pNtk ) -{ - fprintf( pFile, "F = " ); - if ( Kit_DsdLitIsCompl(pNtk->Root) ) - fprintf( pFile, "!" ); - Kit_DsdPrint_rec( pFile, pNtk, Kit_DsdLit2Var(pNtk->Root) ); - fprintf( pFile, "\n" ); -} - -/**Function************************************************************* - - Synopsis [Print the DSD formula.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdPrintExpanded( Kit_DsdNtk_t * pNtk ) -{ - Kit_DsdNtk_t * pTemp; - pTemp = Kit_DsdExpand( pNtk ); - Kit_DsdPrint( stdout, pTemp ); - Kit_DsdNtkFree( pTemp ); -} - -/**Function************************************************************* - - Synopsis [Print the DSD formula.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars ) -{ - Kit_DsdNtk_t * pTemp; - pTemp = Kit_DsdDecomposeMux( pTruth, nVars, 5 ); - Kit_DsdVerify( pTemp, pTruth, nVars ); - Kit_DsdPrintExpanded( pTemp ); - Kit_DsdNtkFree( pTemp ); -} - -/**Function************************************************************* - - Synopsis [Derives the truth table of the DSD node.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned * Kit_DsdTruthComputeNode_rec( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, int Id ) -{ - Kit_DsdObj_t * pObj; - unsigned * pTruthRes, * pTruthFans[16], * pTruthTemp; - unsigned i, iLit, fCompl; -// unsigned m, nMints, * pTruthPrime, * pTruthMint; - - // get the node with this ID - pObj = Kit_DsdNtkObj( pNtk, Id ); - pTruthRes = Vec_PtrEntry( p->vTtNodes, Id ); - - // special case: literal of an internal node - if ( pObj == NULL ) - { - assert( Id < pNtk->nVars ); - return pTruthRes; - } - - // constant node - if ( pObj->Type == KIT_DSD_CONST1 ) - { - assert( pObj->nFans == 0 ); - Kit_TruthFill( pTruthRes, pNtk->nVars ); - return pTruthRes; - } - - // elementary variable node - if ( pObj->Type == KIT_DSD_VAR ) - { - assert( pObj->nFans == 1 ); - iLit = pObj->pFans[0]; - pTruthFans[0] = Kit_DsdTruthComputeNode_rec( p, pNtk, Kit_DsdLit2Var(iLit) ); - if ( Kit_DsdLitIsCompl(iLit) ) - Kit_TruthNot( pTruthRes, pTruthFans[0], pNtk->nVars ); - else - Kit_TruthCopy( pTruthRes, pTruthFans[0], pNtk->nVars ); - return pTruthRes; - } - - // collect the truth tables of the fanins - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - pTruthFans[i] = Kit_DsdTruthComputeNode_rec( p, pNtk, Kit_DsdLit2Var(iLit) ); - // create the truth table - - // simple gates - if ( pObj->Type == KIT_DSD_AND ) - { - Kit_TruthFill( pTruthRes, pNtk->nVars ); - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Kit_DsdLitIsCompl(iLit) ); - return pTruthRes; - } - if ( pObj->Type == KIT_DSD_XOR ) - { - Kit_TruthClear( pTruthRes, pNtk->nVars ); - fCompl = 0; - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - { - Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars ); - fCompl ^= Kit_DsdLitIsCompl(iLit); - } - if ( fCompl ) - Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); - return pTruthRes; - } - assert( pObj->Type == KIT_DSD_PRIME ); -/* - // get the truth table of the prime node - pTruthPrime = Kit_DsdObjTruth( pObj ); - // get storage for the temporary minterm - pTruthMint = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes); - - // go through the minterms - nMints = (1 << pObj->nFans); - Kit_TruthClear( pTruthRes, pNtk->nVars ); - for ( m = 0; m < nMints; m++ ) - { - if ( !Kit_TruthHasBit(pTruthPrime, m) ) - continue; - Kit_TruthFill( pTruthMint, pNtk->nVars ); - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - Kit_TruthAndPhase( pTruthMint, pTruthMint, pTruthFans[i], pNtk->nVars, 0, ((m & (1<<i)) == 0) ^ Kit_DsdLitIsCompl(iLit) ); - Kit_TruthOr( pTruthRes, pTruthRes, pTruthMint, pNtk->nVars ); - } -*/ - pTruthTemp = Kit_TruthCompose( p->dd, Kit_DsdObjTruth(pObj), pObj->nFans, pTruthFans, pNtk->nVars, p->vTtBdds, p->vNodes ); - Kit_TruthCopy( pTruthRes, pTruthTemp, pNtk->nVars ); - return pTruthRes; -} - -/**Function************************************************************* - - Synopsis [Derives the truth table of the DSD network.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned * Kit_DsdTruthCompute( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk ) -{ - unsigned * pTruthRes; - int i; - // assign elementary truth ables - assert( pNtk->nVars <= p->nVars ); - for ( i = 0; i < (int)pNtk->nVars; i++ ) - Kit_TruthCopy( Vec_PtrEntry(p->vTtNodes, i), Vec_PtrEntry(p->vTtElems, i), p->nVars ); - // compute truth table for each node - pTruthRes = Kit_DsdTruthComputeNode_rec( p, pNtk, Kit_DsdLit2Var(pNtk->Root) ); - // complement the truth table if needed - if ( Kit_DsdLitIsCompl(pNtk->Root) ) - Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); - return pTruthRes; -} - -/**Function************************************************************* - - Synopsis [Derives the truth table of the DSD node.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned * Kit_DsdTruthComputeNodeOne_rec( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, int Id, unsigned uSupp ) -{ - Kit_DsdObj_t * pObj; - unsigned * pTruthRes, * pTruthFans[16], * pTruthTemp; - unsigned i, iLit, fCompl, nPartial = 0; -// unsigned m, nMints, * pTruthPrime, * pTruthMint; - - // get the node with this ID - pObj = Kit_DsdNtkObj( pNtk, Id ); - pTruthRes = Vec_PtrEntry( p->vTtNodes, Id ); - - // special case: literal of an internal node - if ( pObj == NULL ) - { - assert( Id < pNtk->nVars ); - assert( !uSupp || uSupp != (uSupp & ~(1<<Id)) ); - return pTruthRes; - } - - // constant node - if ( pObj->Type == KIT_DSD_CONST1 ) - { - assert( pObj->nFans == 0 ); - Kit_TruthFill( pTruthRes, pNtk->nVars ); - return pTruthRes; - } - - // elementary variable node - if ( pObj->Type == KIT_DSD_VAR ) - { - assert( pObj->nFans == 1 ); - iLit = pObj->pFans[0]; - assert( Kit_DsdLitIsLeaf( pNtk, iLit ) ); - pTruthFans[0] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Kit_DsdLit2Var(iLit), uSupp ); - if ( Kit_DsdLitIsCompl(iLit) ) - Kit_TruthNot( pTruthRes, pTruthFans[0], pNtk->nVars ); - else - Kit_TruthCopy( pTruthRes, pTruthFans[0], pNtk->nVars ); - return pTruthRes; - } - - // collect the truth tables of the fanins - if ( uSupp ) - { - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - if ( uSupp != (uSupp & ~Kit_DsdLitSupport(pNtk, iLit)) ) - pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Kit_DsdLit2Var(iLit), uSupp ); - else - { - pTruthFans[i] = NULL; - nPartial = 1; - } - } - else - { - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Kit_DsdLit2Var(iLit), uSupp ); - } - // create the truth table - - // simple gates - if ( pObj->Type == KIT_DSD_AND ) - { - Kit_TruthFill( pTruthRes, pNtk->nVars ); - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - if ( pTruthFans[i] ) - Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Kit_DsdLitIsCompl(iLit) ); - return pTruthRes; - } - if ( pObj->Type == KIT_DSD_XOR ) - { - Kit_TruthClear( pTruthRes, pNtk->nVars ); - fCompl = 0; - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - { - if ( pTruthFans[i] ) - { - Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars ); - fCompl ^= Kit_DsdLitIsCompl(iLit); - } - } - if ( fCompl ) - Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); - return pTruthRes; - } - assert( pObj->Type == KIT_DSD_PRIME ); - - if ( uSupp && nPartial ) - { - // find the only non-empty component - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - if ( pTruthFans[i] ) - break; - assert( i < pObj->nFans ); - return pTruthFans[i]; - } -/* - // get the truth table of the prime node - pTruthPrime = Kit_DsdObjTruth( pObj ); - // get storage for the temporary minterm - pTruthMint = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes); - - // go through the minterms - nMints = (1 << pObj->nFans); - Kit_TruthClear( pTruthRes, pNtk->nVars ); - for ( m = 0; m < nMints; m++ ) - { - if ( !Kit_TruthHasBit(pTruthPrime, m) ) - continue; - Kit_TruthFill( pTruthMint, pNtk->nVars ); - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - Kit_TruthAndPhase( pTruthMint, pTruthMint, pTruthFans[i], pNtk->nVars, 0, ((m & (1<<i)) == 0) ^ Kit_DsdLitIsCompl(iLit) ); - Kit_TruthOr( pTruthRes, pTruthRes, pTruthMint, pNtk->nVars ); - } -*/ - pTruthTemp = Kit_TruthCompose( p->dd, Kit_DsdObjTruth(pObj), pObj->nFans, pTruthFans, pNtk->nVars, p->vTtBdds, p->vNodes ); - Kit_TruthCopy( pTruthRes, pTruthTemp, pNtk->nVars ); - return pTruthRes; -} - -/**Function************************************************************* - - Synopsis [Derives the truth table of the DSD network.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned * Kit_DsdTruthComputeOne( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp ) -{ - unsigned * pTruthRes; - int i; - // if support is specified, request that supports are available - if ( uSupp ) - Kit_DsdGetSupports( pNtk ); - // assign elementary truth tables - assert( pNtk->nVars <= p->nVars ); - for ( i = 0; i < (int)pNtk->nVars; i++ ) - Kit_TruthCopy( Vec_PtrEntry(p->vTtNodes, i), Vec_PtrEntry(p->vTtElems, i), p->nVars ); - // compute truth table for each node - pTruthRes = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Kit_DsdLit2Var(pNtk->Root), uSupp ); - // complement the truth table if needed - if ( Kit_DsdLitIsCompl(pNtk->Root) ) - Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); - return pTruthRes; -} - -/**Function************************************************************* - - Synopsis [Derives the truth table of the DSD node.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned * Kit_DsdTruthComputeNodeTwo_rec( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, int Id, unsigned uSupp, int iVar, unsigned * pTruthDec ) -{ - Kit_DsdObj_t * pObj; - int pfBoundSet[16]; - unsigned * pTruthRes, * pTruthFans[16], * pTruthTemp; - unsigned i, iLit, fCompl, nPartial, uSuppFan, uSuppCur; -// unsigned m, nMints, * pTruthPrime, * pTruthMint; - assert( uSupp > 0 ); - - // get the node with this ID - pObj = Kit_DsdNtkObj( pNtk, Id ); - pTruthRes = Vec_PtrEntry( p->vTtNodes, Id ); - if ( pObj == NULL ) - { - assert( Id < pNtk->nVars ); - return pTruthRes; - } - assert( pObj->Type != KIT_DSD_CONST1 ); - assert( pObj->Type != KIT_DSD_VAR ); - - // count the number of intersecting fanins - // collect the total support of the intersecting fanins - nPartial = 0; - uSuppFan = 0; - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - { - uSuppCur = Kit_DsdLitSupport(pNtk, iLit); - if ( uSupp & uSuppCur ) - { - nPartial++; - uSuppFan |= uSuppCur; - } - } - - // if there is no intersection, or full intersection, use simple procedure - if ( nPartial == 0 || nPartial == pObj->nFans ) - return Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Id, 0 ); - - // if support of the component includes some other variables - // we need to continue constructing it as usual by the two-function procedure - if ( uSuppFan != (uSuppFan & uSupp) ) - { - assert( nPartial == 1 ); -// return Kit_DsdTruthComputeNodeTwo_rec( p, pNtk, Id, uSupp, iVar, pTruthDec ); - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - { - if ( uSupp & Kit_DsdLitSupport(pNtk, iLit) ) - pTruthFans[i] = Kit_DsdTruthComputeNodeTwo_rec( p, pNtk, Kit_DsdLit2Var(iLit), uSupp, iVar, pTruthDec ); - else - pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Kit_DsdLit2Var(iLit), 0 ); - } - - // create composition/decomposition functions - if ( pObj->Type == KIT_DSD_AND ) - { - Kit_TruthFill( pTruthRes, pNtk->nVars ); - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Kit_DsdLitIsCompl(iLit) ); - return pTruthRes; - } - if ( pObj->Type == KIT_DSD_XOR ) - { - Kit_TruthClear( pTruthRes, pNtk->nVars ); - fCompl = 0; - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - { - fCompl ^= Kit_DsdLitIsCompl(iLit); - Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars ); - } - if ( fCompl ) - Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); - return pTruthRes; - } - assert( pObj->Type == KIT_DSD_PRIME ); - } - else - { - assert( uSuppFan == (uSuppFan & uSupp) ); - assert( nPartial < pObj->nFans ); - // the support of the insecting component(s) is contained in the bound-set - // and yet there are components that are not contained in the bound set - - // solve the fanins and collect info, which components belong to the bound set - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - { - pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Kit_DsdLit2Var(iLit), 0 ); - pfBoundSet[i] = (int)((uSupp & Kit_DsdLitSupport(pNtk, iLit)) > 0); - } - - // create composition/decomposition functions - if ( pObj->Type == KIT_DSD_AND ) - { - Kit_TruthIthVar( pTruthRes, pNtk->nVars, iVar ); - Kit_TruthFill( pTruthDec, pNtk->nVars ); - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - if ( pfBoundSet[i] ) - Kit_TruthAndPhase( pTruthDec, pTruthDec, pTruthFans[i], pNtk->nVars, 0, Kit_DsdLitIsCompl(iLit) ); - else - Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Kit_DsdLitIsCompl(iLit) ); - return pTruthRes; - } - if ( pObj->Type == KIT_DSD_XOR ) - { - Kit_TruthIthVar( pTruthRes, pNtk->nVars, iVar ); - Kit_TruthClear( pTruthDec, pNtk->nVars ); - fCompl = 0; - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - { - fCompl ^= Kit_DsdLitIsCompl(iLit); - if ( pfBoundSet[i] ) - Kit_TruthXor( pTruthDec, pTruthDec, pTruthFans[i], pNtk->nVars ); - else - Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars ); - } - if ( fCompl ) - Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); - return pTruthRes; - } - assert( pObj->Type == KIT_DSD_PRIME ); - assert( nPartial == 1 ); - - // find the only non-empty component - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - if ( pfBoundSet[i] ) - break; - assert( i < pObj->nFans ); - - // save this component as the decomposed function - Kit_TruthCopy( pTruthDec, pTruthFans[i], pNtk->nVars ); - // set the corresponding component to be the new variable - Kit_TruthIthVar( pTruthFans[i], pNtk->nVars, iVar ); - } -/* - // get the truth table of the prime node - pTruthPrime = Kit_DsdObjTruth( pObj ); - // get storage for the temporary minterm - pTruthMint = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes); - - // go through the minterms - nMints = (1 << pObj->nFans); - Kit_TruthClear( pTruthRes, pNtk->nVars ); - for ( m = 0; m < nMints; m++ ) - { - if ( !Kit_TruthHasBit(pTruthPrime, m) ) - continue; - Kit_TruthFill( pTruthMint, pNtk->nVars ); - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - Kit_TruthAndPhase( pTruthMint, pTruthMint, pTruthFans[i], pNtk->nVars, 0, ((m & (1<<i)) == 0) ^ Kit_DsdLitIsCompl(iLit) ); - Kit_TruthOr( pTruthRes, pTruthRes, pTruthMint, pNtk->nVars ); - } -*/ - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - assert( !Kit_DsdLitIsCompl(iLit) ); - pTruthTemp = Kit_TruthCompose( p->dd, Kit_DsdObjTruth(pObj), pObj->nFans, pTruthFans, pNtk->nVars, p->vTtBdds, p->vNodes ); - Kit_TruthCopy( pTruthRes, pTruthTemp, pNtk->nVars ); - return pTruthRes; -} - -/**Function************************************************************* - - Synopsis [Derives the truth table of the DSD network.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned * Kit_DsdTruthComputeTwo( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp, int iVar, unsigned * pTruthDec ) -{ - unsigned * pTruthRes, uSuppAll; - int i; - assert( uSupp > 0 ); - assert( pNtk->nVars <= p->nVars ); - // compute support of all nodes - uSuppAll = Kit_DsdGetSupports( pNtk ); - // consider special case - there is no overlap - if ( (uSupp & uSuppAll) == 0 ) - { - Kit_TruthClear( pTruthDec, pNtk->nVars ); - return Kit_DsdTruthCompute( p, pNtk ); - } - // consider special case - support is fully contained - if ( (uSupp & uSuppAll) == uSuppAll ) - { - pTruthRes = Kit_DsdTruthCompute( p, pNtk ); - Kit_TruthCopy( pTruthDec, pTruthRes, pNtk->nVars ); - Kit_TruthIthVar( pTruthRes, pNtk->nVars, iVar ); - return pTruthRes; - } - // assign elementary truth tables - for ( i = 0; i < (int)pNtk->nVars; i++ ) - Kit_TruthCopy( Vec_PtrEntry(p->vTtNodes, i), Vec_PtrEntry(p->vTtElems, i), p->nVars ); - // compute truth table for each node - pTruthRes = Kit_DsdTruthComputeNodeTwo_rec( p, pNtk, Kit_DsdLit2Var(pNtk->Root), uSupp, iVar, pTruthDec ); - // complement the truth table if needed - if ( Kit_DsdLitIsCompl(pNtk->Root) ) - Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); - return pTruthRes; -} - -/**Function************************************************************* - - Synopsis [Derives the truth table of the DSD network.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdTruth( Kit_DsdNtk_t * pNtk, unsigned * pTruthRes ) -{ - Kit_DsdMan_t * p; - unsigned * pTruth; - p = Kit_DsdManAlloc( pNtk->nVars, Kit_DsdNtkObjNum(pNtk) ); - pTruth = Kit_DsdTruthCompute( p, pNtk ); - Kit_TruthCopy( pTruthRes, pTruth, pNtk->nVars ); - Kit_DsdManFree( p ); -} - -/**Function************************************************************* - - Synopsis [Derives the truth table of the DSD network.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdTruthPartialTwo( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp, int iVar, unsigned * pTruthCo, unsigned * pTruthDec ) -{ - unsigned * pTruth = Kit_DsdTruthComputeTwo( p, pNtk, uSupp, iVar, pTruthDec ); - if ( pTruthCo ) - Kit_TruthCopy( pTruthCo, pTruth, pNtk->nVars ); -} - -/**Function************************************************************* - - Synopsis [Derives the truth table of the DSD network.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdTruthPartial( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned * pTruthRes, unsigned uSupp ) -{ - unsigned * pTruth = Kit_DsdTruthComputeOne( p, pNtk, uSupp ); - Kit_TruthCopy( pTruthRes, pTruth, pNtk->nVars ); -/* - // verification - { - // compute the same function using different procedure - unsigned * pTruthTemp = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes + 1); - pNtk->pSupps = NULL; - Kit_DsdTruthComputeTwo( p, pNtk, uSupp, -1, pTruthTemp ); -// if ( !Kit_TruthIsEqual( pTruthTemp, pTruthRes, pNtk->nVars ) ) - if ( !Kit_TruthIsEqualWithPhase( pTruthTemp, pTruthRes, pNtk->nVars ) ) - { - printf( "Verification FAILED!\n" ); - Kit_DsdPrint( stdout, pNtk ); - Kit_DsdPrintFromTruth( pTruthRes, pNtk->nVars ); - Kit_DsdPrintFromTruth( pTruthTemp, pNtk->nVars ); - } -// else -// printf( "Verification successful.\n" ); - } -*/ -} - -/**Function************************************************************* - - Synopsis [Counts the number of blocks of the given number of inputs.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_DsdCountLuts_rec( Kit_DsdNtk_t * pNtk, int nLutSize, int Id, int * pCounter ) -{ - Kit_DsdObj_t * pObj; - unsigned iLit, i, Res0, Res1; - pObj = Kit_DsdNtkObj( pNtk, Id ); - if ( pObj == NULL ) - return 0; - if ( pObj->Type == KIT_DSD_AND || pObj->Type == KIT_DSD_XOR ) - { - assert( pObj->nFans == 2 ); - Res0 = Kit_DsdCountLuts_rec( pNtk, nLutSize, Kit_DsdLit2Var(pObj->pFans[0]), pCounter ); - Res1 = Kit_DsdCountLuts_rec( pNtk, nLutSize, Kit_DsdLit2Var(pObj->pFans[1]), pCounter ); - if ( Res0 == 0 && Res1 > 0 ) - return Res1 - 1; - if ( Res0 > 0 && Res1 == 0 ) - return Res0 - 1; - (*pCounter)++; - return nLutSize - 2; - } - assert( pObj->Type == KIT_DSD_PRIME ); - if ( (int)pObj->nFans > nLutSize ) //+ 1 ) - { - *pCounter = 1000; - return 0; - } - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - Kit_DsdCountLuts_rec( pNtk, nLutSize, Kit_DsdLit2Var(iLit), pCounter ); - (*pCounter)++; -// if ( (int)pObj->nFans == nLutSize + 1 ) -// (*pCounter)++; - return nLutSize - pObj->nFans; -} - -/**Function************************************************************* - - Synopsis [Counts the number of blocks of the given number of inputs.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_DsdCountLuts( Kit_DsdNtk_t * pNtk, int nLutSize ) -{ - int Counter = 0; - if ( Kit_DsdNtkRoot(pNtk)->Type == KIT_DSD_CONST1 ) - return 0; - if ( Kit_DsdNtkRoot(pNtk)->Type == KIT_DSD_VAR ) - return 0; - Kit_DsdCountLuts_rec( pNtk, nLutSize, Kit_DsdLit2Var(pNtk->Root), &Counter ); - if ( Counter >= 1000 ) - return -1; - return Counter; -} - -/**Function************************************************************* - - Synopsis [Counts the number of blocks of the given number of inputs.