summaryrefslogtreecommitdiffstats
path: root/src/bool/kit
diff options
context:
space:
mode:
Diffstat (limited to 'src/bool/kit')
-rw-r--r--src/bool/kit/cloud.c993
-rw-r--r--src/bool/kit/cloud.h255
-rw-r--r--src/bool/kit/kit.h645
-rw-r--r--src/bool/kit/kitAig.c126
-rw-r--r--src/bool/kit/kitBdd.c236
-rw-r--r--src/bool/kit/kitCloud.c378
-rw-r--r--src/bool/kit/kitDec.c343
-rw-r--r--src/bool/kit/kitDsd.c3200
-rw-r--r--src/bool/kit/kitFactor.c344
-rw-r--r--src/bool/kit/kitGraph.c402
-rw-r--r--src/bool/kit/kitHop.c155
-rw-r--r--src/bool/kit/kitIsop.c330
-rw-r--r--src/bool/kit/kitPerm.c355
-rw-r--r--src/bool/kit/kitPla.c535
-rw-r--r--src/bool/kit/kitSop.c579
-rw-r--r--src/bool/kit/kitTruth.c2222
-rw-r--r--src/bool/kit/kit_.c53
-rw-r--r--src/bool/kit/module.make11
18 files changed, 11162 insertions, 0 deletions
diff --git a/src/bool/kit/cloud.c b/src/bool/kit/cloud.c
new file mode 100644
index 00000000..1ab53c00
--- /dev/null
+++ b/src/bool/kit/cloud.c
@@ -0,0 +1,993 @@
+/**CFile****************************************************************
+
+ FileName [cloudCore.c]
+
+ PackageName [Fast application-specific BDD package.]
+
+ Synopsis [The package core.]
+
+ Author [Alan Mishchenko <alanmi@ece.pdx.edu>]
+
+ Affiliation [ECE Department. Portland State University, Portland, Oregon.]
+
+ Date [Ver. 1.0. Started - June 10, 2002.]
+
+ Revision [$Id: cloudCore.c,v 1.0 2002/06/10 03:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include <string.h>
+#include "cloud.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+// the number of operators using cache
+static int CacheOperNum = 4;
+
+// the ratio of cache size to the unique table size for each operator
+static int CacheLogRatioDefault[4] = {
+ 2, // CLOUD_OPER_AND,
+ 8, // CLOUD_OPER_XOR,
+ 8, // CLOUD_OPER_BDIFF,
+ 8 // CLOUD_OPER_LEQ
+};
+
+// the ratio of cache size to the unique table size for each operator
+static int CacheSize[4] = {
+ 2, // CLOUD_OPER_AND,
+ 2, // CLOUD_OPER_XOR,
+ 2, // CLOUD_OPER_BDIFF,
+ 2 // CLOUD_OPER_LEQ
+};
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+// static functions
+static CloudNode * cloudMakeNode( CloudManager * dd, CloudVar v, CloudNode * t, CloudNode * e );
+static void cloudCacheAllocate( CloudManager * dd, CloudOper oper );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function********************************************************************
+
+ Synopsis [Starts the cloud manager.]
+
+ Description [The first arguments is the number of elementary variables used.
+ The second arguments is the number of bits of the unsigned integer used to
+ represent nodes in the unique table. If the second argument is 0, the package
+ assumes 23 to represent nodes, which is equivalent to 2^23 = 8,388,608 nodes.]
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+CloudManager * Cloud_Init( int nVars, int nBits )
+{
+ CloudManager * dd;
+ int i;
+ int clk1, clk2;
+
+ assert( nVars <= 100000 );
+ assert( nBits < 32 );
+
+ // assign the defaults
+ if ( nBits == 0 )
+ nBits = CLOUD_NODE_BITS;
+
+ // start the manager
+ dd = ABC_CALLOC( CloudManager, 1 );
+ dd->nMemUsed += sizeof(CloudManager);
+
+ // variables
+ dd->nVars = nVars; // the number of variables allocated
+ // bits
+ dd->bitsNode = nBits; // the number of bits used for the node
+ for ( i = 0; i < CacheOperNum; i++ )
+ dd->bitsCache[i] = nBits - CacheLogRatioDefault[i];
+ // shifts
+ dd->shiftUnique = 8*sizeof(unsigned) - (nBits + 1); // gets node index in the hash table
+ for ( i = 0; i < CacheOperNum; i++ )
+ dd->shiftCache[i] = 8*sizeof(unsigned) - dd->bitsCache[i];
+ // nodes
+ dd->nNodesAlloc = (1 << (nBits + 1)); // 2 ^ (nBits + 1)
+ dd->nNodesLimit = (1 << nBits); // 2 ^ nBits
+
+ // unique table
+clk1 = clock();
+ dd->tUnique = ABC_CALLOC( CloudNode, dd->nNodesAlloc );
+ dd->nMemUsed += sizeof(CloudNode) * dd->nNodesAlloc;
+clk2 = clock();
+//ABC_PRT( "calloc() time", clk2 - clk1 );
+
+ // set up the constant node (the only node that is not in the hash table)
+ dd->nSignCur = 1;
+ dd->tUnique[0].s = dd->nSignCur;
+ dd->tUnique[0].v = CLOUD_CONST_INDEX;
+ dd->tUnique[0].e = NULL;
+ dd->tUnique[0].t = NULL;
+ dd->one = dd->tUnique;
+ dd->zero = Cloud_Not(dd->one);
+ dd->nNodesCur = 1;
+
+ // special nodes
+ dd->pNodeStart = dd->tUnique + 1;
+ dd->pNodeEnd = dd->tUnique + dd->nNodesAlloc;
+
+ // set up the elementary variables
+ dd->vars = ABC_ALLOC( CloudNode *, dd->nVars );
+ dd->nMemUsed += sizeof(CloudNode *) * dd->nVars;
+ for ( i = 0; i < dd->nVars; i++ )
+ dd->vars[i] = cloudMakeNode( dd, i, dd->one, dd->zero );
+
+ return dd;
+};
+
+/**Function********************************************************************
+
+ Synopsis [Stops the cloud manager.]
+
+ Description [The first arguments tells show many elementary variables are used.
+ The second arguments tells how many bits of the unsigned integer are used
+ to represent regular nodes in the unique table.]
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+void Cloud_Quit( CloudManager * dd )
+{
+ int i;
+ ABC_FREE( dd->ppNodes );
+ ABC_FREE( dd->tUnique );
+ ABC_FREE( dd->vars );
+ for ( i = 0; i < 4; i++ )
+ ABC_FREE( dd->tCaches[i] );
+ ABC_FREE( dd );
+}
+
+/**Function********************************************************************
+
+ Synopsis [Prepares the manager for another run.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+void Cloud_Restart( CloudManager * dd )
+{
+ int i;
+ assert( dd->one->s == dd->nSignCur );
+ dd->nSignCur++;
+ dd->one->s++;
+ for ( i = 0; i < dd->nVars; i++ )
+ dd->vars[i]->s++;
+ dd->nNodesCur = 1 + dd->nVars;
+}
+
+/**Function********************************************************************
+
+ Synopsis [This optional function allocates operation cache of the given size.]
+
+ Description [Cache for each operation is allocated independently when the first
+ operation of the given type is performed. The user can allocate cache of his/her
+ preferred size by calling Cloud_CacheAllocate before the first operation of the
+ given type is performed, but this call is optional. Argument "logratio" gives
+ the binary logarithm of the ratio of the size of the unique table to that of cache.
+ For example, if "logratio" is equal to 3, and the unique table will be 2^3=8 times
+ larger than cache; so, if unique table is 2^23 = 8,388,608 nodes, the cache size
+ will be 2^3=8 times smaller and equal to 2^20 = 1,048,576 entries.]
