summaryrefslogtreecommitdiffstats
path: root/src/base/abci/abcReach.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/base/abci/abcReach.c')
-rw-r--r--src/base/abci/abcReach.c313
1 files changed, 313 insertions, 0 deletions
diff --git a/src/base/abci/abcReach.c b/src/base/abci/abcReach.c
new file mode 100644
index 00000000..42494b5c
--- /dev/null
+++ b/src/base/abci/abcReach.c
@@ -0,0 +1,313 @@
+/**CFile****************************************************************
+
+ FileName [abcReach.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Network and node package.]
+
+ Synopsis [Performs reachability analysis.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: abcReach.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "abc.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Computes the initial state and sets up the variable map.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+DdNode * Abc_NtkInitStateVarMap( DdManager * dd, Abc_Ntk_t * pNtk, int fVerbose )
+{
+ DdNode ** pbVarsX, ** pbVarsY;
+ DdNode * bTemp, * bProd, * bVar;
+ Abc_Obj_t * pLatch;
+ int i;
+
+ // set the variable mapping for Cudd_bddVarMap()
+ pbVarsX = ALLOC( DdNode *, dd->size );
+ pbVarsY = ALLOC( DdNode *, dd->size );
+ bProd = b1; Cudd_Ref( bProd );
+ Abc_NtkForEachLatch( pNtk, pLatch, i )
+ {
+ pbVarsX[i] = dd->vars[ Abc_NtkPiNum(pNtk) + i ];
+ pbVarsY[i] = dd->vars[ Abc_NtkCiNum(pNtk) + i ];
+ // get the initial value of the latch
+ bVar = Cudd_NotCond( pbVarsX[i], !Abc_LatchIsInit1(pLatch) );
+ bProd = Cudd_bddAnd( dd, bTemp = bProd, bVar ); Cudd_Ref( bProd );
+ Cudd_RecursiveDeref( dd, bTemp );
+ }
+ Cudd_SetVarMap( dd, pbVarsX, pbVarsY, Abc_NtkLatchNum(pNtk) );
+ FREE( pbVarsX );
+ FREE( pbVarsY );
+
+ Cudd_Deref( bProd );
+ return bProd;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+DdNode ** Abc_NtkCreatePartitions( DdManager * dd, Abc_Ntk_t * pNtk, int fReorder, int fVerbose )
+{
+ DdNode ** pbParts;
+ DdNode * bVar;
+ Abc_Obj_t * pNode;
+ int i;
+
+ // extand the BDD manager to represent NS variables
+ assert( dd->size == Abc_NtkCiNum(pNtk) );
+ Cudd_bddIthVar( dd, Abc_NtkCiNum(pNtk) + Abc_NtkLatchNum(pNtk) - 1 );
+
+ // enable reordering
+ if ( fReorder )
+ Cudd_AutodynEnable( dd, CUDD_REORDER_SYMM_SIFT );
+ else
+ Cudd_AutodynDisable( dd );
+
+ // compute the transition relation
+ pbParts = ALLOC( DdNode *, Abc_NtkLatchNum(pNtk) );
+ Abc_NtkForEachLatch( pNtk, pNode, i )
+ {
+ bVar = Cudd_bddIthVar( dd, Abc_NtkCiNum(pNtk) + i );
+ pbParts[i] = Cudd_bddXnor( dd, bVar, Abc_ObjGlobalBdd(Abc_ObjFanin0(pNode)) ); Cudd_Ref( pbParts[i] );
+ }
+ // free the global BDDs
+ Abc_NtkFreeGlobalBdds( pNtk, 0 );
+
+ // reorder and disable reordering
+ if ( fReorder )
+ {
+ if ( fVerbose )
+ fprintf( stdout, "BDD nodes in the partitions before reordering %d.\n", Cudd_SharingSize(pbParts,Abc_NtkLatchNum(pNtk)) );
+ Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 );
+ Cudd_AutodynDisable( dd );
+ if ( fVerbose )
+ fprintf( stdout, "BDD nodes in the partitions after reordering %d.\n", Cudd_SharingSize(pbParts,Abc_NtkLatchNum(pNtk)) );
+ }