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_DsdNonDsdSizeMax( Kit_DsdNtk_t * pNtk ) -{ - Kit_DsdObj_t * pObj; - unsigned i, nSizeMax = 0; - Kit_DsdNtkForEachObj( pNtk, pObj, i ) - { - if ( pObj->Type != KIT_DSD_PRIME ) - continue; - if ( nSizeMax < pObj->nFans ) - nSizeMax = pObj->nFans; - } - return nSizeMax; -} - -/**Function************************************************************* - - Synopsis [Finds the union of supports of the non-DSD blocks.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned Kit_DsdNonDsdSupports( Kit_DsdNtk_t * pNtk ) -{ - Kit_DsdObj_t * pObj; - unsigned i, uSupport = 0; -// FREE( pNtk->pSupps ); - Kit_DsdGetSupports( pNtk ); - Kit_DsdNtkForEachObj( pNtk, pObj, i ) - { - if ( pObj->Type != KIT_DSD_PRIME ) - continue; - uSupport |= Kit_DsdLitSupport( pNtk, Kit_DsdVar2Lit(pObj->Id,0) ); - } - return uSupport; -} - - -/**Function************************************************************* - - Synopsis [Expands the node.] - - Description [Returns the new literal.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdExpandCollectAnd_rec( Kit_DsdNtk_t * p, int iLit, int * piLitsNew, int * nLitsNew ) -{ - Kit_DsdObj_t * pObj; - unsigned i, iLitFanin; - // check the end of the supergate - pObj = Kit_DsdNtkObj( p, Kit_DsdLit2Var(iLit) ); - if ( Kit_DsdLitIsCompl(iLit) || Kit_DsdLit2Var(iLit) < p->nVars || pObj->Type != KIT_DSD_AND ) - { - piLitsNew[(*nLitsNew)++] = iLit; - return; - } - // iterate through the fanins - Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i ) - Kit_DsdExpandCollectAnd_rec( p, iLitFanin, piLitsNew, nLitsNew ); -} - -/**Function************************************************************* - - Synopsis [Expands the node.] - - Description [Returns the new literal.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdExpandCollectXor_rec( Kit_DsdNtk_t * p, int iLit, int * piLitsNew, int * nLitsNew ) -{ - Kit_DsdObj_t * pObj; - unsigned i, iLitFanin; - // check the end of the supergate - pObj = Kit_DsdNtkObj( p, Kit_DsdLit2Var(iLit) ); - if ( Kit_DsdLit2Var(iLit) < p->nVars || pObj->Type != KIT_DSD_XOR ) - { - piLitsNew[(*nLitsNew)++] = iLit; - return; - } - // iterate through the fanins - pObj = Kit_DsdNtkObj( p, Kit_DsdLit2Var(iLit) ); - Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i ) - Kit_DsdExpandCollectXor_rec( p, iLitFanin, piLitsNew, nLitsNew ); - // if the literal was complemented, pass the complemented attribute somewhere - if ( Kit_DsdLitIsCompl(iLit) ) - piLitsNew[0] = Kit_DsdLitNot( piLitsNew[0] ); -} - -/**Function************************************************************* - - Synopsis [Expands the node.] - - Description [Returns the new literal.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_DsdExpandNode_rec( Kit_DsdNtk_t * pNew, Kit_DsdNtk_t * p, int iLit ) -{ - unsigned * pTruth, * pTruthNew; - unsigned i, iLitFanin, piLitsNew[16], nLitsNew = 0; - Kit_DsdObj_t * pObj, * pObjNew; - - // consider the case of simple gate - pObj = Kit_DsdNtkObj( p, Kit_DsdLit2Var(iLit) ); - if ( pObj == NULL ) - return iLit; - if ( pObj->Type == KIT_DSD_AND ) - { - Kit_DsdExpandCollectAnd_rec( p, Kit_DsdLitRegular(iLit), piLitsNew, &nLitsNew ); - pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_AND, nLitsNew ); - for ( i = 0; i < pObjNew->nFans; i++ ) - pObjNew->pFans[i] = Kit_DsdExpandNode_rec( pNew, p, piLitsNew[i] ); - return Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(iLit) ); - } - if ( pObj->Type == KIT_DSD_XOR ) - { - int fCompl = Kit_DsdLitIsCompl(iLit); - Kit_DsdExpandCollectXor_rec( p, Kit_DsdLitRegular(iLit), piLitsNew, &nLitsNew ); - pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_XOR, nLitsNew ); - for ( i = 0; i < pObjNew->nFans; i++ ) - { - pObjNew->pFans[i] = Kit_DsdExpandNode_rec( pNew, p, Kit_DsdLitRegular(piLitsNew[i]) ); - fCompl ^= Kit_DsdLitIsCompl(piLitsNew[i]); - } - return Kit_DsdVar2Lit( pObjNew->Id, fCompl ); - } - assert( pObj->Type == KIT_DSD_PRIME ); - - // create new PRIME node - pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_PRIME, pObj->nFans ); - // copy the truth table - pTruth = Kit_DsdObjTruth( pObj ); - pTruthNew = Kit_DsdObjTruth( pObjNew ); - Kit_TruthCopy( pTruthNew, pTruth, pObj->nFans ); - // create fanins - Kit_DsdObjForEachFanin( pNtk, pObj, iLitFanin, i ) - { - pObjNew->pFans[i] = Kit_DsdExpandNode_rec( pNew, p, iLitFanin ); - // complement the corresponding inputs of the truth table - if ( Kit_DsdLitIsCompl(pObjNew->pFans[i]) ) - { - pObjNew->pFans[i] = Kit_DsdLitRegular(pObjNew->pFans[i]); - Kit_TruthChangePhase( pTruthNew, pObjNew->nFans, i ); - } - } - // if the incoming phase is complemented, absorb it into the prime node - if ( Kit_DsdLitIsCompl(iLit) ) - Kit_TruthNot( pTruthNew, pTruthNew, pObj->nFans ); - return Kit_DsdVar2Lit( pObjNew->Id, 0 ); -} - -/**Function************************************************************* - - Synopsis [Expands the network.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_DsdNtk_t * Kit_DsdExpand( Kit_DsdNtk_t * p ) -{ - Kit_DsdNtk_t * pNew; - Kit_DsdObj_t * pObjNew; - assert( p->nVars <= 16 ); - // create a new network - pNew = Kit_DsdNtkAlloc( p->nVars ); - // consider simple special cases - if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_CONST1 ) - { - pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_CONST1, 0 ); - pNew->Root = Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(p->Root) ); - return pNew; - } - if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_VAR ) - { - pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_VAR, 1 ); - pObjNew->pFans[0] = Kit_DsdNtkRoot(p)->pFans[0]; - pNew->Root = Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(p->Root) ); - return pNew; - } - // convert the root node - pNew->Root = Kit_DsdExpandNode_rec( pNew, p, p->Root ); - return pNew; -} - -/**Function************************************************************* - - Synopsis [Sorts the literals by their support.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdCompSort( int pPrios[], unsigned uSupps[], unsigned char * piLits, int nVars, int piLitsRes[] ) -{ - int nSuppSizes[16], Priority[16], pOrder[16]; - int i, k, iVarBest, SuppMax, PrioMax; - // compute support sizes and priorities of the components - for ( i = 0; i < nVars; i++ ) - { - assert( uSupps[i] ); - pOrder[i] = i; - Priority[i] = KIT_INFINITY; - for ( k = 0; k < 16; k++ ) - if ( uSupps[i] & (1 << k) ) - Priority[i] = KIT_MIN( Priority[i], pPrios[k] ); - assert( Priority[i] != 16 ); - nSuppSizes[i] = Kit_WordCountOnes(uSupps[i]); - } - // sort the components by pririty - Extra_BubbleSort( pOrder, Priority, nVars, 0 ); - // find the component by with largest size and lowest priority - iVarBest = -1; - SuppMax = 0; - PrioMax = 0; - for ( i = 0; i < nVars; i++ ) - { - if ( SuppMax < nSuppSizes[i] || (SuppMax == nSuppSizes[i] && PrioMax < Priority[i]) ) - { - SuppMax = nSuppSizes[i]; - PrioMax = Priority[i]; - iVarBest = i; - } - } - assert( iVarBest != -1 ); - // copy the resulting literals - k = 0; - piLitsRes[k++] = piLits[iVarBest]; - for ( i = 0; i < nVars; i++ ) - { - if ( pOrder[i] == iVarBest ) - continue; - piLitsRes[k++] = piLits[pOrder[i]]; - } - assert( k == nVars ); -} - -/**Function************************************************************* - - Synopsis [Shrinks multi-input nodes.] - - Description [Takes the array of variable priorities pPrios.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_DsdShrink_rec( Kit_DsdNtk_t * pNew, Kit_DsdNtk_t * p, int iLit, int pPrios[] ) -{ - Kit_DsdObj_t * pObj, * pObjNew; - unsigned * pTruth, * pTruthNew; - unsigned i, piLitsNew[16], uSupps[16]; - int iLitFanin, iLitNew; - - // consider the case of simple gate - pObj = Kit_DsdNtkObj( p, Kit_DsdLit2Var(iLit) ); - if ( pObj == NULL ) - return iLit; - if ( pObj->Type == KIT_DSD_AND ) - { - // get the supports - Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i ) - uSupps[i] = Kit_DsdLitSupport( p, iLitFanin ); - // put the largest component last - // sort other components in the decreasing order of priority of their vars - Kit_DsdCompSort( pPrios, uSupps, pObj->pFans, pObj->nFans, piLitsNew ); - // construct the two-input node network - iLitNew = Kit_DsdShrink_rec( pNew, p, piLitsNew[0], pPrios ); - for ( i = 1; i < pObj->nFans; i++ ) - { - pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_AND, 2 ); - pObjNew->pFans[0] = Kit_DsdShrink_rec( pNew, p, piLitsNew[i], pPrios ); - pObjNew->pFans[1] = iLitNew; - iLitNew = Kit_DsdVar2Lit( pObjNew->Id, 0 ); - } - return Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(iLit) ); - } - if ( pObj->Type == KIT_DSD_XOR ) - { - // get the supports - Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i ) - { - assert( !Kit_DsdLitIsCompl(iLitFanin) ); - uSupps[i] = Kit_DsdLitSupport( p, iLitFanin ); - } - // put the largest component last - // sort other components in the decreasing order of priority of their vars - Kit_DsdCompSort( pPrios, uSupps, pObj->pFans, pObj->nFans, piLitsNew ); - // construct the two-input node network - iLitNew = Kit_DsdShrink_rec( pNew, p, piLitsNew[0], pPrios ); - for ( i = 1; i < pObj->nFans; i++ ) - { - pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_XOR, 2 ); - pObjNew->pFans[0] = Kit_DsdShrink_rec( pNew, p, piLitsNew[i], pPrios ); - pObjNew->pFans[1] = iLitNew; - iLitNew = Kit_DsdVar2Lit( pObjNew->Id, 0 ); - } - return Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(iLit) ); - } - assert( pObj->Type == KIT_DSD_PRIME ); - - // create new PRIME node - pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_PRIME, pObj->nFans ); - // copy the truth table - pTruth = Kit_DsdObjTruth( pObj ); - pTruthNew = Kit_DsdObjTruth( pObjNew ); - Kit_TruthCopy( pTruthNew, pTruth, pObj->nFans ); - // create fanins - Kit_DsdObjForEachFanin( pNtk, pObj, iLitFanin, i ) - { - pObjNew->pFans[i] = Kit_DsdShrink_rec( pNew, p, iLitFanin, pPrios ); - // complement the corresponding inputs of the truth table - if ( Kit_DsdLitIsCompl(pObjNew->pFans[i]) ) - { - pObjNew->pFans[i] = Kit_DsdLitRegular(pObjNew->pFans[i]); - Kit_TruthChangePhase( pTruthNew, pObjNew->nFans, i ); - } - } - // if the incoming phase is complemented, absorb it into the prime node - if ( Kit_DsdLitIsCompl(iLit) ) - Kit_TruthNot( pTruthNew, pTruthNew, pObj->nFans ); - return Kit_DsdVar2Lit( pObjNew->Id, 0 ); -} - -/**Function************************************************************* - - Synopsis [Shrinks the network.] - - Description [Transforms the network to have two-input nodes so that the - higher-ordered nodes were decomposed out first.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_DsdNtk_t * Kit_DsdShrink( Kit_DsdNtk_t * p, int pPrios[] ) -{ - Kit_DsdNtk_t * pNew; - Kit_DsdObj_t * pObjNew; - assert( p->nVars <= 16 ); - // create a new network - pNew = Kit_DsdNtkAlloc( p->nVars ); - // consider simple special cases - if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_CONST1 ) - { - pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_CONST1, 0 ); - pNew->Root = Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(p->Root) ); - return pNew; - } - if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_VAR ) - { - pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_VAR, 1 ); - pObjNew->pFans[0] = Kit_DsdNtkRoot(p)->pFans[0]; - pNew->Root = Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(p->Root) ); - return pNew; - } - // convert the root node - pNew->Root = Kit_DsdShrink_rec( pNew, p, p->Root, pPrios ); - return pNew; -} - -/**Function************************************************************* - - Synopsis [Rotates the network.] - - Description [Transforms prime nodes to have the fanin with the - highest frequency of supports go first.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdRotate( Kit_DsdNtk_t * p, int pFreqs[] ) -{ - Kit_DsdObj_t * pObj; - unsigned * pIn, * pOut, * pTemp, k; - int i, v, Temp, uSuppFanin, iFaninLit, WeightMax, FaninMax, nSwaps; - int Weights[16]; - // go through the prime nodes - Kit_DsdNtkForEachObj( p, pObj, i ) - { - if ( pObj->Type != KIT_DSD_PRIME ) - continue; - // count the fanin frequencies - Kit_DsdObjForEachFanin( p, pObj, iFaninLit, k ) - { - uSuppFanin = Kit_DsdLitSupport( p, iFaninLit ); - Weights[k] = 0; - for ( v = 0; v < 16; v++ ) - if ( uSuppFanin & (1 << v) ) - Weights[k] += pFreqs[v] - 1; - } - // find the most frequent fanin - WeightMax = 0; - FaninMax = -1; - for ( k = 0; k < pObj->nFans; k++ ) - if ( WeightMax < Weights[k] ) - { - WeightMax = Weights[k]; - FaninMax = k; - } - // no need to reorder if there are no frequent fanins - if ( FaninMax == -1 ) - continue; - // move the fanins number k to the first place - nSwaps = 0; - pIn = Kit_DsdObjTruth(pObj); - pOut = p->pMem; -// for ( v = FaninMax; v < ((int)pObj->nFans)-1; v++ ) - for ( v = FaninMax-1; v >= 0; v-- ) - { - // swap the fanins - Temp = pObj->pFans[v]; - pObj->pFans[v] = pObj->pFans[v+1]; - pObj->pFans[v+1] = Temp; - // swap the truth table variables - Kit_TruthSwapAdjacentVars( pOut, pIn, pObj->nFans, v ); - pTemp = pIn; pIn = pOut; pOut = pTemp; - nSwaps++; - } - if ( nSwaps & 1 ) - Kit_TruthCopy( pOut, pIn, pObj->nFans ); - } -} - -/**Function************************************************************* - - Synopsis [Compute the support.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned Kit_DsdGetSupports_rec( Kit_DsdNtk_t * p, int iLit ) -{ - Kit_DsdObj_t * pObj; - unsigned uSupport, k; - int iFaninLit; - pObj = Kit_DsdNtkObj( p, Kit_DsdLit2Var(iLit) ); - if ( pObj == NULL ) - return Kit_DsdLitSupport( p, iLit ); - uSupport = 0; - Kit_DsdObjForEachFanin( p, pObj, iFaninLit, k ) - uSupport |= Kit_DsdGetSupports_rec( p, iFaninLit ); - p->pSupps[pObj->Id - p->nVars] = uSupport; - assert( uSupport <= 0xFFFF ); - return uSupport; -} - -/**Function************************************************************* - - Synopsis [Compute the support.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned Kit_DsdGetSupports( Kit_DsdNtk_t * p ) -{ - Kit_DsdObj_t * pRoot; - unsigned uSupport; - assert( p->pSupps == NULL ); - p->pSupps = ALLOC( unsigned, p->nNodes ); - // consider simple special cases - pRoot = Kit_DsdNtkRoot(p); - if ( pRoot->Type == KIT_DSD_CONST1 ) - { - assert( p->nNodes == 1 ); - uSupport = p->pSupps[0] = 0; - } - if ( pRoot->Type == KIT_DSD_VAR ) - { - assert( p->nNodes == 1 ); - uSupport = p->pSupps[0] = Kit_DsdLitSupport( p, pRoot->pFans[0] ); - } - else - uSupport = Kit_DsdGetSupports_rec( p, p->Root ); - assert( uSupport <= 0xFFFF ); - return uSupport; -} - -/**Function************************************************************* - - Synopsis [Returns 1 if there is a component with more than 3 inputs.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_DsdFindLargeBox_rec( Kit_DsdNtk_t * pNtk, int Id, int Size ) -{ - Kit_DsdObj_t * pObj; - unsigned iLit, i, RetValue; - pObj = Kit_DsdNtkObj( pNtk, Id ); - if ( pObj == NULL ) - return 0; - if ( pObj->Type == KIT_DSD_PRIME && (int)pObj->nFans > Size ) - return 1; - RetValue = 0; - Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) - RetValue |= Kit_DsdFindLargeBox_rec( pNtk, Kit_DsdLit2Var(iLit), Size ); - return RetValue; -} - -/**Function************************************************************* - - Synopsis [Returns 1 if there is a component with more than 3 inputs.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_DsdFindLargeBox( Kit_DsdNtk_t * pNtk, int Size ) -{ - return Kit_DsdFindLargeBox_rec( pNtk, Kit_DsdLit2Var(pNtk->Root), Size ); -} - -/**Function************************************************************* - - Synopsis [Returns 1 if the non-DSD 4-var func is implementable with two 3-LUTs.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_DsdRootNodeHasCommonVars( Kit_DsdObj_t * pObj0, Kit_DsdObj_t * pObj1 ) -{ - unsigned i, k; - for ( i = 0; i < pObj0->nFans; i++ ) - { - if ( Kit_DsdLit2Var(pObj0->pFans[i]) >= 4 ) - continue; - for ( k = 0; k < pObj1->nFans; k++ ) - if ( Kit_DsdLit2Var(pObj0->pFans[i]) == Kit_DsdLit2Var(pObj1->pFans[k]) ) - return 1; - } - return 0; -} - -/**Function************************************************************* - - Synopsis [Returns 1 if the non-DSD 4-var func is implementable with two 3-LUTs.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_DsdCheckVar4Dec2( Kit_DsdNtk_t * pNtk0, Kit_DsdNtk_t * pNtk1 ) -{ - assert( pNtk0->nVars == 4 ); - assert( pNtk1->nVars == 4 ); - if ( Kit_DsdFindLargeBox(pNtk0, 2) ) - return 0; - if ( Kit_DsdFindLargeBox(pNtk1, 2) ) - return 0; - return Kit_DsdRootNodeHasCommonVars( Kit_DsdNtkRoot(pNtk0), Kit_DsdNtkRoot(pNtk1) ); -} - -/**Function************************************************************* - - Synopsis [Performs decomposition of the node.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdDecompose_rec( Kit_DsdNtk_t * pNtk, Kit_DsdObj_t * pObj, unsigned uSupp, unsigned char * pPar, int nDecMux ) -{ - Kit_DsdObj_t * pRes, * pRes0, * pRes1; - int nWords = Kit_TruthWordNum(pObj->nFans); - unsigned * pTruth = Kit_DsdObjTruth(pObj); - unsigned * pCofs2[2] = { pNtk->pMem, pNtk->pMem + nWords }; - unsigned * pCofs4[2][2] = { {pNtk->pMem + 2 * nWords, pNtk->pMem + 3 * nWords}, {pNtk->pMem + 4 * nWords, pNtk->pMem + 5 * nWords} }; - int i, iLit0, iLit1, nFans0, nFans1, nPairs; - int fEquals[2][2], fOppos, fPairs[4][4]; - unsigned j, k, nFansNew, uSupp0, uSupp1; - - assert( pObj->nFans > 0 ); - assert( pObj->Type == KIT_DSD_PRIME ); - assert( uSupp == (uSupp0 = (unsigned)Kit_TruthSupport(pTruth, pObj->nFans)) ); - - // compress the truth table - if ( uSupp != Kit_BitMask(pObj->nFans) ) - { - nFansNew = Kit_WordCountOnes(uSupp); - Kit_TruthShrink( pNtk->pMem, pTruth, nFansNew, pObj->nFans, uSupp, 1 ); - for ( j = k = 0; j < pObj->nFans; j++ ) - if ( uSupp & (1 << j) ) - pObj->pFans[k++] = pObj->pFans[j]; - assert( k == nFansNew ); - pObj->nFans = k; - uSupp = Kit_BitMask(pObj->nFans); - } - - // consider the single variable case - if ( pObj->nFans == 1 ) - { - pObj->Type = KIT_DSD_NONE; - if ( pTruth[0] == 0x55555555 ) - pObj->pFans[0] = Kit_DsdLitNot(pObj->pFans[0]); - else - assert( pTruth[0] == 0xAAAAAAAA ); - // update the parent pointer - *pPar = Kit_DsdLitNotCond( pObj->pFans[0], Kit_DsdLitIsCompl(*pPar) ); - return; - } - - // decompose the output - if ( !pObj->fMark ) - for ( i = pObj->nFans - 1; i >= 0; i-- ) - { - // get the two-variable cofactors - Kit_TruthCofactor0New( pCofs2[0], pTruth, pObj->nFans, i ); - Kit_TruthCofactor1New( pCofs2[1], pTruth, pObj->nFans, i ); -// assert( !Kit_TruthVarInSupport( pCofs2[0], pObj->nFans, i) ); -// assert( !Kit_TruthVarInSupport( pCofs2[1], pObj->nFans, i) ); - // get the constant cofs - fEquals[0][0] = Kit_TruthIsConst0( pCofs2[0], pObj->nFans ); - fEquals[0][1] = Kit_TruthIsConst0( pCofs2[1], pObj->nFans ); - fEquals[1][0] = Kit_TruthIsConst1( pCofs2[0], pObj->nFans ); - fEquals[1][1] = Kit_TruthIsConst1( pCofs2[1], pObj->nFans ); - fOppos = Kit_TruthIsOpposite( pCofs2[0], pCofs2[1], pObj->nFans ); - assert( !Kit_TruthIsEqual(pCofs2[0], pCofs2[1], pObj->nFans) ); - if ( fEquals[0][0] + fEquals[0][1] + fEquals[1][0] + fEquals[1][1] + fOppos == 0 ) - { - // check the MUX decomposition - uSupp0 = Kit_TruthSupport( pCofs2[0], pObj->nFans ); - uSupp1 = Kit_TruthSupport( pCofs2[1], pObj->nFans ); - assert( uSupp == (uSupp0 | uSupp1 | (1<<i)) ); - if ( uSupp0 & uSupp1 ) - continue; - // perform MUX decomposition - pRes0 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans ); - pRes1 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans ); - for ( k = 0; k < pObj->nFans; k++ ) - { - pRes0->pFans[k] = (uSupp0 & (1 << k))? pObj->pFans[k] : 127; - pRes1->pFans[k] = (uSupp1 & (1 << k))? pObj->pFans[k] : 127; - } - Kit_TruthCopy( Kit_DsdObjTruth(pRes0), pCofs2[0], pObj->nFans ); - Kit_TruthCopy( Kit_DsdObjTruth(pRes1), pCofs2[1], pObj->nFans ); - // update the current one - assert( pObj->Type == KIT_DSD_PRIME ); - pTruth[0] = 0xCACACACA; - pObj->nFans = 3; - pObj->pFans[2] = pObj->pFans[i]; - pObj->pFans[0] = 2*pRes0->Id; pRes0->nRefs++; - pObj->pFans[1] = 2*pRes1->Id; pRes1->nRefs++; - // call recursively - Kit_DsdDecompose_rec( pNtk, pRes0, uSupp0, pObj->pFans + 0, nDecMux ); - Kit_DsdDecompose_rec( pNtk, pRes1, uSupp1, pObj->pFans + 1, nDecMux ); - return; - } - - // create the new node - pRes = Kit_DsdObjAlloc( pNtk, KIT_DSD_AND, 2 ); - pRes->nRefs++; - pRes->nFans = 2; - pRes->pFans[0] = pObj->pFans[i]; pObj->pFans[i] = 127; uSupp &= ~(1 << i); - pRes->pFans[1] = 2*pObj->Id; - // update the parent pointer - *pPar = Kit_DsdLitNotCond( 2 * pRes->Id, Kit_DsdLitIsCompl(*pPar) ); - // consider different decompositions - if ( fEquals[0][0] ) - { - Kit_TruthCopy( pTruth, pCofs2[1], pObj->nFans ); - } - else if ( fEquals[0][1] ) - { - pRes->pFans[0] = Kit_DsdLitNot(pRes->pFans[0]); - Kit_TruthCopy( pTruth, pCofs2[0], pObj->nFans ); - } - else if ( fEquals[1][0] ) - { - *pPar = Kit_DsdLitNot(*pPar); - pRes->pFans[1] = Kit_DsdLitNot(pRes->pFans[1]); - Kit_TruthCopy( pTruth, pCofs2[1], pObj->nFans ); - } - else if ( fEquals[1][1] ) - { - *pPar = Kit_DsdLitNot(*pPar); - pRes->pFans[0] = Kit_DsdLitNot(pRes->pFans[0]); - pRes->pFans[1] = Kit_DsdLitNot(pRes->pFans[1]); - Kit_TruthCopy( pTruth, pCofs2[0], pObj->nFans ); - } - else if ( fOppos ) - { - pRes->Type = KIT_DSD_XOR; - Kit_TruthCopy( pTruth, pCofs2[0], pObj->nFans ); - } - else - assert( 0 ); - // decompose the remainder - assert( Kit_DsdObjTruth(pObj) == pTruth ); - Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pRes->pFans + 1, nDecMux ); - return; - } - pObj->fMark = 1; - - // decompose the input - for ( i = pObj->nFans - 1; i >= 0; i-- ) - { - assert( Kit_TruthVarInSupport( pTruth, pObj->nFans, i ) ); - // get the single variale cofactors - Kit_TruthCofactor0New( pCofs2[0], pTruth, pObj->nFans, i ); - Kit_TruthCofactor1New( pCofs2[1], pTruth, pObj->nFans, i ); - // check the existence of MUX decomposition - uSupp0 = Kit_TruthSupport( pCofs2[0], pObj->nFans ); - uSupp1 = Kit_TruthSupport( pCofs2[1], pObj->nFans ); - assert( uSupp == (uSupp0 | uSupp1 | (1<<i)) ); - // if one of the cofs is a constant, it is time to check the output again - if ( uSupp0 == 0 || uSupp1 == 0 ) - { - pObj->fMark = 0; - Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pPar, nDecMux ); - return; - } - assert( uSupp0 && uSupp1 ); - // get the number of unique variables - nFans0 = Kit_WordCountOnes( uSupp0 & ~uSupp1 ); - nFans1 = Kit_WordCountOnes( uSupp1 & ~uSupp0 ); - if ( nFans0 == 1 && nFans1 == 1 ) - { - // get the cofactors w.r.t. the unique variables - iLit0 = Kit_WordFindFirstBit( uSupp0 & ~uSupp1 ); - iLit1 = Kit_WordFindFirstBit( uSupp1 & ~uSupp0 ); - // get four cofactors - Kit_TruthCofactor0New( pCofs4[0][0], pCofs2[0], pObj->nFans, iLit0 ); - Kit_TruthCofactor1New( pCofs4[0][1], pCofs2[0], pObj->nFans, iLit0 ); - Kit_TruthCofactor0New( pCofs4[1][0], pCofs2[1], pObj->nFans, iLit1 ); - Kit_TruthCofactor1New( pCofs4[1][1], pCofs2[1], pObj->nFans, iLit1 ); - // check existence conditions - fEquals[0][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][0], pObj->nFans ); - fEquals[0][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][1], pObj->nFans ); - fEquals[1][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][1], pObj->nFans ); - fEquals[1][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][0], pObj->nFans ); - if ( (fEquals[0][0] && fEquals[0][1]) || (fEquals[1][0] && fEquals[1][1]) ) - { - // construct the MUX - pRes = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, 3 ); - Kit_DsdObjTruth(pRes)[0] = 0xCACACACA; - pRes->nRefs++; - pRes->nFans = 3; - pRes->pFans[0] = pObj->pFans[iLit0]; pObj->pFans[iLit0] = 127; uSupp &= ~(1 << iLit0); - pRes->pFans[1] = pObj->pFans[iLit1]; pObj->pFans[iLit1] = 127; uSupp &= ~(1 << iLit1); - pRes->pFans[2] = pObj->pFans[i]; pObj->pFans[i] = 2 * pRes->Id; // remains in support - // update the node -// if ( fEquals[0][0] && fEquals[0][1] ) -// Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[0][1], pObj->nFans, i ); -// else -// Kit_TruthMuxVar( pTruth, pCofs4[0][1], pCofs4[0][0], pObj->nFans, i ); - Kit_TruthMuxVar( pTruth, pCofs4[1][0], pCofs4[1][1], pObj->nFans, i ); - if ( fEquals[1][0] && fEquals[1][1] ) - pRes->pFans[0] = Kit_DsdLitNot(pRes->pFans[0]); - // decompose the remainder - Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pPar, nDecMux ); - return; - } - } - - // try other inputs - for ( k = i+1; k < pObj->nFans; k++ ) - { - // get four cofactors ik - Kit_TruthCofactor0New( pCofs4[0][0], pCofs2[0], pObj->nFans, k ); // 00 - Kit_TruthCofactor1New( pCofs4[0][1], pCofs2[0], pObj->nFans, k ); // 01 - Kit_TruthCofactor0New( pCofs4[1][0], pCofs2[1], pObj->nFans, k ); // 10 - Kit_TruthCofactor1New( pCofs4[1][1], pCofs2[1], pObj->nFans, k ); // 11 - // compare equal pairs - fPairs[0][1] = fPairs[1][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[0][1], pObj->nFans ); - fPairs[0][2] = fPairs[2][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][0], pObj->nFans ); - fPairs[0][3] = fPairs[3][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][1], pObj->nFans ); - fPairs[1][2] = fPairs[2][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][0], pObj->nFans ); - fPairs[1][3] = fPairs[3][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][1], pObj->nFans ); - fPairs[2][3] = fPairs[3][2] = Kit_TruthIsEqual( pCofs4[1][0], pCofs4[1][1], pObj->nFans ); - nPairs = fPairs[0][1] + fPairs[0][2] + fPairs[0][3] + fPairs[1][2] + fPairs[1][3] + fPairs[2][3]; - if ( nPairs != 3 && nPairs != 2 ) - continue; - - // decomposition exists - pRes = Kit_DsdObjAlloc( pNtk, KIT_DSD_AND, 2 ); - pRes->nRefs++; - pRes->nFans = 2; - pRes->pFans[0] = pObj->pFans[k]; pObj->pFans[k] = 2 * pRes->Id; // remains in support - pRes->pFans[1] = pObj->pFans[i]; pObj->pFans[i] = 127; uSupp &= ~(1 << i); - if ( !fPairs[0][1] && !fPairs[0][2] && !fPairs[0][3] ) // 00 - { - pRes->pFans[0] = Kit_DsdLitNot(pRes->pFans[0]); - pRes->pFans[1] = Kit_DsdLitNot(pRes->pFans[1]); - Kit_TruthMuxVar( pTruth, pCofs4[1][1], pCofs4[0][0], pObj->nFans, k ); - } - else if ( !fPairs[1][0] && !fPairs[1][2] && !fPairs[1][3] ) // 01 - { - pRes->pFans[1] = Kit_DsdLitNot(pRes->pFans[1]); - Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[0][1], pObj->nFans, k ); - } - else if ( !fPairs[2][0] && !fPairs[2][1] && !fPairs[2][3] ) // 10 - { - pRes->pFans[0] = Kit_DsdLitNot(pRes->pFans[0]); - Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[1][0], pObj->nFans, k ); - } - else if ( !fPairs[3][0] && !fPairs[3][1] && !fPairs[3][2] ) // 11 - { -// unsigned uSupp0 = Kit_TruthSupport(pCofs4[0][0], pObj->nFans); -// unsigned uSupp1 = Kit_TruthSupport(pCofs4[1][1], pObj->nFans); -// unsigned uSupp; -// Extra_PrintBinary( stdout, &uSupp0, pObj->nFans ); printf( "\n" ); -// Extra_PrintBinary( stdout, &uSupp1, pObj->nFans ); printf( "\n" ); - Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[1][1], pObj->nFans, k ); -// uSupp = Kit_TruthSupport(pTruth, pObj->nFans); -// Extra_PrintBinary( stdout, &uSupp, pObj->nFans ); printf( "\n" ); printf( "\n" ); - } - else - { - assert( fPairs[0][3] && fPairs[1][2] ); - pRes->Type = KIT_DSD_XOR;; - Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[0][1], pObj->nFans, k ); - } - // decompose the remainder - Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pPar, nDecMux ); - return; - } - } -/* - // if all decomposition methods failed and we are still above the limit, perform MUX-decomposition - if ( nDecMux > 0 && (int)pObj->nFans > nDecMux ) - { - int iBestVar = Kit_TruthBestCofVar( pTruth, pObj->nFans, pCofs2[0], pCofs2[1] ); - uSupp0 = Kit_TruthSupport( pCofs2[0], pObj->nFans ); - uSupp1 = Kit_TruthSupport( pCofs2[1], pObj->nFans ); - // perform MUX decomposition - pRes0 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans ); - pRes1 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans ); - for ( k = 0; k < pObj->nFans; k++ ) - pRes0->pFans[k] = pRes1->pFans[k] = pObj->pFans[k]; - Kit_TruthCopy( Kit_DsdObjTruth(pRes0), pCofs2[0], pObj->nFans ); - Kit_TruthCopy( Kit_DsdObjTruth(pRes1), pCofs2[1], pObj->nFans ); - // update the current one - assert( pObj->Type == KIT_DSD_PRIME ); - pTruth[0] = 0xCACACACA; - pObj->nFans = 3; - pObj->pFans[0] = 2*pRes0->Id; pRes0->nRefs++; - pObj->pFans[1] = 2*pRes1->Id; pRes1->nRefs++; - pObj->pFans[2] = pObj->pFans[iBestVar]; - // call recursively - Kit_DsdDecompose_rec( pNtk, pRes0, uSupp0, pObj->pFans + 0, nDecMux ); - Kit_DsdDecompose_rec( pNtk, pRes1, uSupp1, pObj->pFans + 1, nDecMux ); - } -*/ -} - -/**Function************************************************************* - - Synopsis [Performs decomposition of the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_DsdNtk_t * Kit_DsdDecomposeInt( unsigned * pTruth, int nVars, int nDecMux ) -{ - Kit_DsdNtk_t * pNtk; - Kit_DsdObj_t * pObj; - unsigned uSupp; - int i, nVarsReal; - assert( nVars <= 16 ); - pNtk = Kit_DsdNtkAlloc( nVars ); - pNtk->Root = Kit_DsdVar2Lit( pNtk->nVars, 0 ); - // create the first node - pObj = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, nVars ); - assert( pNtk->pNodes[0] == pObj ); - for ( i = 0; i < nVars; i++ ) - pObj->pFans[i] = Kit_DsdVar2Lit( i, 0 ); - Kit_TruthCopy( Kit_DsdObjTruth(pObj), pTruth, nVars ); - uSupp = Kit_TruthSupport( pTruth, nVars ); - // consider special cases - nVarsReal = Kit_WordCountOnes( uSupp ); - if ( nVarsReal == 0 ) - { - pObj->Type = KIT_DSD_CONST1; - pObj->nFans = 0; - if ( pTruth[0] == 0 ) - pNtk->Root = Kit_DsdLitNot(pNtk->Root); - return pNtk; - } - if ( nVarsReal == 1 ) - { - pObj->Type = KIT_DSD_VAR; - pObj->nFans = 1; - pObj->pFans[0] = Kit_DsdVar2Lit( Kit_WordFindFirstBit(uSupp), (pTruth[0] & 1) ); - return pNtk; - } - Kit_DsdDecompose_rec( pNtk, pNtk->pNodes[0], uSupp, &pNtk->Root, nDecMux ); - return pNtk; -} - -/**Function************************************************************* - - Synopsis [Performs decomposition of the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_DsdNtk_t * Kit_DsdDecompose( unsigned * pTruth, int nVars ) -{ - return Kit_DsdDecomposeInt( pTruth, nVars, 0 ); -} - -/**Function************************************************************* - - Synopsis [Performs decomposition of the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_DsdNtk_t * Kit_DsdDecomposeExpand( unsigned * pTruth, int nVars ) -{ - Kit_DsdNtk_t * pNtk, * pTemp; - pNtk = Kit_DsdDecomposeInt( pTruth, nVars, 0 ); - pNtk = Kit_DsdExpand( pTemp = pNtk ); - Kit_DsdNtkFree( pTemp ); - return pNtk; -} - -/**Function************************************************************* - - Synopsis [Performs decomposition of the truth table.] - - Description [Uses MUXes to break-down large prime nodes.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_DsdNtk_t * Kit_DsdDecomposeMux( unsigned * pTruth, int nVars, int nDecMux ) -{ - return Kit_DsdDecomposeInt( pTruth, nVars, nDecMux ); -} - -/**Function************************************************************* - - Synopsis [Performs decomposition of the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_DsdTestCofs( Kit_DsdNtk_t * pNtk, unsigned * pTruthInit ) -{ - Kit_DsdNtk_t * pNtk0, * pNtk1, * pTemp; -// Kit_DsdObj_t * pRoot; - unsigned * pCofs2[2] = { pNtk->pMem, pNtk->pMem + Kit_TruthWordNum(pNtk->nVars) }; - unsigned i, * pTruth; - int fVerbose = 1; - int RetValue = 0; - - pTruth = pTruthInit; -// pRoot = Kit_DsdNtkRoot(pNtk); -// pTruth = Kit_DsdObjTruth(pRoot); -// assert( pRoot->nFans == pNtk->nVars ); - - if ( fVerbose ) - { - printf( "Function: " ); -// Extra_PrintBinary( stdout, pTruth, (1 << pNtk->nVars) ); - Extra_PrintHexadecimal( stdout, pTruth, pNtk->nVars ); - printf( "\n" ); - Kit_DsdPrint( stdout, pNtk ); - } - for ( i = 0; i < pNtk->nVars; i++ ) - { - Kit_TruthCofactor0New( pCofs2[0], pTruth, pNtk->nVars, i ); - pNtk0 = Kit_DsdDecompose( pCofs2[0], pNtk->nVars ); - pNtk0 = Kit_DsdExpand( pTemp = pNtk0 ); - Kit_DsdNtkFree( pTemp ); - - if ( fVerbose ) - { - printf( "Cof%d0: ", i ); - Kit_DsdPrint( stdout, pNtk0 ); - } - - Kit_TruthCofactor1New( pCofs2[1], pTruth, pNtk->nVars, i ); - pNtk1 = Kit_DsdDecompose( pCofs2[1], pNtk->nVars ); - pNtk1 = Kit_DsdExpand( pTemp = pNtk1 ); - Kit_DsdNtkFree( pTemp ); - - if ( fVerbose ) - { - printf( "Cof%d1: ", i ); - Kit_DsdPrint( stdout, pNtk1 ); - } - -// if ( Kit_DsdCheckVar4Dec2( pNtk0, pNtk1 ) ) -// RetValue = 1; - - Kit_DsdNtkFree( pNtk0 ); - Kit_DsdNtkFree( pNtk1 ); - } - if ( fVerbose ) - printf( "\n" ); - - return RetValue; -} - -/**Function************************************************************* - - Synopsis [Performs decomposition of the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_DsdEval( unsigned * pTruth, int nVars, int nLutSize ) -{ - Kit_DsdMan_t * p; - Kit_DsdNtk_t * pNtk; - unsigned * pTruthC; - int Result; - - // decompose the function - pNtk = Kit_DsdDecompose( pTruth, nVars ); - Result = Kit_DsdCountLuts( pNtk, nLutSize ); -// printf( "\n" ); -// Kit_DsdPrint( stdout, pNtk ); -// printf( "Eval = %d.\n", Result ); - - // recompute the truth table - p = Kit_DsdManAlloc( nVars, Kit_DsdNtkObjNum(pNtk) ); - pTruthC = Kit_DsdTruthCompute( p, pNtk ); - if ( !Kit_TruthIsEqual( pTruth, pTruthC, nVars ) ) - printf( "Verification failed.\n" ); - Kit_DsdManFree( p ); - - Kit_DsdNtkFree( pNtk ); - return Result; -} - -/**Function************************************************************* - - Synopsis [Performs decomposition of the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdVerify( Kit_DsdNtk_t * pNtk, unsigned * pTruth, int nVars ) -{ - Kit_DsdMan_t * p; - unsigned * pTruthC; - p = Kit_DsdManAlloc( nVars, Kit_DsdNtkObjNum(pNtk)+2 ); - pTruthC = Kit_DsdTruthCompute( p, pNtk ); - if ( !Extra_TruthIsEqual( pTruth, pTruthC, nVars ) ) - printf( "Verification failed.\n" ); - Kit_DsdManFree( p ); -} - -/**Function************************************************************* - - Synopsis [Performs decomposition of the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdTest( unsigned * pTruth, int nVars ) -{ - Kit_DsdMan_t * p; - unsigned * pTruthC; - Kit_DsdNtk_t * pNtk, * pTemp; - pNtk = Kit_DsdDecompose( pTruth, nVars ); - -// if ( Kit_DsdFindLargeBox(pNtk, Kit_DsdLit2Var(pNtk->Root)) ) -// Kit_DsdPrint( stdout, pNtk ); - -// if ( Kit_DsdNtkRoot(pNtk)->nFans == (unsigned)nVars && nVars == 6 ) - - printf( "\n" ); - Kit_DsdPrint( stdout, pNtk ); - - pNtk = Kit_DsdExpand( pTemp = pNtk ); - Kit_DsdNtkFree( pTemp ); - - Kit_DsdPrint( stdout, pNtk ); - -// if ( Kit_DsdFindLargeBox(pNtk, Kit_DsdLit2Var(pNtk->Root)) ) -// Kit_DsdTestCofs( pNtk, pTruth ); - - // recompute the truth table - p = Kit_DsdManAlloc( nVars, Kit_DsdNtkObjNum(pNtk) ); - pTruthC = Kit_DsdTruthCompute( p, pNtk ); -// Extra_PrintBinary( stdout, pTruth, 1 << nVars ); printf( "\n" ); -// Extra_PrintBinary( stdout, pTruthC, 1 << nVars ); printf( "\n" ); - if ( Extra_TruthIsEqual( pTruth, pTruthC, nVars ) ) - { -// printf( "Verification is okay.\n" ); - } - else - printf( "Verification failed.\n" ); - Kit_DsdManFree( p ); - - - Kit_DsdNtkFree( pNtk ); -} - -/**Function************************************************************* - - Synopsis [Performs decomposition of the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdPrecompute4Vars() -{ - Kit_DsdMan_t * p; - Kit_DsdNtk_t * pNtk, * pTemp; - FILE * pFile; - unsigned uTruth; - unsigned * pTruthC; - char Buffer[256]; - int i, RetValue; - int Counter1 = 0, Counter2 = 0; - - pFile = fopen( "5npn/npn4.txt", "r" ); - for ( i = 0; fgets( Buffer, 100, pFile ); i++ ) - { - Buffer[6] = 0; - Extra_ReadHexadecimal( &uTruth, Buffer+2, 4 ); - uTruth = ((uTruth & 0xffff) << 16) | (uTruth & 0xffff); - pNtk = Kit_DsdDecompose( &uTruth, 4 ); - - pNtk = Kit_DsdExpand( pTemp = pNtk ); - Kit_DsdNtkFree( pTemp ); - - - if ( Kit_DsdFindLargeBox(pNtk, 3) ) - { -// RetValue = 0; - RetValue = Kit_DsdTestCofs( pNtk, &uTruth ); - printf( "\n" ); - printf( "%3d : Non-DSD function %s %s\n", i, Buffer + 2, RetValue? "implementable" : "" ); - Kit_DsdPrint( stdout, pNtk ); - - Counter1++; - Counter2 += RetValue; - } - -/* - printf( "%3d : Function %s ", i, Buffer + 2 ); - if ( !Kit_DsdFindLargeBox(pNtk, 3) ) - Kit_DsdPrint( stdout, pNtk ); - else - printf( "\n" ); -*/ - - p = Kit_DsdManAlloc( 4, Kit_DsdNtkObjNum(pNtk) ); - pTruthC = Kit_DsdTruthCompute( p, pNtk ); - if ( !Extra_TruthIsEqual( &uTruth, pTruthC, 4 ) ) - printf( "Verification failed.\n" ); - Kit_DsdManFree( p ); - - Kit_DsdNtkFree( pNtk ); - } - fclose( pFile ); - printf( "non-DSD = %d implementable = %d\n", Counter1, Counter2 ); -} - - -/**Function************************************************************* - - Synopsis [Returns the set of cofactoring variables.] - - Description [If there is no DSD components returns 0.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_DsdCofactoringGetVars( Kit_DsdNtk_t ** ppNtk, int nSize, int * pVars ) -{ - Kit_DsdObj_t * pObj; - unsigned m; - int i, k, v, Var, nVars, iFaninLit; - // go through all the networks - nVars = 0; - for ( i = 0; i < nSize; i++ ) - { - // go through the prime objects of each networks - Kit_DsdNtkForEachObj( ppNtk[i], pObj, k ) - { - if ( pObj->Type != KIT_DSD_PRIME ) - continue; - if ( pObj->nFans == 3 ) - continue; - // collect direct fanin variables - Kit_DsdObjForEachFanin( ppNtk[i], pObj, iFaninLit, m ) - { - if ( !Kit_DsdLitIsLeaf(ppNtk[i], iFaninLit) ) - continue; - // add it to the array - Var = Kit_DsdLit2Var( iFaninLit ); - for ( v = 0; v < nVars; v++ ) - if ( pVars[v] == Var ) - break; - if ( v == nVars ) - pVars[nVars++] = Var; - } - } - } - return nVars; -} - -/**Function************************************************************* - - Synopsis [Canonical decomposition into completely DSD-structure.] - - Description [Returns the number of cofactoring steps. Also returns - the cofactoring variables in pVars.