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+void Cloud_CacheAllocate( CloudManager * dd, CloudOper oper, int logratio )
+{
+ assert( logratio > 0 ); // cache cannot be larger than the unique table
+ assert( logratio < dd->bitsNode ); // cache cannot be smaller than 2 entries
+
+ if ( logratio )
+ {
+ dd->bitsCache[oper] = dd->bitsNode - logratio;
+ dd->shiftCache[oper] = 8*sizeof(unsigned) - dd->bitsCache[oper];
+ }
+ cloudCacheAllocate( dd, oper );
+}
+
+/**Function********************************************************************
+
+ Synopsis [Internal cache allocation.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+void cloudCacheAllocate( CloudManager * dd, CloudOper oper )
+{
+ int nCacheEntries = (1 << dd->bitsCache[oper]);
+
+ if ( CacheSize[oper] == 1 )
+ {
+ dd->tCaches[oper] = (CloudCacheEntry2 *)ABC_CALLOC( CloudCacheEntry1, nCacheEntries );
+ dd->nMemUsed += sizeof(CloudCacheEntry1) * nCacheEntries;
+ }
+ else if ( CacheSize[oper] == 2 )
+ {
+ dd->tCaches[oper] = (CloudCacheEntry2 *)ABC_CALLOC( CloudCacheEntry2, nCacheEntries );
+ dd->nMemUsed += sizeof(CloudCacheEntry2) * nCacheEntries;
+ }
+ else if ( CacheSize[oper] == 3 )
+ {
+ dd->tCaches[oper] = (CloudCacheEntry2 *)ABC_CALLOC( CloudCacheEntry3, nCacheEntries );
+ dd->nMemUsed += sizeof(CloudCacheEntry3) * nCacheEntries;
+ }
+}
+
+
+
+/**Function********************************************************************
+
+ Synopsis [Returns or creates a new node]
+
+ Description [Checks the unique table for the existance of the node. If the node is
+ present, returns the node. If the node is absent, creates a new node.]
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+CloudNode * Cloud_MakeNode( CloudManager * dd, CloudVar v, CloudNode * t, CloudNode * e )
+{
+ CloudNode * pRes;
+ CLOUD_ASSERT(t);
+ CLOUD_ASSERT(e);
+ assert( v < Cloud_V(t) && v < Cloud_V(e) ); // variable should be above in the order
+ if ( Cloud_IsComplement(t) )
+ {
+ pRes = cloudMakeNode( dd, v, Cloud_Not(t), Cloud_Not(e) );
+ if ( pRes != NULL )
+ pRes = Cloud_Not(pRes);
+ }
+ else
+ pRes = cloudMakeNode( dd, v, t, e );
+ return pRes;
+}
+
+/**Function********************************************************************
+
+ Synopsis [Returns or creates a new node]
+
+ Description [Checks the unique table for the existance of the node. If the node is
+ present, returns the node. If the node is absent, creates a new node.]
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+CloudNode * cloudMakeNode( CloudManager * dd, CloudVar v, CloudNode * t, CloudNode * e )
+{
+ CloudNode * entryUnique;
+
+ CLOUD_ASSERT(t);
+ CLOUD_ASSERT(e);
+
+ assert( ((int)v) >= 0 && ((int)v) < dd->nVars ); // the variable must be in the range
+ assert( v < Cloud_V(t) && v < Cloud_V(e) ); // variable should be above in the order
+ assert( !Cloud_IsComplement(t) ); // the THEN edge must not be complemented
+
+ // make sure we are not searching for the constant node
+ assert( t && e );
+
+ // get the unique entry
+ entryUnique = dd->tUnique + cloudHashCudd3(v, t, e, dd->shiftUnique);
+ while ( entryUnique->s == dd->nSignCur )
+ {
+ // compare the node
+ if ( entryUnique->v == v && entryUnique->t == t && entryUnique->e == e )
+ { // the node is found
+ dd->nUniqueHits++;
+ return entryUnique; // returns the node
+ }
+ // increment the hash value modulus the hash table size
+ if ( ++entryUnique - dd->tUnique == dd->nNodesAlloc )
+ entryUnique = dd->tUnique + 1;
+ // increment the number of steps through the table
+ dd->nUniqueSteps++;
+ }
+ dd->nUniqueMisses++;
+
+ // check if the new node can be created
+ if ( ++dd->nNodesCur == dd->nNodesLimit )
+ { // initiate the restart
+ printf( "Cloud needs restart!\n" );
+// fflush( stdout );
+// exit(1);
+ return NULL;
+ }
+ // create the node
+ entryUnique->s = dd->nSignCur;
+ entryUnique->v = v;
+ entryUnique->t = t;
+ entryUnique->e = e;
+ return entryUnique; // returns the node
+}
+
+
+/**Function********************************************************************
+
+ Synopsis [Performs the AND or two BDDs]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+CloudNode * cloudBddAnd( CloudManager * dd, CloudNode * f, CloudNode * g )
+{
+ CloudNode * F, * G, * r;
+ CloudCacheEntry2 * cacheEntry;
+ CloudNode * fv, * fnv, * gv, * gnv, * t, * e;
+ CloudVar var;
+
+ assert( f <= g );
+
+ // terminal cases
+ F = Cloud_Regular(f);
+ G = Cloud_Regular(g);
+ if ( F == G )
+ {
+ if ( f == g )
+ return f;
+ else
+ return dd->zero;
+ }
+ if ( F == dd->one )
+ {
+ if ( f == dd->one )
+ return g;
+ else
+ return f;
+ }
+
+ // check cache
+ cacheEntry = dd->tCaches[CLOUD_OPER_AND] + cloudHashCudd2(f, g, dd->shiftCache[CLOUD_OPER_AND]);
+// cacheEntry = dd->tCaches[CLOUD_OPER_AND] + cloudHashBuddy2(f, g, dd->shiftCache[CLOUD_OPER_AND]);
+ r = cloudCacheLookup2( cacheEntry, dd->nSignCur, f, g );
+ if ( r != NULL )
+ {
+ dd->nCacheHits++;
+ return r;
+ }
+ dd->nCacheMisses++;
+
+
+ // compute cofactors
+ if ( cloudV(F) <= cloudV(G) )
+ {
+ var = cloudV(F);
+ if ( Cloud_IsComplement(f) )
+ {
+ fnv = Cloud_Not(cloudE(F));
+ fv = Cloud_Not(cloudT(F));
+ }
+ else
+ {
+ fnv = cloudE(F);
+ fv = cloudT(F);
+ }
+ }
+ else
+ {
+ var = cloudV(G);
+ fv = fnv = f;
+ }
+
+ if ( cloudV(G) <= cloudV(F) )
+ {
+ if ( Cloud_IsComplement(g) )
+ {
+ gnv = Cloud_Not(cloudE(G));
+ gv = Cloud_Not(cloudT(G));
+ }
+ else
+ {
+ gnv = cloudE(G);
+ gv = cloudT(G);
+ }
+ }
+ else
+ {
+ gv = gnv = g;
+ }
+
+ if ( fv <= gv )
+ t = cloudBddAnd( dd, fv, gv );
+ else
+ t = cloudBddAnd( dd, gv, fv );
+
+ if ( t == NULL )
+ return NULL;
+
+ if ( fnv <= gnv )
+ e = cloudBddAnd( dd, fnv, gnv );
+ else
+ e = cloudBddAnd( dd, gnv, fnv );
+
+ if ( e == NULL )
+ return NULL;
+
+ if ( t == e )
+ r = t;
+ else
+ {
+ if ( Cloud_IsComplement(t) )
+ {
+ r = cloudMakeNode( dd, var, Cloud_Not(t), Cloud_Not(e) );
+ if ( r == NULL )
+ return NULL;
+ r = Cloud_Not(r);
+ }
+ else
+ {
+ r = cloudMakeNode( dd, var, t, e );
+ if ( r == NULL )
+ return NULL;
+ }
+ }
+ cloudCacheInsert2( cacheEntry, dd->nSignCur, f, g, r );
+ return r;
+}
+
+/**Function********************************************************************
+
+ Synopsis [Performs the AND or two BDDs]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+static inline CloudNode * cloudBddAnd_gate( CloudManager * dd, CloudNode * f, CloudNode * g )
+{
+ if ( f <= g )
+ return cloudBddAnd(dd,f,g);
+ else
+ return cloudBddAnd(dd,g,f);
+}
+
+/**Function********************************************************************
+
+ Synopsis [Performs the AND or two BDDs]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+CloudNode * Cloud_bddAnd( CloudManager * dd, CloudNode * f, CloudNode * g )
+{
+ if ( Cloud_Regular(f) == NULL || Cloud_Regular(g) == NULL )
+ return NULL;
+ CLOUD_ASSERT(f);
+ CLOUD_ASSERT(g);
+ if ( dd->tCaches[CLOUD_OPER_AND] == NULL )
+ cloudCacheAllocate( dd, CLOUD_OPER_AND );
+ return cloudBddAnd_gate( dd, f, g );
+}
+
+/**Function********************************************************************
+
+ Synopsis [Performs the OR or two BDDs]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+CloudNode * Cloud_bddOr( CloudManager * dd, CloudNode * f, CloudNode * g )
+{
+ CloudNode * res;
+ if ( Cloud_Regular(f) == NULL || Cloud_Regular(g) == NULL )
+ return NULL;
+ CLOUD_ASSERT(f);
+ CLOUD_ASSERT(g);
+ if ( dd->tCaches[CLOUD_OPER_AND] == NULL )
+ cloudCacheAllocate( dd, CLOUD_OPER_AND );
+ res = cloudBddAnd_gate( dd, Cloud_Not(f), Cloud_Not(g) );
+ res = Cloud_NotCond( res, res != NULL );
+ return res;
+}
+
+/**Function********************************************************************
+
+ Synopsis [Performs the XOR or two BDDs]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+CloudNode * Cloud_bddXor( CloudManager * dd, CloudNode * f, CloudNode * g )
+{
+ CloudNode * t0, * t1, * r;
+ if ( Cloud_Regular(f) == NULL || Cloud_Regular(g) == NULL )
+ return NULL;
+ CLOUD_ASSERT(f);
+ CLOUD_ASSERT(g);
+ if ( dd->tCaches[CLOUD_OPER_AND] == NULL )
+ cloudCacheAllocate( dd, CLOUD_OPER_AND );
+ t0 = cloudBddAnd_gate( dd, f, Cloud_Not(g) );
+ if ( t0 == NULL )
+ return NULL;
+ t1 = cloudBddAnd_gate( dd, Cloud_Not(f), g );
+ if ( t1 == NULL )
+ return NULL;
+ r = Cloud_bddOr( dd, t0, t1 );
+ return r;
+}
+
+
+
+/**Function********************************************************************
+
+ Synopsis [Performs a DFS from f, clearing the LSB of the next
+ pointers.]