+ return pbParts;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the set of unreachable states.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+DdNode * Abc_NtkComputeReachable( DdManager * dd, Abc_Ntk_t * pNtk, DdNode ** pbParts, DdNode * bInitial, DdNode * bOutput, int nBddMax, int nIterMax, int fPartition, int fReorder, int fVerbose )
+{
+ int fInternalReorder = 0;
+ Extra_ImageTree_t * pTree;
+ Extra_ImageTree2_t * pTree2;
+ DdNode * bReached, * bCubeCs;
+ DdNode * bCurrent, * bNext, * bTemp;
+ DdNode ** pbVarsY;
+ Abc_Obj_t * pLatch;
+ int i, nIters, nBddSize;
+ int nThreshold = 10000;
+
+ // collect the NS variables
+ // set the variable mapping for Cudd_bddVarMap()
+ pbVarsY = ALLOC( DdNode *, dd->size );
+ Abc_NtkForEachLatch( pNtk, pLatch, i )
+ pbVarsY[i] = dd->vars[ Abc_NtkCiNum(pNtk) + i ];
+
+ // start the image computation
+ bCubeCs = Extra_bddComputeRangeCube( dd, Abc_NtkPiNum(pNtk), Abc_NtkCiNum(pNtk) ); Cudd_Ref( bCubeCs );
+ if ( fPartition )
+ pTree = Extra_bddImageStart( dd, bCubeCs, Abc_NtkLatchNum(pNtk), pbParts, Abc_NtkLatchNum(pNtk), pbVarsY, fVerbose );
+ else
+ pTree2 = Extra_bddImageStart2( dd, bCubeCs, Abc_NtkLatchNum(pNtk), pbParts, Abc_NtkLatchNum(pNtk), pbVarsY, fVerbose );
+ free( pbVarsY );
+ Cudd_RecursiveDeref( dd, bCubeCs );
+
+ // perform reachability analisys
+ bCurrent = bInitial; Cudd_Ref( bCurrent );
+ bReached = bInitial; Cudd_Ref( bReached );
+ for ( nIters = 1; nIters <= nIterMax; nIters++ )
+ {
+ // compute the next states
+ if ( fPartition )
+ bNext = Extra_bddImageCompute( pTree, bCurrent );
+ else
+ bNext = Extra_bddImageCompute2( pTree2, bCurrent );
+ Cudd_Ref( bNext );
+ Cudd_RecursiveDeref( dd, bCurrent );
+ // remap these states into the current state vars
+ bNext = Cudd_bddVarMap( dd, bTemp = bNext ); Cudd_Ref( bNext );
+ Cudd_RecursiveDeref( dd, bTemp );
+ // check if there are any new states
+ if ( Cudd_bddLeq( dd, bNext, bReached ) )
+ break;
+ // check the BDD size
+ nBddSize = Cudd_DagSize(bNext);
+ if ( nBddSize > nBddMax )
+ break;
+ // check the result
+ if ( !Cudd_bddLeq( dd, bNext, Cudd_Not(bOutput) ) )
+ {
+ printf( "The miter is proved REACHABLE in %d iterations. ", nIters );
+ Cudd_RecursiveDeref( dd, bReached );
+ bReached = NULL;
+ break;
+ }
+ // get the new states
+ bCurrent = Cudd_bddAnd( dd, bNext, Cudd_Not(bReached) ); Cudd_Ref( bCurrent );
+ // minimize the new states with the reached states
+// bCurrent = Cudd_bddConstrain( dd, bTemp = bCurrent, Cudd_Not(bReached) ); Cudd_Ref( bCurrent );
+// Cudd_RecursiveDeref( dd, bTemp );
+ // add to the reached states
+ bReached = Cudd_bddOr( dd, bTemp = bReached, bNext ); Cudd_Ref( bReached );
+ Cudd_RecursiveDeref( dd, bTemp );
+ Cudd_RecursiveDeref( dd, bNext );
+ if ( fVerbose )
+ fprintf( stdout, "Iteration = %3d. BDD = %5d. ", nIters, nBddSize );
+ if ( fInternalReorder && fReorder && nBddSize > nThreshold )
+ {
+ if ( fVerbose )
+ fprintf( stdout, "Reordering... Before = %5d. ", Cudd_DagSize(bReached) );
+ Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 );
+ Cudd_AutodynDisable( dd );
+ if ( fVerbose )