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_DsdCofactoring( unsigned * pTruth, int nVars, int * pCofVars, int nLimit, int fVerbose ) -{ - Kit_DsdNtk_t * ppNtks[5][16] = {0}, * pTemp; - unsigned * ppCofs[5][16]; - int pTryVars[16], nTryVars; - int nPrimeSizeMin, nPrimeSizeMax, nPrimeSizeCur; - int nSuppSizeMin, nSuppSizeMax, iVarBest; - int i, k, v, nStep, nSize, nMemSize; - assert( nLimit < 5 ); - - // allocate storage for cofactors - nMemSize = Kit_TruthWordNum(nVars); - ppCofs[0][0] = ALLOC( unsigned, 80 * nMemSize ); - nSize = 0; - for ( i = 0; i < 5; i++ ) - for ( k = 0; k < 16; k++ ) - ppCofs[i][k] = ppCofs[0][0] + nMemSize * nSize++; - assert( nSize == 80 ); - - // copy the function - Kit_TruthCopy( ppCofs[0][0], pTruth, nVars ); - ppNtks[0][0] = Kit_DsdDecompose( ppCofs[0][0], nVars ); - - if ( fVerbose ) - printf( "\nProcessing prime function with %d support variables:\n", nVars ); - - // perform recursive cofactoring - for ( nStep = 0; nStep < nLimit; nStep++ ) - { - nSize = (1 << nStep); - // find the variables to use in the cofactoring step - nTryVars = Kit_DsdCofactoringGetVars( ppNtks[nStep], nSize, pTryVars ); - if ( nTryVars == 0 ) - break; - // cofactor w.r.t. the above variables - iVarBest = -1; - nPrimeSizeMin = 10000; - nSuppSizeMin = 10000; - for ( v = 0; v < nTryVars; v++ ) - { - nPrimeSizeMax = 0; - nSuppSizeMax = 0; - for ( i = 0; i < nSize; i++ ) - { - // cofactor and decompose cofactors - Kit_TruthCofactor0New( ppCofs[nStep+1][2*i+0], ppCofs[nStep][i], nVars, pTryVars[v] ); - Kit_TruthCofactor1New( ppCofs[nStep+1][2*i+1], ppCofs[nStep][i], nVars, pTryVars[v] ); - ppNtks[nStep+1][2*i+0] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+0], nVars ); - ppNtks[nStep+1][2*i+1] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+1], nVars ); - // compute the largest non-decomp block - nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[nStep+1][2*i+0]); - nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur ); - nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[nStep+1][2*i+1]); - nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur ); - // compute the sum total of supports - nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nStep+1][2*i+0], nVars ); - nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nStep+1][2*i+1], nVars ); - // free the networks - Kit_DsdNtkFree( ppNtks[nStep+1][2*i+0] ); - Kit_DsdNtkFree( ppNtks[nStep+1][2*i+1] ); - } - // find the min max support size of the prime component - if ( nPrimeSizeMin > nPrimeSizeMax || (nPrimeSizeMin == nPrimeSizeMax && nSuppSizeMin > nSuppSizeMax) ) - { - nPrimeSizeMin = nPrimeSizeMax; - nSuppSizeMin = nSuppSizeMax; - iVarBest = pTryVars[v]; - } - } - assert( iVarBest != -1 ); - // save the variable - if ( pCofVars ) - pCofVars[nStep] = iVarBest; - // cofactor w.r.t. the best - for ( i = 0; i < nSize; i++ ) - { - Kit_TruthCofactor0New( ppCofs[nStep+1][2*i+0], ppCofs[nStep][i], nVars, iVarBest ); - Kit_TruthCofactor1New( ppCofs[nStep+1][2*i+1], ppCofs[nStep][i], nVars, iVarBest ); - ppNtks[nStep+1][2*i+0] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+0], nVars ); - ppNtks[nStep+1][2*i+1] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+1], nVars ); - if ( fVerbose ) - { - ppNtks[nStep+1][2*i+0] = Kit_DsdExpand( pTemp = ppNtks[nStep+1][2*i+0] ); - Kit_DsdNtkFree( pTemp ); - ppNtks[nStep+1][2*i+1] = Kit_DsdExpand( pTemp = ppNtks[nStep+1][2*i+1] ); - Kit_DsdNtkFree( pTemp ); - - printf( "Cof%d%d: ", nStep+1, 2*i+0 ); - Kit_DsdPrint( stdout, ppNtks[nStep+1][2*i+0] ); - printf( "Cof%d%d: ", nStep+1, 2*i+1 ); - Kit_DsdPrint( stdout, ppNtks[nStep+1][2*i+1] ); - } - } - } - - // free the networks - for ( i = 0; i < 5; i++ ) - for ( k = 0; k < 16; k++ ) - if ( ppNtks[i][k] ) - Kit_DsdNtkFree( ppNtks[i][k] ); - free( ppCofs[0][0] ); - - assert( nStep <= nLimit ); - return nStep; -} - -/**Function************************************************************* - - Synopsis [Canonical decomposition into completely DSD-structure.] - - Description [Returns the number of cofactoring steps. Also returns - the cofactoring variables in pVars.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_DsdPrintCofactors( unsigned * pTruth, int nVars, int nCofLevel, int fVerbose ) -{ - Kit_DsdNtk_t * ppNtks[32] = {0}, * pTemp; - unsigned * ppCofs[5][16]; - int piCofVar[5]; - int nPrimeSizeMax, nPrimeSizeCur, nSuppSizeMax; - int i, k, v1, v2, v3, v4, s, nSteps, nSize, nMemSize; - assert( nCofLevel < 5 ); - - // print the function - ppNtks[0] = Kit_DsdDecompose( pTruth, nVars ); - ppNtks[0] = Kit_DsdExpand( pTemp = ppNtks[0] ); - Kit_DsdNtkFree( pTemp ); - if ( fVerbose ) - Kit_DsdPrint( stdout, ppNtks[0] ); - Kit_DsdNtkFree( ppNtks[0] ); - - // allocate storage for cofactors - nMemSize = Kit_TruthWordNum(nVars); - ppCofs[0][0] = ALLOC( unsigned, 80 * nMemSize ); - nSize = 0; - for ( i = 0; i < 5; i++ ) - for ( k = 0; k < 16; k++ ) - ppCofs[i][k] = ppCofs[0][0] + nMemSize * nSize++; - assert( nSize == 80 ); - - // copy the function - Kit_TruthCopy( ppCofs[0][0], pTruth, nVars ); - - if ( nCofLevel == 1 ) - for ( v1 = 0; v1 < nVars; v1++ ) - { - nSteps = 0; - piCofVar[nSteps++] = v1; - - printf( " Variables { " ); - for ( i = 0; i < nSteps; i++ ) - printf( "%c ", 'a' + piCofVar[i] ); - printf( "}\n" ); - - // single cofactors - for ( s = 1; s <= nSteps; s++ ) - { - for ( k = 0; k < s; k++ ) - { - nSize = (1 << k); - for ( i = 0; i < nSize; i++ ) - { - Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] ); - Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] ); - } - } - } - // compute DSD networks - nSize = (1 << nSteps); - nPrimeSizeMax = 0; - nSuppSizeMax = 0; - for ( i = 0; i < nSize; i++ ) - { - ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars ); - ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] ); - Kit_DsdNtkFree( pTemp ); - if ( fVerbose ) - { - printf( "Cof%d%d: ", nSteps, i ); - Kit_DsdPrint( stdout, ppNtks[i] ); - } - // compute the largest non-decomp block - nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]); - nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur ); - Kit_DsdNtkFree( ppNtks[i] ); - nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars ); - } - printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax ); - } - - if ( nCofLevel == 2 ) - for ( v1 = 0; v1 < nVars; v1++ ) - for ( v2 = v1+1; v2 < nVars; v2++ ) - { - nSteps = 0; - piCofVar[nSteps++] = v1; - piCofVar[nSteps++] = v2; - - printf( " Variables { " ); - for ( i = 0; i < nSteps; i++ ) - printf( "%c ", 'a' + piCofVar[i] ); - printf( "}\n" ); - - // single cofactors - for ( s = 1; s <= nSteps; s++ ) - { - for ( k = 0; k < s; k++ ) - { - nSize = (1 << k); - for ( i = 0; i < nSize; i++ ) - { - Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] ); - Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] ); - } - } - } - // compute DSD networks - nSize = (1 << nSteps); - nPrimeSizeMax = 0; - nSuppSizeMax = 0; - for ( i = 0; i < nSize; i++ ) - { - ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars ); - ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] ); - Kit_DsdNtkFree( pTemp ); - if ( fVerbose ) - { - printf( "Cof%d%d: ", nSteps, i ); - Kit_DsdPrint( stdout, ppNtks[i] ); - } - // compute the largest non-decomp block - nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]); - nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur ); - Kit_DsdNtkFree( ppNtks[i] ); - nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars ); - } - printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax ); - } - - if ( nCofLevel == 3 ) - for ( v1 = 0; v1 < nVars; v1++ ) - for ( v2 = v1+1; v2 < nVars; v2++ ) - for ( v3 = v2+1; v3 < nVars; v3++ ) - { - nSteps = 0; - piCofVar[nSteps++] = v1; - piCofVar[nSteps++] = v2; - piCofVar[nSteps++] = v3; - - printf( " Variables { " ); - for ( i = 0; i < nSteps; i++ ) - printf( "%c ", 'a' + piCofVar[i] ); - printf( "}\n" ); - - // single cofactors - for ( s = 1; s <= nSteps; s++ ) - { - for ( k = 0; k < s; k++ ) - { - nSize = (1 << k); - for ( i = 0; i < nSize; i++ ) - { - Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] ); - Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] ); - } - } - } - // compute DSD networks - nSize = (1 << nSteps); - nPrimeSizeMax = 0; - nSuppSizeMax = 0; - for ( i = 0; i < nSize; i++ ) - { - ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars ); - ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] ); - Kit_DsdNtkFree( pTemp ); - if ( fVerbose ) - { - printf( "Cof%d%d: ", nSteps, i ); - Kit_DsdPrint( stdout, ppNtks[i] ); - } - // compute the largest non-decomp block - nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]); - nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur ); - Kit_DsdNtkFree( ppNtks[i] ); - nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars ); - } - printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax ); - } - - if ( nCofLevel == 4 ) - for ( v1 = 0; v1 < nVars; v1++ ) - for ( v2 = v1+1; v2 < nVars; v2++ ) - for ( v3 = v2+1; v3 < nVars; v3++ ) - for ( v4 = v3+1; v4 < nVars; v4++ ) - { - nSteps = 0; - piCofVar[nSteps++] = v1; - piCofVar[nSteps++] = v2; - piCofVar[nSteps++] = v3; - piCofVar[nSteps++] = v4; - - printf( " Variables { " ); - for ( i = 0; i < nSteps; i++ ) - printf( "%c ", 'a' + piCofVar[i] ); - printf( "}\n" ); - - // single cofactors - for ( s = 1; s <= nSteps; s++ ) - { - for ( k = 0; k < s; k++ ) - { - nSize = (1 << k); - for ( i = 0; i < nSize; i++ ) - { - Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] ); - Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] ); - } - } - } - // compute DSD networks - nSize = (1 << nSteps); - nPrimeSizeMax = 0; - nSuppSizeMax = 0; - for ( i = 0; i < nSize; i++ ) - { - ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars ); - ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] ); - Kit_DsdNtkFree( pTemp ); - if ( fVerbose ) - { - printf( "Cof%d%d: ", nSteps, i ); - Kit_DsdPrint( stdout, ppNtks[i] ); - } - // compute the largest non-decomp block - nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]); - nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur ); - Kit_DsdNtkFree( ppNtks[i] ); - nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars ); - } - printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax ); - } - - - free( ppCofs[0][0] ); -} - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/kit/kitFactor.c b/src/aig/kit/kitFactor.c deleted file mode 100644 index 4ef3fd94..00000000 --- a/src/aig/kit/kitFactor.c +++ /dev/null @@ -1,338 +0,0 @@ -/**CFile**************************************************************** - - FileName [kitFactor.c] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [Computation kit.] - - Synopsis [Algebraic factoring.] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - Dec 6, 2006.] - - Revision [$Id: kitFactor.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "kit.h" - -//////////////////////////////////////////////////////////////////////// -/// DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -// factoring fails if intermediate memory usage exceed this limit -#define KIT_FACTOR_MEM_LIMIT (1<<16) - -static Kit_Edge_t Kit_SopFactor_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ); -static Kit_Edge_t Kit_SopFactorLF_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, Kit_Sop_t * cSimple, int nLits, Vec_Int_t * vMemory ); -static Kit_Edge_t Kit_SopFactorTrivial( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits ); -static Kit_Edge_t Kit_SopFactorTrivialCube( Kit_Graph_t * pFForm, unsigned uCube, int nLits ); - -extern int Kit_SopFactorVerify( Vec_Int_t * cSop, Kit_Graph_t * pFForm, int nVars ); - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - - Synopsis [Factors the cover.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Graph_t * Kit_SopFactor( Vec_Int_t * vCover, int fCompl, int nVars, Vec_Int_t * vMemory ) -{ - Kit_Sop_t Sop, Res; - Kit_Sop_t * cSop = &Sop, * cRes = &Res; - Kit_Graph_t * pFForm; - Kit_Edge_t eRoot; - int nCubes = Vec_IntSize(vCover); - - // works for up to 15 variables because divisin procedure - // used the last bit for marking the cubes going to the remainder - assert( nVars < 16 ); - - // check for trivial functions - if ( Vec_IntSize(vCover) == 0 ) - return Kit_GraphCreateConst0(); - if ( Vec_IntSize(vCover) == 1 && Vec_IntEntry(vCover, 0) == 0 ) //(int)Kit_CubeMask(2 * nVars) ) - return Kit_GraphCreateConst1(); - - // prepare memory manager -// Vec_IntClear( vMemory ); - Vec_IntGrow( vMemory, KIT_FACTOR_MEM_LIMIT ); - - // perform CST - Kit_SopCreateInverse( cSop, vCover, 2 * nVars, vMemory ); // CST - - // start the factored form - pFForm = Kit_GraphCreate( nVars ); - // factor the cover - eRoot = Kit_SopFactor_rec( pFForm, cSop, 2 * nVars, vMemory ); - // finalize the factored form - Kit_GraphSetRoot( pFForm, eRoot ); - if ( fCompl ) - Kit_GraphComplement( pFForm ); - - // verify the factored form -// Vec_IntShrink( vCover, nCubes ); -// if ( !Kit_SopFactorVerify( vCover, pFForm, nVars ) ) -// printf( "Verification has failed.\n" ); - return pFForm; -} - -/**Function************************************************************* - - Synopsis [Recursive factoring procedure.] - - Description [For the pseudo-code, see Hachtel/Somenzi, - Logic synthesis and verification algorithms, Kluwer, 1996, p. 432.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Edge_t Kit_SopFactor_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ) -{ - Kit_Sop_t Div, Quo, Rem, Com; - Kit_Sop_t * cDiv = &Div, * cQuo = &Quo, * cRem = &Rem, * cCom = &Com; - Kit_Edge_t eNodeDiv, eNodeQuo, eNodeRem, eNodeAnd; - - // make sure the cover contains some cubes - assert( Kit_SopCubeNum(cSop) > 0 ); - - // get the divisor - if ( !Kit_SopDivisor(cDiv, cSop, nLits, vMemory) ) - return Kit_SopFactorTrivial( pFForm, cSop, nLits ); - - // divide the cover by the divisor - Kit_SopDivideInternal( cSop, cDiv, cQuo, cRem, vMemory ); - - // check the trivial case - assert( Kit_SopCubeNum(cQuo) > 0 ); - if ( Kit_SopCubeNum(cQuo) == 1 ) - return Kit_SopFactorLF_rec( pFForm, cSop, cQuo, nLits, vMemory ); - - // make the quotient cube free - Kit_SopMakeCubeFree( cQuo ); - - // divide the cover by the quotient - Kit_SopDivideInternal( cSop, cQuo, cDiv, cRem, vMemory ); - - // check the trivial case - if ( Kit_SopIsCubeFree( cDiv ) ) - { - eNodeDiv = Kit_SopFactor_rec( pFForm, cDiv, nLits, vMemory ); - eNodeQuo = Kit_SopFactor_rec( pFForm, cQuo, nLits, vMemory ); - eNodeAnd = Kit_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo ); - if ( Kit_SopCubeNum(cRem) == 0 ) - return eNodeAnd; - eNodeRem = Kit_SopFactor_rec( pFForm, cRem, nLits, vMemory ); - return Kit_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem ); - } - - // get the common cube - Kit_SopCommonCubeCover( cCom, cDiv, vMemory ); - - // solve the simple problem - return Kit_SopFactorLF_rec( pFForm, cSop, cCom, nLits, vMemory ); -} - - -/**Function************************************************************* - - Synopsis [Internal recursive factoring procedure for the leaf case.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Edge_t Kit_SopFactorLF_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, Kit_Sop_t * cSimple, int nLits, Vec_Int_t * vMemory ) -{ - Kit_Sop_t Div, Quo, Rem; - Kit_Sop_t * cDiv = &Div, * cQuo = &Quo, * cRem = &Rem; - Kit_Edge_t eNodeDiv, eNodeQuo, eNodeRem, eNodeAnd; - assert( Kit_SopCubeNum(cSimple) == 1 ); - // get the most often occurring literal - Kit_SopBestLiteralCover( cDiv, cSop, Kit_SopCube(cSimple, 0), nLits, vMemory ); - // divide the cover by the literal - Kit_SopDivideByCube( cSop, cDiv, cQuo, cRem, vMemory ); - // get the node pointer for the literal - eNodeDiv = Kit_SopFactorTrivialCube( pFForm, Kit_SopCube(cDiv, 0), nLits ); - // factor the quotient and remainder - eNodeQuo = Kit_SopFactor_rec( pFForm, cQuo, nLits, vMemory ); - eNodeAnd = Kit_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo ); - if ( Kit_SopCubeNum(cRem) == 0 ) - return eNodeAnd; - eNodeRem = Kit_SopFactor_rec( pFForm, cRem, nLits, vMemory ); - return Kit_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem ); -} - - -/**Function************************************************************* - - Synopsis [Factoring cube.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Edge_t Kit_SopFactorTrivialCube_rec( Kit_Graph_t * pFForm, unsigned uCube, int nStart, int nFinish ) -{ - Kit_Edge_t eNode1, eNode2; - int i, iLit, nLits, nLits1, nLits2; - assert( uCube ); - // count the number of literals in this interval - nLits = 0; - for ( i = nStart; i < nFinish; i++ ) - if ( Kit_CubeHasLit(uCube, i) ) - { - iLit = i; - nLits++; - } - // quit if there is only one literal - if ( nLits == 1 ) - return Kit_EdgeCreate( iLit/2, iLit%2 ); // CST - // split the literals into two parts - nLits1 = nLits/2; - nLits2 = nLits - nLits1; -// nLits2 = nLits/2; -// nLits1 = nLits - nLits2; - // find the splitting point - nLits = 0; - for ( i = nStart; i < nFinish; i++ ) - if ( Kit_CubeHasLit(uCube, i) ) - { - if ( nLits == nLits1 ) - break; - nLits++; - } - // recursively construct the tree for the parts - eNode1 = Kit_SopFactorTrivialCube_rec( pFForm, uCube, nStart, i ); - eNode2 = Kit_SopFactorTrivialCube_rec( pFForm, uCube, i, nFinish ); - return Kit_GraphAddNodeAnd( pFForm, eNode1, eNode2 ); -} - -/**Function************************************************************* - - Synopsis [Factoring cube.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Edge_t Kit_SopFactorTrivialCube( Kit_Graph_t * pFForm, unsigned uCube, int nLits ) -{ - return Kit_SopFactorTrivialCube_rec( pFForm, uCube, 0, nLits ); -} - -/**Function************************************************************* - - Synopsis [Factoring SOP.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Edge_t Kit_SopFactorTrivial_rec( Kit_Graph_t * pFForm, unsigned * pCubes, int nCubes, int nLits ) -{ - Kit_Edge_t eNode1, eNode2; - int nCubes1, nCubes2; - if ( nCubes == 1 ) - return Kit_SopFactorTrivialCube_rec( pFForm, pCubes[0], 0, nLits ); - // split the cubes into two parts - nCubes1 = nCubes/2; - nCubes2 = nCubes - nCubes1; -// nCubes2 = nCubes/2; -// nCubes1 = nCubes - nCubes2; - // recursively construct the tree for the parts - eNode1 = Kit_SopFactorTrivial_rec( pFForm, pCubes, nCubes1, nLits ); - eNode2 = Kit_SopFactorTrivial_rec( pFForm, pCubes + nCubes1, nCubes2, nLits ); - return Kit_GraphAddNodeOr( pFForm, eNode1, eNode2 ); -} - -/**Function************************************************************* - - Synopsis [Factoring the cover, which has no algebraic divisors.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Edge_t Kit_SopFactorTrivial( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits ) -{ - return Kit_SopFactorTrivial_rec( pFForm, cSop->pCubes, cSop->nCubes, nLits ); -} - - -/**Function************************************************************* - - Synopsis [Testing procedure for the factoring code.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_FactorTest( unsigned * pTruth, int nVars ) -{ - Vec_Int_t * vCover, * vMemory; - Kit_Graph_t * pGraph; -// unsigned uTruthRes; - int RetValue; - - // derive SOP - vCover = Vec_IntAlloc( 0 ); - RetValue = Kit_TruthIsop( pTruth, nVars, vCover, 0 ); - assert( RetValue == 0 ); - - // derive factored form - vMemory = Vec_IntAlloc( 0 ); - pGraph = Kit_SopFactor( vCover, 0, nVars, vMemory ); -/* - // derive truth table - assert( nVars <= 5 ); - uTruthRes = Kit_GraphToTruth( pGraph ); - if ( uTruthRes != pTruth[0] ) - printf( "Verification failed!" ); -*/ - printf( "Vars = %2d. Cubes = %3d. FFNodes = %3d. FF_memory = %3d.\n", - nVars, Vec_IntSize(vCover), Kit_GraphNodeNum(pGraph), Vec_IntSize(vMemory) ); - - Vec_IntFree( vMemory ); - Vec_IntFree( vCover ); - Kit_GraphFree( pGraph ); -} - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/kit/kitGraph.c b/src/aig/kit/kitGraph.c deleted file mode 100644 index 8bc7ca91..00000000 --- a/src/aig/kit/kitGraph.c +++ /dev/null @@ -1,397 +0,0 @@ -/**CFile**************************************************************** - - FileName [kitGraph.c] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [Computation kit.] - - Synopsis [Decomposition graph representation.] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - Dec 6, 2006.] - - Revision [$Id: kitGraph.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "kit.h" - -//////////////////////////////////////////////////////////////////////// -/// DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - - Synopsis [Creates a graph with the given number of leaves.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Graph_t * Kit_GraphCreate( int nLeaves ) -{ - Kit_Graph_t * pGraph; - pGraph = ALLOC( Kit_Graph_t, 1 ); - memset( pGraph, 0, sizeof(Kit_Graph_t) ); - pGraph->nLeaves = nLeaves; - pGraph->nSize = nLeaves; - pGraph->nCap = 2 * nLeaves + 50; - pGraph->pNodes = ALLOC( Kit_Node_t, pGraph->nCap ); - memset( pGraph->pNodes, 0, sizeof(Kit_Node_t) * pGraph->nSize ); - return pGraph; -} - -/**Function************************************************************* - - Synopsis [Creates constant 0 graph.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Graph_t * Kit_GraphCreateConst0() -{ - Kit_Graph_t * pGraph; - pGraph = ALLOC( Kit_Graph_t, 1 ); - memset( pGraph, 0, sizeof(Kit_Graph_t) ); - pGraph->fConst = 1; - pGraph->eRoot.fCompl = 1; - return pGraph; -} - -/**Function************************************************************* - - Synopsis [Creates constant 1 graph.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Graph_t * Kit_GraphCreateConst1() -{ - Kit_Graph_t * pGraph; - pGraph = ALLOC( Kit_Graph_t, 1 ); - memset( pGraph, 0, sizeof(Kit_Graph_t) ); - pGraph->fConst = 1; - return pGraph; -} - -/**Function************************************************************* - - Synopsis [Creates the literal graph.