+
+ Description []
+
+ SideEffects [None]
+
+ SeeAlso [cloudSupport cloudDagSize]
+
+******************************************************************************/
+static void cloudClearMark( CloudManager * dd, CloudNode * n )
+{
+ if ( !cloudNodeIsMarked(n) )
+ return;
+ // clear visited flag
+ cloudNodeUnmark(n);
+ if ( cloudIsConstant(n) )
+ return;
+ cloudClearMark( dd, cloudT(n) );
+ cloudClearMark( dd, Cloud_Regular(cloudE(n)) );
+}
+
+/**Function********************************************************************
+
+ Synopsis [Performs the recursive step of Cloud_Support.]
+
+ Description [Performs the recursive step of Cloud_Support. Performs a
+ DFS from f. The support is accumulated in supp as a side effect. Uses
+ the LSB of the then pointer as visited flag.]
+
+ SideEffects [None]
+
+ SeeAlso []
+
+******************************************************************************/
+static void cloudSupport( CloudManager * dd, CloudNode * n, int * support )
+{
+ if ( cloudIsConstant(n) || cloudNodeIsMarked(n) )
+ return;
+ // set visited flag
+ cloudNodeMark(n);
+ support[cloudV(n)] = 1;
+ cloudSupport( dd, cloudT(n), support );
+ cloudSupport( dd, Cloud_Regular(cloudE(n)), support );
+}
+
+/**Function********************************************************************
+
+ Synopsis [Finds the variables on which a DD depends.]
+
+ Description [Finds the variables on which a DD depends.
+ Returns a BDD consisting of the product of the variables if
+ successful; NULL otherwise.]
+
+ SideEffects [None]
+
+ SeeAlso []
+
+******************************************************************************/
+CloudNode * Cloud_Support( CloudManager * dd, CloudNode * n )
+{
+ CloudNode * res;
+ int * support, i;
+
+ CLOUD_ASSERT(n);
+
+ // allocate and initialize support array for cloudSupport
+ support = ABC_CALLOC( int, dd->nVars );
+
+ // compute support and clean up markers
+ cloudSupport( dd, Cloud_Regular(n), support );
+ cloudClearMark( dd, Cloud_Regular(n) );
+
+ // transform support from array to cube
+ res = dd->one;
+ for ( i = dd->nVars - 1; i >= 0; i-- ) // for each level bottom-up
+ if ( support[i] == 1 )
+ {
+ res = Cloud_bddAnd( dd, res, dd->vars[i] );
+ if ( res == NULL )
+ break;
+ }
+ ABC_FREE( support );
+ return res;
+}
+
+/**Function********************************************************************
+
+ Synopsis [Counts the variables on which a DD depends.]
+
+ Description [Counts the variables on which a DD depends.
+ Returns the number of the variables if successful; Cloud_OUT_OF_MEM
+ otherwise.]
+
+ SideEffects [None]
+
+ SeeAlso []
+
+******************************************************************************/
+int Cloud_SupportSize( CloudManager * dd, CloudNode * n )
+{
+ int * support, i, count;
+
+ CLOUD_ASSERT(n);
+
+ // allocate and initialize support array for cloudSupport
+ support = ABC_CALLOC( int, dd->nVars );
+
+ // compute support and clean up markers
+ cloudSupport( dd, Cloud_Regular(n), support );
+ cloudClearMark( dd, Cloud_Regular(n) );
+
+ // count support variables
+ count = 0;
+ for ( i = 0; i < dd->nVars; i++ )
+ {
+ if ( support[i] == 1 )
+ count++;
+ }
+
+ ABC_FREE( support );
+ return count;
+}
+
+
+/**Function********************************************************************
+
+ Synopsis [Performs the recursive step of Cloud_DagSize.]
+
+ Description [Performs the recursive step of Cloud_DagSize. Returns the
+ number of nodes in the graph rooted at n.]
+
+ SideEffects [None]
+
+******************************************************************************/
+static int cloudDagSize( CloudManager * dd, CloudNode * n )
+{
+ int tval, eval;
+ if ( cloudNodeIsMarked(n) )
+ return 0;
+ // set visited flag
+ cloudNodeMark(n);
+ if ( cloudIsConstant(n) )
+ return 1;
+ tval = cloudDagSize( dd, cloudT(n) );
+ eval = cloudDagSize( dd, Cloud_Regular(cloudE(n)) );
+ return tval + eval + 1;
+
+}
+
+/**Function********************************************************************
+
+ Synopsis [Counts the number of nodes in a DD.]
+
+ Description [Counts the number of nodes in a DD. Returns the number
+ of nodes in the graph rooted at node.]
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+int Cloud_DagSize( CloudManager * dd, CloudNode * n )
+{
+ int res;
+ res = cloudDagSize( dd, Cloud_Regular( n ) );
+ cloudClearMark( dd, Cloud_Regular( n ) );
+ return res;
+
+}
+
+
+/**Function********************************************************************
+
+ Synopsis [Performs the recursive step of Cloud_DagSize.]
+
+ Description [Performs the recursive step of Cloud_DagSize. Returns the
+ number of nodes in the graph rooted at n.]
+
+ SideEffects [None]
+
+******************************************************************************/
+static int Cloud_DagCollect_rec( CloudManager * dd, CloudNode * n, int * pCounter )
+{
+ int tval, eval;
+ if ( cloudNodeIsMarked(n) )
+ return 0;
+ // set visited flag
+ cloudNodeMark(n);
+ if ( cloudIsConstant(n) )
+ {
+ dd->ppNodes[(*pCounter)++] = n;
+ return 1;
+ }
+ tval = Cloud_DagCollect_rec( dd, cloudT(n), pCounter );
+ eval = Cloud_DagCollect_rec( dd, Cloud_Regular(cloudE(n)), pCounter );
+ dd->ppNodes[(*pCounter)++] = n;
+ return tval + eval + 1;
+
+}
+
+/**Function********************************************************************
+
+ Synopsis [Counts the number of nodes in a DD.]
+
+ Description [Counts the number of nodes in a DD. Returns the number
+ of nodes in the graph rooted at node.]