+ fprintf( stdout, "After = %5d.\r", Cudd_DagSize(bReached) );
+ nThreshold *= 2;
+ }
+ if ( fVerbose )
+ fprintf( stdout, "\r" );
+ }
+ Cudd_RecursiveDeref( dd, bNext );
+ // undo the image tree
+ if ( fPartition )
+ Extra_bddImageTreeDelete( pTree );
+ else
+ Extra_bddImageTreeDelete2( pTree2 );
+ if ( bReached == NULL )
+ return NULL;
+ // report the stats
+ if ( fVerbose )
+ {
+ double nMints = Cudd_CountMinterm(dd, bReached, Abc_NtkLatchNum(pNtk) );
+ if ( nIters > nIterMax || Cudd_DagSize(bReached) > nBddMax )
+ fprintf( stdout, "Reachability analysis is stopped after %d iterations.\n", nIters );
+ else
+ fprintf( stdout, "Reachability analysis completed in %d iterations.\n", nIters );
+ fprintf( stdout, "Reachable states = %.0f. (Ratio = %.4f %%)\n", nMints, 100.0*nMints/pow(2.0, Abc_NtkLatchNum(pNtk)) );
+ fflush( stdout );
+ }
+//PRB( dd, bReached );
+ Cudd_Deref( bReached );
+ if ( nIters > nIterMax || Cudd_DagSize(bReached) > nBddMax )
+ printf( "Verified ONLY FOR STATES REACHED in %d iterations. \n", nIters );
+ printf( "The miter is proved unreachable in %d iteration. ", nIters );
+ return bReached;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs reachability to see if any .]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_NtkVerifyUsingBdds( Abc_Ntk_t * pNtk, int nBddMax, int nIterMax, int fPartition, int fReorder, int fVerbose )
+{
+ DdManager * dd;
+ DdNode ** pbParts;
+ DdNode * bOutput, * bReached, * bInitial;
+ int i, clk = clock();
+
+ assert( Abc_NtkIsStrash(pNtk) );
+ assert( Abc_NtkPoNum(pNtk) == 1 );
+ assert( Abc_ObjFanoutNum(Abc_NtkPo(pNtk,0)) == 0 ); // PO should go first
+
+ // compute the global BDDs of the latches
+ dd = Abc_NtkBuildGlobalBdds( pNtk, nBddMax, 1, fReorder, fVerbose );
+ if ( dd == NULL )
+ {
+ printf( "The number of intermediate BDD nodes exceeded the limit (%d).\n", nBddMax );
+ return;
+ }
+ if ( fVerbose )
+ printf( "Shared BDD size is %6d nodes.\n", Cudd_ReadKeys(dd) - Cudd_ReadDead(dd) );
+
+ // save the output BDD
+ bOutput = Abc_ObjGlobalBdd(Abc_NtkPo(pNtk,0)); Cudd_Ref( bOutput );
+
+ // create partitions
+ pbParts = Abc_NtkCreatePartitions( dd, pNtk, fReorder, fVerbose );
+
+ // create the initial state and the variable map
+ bInitial = Abc_NtkInitStateVarMap( dd, pNtk, fVerbose ); Cudd_Ref( bInitial );
+
+ // check the result
+ if ( !Cudd_bddLeq( dd, bInitial, Cudd_Not(bOutput) ) )
+ printf( "The miter is proved REACHABLE in the initial state. " );
+ else
+ {
+ // compute the reachable states
+ bReached = Abc_NtkComputeReachable( dd, pNtk, pbParts, bInitial, bOutput, nBddMax, nIterMax, fPartition, fReorder, fVerbose );
+ if ( bReached != NULL )
+ {
+ Cudd_Ref( bReached );
+ Cudd_RecursiveDeref( dd, bReached );
+ }
+ }
+
+ // cleanup
+ Cudd_RecursiveDeref( dd, bOutput );
+ Cudd_RecursiveDeref( dd, bInitial );
+ for ( i = 0; i < Abc_NtkLatchNum(pNtk); i++ )
+ Cudd_RecursiveDeref( dd, pbParts[i] );
+ free( pbParts );
+ Extra_StopManager( dd );
+
+ // report the runtime
+ PRT( "Time", clock() - clk );
+ fflush( stdout );
+}
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+