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Graph_t * Kit_GraphCreateLeaf( int iLeaf, int nLeaves, int fCompl ) -{ - Kit_Graph_t * pGraph; - assert( 0 <= iLeaf && iLeaf < nLeaves ); - pGraph = Kit_GraphCreate( nLeaves ); - pGraph->eRoot.Node = iLeaf; - pGraph->eRoot.fCompl = fCompl; - return pGraph; -} - -/**Function************************************************************* - - Synopsis [Creates a graph with the given number of leaves.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_GraphFree( Kit_Graph_t * pGraph ) -{ - FREE( pGraph->pNodes ); - free( pGraph ); -} - -/**Function************************************************************* - - Synopsis [Appends a new node to the graph.] - - Description [This procedure is meant for internal use.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Node_t * Kit_GraphAppendNode( Kit_Graph_t * pGraph ) -{ - Kit_Node_t * pNode; - if ( pGraph->nSize == pGraph->nCap ) - { - pGraph->pNodes = REALLOC( Kit_Node_t, pGraph->pNodes, 2 * pGraph->nCap ); - pGraph->nCap = 2 * pGraph->nCap; - } - pNode = pGraph->pNodes + pGraph->nSize++; - memset( pNode, 0, sizeof(Kit_Node_t) ); - return pNode; -} - -/**Function************************************************************* - - Synopsis [Creates an AND node.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Edge_t Kit_GraphAddNodeAnd( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ) -{ - Kit_Node_t * pNode; - // get the new node - pNode = Kit_GraphAppendNode( pGraph ); - // set the inputs and other info - pNode->eEdge0 = eEdge0; - pNode->eEdge1 = eEdge1; - pNode->fCompl0 = eEdge0.fCompl; - pNode->fCompl1 = eEdge1.fCompl; - return Kit_EdgeCreate( pGraph->nSize - 1, 0 ); -} - -/**Function************************************************************* - - Synopsis [Creates an OR node.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Edge_t Kit_GraphAddNodeOr( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ) -{ - Kit_Node_t * pNode; - // get the new node - pNode = Kit_GraphAppendNode( pGraph ); - // set the inputs and other info - pNode->eEdge0 = eEdge0; - pNode->eEdge1 = eEdge1; - pNode->fCompl0 = eEdge0.fCompl; - pNode->fCompl1 = eEdge1.fCompl; - // make adjustments for the OR gate - pNode->fNodeOr = 1; - pNode->eEdge0.fCompl = !pNode->eEdge0.fCompl; - pNode->eEdge1.fCompl = !pNode->eEdge1.fCompl; - return Kit_EdgeCreate( pGraph->nSize - 1, 1 ); -} - -/**Function************************************************************* - - Synopsis [Creates an XOR node.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Edge_t Kit_GraphAddNodeXor( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1, int Type ) -{ - Kit_Edge_t eNode0, eNode1, eNode; - if ( Type == 0 ) - { - // derive the first AND - eEdge0.fCompl ^= 1; - eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); - eEdge0.fCompl ^= 1; - // derive the second AND - eEdge1.fCompl ^= 1; - eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); - // derive the final OR - eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); - } - else - { - // derive the first AND - eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); - // derive the second AND - eEdge0.fCompl ^= 1; - eEdge1.fCompl ^= 1; - eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); - // derive the final OR - eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); - eNode.fCompl ^= 1; - } - return eNode; -} - -/**Function************************************************************* - - Synopsis [Creates an XOR node.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Edge_t Kit_GraphAddNodeMux( Kit_Graph_t * pGraph, Kit_Edge_t eEdgeC, Kit_Edge_t eEdgeT, Kit_Edge_t eEdgeE, int Type ) -{ - Kit_Edge_t eNode0, eNode1, eNode; - if ( Type == 0 ) - { - // derive the first AND - eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT ); - // derive the second AND - eEdgeC.fCompl ^= 1; - eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE ); - // derive the final OR - eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); - } - else - { - // complement the arguments - eEdgeT.fCompl ^= 1; - eEdgeE.fCompl ^= 1; - // derive the first AND - eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT ); - // derive the second AND - eEdgeC.fCompl ^= 1; - eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE ); - // derive the final OR - eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); - eNode.fCompl ^= 1; - } - return eNode; -} - -/**Function************************************************************* - - Synopsis [Derives the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned Kit_GraphToTruth( Kit_Graph_t * pGraph ) -{ - unsigned uTruths[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; - unsigned uTruth, uTruth0, uTruth1; - Kit_Node_t * pNode; - int i; - - // sanity checks - assert( Kit_GraphLeaveNum(pGraph) >= 0 ); - assert( Kit_GraphLeaveNum(pGraph) <= pGraph->nSize ); - assert( Kit_GraphLeaveNum(pGraph) <= 5 ); - - // check for constant function - if ( Kit_GraphIsConst(pGraph) ) - return Kit_GraphIsComplement(pGraph)? 0 : ~((unsigned)0); - // check for a literal - if ( Kit_GraphIsVar(pGraph) ) - return Kit_GraphIsComplement(pGraph)? ~uTruths[Kit_GraphVarInt(pGraph)] : uTruths[Kit_GraphVarInt(pGraph)]; - - // assign the elementary variables - Kit_GraphForEachLeaf( pGraph, pNode, i ) - pNode->pFunc = (void *)uTruths[i]; - - // compute the function for each internal node - Kit_GraphForEachNode( pGraph, pNode, i ) - { - uTruth0 = (unsigned)Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc; - uTruth1 = (unsigned)Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc; - uTruth0 = pNode->eEdge0.fCompl? ~uTruth0 : uTruth0; - uTruth1 = pNode->eEdge1.fCompl? ~uTruth1 : uTruth1; - uTruth = uTruth0 & uTruth1; - pNode->pFunc = (void *)uTruth; - } - - // complement the result if necessary - return Kit_GraphIsComplement(pGraph)? ~uTruth : uTruth; -} - -/**Function************************************************************* - - Synopsis [Derives the factored form from the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars, Vec_Int_t * vMemory ) -{ - Kit_Graph_t * pGraph; - int RetValue; - // derive SOP - RetValue = Kit_TruthIsop( pTruth, nVars, vMemory, 1 ); // tried 1 and found not useful in "renode" - if ( RetValue == -1 ) - return NULL; - if ( Vec_IntSize(vMemory) > 128 ) - return NULL; -// printf( "Isop size = %d.\n", Vec_IntSize(vMemory) ); - assert( RetValue == 0 || RetValue == 1 ); - // derive factored form - pGraph = Kit_SopFactor( vMemory, RetValue, nVars, vMemory ); - return pGraph; -} - -/**Function************************************************************* - - Synopsis [Derives the maximum depth from the leaf to the root.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_GraphLeafDepth_rec( Kit_Graph_t * pGraph, Kit_Node_t * pNode, Kit_Node_t * pLeaf ) -{ - int Depth0, Depth1, Depth; - if ( pNode == pLeaf ) - return 0; - if ( Kit_GraphNodeIsVar(pGraph, pNode) ) - return -100; - Depth0 = Kit_GraphLeafDepth_rec( pGraph, Kit_GraphNodeFanin0(pGraph, pNode), pLeaf ); - Depth1 = Kit_GraphLeafDepth_rec( pGraph, Kit_GraphNodeFanin1(pGraph, pNode), pLeaf ); - Depth = KIT_MAX( Depth0, Depth1 ); - Depth = (Depth == -100) ? -100 : Depth + 1; - return Depth; -} - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - diff --git a/src/aig/kit/kitHop.c b/src/aig/kit/kitHop.c deleted file mode 100644 index f914fbab..00000000 --- a/src/aig/kit/kitHop.c +++ /dev/null @@ -1,144 +0,0 @@ -/**CFile**************************************************************** - - FileName [kitHop.c] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [Computation kit.] - - Synopsis [Procedures involving AIGs.] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - Dec 6, 2006.] - - Revision [$Id: kitHop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "kit.h" -#include "hop.h" - -//////////////////////////////////////////////////////////////////////// -/// DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - - Synopsis [Transforms the decomposition graph into the AIG.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Hop_Obj_t * Kit_GraphToHopInternal( Hop_Man_t * pMan, Kit_Graph_t * pGraph ) -{ - Kit_Node_t * pNode; - Hop_Obj_t * pAnd0, * pAnd1; - int i; - // check for constant function - if ( Kit_GraphIsConst(pGraph) ) - return Hop_NotCond( Hop_ManConst1(pMan), Kit_GraphIsComplement(pGraph) ); - // check for a literal - if ( Kit_GraphIsVar(pGraph) ) - return Hop_NotCond( Kit_GraphVar(pGraph)->pFunc, Kit_GraphIsComplement(pGraph) ); - // build the AIG nodes corresponding to the AND gates of the graph - Kit_GraphForEachNode( pGraph, pNode, i ) - { - pAnd0 = Hop_NotCond( Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl ); - pAnd1 = Hop_NotCond( Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl ); - pNode->pFunc = Hop_And( pMan, pAnd0, pAnd1 ); - } - // complement the result if necessary - return Hop_NotCond( pNode->pFunc, Kit_GraphIsComplement(pGraph) ); -} - -/**Function************************************************************* - - Synopsis [Strashes one logic node using its SOP.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Hop_Obj_t * Kit_GraphToHop( Hop_Man_t * pMan, Kit_Graph_t * pGraph ) -{ - Kit_Node_t * pNode; - int i; - // collect the fanins - Kit_GraphForEachLeaf( pGraph, pNode, i ) - pNode->pFunc = Hop_IthVar( pMan, i ); - // perform strashing - return Kit_GraphToHopInternal( pMan, pGraph ); -} - -/**Function************************************************************* - - Synopsis [Strashed onen logic nodes using its truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Hop_Obj_t * Kit_TruthToHop( Hop_Man_t * pMan, unsigned * pTruth, int nVars, Vec_Int_t * vMemory ) -{ - Hop_Obj_t * pObj; - Kit_Graph_t * pGraph; - // transform truth table into the decomposition tree - if ( vMemory == NULL ) - { - vMemory = Vec_IntAlloc( 0 ); - pGraph = Kit_TruthToGraph( pTruth, nVars, vMemory ); - Vec_IntFree( vMemory ); - } - else - pGraph = Kit_TruthToGraph( pTruth, nVars, vMemory ); - // derive the AIG for the decomposition tree - pObj = Kit_GraphToHop( pMan, pGraph ); - Kit_GraphFree( pGraph ); - return pObj; -} - -/**Function************************************************************* - - Synopsis [Strashes one logic node using its SOP.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Hop_Obj_t * Kit_CoverToHop( Hop_Man_t * pMan, Vec_Int_t * vCover, int nVars, Vec_Int_t * vMemory ) -{ - Kit_Graph_t * pGraph; - Hop_Obj_t * pFunc; - // perform factoring - pGraph = Kit_SopFactor( vCover, 0, nVars, vMemory ); - // convert graph to the AIG - pFunc = Kit_GraphToHop( pMan, pGraph ); - Kit_GraphFree( pGraph ); - return pFunc; -} - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/kit/kitIsop.c b/src/aig/kit/kitIsop.c deleted file mode 100644 index 42fae2ea..00000000 --- a/src/aig/kit/kitIsop.c +++ /dev/null @@ -1,325 +0,0 @@ -/**CFile**************************************************************** - - FileName [kitIsop.c] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [Computation kit.] - - Synopsis [ISOP computation based on Morreale's algorithm.] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - Dec 6, 2006.] - - Revision [$Id: kitIsop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "kit.h" - -//////////////////////////////////////////////////////////////////////// -/// DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -// ISOP computation fails if intermediate memory usage exceed this limit -#define KIT_ISOP_MEM_LIMIT (1<<16) - -// static procedures to compute ISOP -static unsigned * Kit_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore ); -static unsigned Kit_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore ); - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - - Synopsis [Computes ISOP from TT.] - - Description [Returns the cover in vMemory. Uses the rest of array in vMemory - as an intermediate memory storage. Returns the cover with -1 cubes, if the - the computation exceeded the memory limit (KIT_ISOP_MEM_LIMIT words of - intermediate data).] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vMemory, int fTryBoth ) -{ - Kit_Sop_t cRes, * pcRes = &cRes; - Kit_Sop_t cRes2, * pcRes2 = &cRes2; - unsigned * pResult; - int RetValue = 0; - assert( nVars >= 0 && nVars < 16 ); - // if nVars < 5, make sure it does not depend on those vars -// for ( i = nVars; i < 5; i++ ) -// assert( !Kit_TruthVarInSupport(puTruth, 5, i) ); - // prepare memory manager - Vec_IntClear( vMemory ); - Vec_IntGrow( vMemory, KIT_ISOP_MEM_LIMIT ); - // compute ISOP for the direct polarity - pResult = Kit_TruthIsop_rec( puTruth, puTruth, nVars, pcRes, vMemory ); - if ( pcRes->nCubes == -1 ) - { - vMemory->nSize = -1; - return -1; - } - assert( Kit_TruthIsEqual( puTruth, pResult, nVars ) ); - if ( pcRes->nCubes == 0 || (pcRes->nCubes == 1 && pcRes->pCubes[0] == 0) ) - { - vMemory->pArray[0] = 0; - Vec_IntShrink( vMemory, pcRes->nCubes ); - return 0; - } - if ( fTryBoth ) - { - // compute ISOP for the complemented polarity - Kit_TruthNot( puTruth, puTruth, nVars ); - pResult = Kit_TruthIsop_rec( puTruth, puTruth, nVars, pcRes2, vMemory ); - if ( pcRes2->nCubes >= 0 ) - { - assert( Kit_TruthIsEqual( puTruth, pResult, nVars ) ); - if ( pcRes->nCubes > pcRes2->nCubes ) - { - RetValue = 1; - pcRes = pcRes2; - } - } - Kit_TruthNot( puTruth, puTruth, nVars ); - } -// printf( "%d ", vMemory->nSize ); - // move the cover representation to the beginning of the memory buffer - memmove( vMemory->pArray, pcRes->pCubes, pcRes->nCubes * sizeof(unsigned) ); - Vec_IntShrink( vMemory, pcRes->nCubes ); - return RetValue; -} - -/**Function************************************************************* - - Synopsis [Computes ISOP 6 variables or more.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned * Kit_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore ) -{ - Kit_Sop_t cRes0, cRes1, cRes2; - Kit_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2; - unsigned * puRes0, * puRes1, * puRes2; - unsigned * puOn0, * puOn1, * puOnDc0, * puOnDc1, * pTemp, * pTemp0, * pTemp1; - int i, k, Var, nWords, nWordsAll; -// assert( Kit_TruthIsImply( puOn, puOnDc, nVars ) ); - // allocate room for the resulting truth table - nWordsAll = Kit_TruthWordNum( nVars ); - pTemp = Vec_IntFetch( vStore, nWordsAll ); - if ( pTemp == NULL ) - { - pcRes->nCubes = -1; - return NULL; - } - // check for constants - if ( Kit_TruthIsConst0( puOn, nVars ) ) - { - pcRes->nCubes = 0; - pcRes->pCubes = NULL; - Kit_TruthClear( pTemp, nVars ); - return pTemp; - } - if ( Kit_TruthIsConst1( puOnDc, nVars ) ) - { - pcRes->nCubes = 1; - pcRes->pCubes = Vec_IntFetch( vStore, 1 ); - if ( pcRes->pCubes == NULL ) - { - pcRes->nCubes = -1; - return NULL; - } - pcRes->pCubes[0] = 0; - Kit_TruthFill( pTemp, nVars ); - return pTemp; - } - assert( nVars > 0 ); - // find the topmost var - for ( Var = nVars-1; Var >= 0; Var-- ) - if ( Kit_TruthVarInSupport( puOn, nVars, Var ) || - Kit_TruthVarInSupport( puOnDc, nVars, Var ) ) - break; - assert( Var >= 0 ); - // consider a simple case when one-word computation can be used - if ( Var < 5 ) - { - unsigned uRes = Kit_TruthIsop5_rec( puOn[0], puOnDc[0], Var+1, pcRes, vStore ); - for ( i = 0; i < nWordsAll; i++ ) - pTemp[i] = uRes; - return pTemp; - } - assert( Var >= 5 ); - nWords = Kit_TruthWordNum( Var ); - // cofactor - puOn0 = puOn; puOn1 = puOn + nWords; - puOnDc0 = puOnDc; puOnDc1 = puOnDc + nWords; - pTemp0 = pTemp; pTemp1 = pTemp + nWords; - // solve for cofactors - Kit_TruthSharp( pTemp0, puOn0, puOnDc1, Var ); - puRes0 = Kit_TruthIsop_rec( pTemp0, puOnDc0, Var, pcRes0, vStore ); - if ( pcRes0->nCubes == -1 ) - { - pcRes->nCubes = -1; - return NULL; - } - Kit_TruthSharp( pTemp1, puOn1, puOnDc0, Var ); - puRes1 = Kit_TruthIsop_rec( pTemp1, puOnDc1, Var, pcRes1, vStore ); - if ( pcRes1->nCubes == -1 ) - { - pcRes->nCubes = -1; - return NULL; - } - Kit_TruthSharp( pTemp0, puOn0, puRes0, Var ); - Kit_TruthSharp( pTemp1, puOn1, puRes1, Var ); - Kit_TruthOr( pTemp0, pTemp0, pTemp1, Var ); - Kit_TruthAnd( pTemp1, puOnDc0, puOnDc1, Var ); - puRes2 = Kit_TruthIsop_rec( pTemp0, pTemp1, Var, pcRes2, vStore ); - if ( pcRes2->nCubes == -1 ) - { - pcRes->nCubes = -1; - return NULL; - } - // create the resulting cover - pcRes->nCubes = pcRes0->nCubes + pcRes1->nCubes + pcRes2->nCubes; - pcRes->pCubes = Vec_IntFetch( vStore, pcRes->nCubes ); - if ( pcRes->pCubes == NULL ) - { - pcRes->nCubes = -1; - return NULL; - } - k = 0; - for ( i = 0; i < pcRes0->nCubes; i++ ) - pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+0)); - for ( i = 0; i < pcRes1->nCubes; i++ ) - pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+1)); - for ( i = 0; i < pcRes2->nCubes; i++ ) - pcRes->pCubes[k++] = pcRes2->pCubes[i]; - assert( k == pcRes->nCubes ); - // create the resulting truth table - Kit_TruthOr( pTemp0, puRes0, puRes2, Var ); - Kit_TruthOr( pTemp1, puRes1, puRes2, Var ); - // copy the table if needed - nWords <<= 1; - for ( i = 1; i < nWordsAll/nWords; i++ ) - for ( k = 0; k < nWords; k++ ) - pTemp[i*nWords + k] = pTemp[k]; - // verify in the end -// assert( Kit_TruthIsImply( puOn, pTemp, nVars ) ); -// assert( Kit_TruthIsImply( pTemp, puOnDc, nVars ) ); - return pTemp; -} - -/**Function************************************************************* - - Synopsis [Computes ISOP for 5 variables or less.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned Kit_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore ) -{ - unsigned uMasks[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; - Kit_Sop_t cRes0, cRes1, cRes2; - Kit_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2; - unsigned uOn0, uOn1, uOnDc0, uOnDc1, uRes0, uRes1, uRes2; - int i, k, Var; - assert( nVars <= 5 ); - assert( (uOn & ~uOnDc) == 0 ); - if ( uOn == 0 ) - { - pcRes->nCubes = 0; - pcRes->pCubes = NULL; - return 0; - } - if ( uOnDc == 0xFFFFFFFF ) - { - pcRes->nCubes = 1; - pcRes->pCubes = Vec_IntFetch( vStore, 1 ); - if ( pcRes->pCubes == NULL ) - { - pcRes->nCubes = -1; - return 0; - } - pcRes->pCubes[0] = 0; - return 0xFFFFFFFF; - } - assert( nVars > 0 ); - // find the topmost var - for ( Var = nVars-1; Var >= 0; Var-- ) - if ( Kit_TruthVarInSupport( &uOn, 5, Var ) || - Kit_TruthVarInSupport( &uOnDc, 5, Var ) ) - break; - assert( Var >= 0 ); - // cofactor - uOn0 = uOn1 = uOn; - uOnDc0 = uOnDc1 = uOnDc; - Kit_TruthCofactor0( &uOn0, Var + 1, Var ); - Kit_TruthCofactor1( &uOn1, Var + 1, Var ); - Kit_TruthCofactor0( &uOnDc0, Var + 1, Var ); - Kit_TruthCofactor1( &uOnDc1, Var + 1, Var ); - // solve for cofactors - uRes0 = Kit_TruthIsop5_rec( uOn0 & ~uOnDc1, uOnDc0, Var, pcRes0, vStore ); - if ( pcRes0->nCubes == -1 ) - { - pcRes->nCubes = -1; - return 0; - } - uRes1 = Kit_TruthIsop5_rec( uOn1 & ~uOnDc0, uOnDc1, Var, pcRes1, vStore ); - if ( pcRes1->nCubes == -1 ) - { - pcRes->nCubes = -1; - return 0; - } - uRes2 = Kit_TruthIsop5_rec( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, Var, pcRes2, vStore ); - if ( pcRes2->nCubes == -1 ) - { - pcRes->nCubes = -1; - return 0; - } - // create the resulting cover - pcRes->nCubes = pcRes0->nCubes + pcRes1->nCubes + pcRes2->nCubes; - pcRes->pCubes = Vec_IntFetch( vStore, pcRes->nCubes ); - if ( pcRes->pCubes == NULL ) - { - pcRes->nCubes = -1; - return 0; - } - k = 0; - for ( i = 0; i < pcRes0->nCubes; i++ ) - pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+0)); - for ( i = 0; i < pcRes1->nCubes; i++ ) - pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+1)); - for ( i = 0; i < pcRes2->nCubes; i++ ) - pcRes->pCubes[k++] = pcRes2->pCubes[i]; - assert( k == pcRes->nCubes ); - // derive the final truth table - uRes2 |= (uRes0 & ~uMasks[Var]) | (uRes1 & uMasks[Var]); -// assert( (uOn & ~uRes2) == 0 ); -// assert( (uRes2 & ~uOnDc) == 0 ); - return uRes2; -} - - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/kit/kitSop.c b/src/aig/kit/kitSop.c deleted file mode 100644 index 3fa81351..00000000 --- a/src/aig/kit/kitSop.c +++ /dev/null @@ -1,570 +0,0 @@ -/**CFile**************************************************************** - - FileName [kitSop.c] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [Computation kit.] - - Synopsis [Procedures involving SOPs.] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - Dec 6, 2006.] - - Revision [$Id: kitSop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "kit.h" - -//////////////////////////////////////////////////////////////////////// -/// DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - - Synopsis [Creates SOP from the cube array.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_SopCreate( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory ) -{ - unsigned uCube; - int i; - // start the cover - cResult->nCubes = 0; - cResult->pCubes = Vec_IntFetch( vMemory, Vec_IntSize(vInput) ); - // add the cubes - Vec_IntForEachEntry( vInput, uCube, i ) - Kit_SopPushCube( cResult, uCube ); -} - -/**Function************************************************************* - - Synopsis [Creates SOP from the cube array.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_SopCreateInverse( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nLits, Vec_Int_t * vMemory ) -{ - unsigned uCube, uMask = 0; - int i, nCubes = Vec_IntSize(vInput); - // start the cover - cResult->nCubes = 0; - cResult->pCubes = Vec_IntFetch( vMemory, nCubes ); - // add the cubes -// Vec_IntForEachEntry( vInput, uCube, i ) - for ( i = 0; i < nCubes; i++ ) - { - uCube = Vec_IntEntry( vInput, i ); - uMask = ((uCube | (uCube >> 1)) & 0x55555555); - uMask |= (uMask << 1); - Kit_SopPushCube( cResult, uCube ^ uMask ); - } -} - -/**Function************************************************************* - - Synopsis [Duplicates SOP.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_SopDup( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ) -{ - unsigned uCube; - int i; - // start the cover - cResult->nCubes = 0; - cResult->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) ); - // add the cubes - Kit_SopForEachCube( cSop, uCube, i ) - Kit_SopPushCube( cResult, uCube ); -} - -/**Function************************************************************* - - Synopsis [Derives the quotient of division by literal.] - - Description [Reduces the cover to be equal to the result of - division of the given cover by the literal.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_SopDivideByLiteralQuo( Kit_Sop_t * cSop, int iLit ) -{ - unsigned uCube; - int i, k = 0; - Kit_SopForEachCube( cSop, uCube, i ) - { - if ( Kit_CubeHasLit(uCube, iLit) ) - Kit_SopWriteCube( cSop, Kit_CubeRemLit(uCube, iLit), k++ ); - } - Kit_SopShrink( cSop, k ); -} - - -/**Function************************************************************* - - Synopsis [Divides cover by one cube.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_SopDivideByCube( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ) -{ - unsigned uCube, uDiv; - int i; - // get the only cube - assert( Kit_SopCubeNum(cDiv) == 1 ); - uDiv = Kit_SopCube(cDiv, 0); - // allocate covers - vQuo->nCubes = 0; - vQuo->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) ); - vRem->nCubes = 0; - vRem->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) ); - // sort the cubes - Kit_SopForEachCube( cSop, uCube, i ) - { - if ( Kit_CubeContains( uCube, uDiv ) ) - Kit_SopPushCube( vQuo, Kit_CubeSharp(uCube, uDiv) ); - else - Kit_SopPushCube( vRem, uCube ); - } -} - -/**Function************************************************************* - - Synopsis [Divides cover by one cube.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_SopDivideInternal( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ) -{ - unsigned uCube, uDiv, uCube2, uDiv2, uQuo; - int i, i2, k, k2, nCubesRem; - assert( Kit_SopCubeNum(cSop) >= Kit_SopCubeNum(cDiv) ); - // consider special case - if ( Kit_SopCubeNum(cDiv) == 1 ) - { - Kit_SopDivideByCube( cSop, cDiv, vQuo, vRem, vMemory ); - return; - } - // allocate quotient - vQuo->nCubes = 0; - vQuo->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) / Kit_SopCubeNum(cDiv) ); - // for each cube of the cover - // it either belongs to the quotient or to the remainder - Kit_SopForEachCube( cSop, uCube, i ) - { - // skip taken cubes - if ( Kit_CubeIsMarked(uCube) ) - continue; - // find a matching cube in the divisor - Kit_SopForEachCube( cDiv, uDiv, k ) - if ( Kit_CubeContains( uCube, uDiv ) ) - break; - // the cube is not found - if ( k == Kit_SopCubeNum(cDiv) ) - continue; - // the quotient cube exists - uQuo = Kit_CubeSharp( uCube, uDiv ); - // find corresponding cubes for other cubes of the divisor - Kit_SopForEachCube( cDiv, uDiv2, k2 ) - { - if ( k2 == k ) - continue; - // find a matching cube - Kit_SopForEachCube( cSop, uCube2, i2 ) - { - // skip taken cubes - if ( Kit_CubeIsMarked(uCube2) ) - continue; - // check if the cube can be used - if ( Kit_CubeContains( uCube2, uDiv2 ) && uQuo == Kit_CubeSharp( uCube2, uDiv2 ) ) - break; - } - // the case when the cube is not found - if ( i2 == Kit_SopCubeNum(cSop) ) - break; - } - // we did not find some cubes - continue looking at other cubes - if ( k2 != Kit_SopCubeNum(cDiv) ) - continue; - // we found all cubes - add the quotient cube - Kit_SopPushCube( vQuo, uQuo ); - - // mark the first cube - Kit_SopWriteCube( cSop, Kit_CubeMark(uCube), i ); - // mark other cubes that have this quotient - Kit_SopForEachCube( cDiv, uDiv2, k2 ) - { - if ( k2 == k ) - continue; - // find a matching cube - Kit_SopForEachCube( cSop, uCube2, i2 ) - { - // skip taken cubes - if ( Kit_CubeIsMarked(uCube2) ) - continue; - // check if the cube can be used - if ( Kit_CubeContains( uCube2, uDiv2 ) && uQuo == Kit_CubeSharp( uCube2, uDiv2 ) ) - break; - } - assert( i2 < Kit_SopCubeNum(cSop) ); - // the cube is found, mark it - // (later we will add all unmarked cubes to the remainder) - Kit_SopWriteCube( cSop, Kit_CubeMark(uCube2), i2 ); - } - } - // determine the number of cubes in the remainder - nCubesRem = Kit_SopCubeNum(cSop) - Kit_SopCubeNum(vQuo) * Kit_SopCubeNum(cDiv); - // allocate remainder - vRem->nCubes = 0; - vRem->pCubes = Vec_IntFetch( vMemory, nCubesRem ); - // finally add the remaining unmarked cubes to the remainder - // and clean the marked cubes in the cover - Kit_SopForEachCube( cSop, uCube, i ) - { - if ( !Kit_CubeIsMarked(uCube) ) - { - Kit_SopPushCube( vRem, uCube ); - continue; - } - Kit_SopWriteCube( cSop, Kit_CubeUnmark(uCube), i ); - } - assert( nCubesRem == Kit_SopCubeNum(vRem) ); -} - -/**Function************************************************************* - - Synopsis [Returns the common cube.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -static inline unsigned Kit_SopCommonCube( Kit_Sop_t * cSop ) -{ - unsigned uMask, uCube; - int i; - uMask = ~(unsigned)0; - Kit_SopForEachCube( cSop, uCube, i ) - uMask &= uCube; - return uMask; -} - -/**Function************************************************************* - - Synopsis [Makes the cover cube-free.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_SopMakeCubeFree( Kit_Sop_t * cSop ) -{ - unsigned uMask, uCube; - int i; - uMask = Kit_SopCommonCube( cSop ); - if ( uMask == 0 ) - return; - // remove the common cube - Kit_SopForEachCube( cSop, uCube, i ) - Kit_SopWriteCube( cSop, Kit_CubeSharp(uCube, uMask), i ); -} - -/**Function************************************************************* - - Synopsis [Checks if the cover is cube-free.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_SopIsCubeFree( Kit_Sop_t * cSop ) -{ - return Kit_SopCommonCube( cSop ) == 0; -} - -/**Function************************************************************* - - Synopsis [Creates SOP composes of the common cube of the given SOP.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_SopCommonCubeCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ) -{ - assert( Kit_SopCubeNum(cSop) > 0 ); - cResult->nCubes = 0; - cResult->pCubes = Vec_IntFetch( vMemory, 1 ); - Kit_SopPushCube( cResult, Kit_SopCommonCube(cSop) ); -} - - -/**Function************************************************************* - - Synopsis [Find any literal that occurs more than once.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_SopAnyLiteral( Kit_Sop_t * cSop, int nLits ) -{ - unsigned uCube; - int i, k, nLitsCur; - // go through each literal - for ( i = 0; i < nLits; i++ ) - { - // go through all the cubes - nLitsCur = 0; - Kit_SopForEachCube( cSop, uCube, k ) - if ( Kit_CubeHasLit(uCube, i) ) - nLitsCur++; - if ( nLitsCur > 1 ) - return i; - } - return -1; -} - -/**Function************************************************************* - - Synopsis [Find the least often occurring literal.] - - Description [Find the least often occurring literal among those - that occur more than once.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_SopWorstLiteral( Kit_Sop_t * cSop, int nLits ) -{ - unsigned uCube; - int i, k, iMin, nLitsMin, nLitsCur; - int fUseFirst = 1; - - // go through each literal - iMin = -1; - nLitsMin = 1000000; - for ( i = 0; i < nLits; i++ ) - { - // go through all the cubes - nLitsCur = 0; - Kit_SopForEachCube( cSop, uCube, k ) - if ( Kit_CubeHasLit(uCube, i) ) - nLitsCur++; - // skip the literal that does not occur or occurs once - if ( nLitsCur < 2 ) - continue; - // check if this is the best literal - if ( fUseFirst ) - { - if ( nLitsMin > nLitsCur ) - { - nLitsMin = nLitsCur; - iMin = i; - } - } - else - { - if ( nLitsMin >= nLitsCur ) - { - nLitsMin = nLitsCur; - iMin = i; - } - } - } - if ( nLitsMin < 1000000 ) - return iMin; - return -1; -} - -/**Function************************************************************* - - Synopsis [Find the least often occurring literal.] - - Description [Find the least often occurring literal among those - that occur more than once.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_SopBestLiteral( Kit_Sop_t * cSop, int nLits, unsigned uMask ) -{ - unsigned uCube; - int i, k, iMax, nLitsMax, nLitsCur; - int fUseFirst = 1; - - // go through each literal - iMax = -1; - nLitsMax = -1; - for ( i = 0; i < nLits; i++ ) - { - if ( !Kit_CubeHasLit(uMask, i) ) - continue; - // go through all the cubes - nLitsCur = 0; - Kit_SopForEachCube( cSop, uCube, k ) - if ( Kit_CubeHasLit(uCube, i) ) - nLitsCur++; - // skip the literal that does not occur or occurs once - if ( nLitsCur < 2 ) - continue; - // check if this is the best literal - if ( fUseFirst ) - { - if ( nLitsMax < nLitsCur ) - { - nLitsMax = nLitsCur; - iMax = i; - } - } - else - { - if ( nLitsMax <= nLitsCur ) - { - nLitsMax = nLitsCur; - iMax = i; - } - } - } - if ( nLitsMax >= 0 ) - return iMax; - return -1; -} - -/**Function************************************************************* - - Synopsis [Computes a level-zero kernel.] - - Description [Modifies the cover to contain one level-zero kernel.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_SopDivisorZeroKernel_rec( Kit_Sop_t * cSop, int nLits ) -{ - int iLit; - // find any literal that occurs at least two times - iLit = Kit_SopWorstLiteral( cSop, nLits ); - if ( iLit == -1 ) - return; - // derive the cube-free quotient - Kit_SopDivideByLiteralQuo( cSop, iLit ); // the same cover - Kit_SopMakeCubeFree( cSop ); // the same cover - // call recursively - Kit_SopDivisorZeroKernel_rec( cSop, nLits ); // the same cover -} - -/**Function************************************************************* - - Synopsis [Computes the quick divisor of the cover.] - - Description [Returns 0, if there is no divisor other than trivial.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_SopDivisor( Kit_Sop_t * cResult, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ) -{ - if ( Kit_SopCubeNum(cSop) <= 1 ) - return 0; - if ( Kit_SopAnyLiteral( cSop, nLits ) == -1 ) - return 0; - // duplicate the cover - Kit_SopDup( cResult, cSop, vMemory ); - // perform the kerneling - Kit_SopDivisorZeroKernel_rec( cResult, nLits ); - assert( Kit_SopCubeNum(cResult) > 0 ); - return 1; -} - - -/**Function************************************************************* - - Synopsis [Create the one-literal cover with the best literal from cSop.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_SopBestLiteralCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, unsigned uCube, int nLits, Vec_Int_t * vMemory ) -{ - int iLitBest; - // get the best literal - iLitBest = Kit_SopBestLiteral( cSop, nLits, uCube ); - // start the cover - cResult->nCubes = 0; - cResult->pCubes = Vec_IntFetch( vMemory, 1 ); - // set the cube - Kit_SopPushCube( cResult, Kit_CubeSetLit(0, iLitBest) ); -} - - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/kit/kitTruth.c b/src/aig/kit/kitTruth.c deleted file mode 100644 index 5360ad7f..00000000 --- a/src/aig/kit/kitTruth.c +++ /dev/null @@ -1,1729 +0,0 @@ -/**CFile**************************************************************** - - FileName [kitTruth.c] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [Computation kit.] - - Synopsis [Procedures involving truth tables.] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - Dec 6, 2006.] - - Revision [$Id: kitTruth.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "kit.h" - -//////////////////////////////////////////////////////////////////////// -/// DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -static unsigned s_VarMasks[5][2] = { - { 0x33333333, 0xAAAAAAAA }, - { 0x55555555, 0xCCCCCCCC }, - { 0x0F0F0F0F, 0xF0F0F0F0 }, - { 0x00FF00FF, 0xFF00FF00 }, - { 0x0000FFFF, 0xFFFF0000 } -}; - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - - Synopsis [Swaps two adjacent variables in the truth table.] - - Description [Swaps var number Start and var number Start+1 (0-based numbers). - The input truth table is pIn. The output truth table is pOut.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int iVar ) -{ - static unsigned PMasks[4][3] = { - { 0x99999999, 0x22222222, 0x44444444 }, - { 0xC3C3C3C3, 0x0C0C0C0C, 0x30303030 }, - { 0xF00FF00F, 0x00F000F0, 0x0F000F00 }, - { 0xFF0000FF, 0x0000FF00, 0x00FF0000 } - }; - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step, Shift; - - assert( iVar < nVars - 1 ); - if ( iVar < 4 ) - { - Shift = (1 << iVar); - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & PMasks[iVar][0]) | ((pIn[i] & PMasks[iVar][1]) << Shift) | ((pIn[i] & PMasks[iVar][2]) >> Shift); - } - else if ( iVar > 4 ) - { - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 4*Step ) - { - for ( i = 0; i < Step; i++ ) - pOut[i] = pIn[i]; - for ( i = 0; i < Step; i++ ) - pOut[Step+i] = pIn[2*Step+i]; - for ( i = 0; i < Step; i++ ) - pOut[2*Step+i] = pIn[Step+i]; - for ( i = 0; i < Step; i++ ) - pOut[3*Step+i] = pIn[3*Step+i]; - pIn += 4*Step; - pOut += 4*Step; - } - } - else // if ( iVar == 4 ) - { - for ( i = 0; i < nWords; i += 2 ) - { - pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16); - pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16); - } - } -} - -/**Function************************************************************* - - Synopsis [Swaps two adjacent variables in the truth table.] - - Description [Swaps var number Start and var number Start+1 (0-based numbers). - The input truth table is pIn. The output truth table is pOut.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthSwapAdjacentVars2( unsigned * pIn, unsigned * pOut, int nVars, int Start ) -{ - int nWords = (nVars <= 5)? 1 : (1 << (nVars-5)); - int i, k, Step; - - assert( Start < nVars - 1 ); - switch ( Start ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0x99999999) | ((pIn[i] & 0x22222222) << 1) | ((pIn[i] & 0x44444444) >> 1); - return; - case 1: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0xC3C3C3C3) | ((pIn[i] & 0x0C0C0C0C) << 2) | ((pIn[i] & 0x30303030) >> 2); - return; - case 2: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0xF00FF00F) | ((pIn[i] & 0x00F000F0) << 4) | ((pIn[i] & 0x0F000F00) >> 4); - return; - case 3: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0xFF0000FF) | ((pIn[i] & 0x0000FF00) << 8) | ((pIn[i] & 0x00FF0000) >> 8); - return; - case 4: - for ( i = 0; i < nWords; i += 2 ) - { - pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16); - pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16); - } - return; - default: - Step = (1 << (Start - 5)); - for ( k = 0; k < nWords; k += 4*Step ) - { - for ( i = 0; i < Step; i++ ) - pOut[i] = pIn[i]; - for ( i = 0; i < Step; i++ ) - pOut[Step+i] = pIn[2*Step+i]; - for ( i = 0; i < Step; i++ ) - pOut[2*Step+i] = pIn[Step+i]; - for ( i = 0; i < Step; i++ ) - pOut[3*Step+i] = pIn[3*Step+i]; - pIn += 4*Step; - pOut += 4*Step; - } - return; - } -} - -/**Function************************************************************* - - Synopsis [Expands the truth table according to the phase.] - - Description [The input and output truth tables are in pIn/pOut. The current number - of variables is nVars. The total number of variables in nVarsAll. The last argument - (Phase) contains shows where the variables should go.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn ) -{ - unsigned * pTemp; - int i, k, Var = nVars - 1, Counter = 0; - for ( i = nVarsAll - 1; i >= 0; i-- ) - if ( Phase & (1 << i) ) - { - for ( k = Var; k < i; k++ ) - { - Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k ); - pTemp = pIn; pIn = pOut; pOut = pTemp; - Counter++; - } - Var--; - } - assert( Var == -1 ); - // swap if it was moved an even number of times - if ( fReturnIn ^ !(Counter & 1) ) - Kit_TruthCopy( pOut, pIn, nVarsAll ); -} - -/**Function************************************************************* - - Synopsis [Shrinks the truth table according to the phase.] - - Description [The input and output truth tables are in pIn/pOut. The current number - of variables is nVars. The total number of variables in nVarsAll. The last argument - (Phase) contains shows what variables should remain.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn ) -{ - unsigned * pTemp; - int i, k, Var = 0, Counter = 0; - for ( i = 0; i < nVarsAll; i++ ) - if ( Phase & (1 << i) ) - { - for ( k = i-1; k >= Var; k-- ) - { - Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k ); - pTemp = pIn; pIn = pOut; pOut = pTemp; - Counter++; - } - Var++; - } - assert( Var == nVars ); - // swap if it was moved an even number of times - if ( fReturnIn ^ !(Counter & 1) ) - Kit_TruthCopy( pOut, pIn, nVarsAll ); -} - - -/**Function************************************************************* - - Synopsis [Returns 1 if TT depends on the given variable.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step; - - assert( iVar < nVars ); - switch ( iVar ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - if ( (pTruth[i] & 0x55555555) != ((pTruth[i] & 0xAAAAAAAA) >> 1) ) - return 1; - return 0; - case 1: - for ( i = 0; i < nWords; i++ ) - if ( (pTruth[i] & 0x33333333) != ((pTruth[i] & 0xCCCCCCCC) >> 2) ) - return 1; - return 0; - case 2: - for ( i = 0; i < nWords; i++ ) - if ( (pTruth[i] & 0x0F0F0F0F) != ((pTruth[i] & 0xF0F0F0F0) >> 4) ) - return 1; - return 0; - case 3: - for ( i = 0; i < nWords; i++ ) - if ( (pTruth[i] & 0x00FF00FF) != ((pTruth[i] & 0xFF00FF00) >> 8) ) - return 1; - return 0; - case 4: - for ( i = 0; i < nWords; i++ ) - if ( (pTruth[i] & 0x0000FFFF) != ((pTruth[i] & 0xFFFF0000) >> 16) ) - return 1; - return 0; - default: - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 2*Step ) - { - for ( i = 0; i < Step; i++ ) - if ( pTruth[i] != pTruth[Step+i] ) - return 1; - pTruth += 2*Step; - } - return 0; - } -} - -/**Function************************************************************* - - Synopsis [Returns the number of support vars.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_TruthSupportSize( unsigned * pTruth, int nVars ) -{ - int i, Counter = 0; - for ( i = 0; i < nVars; i++ ) - Counter += Kit_TruthVarInSupport( pTruth, nVars, i ); - return Counter; -} - -/**Function************************************************************* - - Synopsis [Returns support of the function.