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+int Cloud_DagCollect( CloudManager * dd, CloudNode * n )
+{
+ int res, Counter = 0;
+ if ( dd->ppNodes == NULL )
+ dd->ppNodes = ABC_ALLOC( CloudNode *, dd->nNodesLimit );
+ res = Cloud_DagCollect_rec( dd, Cloud_Regular( n ), &Counter );
+ cloudClearMark( dd, Cloud_Regular( n ) );
+ assert( res == Counter );
+ return res;
+
+}
+
+/**Function********************************************************************
+
+ Synopsis [Counts the number of nodes in an array of DDs.]
+
+ Description [Counts the number of nodes in a DD. Returns the number
+ of nodes in the graph rooted at node.]
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+int Cloud_SharingSize( CloudManager * dd, CloudNode ** pn, int nn )
+{
+ int res, i;
+ res = 0;
+ for ( i = 0; i < nn; i++ )
+ res += cloudDagSize( dd, Cloud_Regular( pn[i] ) );
+ for ( i = 0; i < nn; i++ )
+ cloudClearMark( dd, Cloud_Regular( pn[i] ) );
+ return res;
+}
+
+
+/**Function********************************************************************
+
+ Synopsis [Returns one cube contained in the given BDD.]
+
+ Description []
+
+ SideEffects []
+
+******************************************************************************/
+CloudNode * Cloud_GetOneCube( CloudManager * dd, CloudNode * bFunc )
+{
+ CloudNode * bFunc0, * bFunc1, * res;
+
+ if ( Cloud_IsConstant(bFunc) )
+ return bFunc;
+
+ // cofactor
+ if ( Cloud_IsComplement(bFunc) )
+ {
+ bFunc0 = Cloud_Not( cloudE(bFunc) );
+ bFunc1 = Cloud_Not( cloudT(bFunc) );
+ }
+ else
+ {
+ bFunc0 = cloudE(bFunc);
+ bFunc1 = cloudT(bFunc);
+ }
+
+ // try to find the cube with the negative literal
+ res = Cloud_GetOneCube( dd, bFunc0 );
+ if ( res == NULL )
+ return NULL;
+
+ if ( res != dd->zero )
+ {
+ res = Cloud_bddAnd( dd, res, Cloud_Not(dd->vars[Cloud_V(bFunc)]) );
+ }
+ else
+ {
+ // try to find the cube with the positive literal
+ res = Cloud_GetOneCube( dd, bFunc1 );
+ if ( res == NULL )
+ return NULL;
+ assert( res != dd->zero );
+ res = Cloud_bddAnd( dd, res, dd->vars[Cloud_V(bFunc)] );
+ }
+ return res;
+}
+
+/**Function********************************************************************
+
+ Synopsis [Prints the BDD as a set of disjoint cubes to the standard output.]
+
+ Description []
+
+ SideEffects []
+
+******************************************************************************/
+void Cloud_bddPrint( CloudManager * dd, CloudNode * Func )
+{
+ CloudNode * Cube;
+ int fFirst = 1;
+
+ if ( Func == dd->zero )
+ printf( "Constant 0." );
+ else if ( Func == dd->one )
+ printf( "Constant 1." );
+ else
+ {
+ while ( 1 )
+ {
+ Cube = Cloud_GetOneCube( dd, Func );
+ if ( Cube == NULL || Cube == dd->zero )
+ break;
+ if ( fFirst ) fFirst = 0;
+ else printf( " + " );
+ Cloud_bddPrintCube( dd, Cube );
+ Func = Cloud_bddAnd( dd, Func, Cloud_Not(Cube) );
+ }
+ }
+ printf( "\n" );
+}
+
+/**Function********************************************************************
+
+ Synopsis [Prints one cube.]
+
+ Description []
+
+ SideEffects []
+
+******************************************************************************/
+void Cloud_bddPrintCube( CloudManager * dd, CloudNode * bCube )
+{
+ CloudNode * bCube0, * bCube1;
+
+ assert( !Cloud_IsConstant(bCube) );
+ while ( 1 )
+ {
+ // get the node structure
+ if ( Cloud_IsConstant(bCube) )
+ break;
+
+ // cofactor the cube
+ if ( Cloud_IsComplement(bCube) )
+ {
+ bCube0 = Cloud_Not( cloudE(bCube) );
+ bCube1 = Cloud_Not( cloudT(bCube) );
+ }
+ else
+ {
+ bCube0 = cloudE(bCube);
+ bCube1 = cloudT(bCube);
+ }
+
+ if ( bCube0 != dd->zero )
+ {
+ assert( bCube1 == dd->zero );
+ printf( "[%d]'", cloudV(bCube) );
+ bCube = bCube0;
+ }
+ else
+ {
+ assert( bCube1 != dd->zero );
+ printf( "[%d]", cloudV(bCube) );
+ bCube = bCube1;
+ }
+ }
+}
+
+
+/**Function********************************************************************
+
+ Synopsis [Prints info.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+void Cloud_PrintInfo( CloudManager * dd )
+{
+ if ( dd == NULL ) return;
+ printf( "The number of unique table nodes allocated = %12d.\n", dd->nNodesAlloc );
+ printf( "The number of unique table nodes present = %12d.\n", dd->nNodesCur );
+ printf( "The number of unique table hits = %12d.\n", dd->nUniqueHits );
+ printf( "The number of unique table misses = %12d.\n", dd->nUniqueMisses );
+ printf( "The number of unique table steps = %12d.\n", dd->nUniqueSteps );
+ printf( "The number of cache hits = %12d.\n", dd->nCacheHits );
+ printf( "The number of cache misses = %12d.\n", dd->nCacheMisses );
+ printf( "The current signature = %12d.\n", dd->nSignCur );
+ printf( "The total memory in use = %12d.\n", dd->nMemUsed );
+}
+
+/**Function********************************************************************
+
+ Synopsis [Prints the state of the hash table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+void Cloud_PrintHashTable( CloudManager * dd )
+{
+ int i;
+
+ for ( i = 0; i < dd->nNodesAlloc; i++ )
+ if ( dd->tUnique[i].v == CLOUD_CONST_INDEX )
+ printf( "-" );
+ else
+ printf( "+" );
+ printf( "\n" );
+}
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/cloud.h b/src/bool/kit/cloud.h
new file mode 100644
index 00000000..208a47ec
--- /dev/null
+++ b/src/bool/kit/cloud.h
@@ -0,0 +1,255 @@
+/**CFile****************************************************************
+
+ FileName [cloud.h]
+
+ PackageName [Fast application-specific BDD package.]
+
+ Synopsis [Interface of the package.]
+
+ Author [Alan Mishchenko <alanmi@ece.pdx.edu>]
+
+ Affiliation [ECE Department. Portland State University, Portland, Oregon.]
+
+ Date [Ver. 1.0. Started - June 10, 2002.]