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned Kit_TruthSupport( unsigned * pTruth, int nVars ) -{ - int i, Support = 0; - for ( i = 0; i < nVars; i++ ) - if ( Kit_TruthVarInSupport( pTruth, nVars, i ) ) - Support |= (1 << i); - return Support; -} - - - -/**Function************************************************************* - - Synopsis [Computes negative cofactor of the function.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthCofactor0( unsigned * pTruth, int nVars, int iVar ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step; - - assert( iVar < nVars ); - switch ( iVar ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = (pTruth[i] & 0x55555555) | ((pTruth[i] & 0x55555555) << 1); - return; - case 1: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = (pTruth[i] & 0x33333333) | ((pTruth[i] & 0x33333333) << 2); - return; - case 2: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = (pTruth[i] & 0x0F0F0F0F) | ((pTruth[i] & 0x0F0F0F0F) << 4); - return; - case 3: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = (pTruth[i] & 0x00FF00FF) | ((pTruth[i] & 0x00FF00FF) << 8); - return; - case 4: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = (pTruth[i] & 0x0000FFFF) | ((pTruth[i] & 0x0000FFFF) << 16); - return; - default: - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 2*Step ) - { - for ( i = 0; i < Step; i++ ) - pTruth[Step+i] = pTruth[i]; - pTruth += 2*Step; - } - return; - } -} - -/**Function************************************************************* - - Synopsis [Computes positive cofactor of the function.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthCofactor1( unsigned * pTruth, int nVars, int iVar ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step; - - assert( iVar < nVars ); - switch ( iVar ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = (pTruth[i] & 0xAAAAAAAA) | ((pTruth[i] & 0xAAAAAAAA) >> 1); - return; - case 1: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = (pTruth[i] & 0xCCCCCCCC) | ((pTruth[i] & 0xCCCCCCCC) >> 2); - return; - case 2: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = (pTruth[i] & 0xF0F0F0F0) | ((pTruth[i] & 0xF0F0F0F0) >> 4); - return; - case 3: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = (pTruth[i] & 0xFF00FF00) | ((pTruth[i] & 0xFF00FF00) >> 8); - return; - case 4: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = (pTruth[i] & 0xFFFF0000) | ((pTruth[i] & 0xFFFF0000) >> 16); - return; - default: - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 2*Step ) - { - for ( i = 0; i < Step; i++ ) - pTruth[i] = pTruth[Step+i]; - pTruth += 2*Step; - } - return; - } -} - -/**Function************************************************************* - - Synopsis [Computes positive cofactor of the function.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthCofactor0New( unsigned * pOut, unsigned * pIn, int nVars, int iVar ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step; - - assert( iVar < nVars ); - switch ( iVar ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0x55555555) | ((pIn[i] & 0x55555555) << 1); - return; - case 1: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0x33333333) | ((pIn[i] & 0x33333333) << 2); - return; - case 2: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0x0F0F0F0F) | ((pIn[i] & 0x0F0F0F0F) << 4); - return; - case 3: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0x00FF00FF) | ((pIn[i] & 0x00FF00FF) << 8); - return; - case 4: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i] & 0x0000FFFF) << 16); - return; - default: - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 2*Step ) - { - for ( i = 0; i < Step; i++ ) - pOut[i] = pOut[Step+i] = pIn[i]; - pIn += 2*Step; - pOut += 2*Step; - } - return; - } -} - -/**Function************************************************************* - - Synopsis [Computes positive cofactor of the function.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthCofactor1New( unsigned * pOut, unsigned * pIn, int nVars, int iVar ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step; - - assert( iVar < nVars ); - switch ( iVar ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0xAAAAAAAA) | ((pIn[i] & 0xAAAAAAAA) >> 1); - return; - case 1: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0xCCCCCCCC) | ((pIn[i] & 0xCCCCCCCC) >> 2); - return; - case 2: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0xF0F0F0F0) | ((pIn[i] & 0xF0F0F0F0) >> 4); - return; - case 3: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0xFF00FF00) | ((pIn[i] & 0xFF00FF00) >> 8); - return; - case 4: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pIn[i] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16); - return; - default: - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 2*Step ) - { - for ( i = 0; i < Step; i++ ) - pOut[i] = pOut[Step+i] = pIn[Step+i]; - pIn += 2*Step; - pOut += 2*Step; - } - return; - } -} - - -/**Function************************************************************* - - Synopsis [Existentially quantifies the variable.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthExist( unsigned * pTruth, int nVars, int iVar ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step; - - assert( iVar < nVars ); - switch ( iVar ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - pTruth[i] |= ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1); - return; - case 1: - for ( i = 0; i < nWords; i++ ) - pTruth[i] |= ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2); - return; - case 2: - for ( i = 0; i < nWords; i++ ) - pTruth[i] |= ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4); - return; - case 3: - for ( i = 0; i < nWords; i++ ) - pTruth[i] |= ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8); - return; - case 4: - for ( i = 0; i < nWords; i++ ) - pTruth[i] |= ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16); - return; - default: - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 2*Step ) - { - for ( i = 0; i < Step; i++ ) - { - pTruth[i] |= pTruth[Step+i]; - pTruth[Step+i] = pTruth[i]; - } - pTruth += 2*Step; - } - return; - } -} - -/**Function************************************************************* - - Synopsis [Existentially quantifies the variable.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthExistNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step; - - assert( iVar < nVars ); - switch ( iVar ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] | ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1); - return; - case 1: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] | ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2); - return; - case 2: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] | ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4); - return; - case 3: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] | ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8); - return; - case 4: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] | ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16); - return; - default: - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 2*Step ) - { - for ( i = 0; i < Step; i++ ) - { - pRes[i] = pTruth[i] | pTruth[Step+i]; - pRes[Step+i] = pRes[i]; - } - pRes += 2*Step; - pTruth += 2*Step; - } - return; - } -} - -/**Function************************************************************* - - Synopsis [Existantially quantifies the set of variables.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthExistSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask ) -{ - int v; - Kit_TruthCopy( pRes, pTruth, nVars ); - for ( v = 0; v < nVars; v++ ) - if ( uMask & (1 << v) ) - Kit_TruthExist( pRes, nVars, v ); -} - -/**Function************************************************************* - - Synopsis [Unversally quantifies the variable.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthForall( unsigned * pTruth, int nVars, int iVar ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step; - - assert( iVar < nVars ); - switch ( iVar ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - pTruth[i] &= ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1); - return; - case 1: - for ( i = 0; i < nWords; i++ ) - pTruth[i] &= ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2); - return; - case 2: - for ( i = 0; i < nWords; i++ ) - pTruth[i] &= ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4); - return; - case 3: - for ( i = 0; i < nWords; i++ ) - pTruth[i] &= ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8); - return; - case 4: - for ( i = 0; i < nWords; i++ ) - pTruth[i] &= ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16); - return; - default: - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 2*Step ) - { - for ( i = 0; i < Step; i++ ) - { - pTruth[i] &= pTruth[Step+i]; - pTruth[Step+i] = pTruth[i]; - } - pTruth += 2*Step; - } - return; - } -} - -/**Function************************************************************* - - Synopsis [Universally quantifies the variable.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthForallNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step; - - assert( iVar < nVars ); - switch ( iVar ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] & (((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1)); - return; - case 1: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] & (((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2)); - return; - case 2: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] & (((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4)); - return; - case 3: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] & (((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8)); - return; - case 4: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] & (((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16)); - return; - default: - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 2*Step ) - { - for ( i = 0; i < Step; i++ ) - { - pRes[i] = pTruth[i] & pTruth[Step+i]; - pRes[Step+i] = pRes[i]; - } - pRes += 2*Step; - pTruth += 2*Step; - } - return; - } -} - -/**Function************************************************************* - - Synopsis [Universally quantifies the variable.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthUniqueNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step; - - assert( iVar < nVars ); - switch ( iVar ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1)); - return; - case 1: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2)); - return; - case 2: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4)); - return; - case 3: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8)); - return; - case 4: - for ( i = 0; i < nWords; i++ ) - pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16)); - return; - default: - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 2*Step ) - { - for ( i = 0; i < Step; i++ ) - { - pRes[i] = pTruth[i] ^ pTruth[Step+i]; - pRes[Step+i] = pRes[i]; - } - pRes += 2*Step; - pTruth += 2*Step; - } - return; - } -} - -/**Function************************************************************* - - Synopsis [Universally quantifies the set of variables.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthForallSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask ) -{ - int v; - Kit_TruthCopy( pRes, pTruth, nVars ); - for ( v = 0; v < nVars; v++ ) - if ( uMask & (1 << v) ) - Kit_TruthForall( pRes, nVars, v ); -} - - -/**Function************************************************************* - - Synopsis [Multiplexes two functions with the given variable.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthMuxVar( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step; - - assert( iVar < nVars ); - switch ( iVar ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pCof0[i] & 0x55555555) | (pCof1[i] & 0xAAAAAAAA); - return; - case 1: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pCof0[i] & 0x33333333) | (pCof1[i] & 0xCCCCCCCC); - return; - case 2: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pCof0[i] & 0x0F0F0F0F) | (pCof1[i] & 0xF0F0F0F0); - return; - case 3: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pCof0[i] & 0x00FF00FF) | (pCof1[i] & 0xFF00FF00); - return; - case 4: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (pCof0[i] & 0x0000FFFF) | (pCof1[i] & 0xFFFF0000); - return; - default: - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 2*Step ) - { - for ( i = 0; i < Step; i++ ) - { - pOut[i] = pCof0[i]; - pOut[Step+i] = pCof1[Step+i]; - } - pOut += 2*Step; - pCof0 += 2*Step; - pCof1 += 2*Step; - } - return; - } -} - -/**Function************************************************************* - - Synopsis [Multiplexes two functions with the given variable.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthMuxVarPhase( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar, int fCompl0 ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step; - - if ( fCompl0 == 0 ) - { - Kit_TruthMuxVar( pOut, pCof0, pCof1, nVars, iVar ); - return; - } - - assert( iVar < nVars ); - switch ( iVar ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (~pCof0[i] & 0x55555555) | (pCof1[i] & 0xAAAAAAAA); - return; - case 1: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (~pCof0[i] & 0x33333333) | (pCof1[i] & 0xCCCCCCCC); - return; - case 2: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (~pCof0[i] & 0x0F0F0F0F) | (pCof1[i] & 0xF0F0F0F0); - return; - case 3: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (~pCof0[i] & 0x00FF00FF) | (pCof1[i] & 0xFF00FF00); - return; - case 4: - for ( i = 0; i < nWords; i++ ) - pOut[i] = (~pCof0[i] & 0x0000FFFF) | (pCof1[i] & 0xFFFF0000); - return; - default: - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 2*Step ) - { - for ( i = 0; i < Step; i++ ) - { - pOut[i] = ~pCof0[i]; - pOut[Step+i] = pCof1[Step+i]; - } - pOut += 2*Step; - pCof0 += 2*Step; - pCof1 += 2*Step; - } - return; - } -} - -/**Function************************************************************* - - Synopsis [Checks symmetry of two variables.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_TruthVarsSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1 ) -{ - static unsigned uTemp0[16], uTemp1[16]; - assert( nVars <= 9 ); - // compute Cof01 - Kit_TruthCopy( uTemp0, pTruth, nVars ); - Kit_TruthCofactor0( uTemp0, nVars, iVar0 ); - Kit_TruthCofactor1( uTemp0, nVars, iVar1 ); - // compute Cof10 - Kit_TruthCopy( uTemp1, pTruth, nVars ); - Kit_TruthCofactor1( uTemp1, nVars, iVar0 ); - Kit_TruthCofactor0( uTemp1, nVars, iVar1 ); - // compare - return Kit_TruthIsEqual( uTemp0, uTemp1, nVars ); -} - -/**Function************************************************************* - - Synopsis [Checks antisymmetry of two variables.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_TruthVarsAntiSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1 ) -{ - static unsigned uTemp0[16], uTemp1[16]; - assert( nVars <= 9 ); - // compute Cof00 - Kit_TruthCopy( uTemp0, pTruth, nVars ); - Kit_TruthCofactor0( uTemp0, nVars, iVar0 ); - Kit_TruthCofactor0( uTemp0, nVars, iVar1 ); - // compute Cof11 - Kit_TruthCopy( uTemp1, pTruth, nVars ); - Kit_TruthCofactor1( uTemp1, nVars, iVar0 ); - Kit_TruthCofactor1( uTemp1, nVars, iVar1 ); - // compare - return Kit_TruthIsEqual( uTemp0, uTemp1, nVars ); -} - -/**Function************************************************************* - - Synopsis [Changes phase of the function w.r.t. one variable.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthChangePhase( unsigned * pTruth, int nVars, int iVar ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Step; - unsigned Temp; - - assert( iVar < nVars ); - switch ( iVar ) - { - case 0: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = ((pTruth[i] & 0x55555555) << 1) | ((pTruth[i] & 0xAAAAAAAA) >> 1); - return; - case 1: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = ((pTruth[i] & 0x33333333) << 2) | ((pTruth[i] & 0xCCCCCCCC) >> 2); - return; - case 2: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = ((pTruth[i] & 0x0F0F0F0F) << 4) | ((pTruth[i] & 0xF0F0F0F0) >> 4); - return; - case 3: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = ((pTruth[i] & 0x00FF00FF) << 8) | ((pTruth[i] & 0xFF00FF00) >> 8); - return; - case 4: - for ( i = 0; i < nWords; i++ ) - pTruth[i] = ((pTruth[i] & 0x0000FFFF) << 16) | ((pTruth[i] & 0xFFFF0000) >> 16); - return; - default: - Step = (1 << (iVar - 5)); - for ( k = 0; k < nWords; k += 2*Step ) - { - for ( i = 0; i < Step; i++ ) - { - Temp = pTruth[i]; - pTruth[i] = pTruth[Step+i]; - pTruth[Step+i] = Temp; - } - pTruth += 2*Step; - } - return; - } -} - -/**Function************************************************************* - - Synopsis [Computes minimum overlap in supports of cofactors.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_TruthMinCofSuppOverlap( unsigned * pTruth, int nVars, int * pVarMin ) -{ - static unsigned uCofactor[16]; - int i, ValueCur, ValueMin, VarMin; - unsigned uSupp0, uSupp1; - int nVars0, nVars1; - assert( nVars <= 9 ); - ValueMin = 32; - VarMin = -1; - for ( i = 0; i < nVars; i++ ) - { - // get negative cofactor - Kit_TruthCopy( uCofactor, pTruth, nVars ); - Kit_TruthCofactor0( uCofactor, nVars, i ); - uSupp0 = Kit_TruthSupport( uCofactor, nVars ); - nVars0 = Kit_WordCountOnes( uSupp0 ); -//Kit_PrintBinary( stdout, &uSupp0, 8 ); printf( "\n" ); - // get positive cofactor - Kit_TruthCopy( uCofactor, pTruth, nVars ); - Kit_TruthCofactor1( uCofactor, nVars, i ); - uSupp1 = Kit_TruthSupport( uCofactor, nVars ); - nVars1 = Kit_WordCountOnes( uSupp1 ); -//Kit_PrintBinary( stdout, &uSupp1, 8 ); printf( "\n" ); - // get the number of common vars - ValueCur = Kit_WordCountOnes( uSupp0 & uSupp1 ); - if ( ValueMin > ValueCur && nVars0 <= 5 && nVars1 <= 5 ) - { - ValueMin = ValueCur; - VarMin = i; - } - if ( ValueMin == 0 ) - break; - } - if ( pVarMin ) - *pVarMin = VarMin; - return ValueMin; -} - - -/**Function************************************************************* - - Synopsis [Find the best cofactoring variable.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_TruthBestCofVar( unsigned * pTruth, int nVars, unsigned * pCof0, unsigned * pCof1 ) -{ - int i, iBestVar, nSuppSizeCur0, nSuppSizeCur1, nSuppSizeCur, nSuppSizeMin; - if ( Kit_TruthIsConst0(pTruth, nVars) || Kit_TruthIsConst1(pTruth, nVars) ) - return -1; - // iterate through variables - iBestVar = -1; - nSuppSizeMin = KIT_INFINITY; - for ( i = 0; i < nVars; i++ ) - { - // cofactor the functiona and get support sizes - Kit_TruthCofactor0New( pCof0, pTruth, nVars, i ); - Kit_TruthCofactor1New( pCof1, pTruth, nVars, i ); - nSuppSizeCur0 = Kit_TruthSupportSize( pCof0, nVars ); - nSuppSizeCur1 = Kit_TruthSupportSize( pCof1, nVars ); - nSuppSizeCur = nSuppSizeCur0 + nSuppSizeCur1; - // compare this variable with other variables - if ( nSuppSizeMin > nSuppSizeCur ) - { - nSuppSizeMin = nSuppSizeCur; - iBestVar = i; - } - } - assert( iBestVar != -1 ); - // cofactor w.r.t. this variable - Kit_TruthCofactor0New( pCof0, pTruth, nVars, iBestVar ); - Kit_TruthCofactor1New( pCof1, pTruth, nVars, iBestVar ); - return iBestVar; -} - - -/**Function************************************************************* - - Synopsis [Counts the number of 1's in each cofactor.] - - Description [The resulting numbers are stored in the array of shorts, - whose length is 2*nVars. The number of 1's is counted in a different - space than the original function. For example, if the function depends - on k variables, the cofactors are assumed to depend on k-1 variables.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthCountOnesInCofs( unsigned * pTruth, int nVars, short * pStore ) -{ - int nWords = Kit_TruthWordNum( nVars ); - int i, k, Counter; - memset( pStore, 0, sizeof(short) * 2 * nVars ); - if ( nVars <= 5 ) - { - if ( nVars > 0 ) - { - pStore[2*0+0] = Kit_WordCountOnes( pTruth[0] & 0x55555555 ); - pStore[2*0+1] = Kit_WordCountOnes( pTruth[0] & 0xAAAAAAAA ); - } - if ( nVars > 1 ) - { - pStore[2*1+0] = Kit_WordCountOnes( pTruth[0] & 0x33333333 ); - pStore[2*1+1] = Kit_WordCountOnes( pTruth[0] & 0xCCCCCCCC ); - } - if ( nVars > 2 ) - { - pStore[2*2+0] = Kit_WordCountOnes( pTruth[0] & 0x0F0F0F0F ); - pStore[2*2+1] = Kit_WordCountOnes( pTruth[0] & 0xF0F0F0F0 ); - } - if ( nVars > 3 ) - { - pStore[2*3+0] = Kit_WordCountOnes( pTruth[0] & 0x00FF00FF ); - pStore[2*3+1] = Kit_WordCountOnes( pTruth[0] & 0xFF00FF00 ); - } - if ( nVars > 4 ) - { - pStore[2*4+0] = Kit_WordCountOnes( pTruth[0] & 0x0000FFFF ); - pStore[2*4+1] = Kit_WordCountOnes( pTruth[0] & 0xFFFF0000 ); - } - return; - } - // nVars >= 6 - // count 1's for all other variables - for ( k = 0; k < nWords; k++ ) - { - Counter = Kit_WordCountOnes( pTruth[k] ); - for ( i = 5; i < nVars; i++ ) - if ( k & (1 << (i-5)) ) - pStore[2*i+1] += Counter; - else - pStore[2*i+0] += Counter; - } - // count 1's for the first five variables - for ( k = 0; k < nWords/2; k++ ) - { - pStore[2*0+0] += Kit_WordCountOnes( (pTruth[0] & 0x55555555) | ((pTruth[1] & 0x55555555) << 1) ); - pStore[2*0+1] += Kit_WordCountOnes( (pTruth[0] & 0xAAAAAAAA) | ((pTruth[1] & 0xAAAAAAAA) >> 1) ); - pStore[2*1+0] += Kit_WordCountOnes( (pTruth[0] & 0x33333333) | ((pTruth[1] & 0x33333333) << 2) ); - pStore[2*1+1] += Kit_WordCountOnes( (pTruth[0] & 0xCCCCCCCC) | ((pTruth[1] & 0xCCCCCCCC) >> 2) ); - pStore[2*2+0] += Kit_WordCountOnes( (pTruth[0] & 0x0F0F0F0F) | ((pTruth[1] & 0x0F0F0F0F) << 4) ); - pStore[2*2+1] += Kit_WordCountOnes( (pTruth[0] & 0xF0F0F0F0) | ((pTruth[1] & 0xF0F0F0F0) >> 4) ); - pStore[2*3+0] += Kit_WordCountOnes( (pTruth[0] & 0x00FF00FF) | ((pTruth[1] & 0x00FF00FF) << 8) ); - pStore[2*3+1] += Kit_WordCountOnes( (pTruth[0] & 0xFF00FF00) | ((pTruth[1] & 0xFF00FF00) >> 8) ); - pStore[2*4+0] += Kit_WordCountOnes( (pTruth[0] & 0x0000FFFF) | ((pTruth[1] & 0x0000FFFF) << 16) ); - pStore[2*4+1] += Kit_WordCountOnes( (pTruth[0] & 0xFFFF0000) | ((pTruth[1] & 0xFFFF0000) >> 16) ); - pTruth += 2; - } -} - -/**Function************************************************************* - - Synopsis [Counts the number of 1's in each cofactor.] - - Description [Verifies the above procedure.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthCountOnesInCofsSlow( unsigned * pTruth, int nVars, short * pStore, unsigned * pAux ) -{ - int i; - for ( i = 0; i < nVars; i++ ) - { - Kit_TruthCofactor0New( pAux, pTruth, nVars, i ); - pStore[2*i+0] = Kit_TruthCountOnes( pAux, nVars ) / 2; - Kit_TruthCofactor1New( pAux, pTruth, nVars, i ); - pStore[2*i+1] = Kit_TruthCountOnes( pAux, nVars ) / 2; - } -} - -/**Function************************************************************* - - Synopsis [Canonicize the truth table.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned Kit_TruthHash( unsigned * pIn, int nWords ) -{ - // The 1,024 smallest prime numbers used to compute the hash value - // http://www.math.utah.edu/~alfeld/math/primelist.html - static int HashPrimes[1024] = { 2, 3, 5, - 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, - 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, - 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, - 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, - 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, - 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, - 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, - 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, - 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, - 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, - 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, - 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, - 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, - 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, - 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, - 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, - 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, - 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, - 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, - 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, - 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, - 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, - 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, - 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, - 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, - 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, - 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, - 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, - 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, - 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, - 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, - 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, - 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, - 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, - 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, - 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, - 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, - 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, - 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, - 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, - 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, - 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, - 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, - 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, - 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, - 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, - 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, - 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, - 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, - 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, - 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, - 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, - 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, - 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, - 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, - 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, - 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, - 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, - 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, - 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, - 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, - 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, - 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, - 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, - 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, - 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, - 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, - 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, - 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, - 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, - 8147, 8161 }; - int i; - unsigned uHashKey; - assert( nWords <= 1024 ); - uHashKey = 0; - for ( i = 0; i < nWords; i++ ) - uHashKey ^= HashPrimes[i] * pIn[i]; - return uHashKey; -} - - -/**Function************************************************************* - - Synopsis [Canonicize the truth table.] - - Description [Returns the phase. ] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -unsigned Kit_TruthSemiCanonicize( unsigned * pInOut, unsigned * pAux, int nVars, char * pCanonPerm, short * pStore ) -{ -// short pStore2[32]; - unsigned * pIn = pInOut, * pOut = pAux, * pTemp; - int nWords = Kit_TruthWordNum( nVars ); - int i, Temp, fChange, Counter;//, nOnes;//, k, j, w, Limit; - unsigned uCanonPhase; - - // canonicize output - uCanonPhase = 0; -/* - nOnes = Kit_TruthCountOnes(pIn, nVars); - if ( (nOnes > nWords * 16) )//|| ((nOnes == nWords * 16) && (pIn[0] & 1)) ) - { - uCanonPhase |= (1 << nVars); - Kit_TruthNot( pIn, pIn, nVars ); - } -*/ - // collect the minterm counts - Kit_TruthCountOnesInCofs( pIn, nVars, pStore ); -// Kit_TruthCountOnesInCofsSlow( pIn, nVars, pStore2, pAux ); -// for ( i = 0; i < 2*nVars; i++ ) -// { -// assert( pStore[i] == pStore2[i] ); -// } - - // canonicize phase - for ( i = 0; i < nVars; i++ ) - { - if ( pStore[2*i+0] >= pStore[2*i+1] ) - continue; - uCanonPhase |= (1 << i); - Temp = pStore[2*i+0]; - pStore[2*i+0] = pStore[2*i+1]; - pStore[2*i+1] = Temp; - Kit_TruthChangePhase( pIn, nVars, i ); - } - -// Kit_PrintHexadecimal( stdout, pIn, nVars ); -// printf( "\n" ); - - // permute - Counter = 0; - do { - fChange = 0; - for ( i = 0; i < nVars-1; i++ ) - { - if ( pStore[2*i] >= pStore[2*(i+1)] ) - continue; - Counter++; - fChange = 1; - - Temp = pCanonPerm[i]; - pCanonPerm[i] = pCanonPerm[i+1]; - pCanonPerm[i+1] = Temp; - - Temp = pStore[2*i]; - pStore[2*i] = pStore[2*(i+1)]; - pStore[2*(i+1)] = Temp; - - Temp = pStore[2*i+1]; - pStore[2*i+1] = pStore[2*(i+1)+1]; - pStore[2*(i+1)+1] = Temp; - - // if the polarity of variables is different, swap them - if ( ((uCanonPhase & (1 << i)) > 0) != ((uCanonPhase & (1 << (i+1))) > 0) ) - { - uCanonPhase ^= (1 << i); - uCanonPhase ^= (1 << (i+1)); - } - - Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, i ); - pTemp = pIn; pIn = pOut; pOut = pTemp; - } - } while ( fChange ); - -/* - Extra_PrintBinary( stdout, &uCanonPhase, nVars+1 ); printf( " : " ); - for ( i = 0; i < nVars; i++ ) - printf( "%d=%d/%d ", pCanonPerm[i], pStore[2*i], pStore[2*i+1] ); - printf( " C = %d\n", Counter ); - Extra_PrintHexadecimal( stdout, pIn, nVars ); - printf( "\n" ); -*/ - -/* - // process symmetric variable groups - uSymms = 0; - for ( i = 0; i < nVars-1; i++ ) - { - if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric - continue; - if ( pStore[2*i] != pStore[2*i+1] ) - continue; - if ( Kit_TruthVarsSymm( pIn, nVars, i, i+1 ) ) - continue; - if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, i+1 ) ) - Kit_TruthChangePhase( pIn, nVars, i+1 ); - } -*/ - -/* - // process symmetric variable groups - uSymms = 0; - for ( i = 0; i < nVars-1; i++ ) - { - if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric - continue; - // i and i+1 can be symmetric - // find the end of this group - for ( k = i+1; k < nVars; k++ ) - if ( pStore[2*i] != pStore[2*k] ) - break; - Limit = k; - assert( i < Limit-1 ); - // go through the variables in this group - for ( j = i + 1; j < Limit; j++ ) - { - // check symmetry - if ( Kit_TruthVarsSymm( pIn, nVars, i, j ) ) - { - uSymms |= (1 << j); - continue; - } - // they are phase-unknown - if ( pStore[2*i] == pStore[2*i+1] ) - { - if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, j ) ) - { - Kit_TruthChangePhase( pIn, nVars, j ); - uCanonPhase ^= (1 << j); - uSymms |= (1 << j); - continue; - } - } - - // they are not symmetric - move j as far as it goes in the group - for ( k = j; k < Limit-1; k++ ) - { - Counter++; - - Temp = pCanonPerm[k]; - pCanonPerm[k] = pCanonPerm[k+1]; - pCanonPerm[k+1] = Temp; - - assert( pStore[2*k] == pStore[2*(k+1)] ); - Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, k ); - pTemp = pIn; pIn = pOut; pOut = pTemp; - } - Limit--; - j--; - } - i = Limit - 1; - } -*/ - - // swap if it was moved an even number of times - if ( Counter & 1 ) - Kit_TruthCopy( pOut, pIn, nVars ); - return uCanonPhase; -} - - -/**Function************************************************************* - - Synopsis [Fast counting minterms in the cofactors of a function.] - - Description [Returns the total number of minterms in the function. - The resulting array (pRes) contains the number of minterms in 0-cofactor - w.r.t. each variables. The additional array (pBytes) is used for internal - storage. It should have the size equal to the number of truth table bytes.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Kit_TruthCountMinterms( unsigned * pTruth, int nVars, int * pRes, int * pBytes ) -{ - // the number of 1s if every byte as well as in the 0-cofactors w.r.t. three variables - static unsigned Table[256] = { - 0x00000000, 0x01010101, 0x01010001, 0x02020102, 0x01000101, 0x02010202, 0x02010102, 0x03020203, - 0x01000001, 0x02010102, 0x02010002, 0x03020103, 0x02000102, 0x03010203, 0x03010103, 0x04020204, - 0x00010101, 0x01020202, 0x01020102, 0x02030203, 0x01010202, 0x02020303, 0x02020203, 0x03030304, - 0x01010102, 0x02020203, 0x02020103, 0x03030204, 0x02010203, 0x03020304, 0x03020204, 0x04030305, - 0x00010001, 0x01020102, 0x01020002, 0x02030103, 0x01010102, 0x02020203, 0x02020103, 0x03030204, - 0x01010002, 0x02020103, 0x02020003, 0x03030104, 0x02010103, 0x03020204, 0x03020104, 0x04030205, - 0x00020102, 0x01030203, 0x01030103, 0x02040204, 0x01020203, 0x02030304, 0x02030204, 0x03040305, - 0x01020103, 0x02030204, 0x02030104, 0x03040205, 0x02020204, 0x03030305, 0x03030205, 0x04040306, - 0x00000101, 0x01010202, 0x01010102, 0x02020203, 0x01000202, 0x02010303, 0x02010203, 0x03020304, - 0x01000102, 0x02010203, 0x02010103, 0x03020204, 0x02000203, 0x03010304, 0x03010204, 0x04020305, - 0x00010202, 0x01020303, 0x01020203, 0x02030304, 0x01010303, 0x02020404, 0x02020304, 0x03030405, - 0x01010203, 0x02020304, 0x02020204, 0x03030305, 0x02010304, 0x03020405, 0x03020305, 0x04030406, - 0x00010102, 0x01020203, 0x01020103, 0x02030204, 0x01010203, 0x02020304, 0x02020204, 0x03030305, - 0x01010103, 0x02020204, 0x02020104, 0x03030205, 0x02010204, 0x03020305, 0x03020205, 0x04030306, - 0x00020203, 0x01030304, 0x01030204, 0x02040305, 0x01020304, 0x02030405, 0x02030305, 0x03040406, - 0x01020204, 0x02030305, 0x02030205, 0x03040306, 0x02020305, 0x03030406, 0x03030306, 0x04040407, - 0x00000001, 0x01010102, 0x01010002, 0x02020103, 0x01000102, 0x02010203, 0x02010103, 0x03020204, - 0x01000002, 0x02010103, 0x02010003, 0x03020104, 0x02000103, 0x03010204, 0x03010104, 0x04020205, - 0x00010102, 0x01020203, 0x01020103, 0x02030204, 0x01010203, 0x02020304, 0x02020204, 0x03030305, - 0x01010103, 0x02020204, 0x02020104, 0x03030205, 0x02010204, 0x03020305, 0x03020205, 0x04030306, - 0x00010002, 0x01020103, 0x01020003, 0x02030104, 0x01010103, 0x02020204, 0x02020104, 0x03030205, - 0x01010003, 0x02020104, 0x02020004, 0x03030105, 0x02010104, 0x03020205, 0x03020105, 0x04030206, - 0x00020103, 0x01030204, 0x01030104, 0x02040205, 0x01020204, 0x02030305, 0x02030205, 0x03040306, - 0x01020104, 0x02030205, 0x02030105, 0x03040206, 0x02020205, 0x03030306, 0x03030206, 0x04040307, - 0x00000102, 0x01010203, 0x01010103, 0x02020204, 0x01000203, 0x02010304, 0x02010204, 0x03020305, - 0x01000103, 0x02010204, 0x02010104, 0x03020205, 0x02000204, 0x03010305, 0x03010205, 0x04020306, - 0x00010203, 0x01020304, 0x01020204, 0x02030305, 0x01010304, 0x02020405, 0x02020305, 0x03030406, - 0x01010204, 0x02020305, 0x02020205, 0x03030306, 0x02010305, 0x03020406, 0x03020306, 0x04030407, - 0x00010103, 0x01020204, 0x01020104, 0x02030205, 0x01010204, 0x02020305, 0x02020205, 0x03030306, - 0x01010104, 0x02020205, 0x02020105, 0x03030206, 0x02010205, 0x03020306, 0x03020206, 0x04030307, - 0x00020204, 0x01030305, 0x01030205, 0x02040306, 0x01020305, 0x02030406, 0x02030306, 0x03040407, - 0x01020205, 0x02030306, 0x02030206, 0x03040307, 0x02020306, 0x03030407, 0x03030307, 0x04040408 - }; - unsigned uSum; - unsigned char * pTruthC, * pLimit; - int i, iVar, Step, nWords, nBytes, nTotal; - - assert( nVars <= 20 ); - - // clear storage - memset( pRes, 0, sizeof(int) * nVars ); - - // count the number of one's in 0-cofactors of the first three variables - nTotal = uSum = 0; - nWords = Kit_TruthWordNum( nVars ); - nBytes = nWords * 4; - pTruthC = (unsigned char *)pTruth; - pLimit = pTruthC + nBytes; - for ( ; pTruthC < pLimit; pTruthC++ ) - { - uSum += Table[*pTruthC]; - *pBytes++ = (Table[*pTruthC] & 0xff); - if ( (uSum & 0xff) > 246 ) - { - nTotal += (uSum & 0xff); - pRes[0] += ((uSum >> 8) & 0xff); - pRes[2] += ((uSum >> 16) & 0xff); - pRes[3] += ((uSum >> 24) & 0xff); - uSum = 0; - } - } - if ( uSum ) - { - nTotal += (uSum & 0xff); - pRes[0] += ((uSum >> 8) & 0xff); - pRes[1] += ((uSum >> 16) & 0xff); - pRes[2] += ((uSum >> 24) & 0xff); - } - - // count all other variables - for ( iVar = 3, Step = 1; Step < nBytes; Step *= 2, iVar++ ) - for ( i = 0; i < nBytes; i += Step + Step ) - { - pRes[iVar] += pBytes[i]; - pBytes[i] += pBytes[i+Step]; - } - assert( pBytes[0] == nTotal ); - assert( iVar == nVars ); - return nTotal; -} - -/**Function************************************************************* - - Synopsis [Prints the hex unsigned into a file.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_PrintHexadecimal( FILE * pFile, unsigned Sign[], int nVars ) -{ - int nDigits, Digit, k; - // write the number into the file - nDigits = (1 << nVars) / 4; - for ( k = nDigits - 1; k >= 0; k-- ) - { - Digit = ((Sign[k/8] >> ((k%8) * 4)) & 15); - if ( Digit < 10 ) - fprintf( pFile, "%d", Digit ); - else - fprintf( pFile, "%c", 'a' + Digit-10 ); - } -// fprintf( pFile, "\n" ); -} - -/**Function************************************************************* - - Synopsis [Fast counting minterms for the functions.] - - Description [Returns 0 if the function is a constant.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Kit_TruthCountMintermsPrecomp() -{ - int bit_count[256] = { - 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, - 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, - 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, - 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, - 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, - 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, - 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, - 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8 - }; - unsigned i, uWord; - for ( i = 0; i < 256; i++ ) - { - if ( i % 8 == 0 ) - printf( "\n" ); - uWord = bit_count[i]; - uWord |= (bit_count[i & 0x55] << 8); - uWord |= (bit_count[i & 0x33] << 16); - uWord |= (bit_count[i & 0x0f] << 24); - printf( "0x" ); - Kit_PrintHexadecimal( stdout, &uWord, 5 ); - printf( ", " ); - } -} - -/**Function************************************************************* - - Synopsis [Dumps truth table into a file.] - - Description [Generates script file for reading into ABC.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -char * Kit_TruthDumpToFile( unsigned * pTruth, int nVars, int nFile ) -{ - static char pFileName[100]; - FILE * pFile; - sprintf( pFileName, "tt\\s%04d", nFile ); - pFile = fopen( pFileName, "w" ); - fprintf( pFile, "rt " ); - Extra_PrintHexadecimal( pFile, pTruth, nVars ); - fprintf( pFile, "; bdd; sop; ps\n" ); - fclose( pFile ); - return pFileName; -} - - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/kit/kit_.c b/src/aig/kit/kit_.c deleted file mode 100644 index 5c68ee3c..00000000 --- a/src/aig/kit/kit_.c +++ /dev/null @@ -1,48 +0,0 @@ -/**CFile**************************************************************** - - FileName [kit_.c] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [Computation kit.] - - Synopsis [] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - Dec 6, 2006.] - - Revision [$Id: kit_.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "kit.h" - -//////////////////////////////////////////////////////////////////////// -/// DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - - Synopsis [] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ - - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/kit/module.make b/src/aig/kit/module.make deleted file mode 100644 index ea62381b..00000000 --- a/src/aig/kit/module.make +++ /dev/null @@ -1,10 +0,0 @@ -SRC += src/aig/kit/kitAig.c \ - src/aig/kit/kitBdd.c \ - src/aig/kit/kitCloud.c src/aig/kit/cloud.c \ - src/aig/kit/kitDsd.c \ - src/aig/kit/kitFactor.c \ - src/aig/kit/kitGraph.c \ - src/aig/kit/kitHop.c \ - src/aig/kit/kitIsop.c \ - src/aig/kit/kitSop.c \ - src/aig/kit/kitTruth.c |