+
+ Revision [$Id: cloud.h,v 1.0 2002/06/10 03:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#ifndef ABC__aig__kit__cloud_h
+#define ABC__aig__kit__cloud_h
+
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <assert.h>
+#include <time.h>
+
+#include "src/misc/util/abc_global.h"
+
+
+
+ABC_NAMESPACE_HEADER_START
+
+
+#ifdef _WIN32
+#define inline __inline // compatible with MS VS 6.0
+#endif
+
+////////////////////////////////////////////////////////////////////////
+// n | 2^n || n | 2^n || n | 2^n || n | 2^n //
+//====================================================================//
+// 1 | 2 || 9 | 512 || 17 | 131,072 || 25 | 33,554,432 //
+// 2 | 4 || 10 | 1,024 || 18 | 262,144 || 26 | 67,108,864 //
+// 3 | 8 || 11 | 2,048 || 19 | 524,288 || 27 | 134,217,728 //
+// 4 | 16 || 12 | 4,096 || 20 | 1,048,576 || 28 | 268,435,456 //
+// 5 | 32 || 13 | 8,192 || 21 | 2,097,152 || 29 | 536,870,912 //
+// 6 | 64 || 14 | 16,384 || 22 | 4,194,304 || 30 | 1,073,741,824 //
+// 7 | 128 || 15 | 32,768 || 23 | 8,388,608 || 31 | 2,147,483,648 //
+// 8 | 256 || 16 | 65,536 || 24 | 16,777,216 || 32 | 4,294,967,296 //
+////////////////////////////////////////////////////////////////////////
+
+// data structure typedefs
+typedef struct cloudManager CloudManager;
+typedef unsigned CloudVar;
+typedef unsigned CloudSign;
+typedef struct cloudNode CloudNode;
+typedef struct cloudCacheEntry1 CloudCacheEntry1;
+typedef struct cloudCacheEntry2 CloudCacheEntry2;
+typedef struct cloudCacheEntry3 CloudCacheEntry3;
+
+// operation codes used to set up the cache
+typedef enum {
+ CLOUD_OPER_AND,
+ CLOUD_OPER_XOR,
+ CLOUD_OPER_BDIFF,
+ CLOUD_OPER_LEQ
+} CloudOper;
+
+/*
+// the number of operators using cache
+static int CacheOperNum = 4;
+
+// the ratio of cache size to the unique table size for each operator
+static int CacheLogRatioDefault[4] = {
+ 4, // CLOUD_OPER_AND,
+ 8, // CLOUD_OPER_XOR,
+ 8, // CLOUD_OPER_BDIFF,
+ 8 // CLOUD_OPER_LEQ
+};
+
+// the ratio of cache size to the unique table size for each operator
+static int CacheSize[4] = {
+ 2, // CLOUD_OPER_AND,
+ 2, // CLOUD_OPER_XOR,
+ 2, // CLOUD_OPER_BDIFF,
+ 2 // CLOUD_OPER_LEQ
+};
+*/
+
+// data structure definitions
+struct cloudManager // the fast bdd manager
+{
+ // variables
+ int nVars; // the number of variables allocated
+ // bits
+ int bitsNode; // the number of bits used for the node
+ int bitsCache[4]; // default: bitsNode - CacheSizeRatio[i]
+ // shifts
+ int shiftUnique; // 8*sizeof(unsigned) - (bitsNode + 1)
+ int shiftCache[4]; // 8*sizeof(unsigned) - bitsCache[i]
+ // nodes
+ int nNodesAlloc; // 2 ^ (bitsNode + 1)
+ int nNodesLimit; // 2 ^ bitsNode
+ int nNodesCur; // the current number of nodes (including const1 and vars)
+ // signature
+ CloudSign nSignCur;
+
+ // statistics
+ int nMemUsed; // memory usage in bytes
+ // cache stats
+ int nUniqueHits; // hits in the unique table
+ int nUniqueMisses; // misses in the unique table
+ int nCacheHits; // hits in the caches
+ int nCacheMisses; // misses in the caches
+ // the number of steps through the hash table
+ int nUniqueSteps;
+
+ // tables
+ CloudNode * tUnique; // the unique table to store BDD nodes
+
+ // special nodes
+ CloudNode * pNodeStart; // the pointer to the first node
+ CloudNode * pNodeEnd; // the pointer to the first node out of the table
+
+ // constants and variables
+ CloudNode * one; // the one function
+ CloudNode * zero; // the zero function
+ CloudNode ** vars; // the elementary variables
+
+ // temporary storage for nodes
+ CloudNode ** ppNodes;
+
+ // caches
+ CloudCacheEntry2 * tCaches[20]; // caches
+};
+
+struct cloudNode // representation of the node in the unique table
+{
+ CloudSign s; // signature
+ CloudVar v; // variable
+ CloudNode * e; // negative cofactor
+ CloudNode * t; // positive cofactor
+};
+struct cloudCacheEntry1 // one-argument cache
+{
+ CloudSign s; // signature
+ CloudNode * a; // argument 1
+ CloudNode * r; // result
+};
+struct cloudCacheEntry2 // the two-argument cache
+{
+ CloudSign s; // signature
+ CloudNode * a;
+ CloudNode * b;
+ CloudNode * r;
+};
+struct cloudCacheEntry3 // the three-argument cache
+{
+ CloudSign s; // signature
+ CloudNode * a;
+ CloudNode * b;
+ CloudNode * c;
+ CloudNode * r;
+};
+
+
+// parameters
+#define CLOUD_NODE_BITS 23
+
+#define CLOUD_CONST_INDEX ((unsigned)0x0fffffff)
+#define CLOUD_MARK_ON ((unsigned)0x10000000)
+#define CLOUD_MARK_OFF ((unsigned)0xefffffff)
+
+// hash functions a la Buddy
+#define cloudHashBuddy2(x,y,s) ((((x)+(y))*((x)+(y)+1)/2) & ((1<<(32-(s)))-1))
+#define cloudHashBuddy3(x,y,z,s) (cloudHashBuddy2((cloudHashBuddy2((x),(y),(s))),(z),(s)) & ((1<<(32-(s)))-1))
+// hash functions a la Cudd
+#define DD_P1 12582917
+#define DD_P2 4256249
+#define DD_P3 741457
+#define DD_P4 1618033999
+#define cloudHashCudd2(f,g,s) ((((unsigned)(ABC_PTRUINT_T)(f) * DD_P1 + (unsigned)(ABC_PTRUINT_T)(g)) * DD_P2) >> (s))
+#define cloudHashCudd3(f,g,h,s) (((((unsigned)(ABC_PTRUINT_T)(f) * DD_P1 + (unsigned)(ABC_PTRUINT_T)(g)) * DD_P2 + (unsigned)(ABC_PTRUINT_T)(h)) * DD_P3) >> (s))
+
+// node complementation (using node)
+#define Cloud_Regular(p) ((CloudNode*)(((ABC_PTRUINT_T)(p)) & ~01)) // get the regular node (w/o bubble)
+#define Cloud_Not(p) ((CloudNode*)(((ABC_PTRUINT_T)(p)) ^ 01)) // complement the node
+#define Cloud_NotCond(p,c) ((CloudNode*)(((ABC_PTRUINT_T)(p)) ^ (c))) // complement the node conditionally
+#define Cloud_IsComplement(p) ((int)(((ABC_PTRUINT_T)(p)) & 01)) // check if complemented
+// checking constants (using node)
+#define Cloud_IsConstant(p) (((Cloud_Regular(p))->v & CLOUD_MARK_OFF) == CLOUD_CONST_INDEX)
+#define cloudIsConstant(p) (((p)->v & CLOUD_MARK_OFF) == CLOUD_CONST_INDEX)
+
+// retrieving values from the node (using node structure)
+#define Cloud_V(p) ((Cloud_Regular(p))->v)
+#define Cloud_E(p) ((Cloud_Regular(p))->e)
+#define Cloud_T(p) ((Cloud_Regular(p))->t)
+// retrieving values from the regular node (using node structure)
+#define cloudV(p) ((p)->v)
+#define cloudE(p) ((p)->e)
+#define cloudT(p) ((p)->t)
+// marking/unmarking (using node structure)
+#define cloudNodeMark(p) ((p)->v |= CLOUD_MARK_ON)
+#define cloudNodeUnmark(p) ((p)->v &= CLOUD_MARK_OFF)
+#define cloudNodeIsMarked(p) ((int)((p)->v & CLOUD_MARK_ON))
+
+// cache lookups and inserts (using node)
+#define cloudCacheLookup1(p,sign,f) (((p)->s == (sign) && (p)->a == (f))? ((p)->r): (0))
+#define cloudCacheLookup2(p,sign,f,g) (((p)->s == (sign) && (p)->a == (f) && (p)->b == (g))? ((p)->r): (0))
+#define cloudCacheLookup3(p,sign,f,g,h) (((p)->s == (sign) && (p)->a == (f) && (p)->b == (g) && (p)->c == (h))? ((p)->r): (0))
+// cache inserts
+#define cloudCacheInsert1(p,sign,f,r) (((p)->s = (sign)), ((p)->a = (f)), ((p)->r = (r)))
+#define cloudCacheInsert2(p,sign,f,g,r) (((p)->s = (sign)), ((p)->a = (f)), ((p)->b = (g)), ((p)->r = (r)))
+#define cloudCacheInsert3(p,sign,f,g,h,r) (((p)->s = (sign)), ((p)->a = (f)), ((p)->b = (g)), ((p)->c = (h)), ((p)->r = (r)))
+
+//#define CLOUD_ASSERT(p) (assert((p) >= (dd->pNodeStart-1) && (p) < dd->pNodeEnd))
+#define CLOUD_ASSERT(p) assert((p) >= dd->tUnique && (p) < dd->tUnique+dd->nNodesAlloc)
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+// starting/stopping
+extern CloudManager * Cloud_Init( int nVars, int nBits );
+extern void Cloud_Quit( CloudManager * dd );
+extern void Cloud_Restart( CloudManager * dd );
+extern void Cloud_CacheAllocate( CloudManager * dd, CloudOper oper, int size );
+extern CloudNode * Cloud_MakeNode( CloudManager * dd, CloudVar v, CloudNode * t, CloudNode * e );
+// support and node count
+extern CloudNode * Cloud_Support( CloudManager * dd, CloudNode * n );
+extern int Cloud_SupportSize( CloudManager * dd, CloudNode * n );
+extern int Cloud_DagSize( CloudManager * dd, CloudNode * n );
+extern int Cloud_DagCollect( CloudManager * dd, CloudNode * n );
+extern int Cloud_SharingSize( CloudManager * dd, CloudNode * * pn, int nn );
+// cubes
+extern CloudNode * Cloud_GetOneCube( CloudManager * dd, CloudNode * n );
+extern void Cloud_bddPrint( CloudManager * dd, CloudNode * Func );
+extern void Cloud_bddPrintCube( CloudManager * dd, CloudNode * Cube );
+// operations
+extern CloudNode * Cloud_bddAnd( CloudManager * dd, CloudNode * f, CloudNode * g );
+extern CloudNode * Cloud_bddOr( CloudManager * dd, CloudNode * f, CloudNode * g );
+// stats
+extern void Cloud_PrintInfo( CloudManager * dd );
+extern void Cloud_PrintHashTable( CloudManager * dd );
+
+
+
+ABC_NAMESPACE_HEADER_END
+
+
+
+#endif
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
diff --git a/src/bool/kit/kit.h b/src/bool/kit/kit.h
new file mode 100644
index 00000000..4ca75622
--- /dev/null
+++ b/src/bool/kit/kit.h
@@ -0,0 +1,645 @@
+/**CFile****************************************************************
+
+ FileName [kit.h]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [External declarations.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Dec 6, 2006.]
+
+ Revision [$Id: kit.h,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#ifndef ABC__aig__kit__kit_h
+#define ABC__aig__kit__kit_h
+
+
+////////////////////////////////////////////////////////////////////////
+/// INCLUDES ///
+////////////////////////////////////////////////////////////////////////
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <time.h>
+
+#include "src/misc/vec/vec.h"
+#include "src/misc/extra/extraBdd.h"
+#include "cloud.h"
+
+////////////////////////////////////////////////////////////////////////
+/// PARAMETERS ///
+////////////////////////////////////////////////////////////////////////
+
+
+
+ABC_NAMESPACE_HEADER_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// BASIC TYPES ///
+////////////////////////////////////////////////////////////////////////
+
+typedef struct Kit_Sop_t_ Kit_Sop_t;
+struct Kit_Sop_t_
+{
+ int nCubes; // the number of cubes
+ unsigned * pCubes; // the storage for cubes
+};
+
+typedef struct Kit_Edge_t_ Kit_Edge_t;
+struct Kit_Edge_t_
+{
+ unsigned fCompl : 1; // the complemented bit
+ unsigned Node : 30; // the decomposition node pointed by the edge
+};
+
+typedef struct Kit_Node_t_ Kit_Node_t;
+struct Kit_Node_t_
+{
+ Kit_Edge_t eEdge0; // the left child of the node
+ Kit_Edge_t eEdge1; // the right child of the node
+ // other info
+ void * pFunc; // the function of the node (BDD or AIG)
+ unsigned Level : 14; // the level of this node in the global AIG
+ // printing info
+ unsigned fNodeOr : 1; // marks the original OR node
+ unsigned fCompl0 : 1; // marks the original complemented edge
+ unsigned fCompl1 : 1; // marks the original complemented edge
+ // latch info
+ unsigned nLat0 : 5; // the number of latches on the first edge
+ unsigned nLat1 : 5; // the number of latches on the second edge
+ unsigned nLat2 : 5; // the number of latches on the output edge
+};
+
+typedef struct Kit_Graph_t_ Kit_Graph_t;
+struct Kit_Graph_t_
+{
+ int fConst; // marks the constant 1 graph
+ int nLeaves; // the number of leaves
+ int nSize; // the number of nodes (including the leaves)
+ int nCap; // the number of allocated nodes
+ Kit_Node_t * pNodes; // the array of leaves and internal nodes
+ Kit_Edge_t eRoot; // the pointer to the topmost node
+};
+
+
+// DSD node types
+typedef enum {
+ KIT_DSD_NONE = 0, // 0: unknown
+ KIT_DSD_CONST1, // 1: constant 1
+ KIT_DSD_VAR, // 2: elementary variable
+ KIT_DSD_AND, // 3: multi-input AND
+ KIT_DSD_XOR, // 4: multi-input XOR
+ KIT_DSD_PRIME // 5: arbitrary function of 3+ variables
+} Kit_Dsd_t;
+
+// DSD node
+typedef struct Kit_DsdObj_t_ Kit_DsdObj_t;
+struct Kit_DsdObj_t_
+{
+ unsigned Id : 6; // the number of this node
+ unsigned Type : 3; // none, const, var, AND, XOR, MUX, PRIME
+ unsigned fMark : 1; // finished checking output
+ unsigned Offset : 8; // offset to the truth table
+ unsigned nRefs : 8; // offset to the truth table
+ unsigned nFans : 6; // the number of fanins of this node
+ unsigned char pFans[0]; // the fanin literals
+};
+
+// DSD network
+typedef struct Kit_DsdNtk_t_ Kit_DsdNtk_t;
+struct Kit_DsdNtk_t_
+{
+ unsigned char nVars; // at most 16 (perhaps 18?)
+ unsigned char nNodesAlloc; // the number of allocated nodes (at most nVars)
+ unsigned char nNodes; // the number of nodes
+ unsigned char Root; // the root of the tree
+ unsigned * pMem; // memory for the truth tables (memory manager?)
+ unsigned * pSupps; // supports of the nodes
+ Kit_DsdObj_t** pNodes; // the nodes
+};
+
+// DSD manager
+typedef struct Kit_DsdMan_t_ Kit_DsdMan_t;
+struct Kit_DsdMan_t_
+{
+ int nVars; // the maximum number of variables
+ int nWords; // the number of words in TTs
+ Vec_Ptr_t * vTtElems; // elementary truth tables
+ Vec_Ptr_t * vTtNodes; // the node truth tables
+ // BDD representation
+ CloudManager * dd; // BDD package
+ Vec_Ptr_t * vTtBdds; // the node truth tables
+ Vec_Int_t * vNodes; // temporary array for BDD nodes
+};
+
+static inline unsigned Kit_DsdObjOffset( int nFans ) { return (nFans >> 2) + ((nFans & 3) > 0); }
+static inline unsigned * Kit_DsdObjTruth( Kit_DsdObj_t * pObj ) { return pObj->Type == KIT_DSD_PRIME ? (unsigned *)pObj->pFans + pObj->Offset: NULL; }
+static inline int Kit_DsdNtkObjNum( Kit_DsdNtk_t * pNtk ){ return pNtk->nVars + pNtk->nNodes; }
+static inline Kit_DsdObj_t * Kit_DsdNtkObj( Kit_DsdNtk_t * pNtk, int Id ) { assert( Id >= 0 && Id < pNtk->nVars + pNtk->nNodes ); return Id < pNtk->nVars ? NULL : pNtk->pNodes[Id - pNtk->nVars]; }
+static inline Kit_DsdObj_t * Kit_DsdNtkRoot( Kit_DsdNtk_t * pNtk ) { return Kit_DsdNtkObj( pNtk, Abc_Lit2Var(pNtk->Root) ); }
+static inline int Kit_DsdLitIsLeaf( Kit_DsdNtk_t * pNtk, int Lit ) { int Id = Abc_Lit2Var(Lit); assert( Id >= 0 && Id < pNtk->nVars + pNtk->nNodes ); return Id < pNtk->nVars; }
+static inline unsigned Kit_DsdLitSupport( Kit_DsdNtk_t * pNtk, int Lit ) { int Id = Abc_Lit2Var(Lit); assert( Id >= 0 && Id < pNtk->nVars + pNtk->nNodes ); return pNtk->pSupps? (Id < pNtk->nVars? (1 << Id) : pNtk->pSupps[Id - pNtk->nVars]) : 0; }
+
+#define Kit_DsdNtkForEachObj( pNtk, pObj, i ) \
+ for ( i = 0; (i < (pNtk)->nNodes) && ((pObj) = (pNtk)->pNodes[i]); i++ )
+#define Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) \
+ for ( i = 0; (i < (int)(pObj)->nFans) && ((iLit) = (pObj)->pFans[i], 1); i++ )
+#define Kit_DsdObjForEachFaninReverse( pNtk, pObj, iLit, i ) \
+ for ( i = (int)(pObj)->nFans - 1; (i >= 0) && ((iLit) = (pObj)->pFans[i], 1); i-- )
+
+#define Kit_PlaForEachCube( pSop, nFanins, pCube ) \
+ for ( pCube = (pSop); *pCube; pCube += (nFanins) + 3 )
+#define Kit_PlaCubeForEachVar( pCube, Value, i ) \
+ for ( i = 0; (pCube[i] != ' ') && (Value = pCube[i]); i++ )
+
+////////////////////////////////////////////////////////////////////////
+/// MACRO DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+#define KIT_MIN(a,b) (((a) < (b))? (a) : (b))
+#define KIT_MAX(a,b) (((a) > (b))? (a) : (b))
+#define KIT_INFINITY (100000000)
+
+static inline int Kit_CubeHasLit( unsigned uCube, int i ) { return(uCube & (unsigned)(1<<i)) > 0; }
+static inline unsigned Kit_CubeSetLit( unsigned uCube, int i ) { return uCube | (unsigned)(1<<i); }
+static inline unsigned Kit_CubeXorLit( unsigned uCube, int i ) { return uCube ^ (unsigned)(1<<i); }
+static inline unsigned Kit_CubeRemLit( unsigned uCube, int i ) { return uCube & ~(unsigned)(1<<i); }
+
+static inline int Kit_CubeContains( unsigned uLarge, unsigned uSmall ) { return (uLarge & uSmall) == uSmall; }
+static inline unsigned Kit_CubeSharp( unsigned uCube, unsigned uMask ) { return uCube & ~uMask; }
+static inline unsigned Kit_CubeMask( int nVar ) { return (~(unsigned)0) >> (32-nVar); }
+
+static inline int Kit_CubeIsMarked( unsigned uCube ) { return Kit_CubeHasLit( uCube, 31 ); }
+static inline unsigned Kit_CubeMark( unsigned uCube ) { return Kit_CubeSetLit( uCube, 31 ); }
+static inline unsigned Kit_CubeUnmark( unsigned uCube ) { return Kit_CubeRemLit( uCube, 31 ); }
+
+static inline int Kit_SopCubeNum( Kit_Sop_t * cSop ) { return cSop->nCubes; }
+static inline unsigned Kit_SopCube( Kit_Sop_t * cSop, int i ) { return cSop->pCubes[i]; }
+static inline void Kit_SopShrink( Kit_Sop_t * cSop, int nCubesNew ) { cSop->nCubes = nCubesNew; }
+static inline void Kit_SopPushCube( Kit_Sop_t * cSop, unsigned uCube ) { cSop->pCubes[cSop->nCubes++] = uCube; }
+static inline void Kit_SopWriteCube( Kit_Sop_t * cSop, unsigned uCube, int i ) { cSop->pCubes[i] = uCube; }
+
+static inline Kit_Edge_t Kit_EdgeCreate( int Node, int fCompl ) { Kit_Edge_t eEdge = { fCompl, Node }; return eEdge; }
+static inline unsigned Kit_EdgeToInt( Kit_Edge_t eEdge ) { return (eEdge.Node << 1) | eEdge.fCompl; }
+static inline Kit_Edge_t Kit_IntToEdge( unsigned Edge ) { return Kit_EdgeCreate( Edge >> 1, Edge & 1 ); }
+//static inline unsigned Kit_EdgeToInt_( Kit_Edge_t eEdge ) { return *(unsigned *)&eEdge; }
+//static inline Kit_Edge_t Kit_IntToEdge_( unsigned Edge ) { return *(Kit_Edge_t *)&Edge; }
+static inline unsigned Kit_EdgeToInt_( Kit_Edge_t m ) { union { Kit_Edge_t x; unsigned y; } v; v.x = m; return v.y; }
+static inline Kit_Edge_t Kit_IntToEdge_( unsigned m ) { union { Kit_Edge_t x; unsigned y; } v; v.y = m; return v.x; }
+
+static inline int Kit_GraphIsConst( Kit_Graph_t * pGraph ) { return pGraph->fConst; }
+static inline int Kit_GraphIsConst0( Kit_Graph_t * pGraph ) { return pGraph->fConst && pGraph->eRoot.fCompl; }
+static inline int Kit_GraphIsConst1( Kit_Graph_t * pGraph ) { return pGraph->fConst && !pGraph->eRoot.fCompl; }
+static inline int Kit_GraphIsComplement( Kit_Graph_t * pGraph ) { return pGraph->eRoot.fCompl; }
+static inline int Kit_GraphIsVar( Kit_Graph_t * pGraph ) { return pGraph->eRoot.Node < (unsigned)pGraph->nLeaves; }
+static inline void Kit_GraphComplement( Kit_Graph_t * pGraph ) { pGraph->eRoot.fCompl ^= 1; }
+static inline void Kit_GraphSetRoot( Kit_Graph_t * pGraph, Kit_Edge_t eRoot ) { pGraph->eRoot = eRoot; }
+static inline int Kit_GraphLeaveNum( Kit_Graph_t * pGraph ) { return pGraph->nLeaves; }
+static inline int Kit_GraphNodeNum( Kit_Graph_t * pGraph ) { return pGraph->nSize - pGraph->nLeaves; }
+static inline Kit_Node_t * Kit_GraphNode( Kit_Graph_t * pGraph, int i ) { return pGraph->pNodes + i; }
+static inline Kit_Node_t * Kit_GraphNodeLast( Kit_Graph_t * pGraph ) { return pGraph->pNodes + pGraph->nSize - 1; }
+static inline int Kit_GraphNodeInt( Kit_Graph_t * pGraph, Kit_Node_t * pNode ) { return pNode - pGraph->pNodes; }
+static inline int Kit_GraphNodeIsVar( Kit_Graph_t * pGraph, Kit_Node_t * pNode ) { return Kit_GraphNodeInt(pGraph,pNode) < pGraph->nLeaves; }
+static inline Kit_Node_t * Kit_GraphVar( Kit_Graph_t * pGraph ) { assert( Kit_GraphIsVar( pGraph ) ); return Kit_GraphNode( pGraph, pGraph->eRoot.Node ); }
+static inline int Kit_GraphVarInt( Kit_Graph_t * pGraph ) { assert( Kit_GraphIsVar( pGraph ) ); return Kit_GraphNodeInt( pGraph, Kit_GraphVar(pGraph) ); }
+static inline Kit_Node_t * Kit_GraphNodeFanin0( Kit_Graph_t * pGraph, Kit_Node_t * pNode ){ return Kit_GraphNodeIsVar(pGraph, pNode)? NULL : Kit_GraphNode(pGraph, pNode->eEdge0.Node); }
+static inline Kit_Node_t * Kit_GraphNodeFanin1( Kit_Graph_t * pGraph, Kit_Node_t * pNode ){ return Kit_GraphNodeIsVar(pGraph, pNode)? NULL : Kit_GraphNode(pGraph, pNode->eEdge1.Node); }
+static inline int Kit_GraphRootLevel( Kit_Graph_t * pGraph ) { return Kit_GraphNode(pGraph, pGraph->eRoot.Node)->Level; }
+
+static inline int Kit_SuppIsMinBase( int Supp ) { return (Supp & (Supp+1)) == 0; }
+
+static inline int Kit_BitWordNum( int nBits ) { return nBits/(8*sizeof(unsigned)) + ((nBits%(8*sizeof(unsigned))) > 0); }
+static inline int Kit_TruthWordNum( int nVars ) { return nVars <= 5 ? 1 : (1 << (nVars - 5)); }
+static inline unsigned Kit_BitMask( int nBits ) { assert( nBits <= 32 ); return ~((~(unsigned)0) << nBits); }
+
+static inline void Kit_TruthSetBit( unsigned * p, int Bit ) { p[Bit>>5] |= (1<<(Bit & 31)); }
+static inline void Kit_TruthXorBit( unsigned * p, int Bit ) { p[Bit>>5] ^= (1<<(Bit & 31)); }
+static inline int Kit_TruthHasBit( unsigned * p, int Bit ) { return (p[Bit>>5] & (1<<(Bit & 31))) > 0; }
+
+static inline int Kit_WordFindFirstBit( unsigned uWord )
+{
+ int i;
+ for ( i = 0; i < 32; i++ )
+ if ( uWord & (1 << i) )
+ return i;
+ return -1;
+}
+static inline int Kit_WordHasOneBit( unsigned uWord )
+{
+ return (uWord & (uWord - 1)) == 0;
+}
+static inline int Kit_WordCountOnes( unsigned uWord )
+{
+ uWord = (uWord & 0x55555555) + ((uWord>>1) & 0x55555555);
+ uWord = (uWord & 0x33333333) + ((uWord>>2) & 0x33333333);
+ uWord = (uWord & 0x0F0F0F0F) + ((uWord>>4) & 0x0F0F0F0F);
+ uWord = (uWord & 0x00FF00FF) + ((uWord>>8) & 0x00FF00FF);
+ return (uWord & 0x0000FFFF) + (uWord>>16);
+}
+static inline int Kit_TruthCountOnes( unsigned * pIn, int nVars )
+{
+ int w, Counter = 0;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ Counter += Kit_WordCountOnes(pIn[w]);
+ return Counter;
+}
+static inline int Kit_TruthFindFirstBit( unsigned * pIn, int nVars )
+{
+ int w;
+ for ( w = 0; w < Kit_TruthWordNum(nVars); w++ )
+ if ( pIn[w] )
+ return 32*w + Kit_WordFindFirstBit(pIn[w]);
+ return -1;
+}
+static inline int Kit_TruthFindFirstZero( unsigned * pIn, int nVars )
+{
+ int w;
+ for ( w = 0; w < Kit_TruthWordNum(nVars); w++ )
+ if ( ~pIn[w] )
+ return 32*w + Kit_WordFindFirstBit(~pIn[w]);
+ return -1;
+}
+static inline int Kit_TruthIsEqual( unsigned * pIn0, unsigned * pIn1, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ if ( pIn0[w] != pIn1[w] )
+ return 0;
+ return 1;
+}
+static inline int Kit_TruthIsEqualWithCare( unsigned * pIn0, unsigned * pIn1, unsigned * pCare, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ if ( (pIn0[w] & pCare[w]) != (pIn1[w] & pCare[w]) )
+ return 0;
+ return 1;
+}
+static inline int Kit_TruthIsOpposite( unsigned * pIn0, unsigned * pIn1, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ if ( pIn0[w] != ~pIn1[w] )
+ return 0;
+ return 1;
+}
+static inline int Kit_TruthIsEqualWithPhase( unsigned * pIn0, unsigned * pIn1, int nVars )
+{
+ int w;
+ if ( (pIn0[0] & 1) == (pIn1[0] & 1) )
+ {
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ if ( pIn0[w] != pIn1[w] )
+ return 0;
+ }
+ else
+ {
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ if ( pIn0[w] != ~pIn1[w] )
+ return 0;
+ }
+ return 1;
+}
+static inline int Kit_TruthIsConst0( unsigned * pIn, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ if ( pIn[w] )
+ return 0;
+ return 1;
+}
+static inline int Kit_TruthIsConst1( unsigned * pIn, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ if ( pIn[w] != ~(unsigned)0 )
+ return 0;
+ return 1;
+}
+static inline int Kit_TruthIsImply( unsigned * pIn1, unsigned * pIn2, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ if ( pIn1[w] & ~pIn2[w] )
+ return 0;
+ return 1;
+}
+static inline int Kit_TruthIsDisjoint( unsigned * pIn1, unsigned * pIn2, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ if ( pIn1[w] & pIn2[w] )
+ return 0;
+ return 1;
+}
+static inline int Kit_TruthIsDisjoint3( unsigned * pIn1, unsigned * pIn2, unsigned * pIn3, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ if ( pIn1[w] & pIn2[w] & pIn3[w] )
+ return 0;
+ return 1;
+}
+static inline void Kit_TruthCopy( unsigned * pOut, unsigned * pIn, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = pIn[w];
+}
+static inline void Kit_TruthClear( unsigned * pOut, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = 0;
+}
+static inline void Kit_TruthFill( unsigned * pOut, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = ~(unsigned)0;
+}
+static inline void Kit_TruthNot( unsigned * pOut, unsigned * pIn, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = ~pIn[w];
+}
+static inline void Kit_TruthAnd( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = pIn0[w] & pIn1[w];
+}
+static inline void Kit_TruthOr( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = pIn0[w] | pIn1[w];
+}
+static inline void Kit_TruthXor( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = pIn0[w] ^ pIn1[w];
+}
+static inline void Kit_TruthSharp( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = pIn0[w] & ~pIn1[w];
+}
+static inline void Kit_TruthNand( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = ~(pIn0[w] & pIn1[w]);
+}
+static inline void Kit_TruthAndPhase( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars, int fCompl0, int fCompl1 )
+{
+ int w;
+ if ( fCompl0 && fCompl1 )
+ {
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = ~(pIn0[w] | pIn1[w]);
+ }
+ else if ( fCompl0 && !fCompl1 )
+ {
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = ~pIn0[w] & pIn1[w];
+ }
+ else if ( !fCompl0 && fCompl1 )
+ {
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = pIn0[w] & ~pIn1[w];
+ }
+ else // if ( !fCompl0 && !fCompl1 )
+ {
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = pIn0[w] & pIn1[w];
+ }
+}
+static inline void Kit_TruthOrPhase( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars, int fCompl0, int fCompl1 )
+{
+ int w;
+ if ( fCompl0 && fCompl1 )
+ {
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = ~(pIn0[w] & pIn1[w]);
+ }
+ else if ( fCompl0 && !fCompl1 )
+ {
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = ~pIn0[w] | pIn1[w];
+ }
+ else if ( !fCompl0 && fCompl1 )
+ {
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = pIn0[w] | ~pIn1[w];
+ }
+ else // if ( !fCompl0 && !fCompl1 )
+ {
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = pIn0[w] | pIn1[w];
+ }
+}
+static inline void Kit_TruthMux( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, unsigned * pCtrl, int nVars )
+{
+ int w;
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = (pIn0[w] & ~pCtrl[w]) | (pIn1[w] & pCtrl[w]);
+}
+static inline void Kit_TruthMuxPhase( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, unsigned * pCtrl, int nVars, int fComp0 )
+{
+ int w;
+ if ( fComp0 )
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = (~pIn0[w] & ~pCtrl[w]) | (pIn1[w] & pCtrl[w]);
+ else
+ for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- )
+ pOut[w] = (pIn0[w] & ~pCtrl[w]) | (pIn1[w] & pCtrl[w]);
+}
+static inline void Kit_TruthIthVar( unsigned * pTruth, int nVars, int iVar )
+{
+ unsigned Masks[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 };
+ int k, nWords = (nVars <= 5 ? 1 : (1 << (nVars - 5)));
+ if ( iVar < 5 )
+ {
+ for ( k = 0; k < nWords; k++ )
+ pTruth[k] = Masks[iVar];
+ }
+ else
+ {
+ for ( k = 0; k < nWords; k++ )
+ if ( k & (1 << (iVar-5)) )
+ pTruth[k] = ~(unsigned)0;
+ else
+ pTruth[k] = 0;
+ }
+}
+
+
+////////////////////////////////////////////////////////////////////////
+/// ITERATORS ///
+////////////////////////////////////////////////////////////////////////
+
+#define Kit_SopForEachCube( cSop, uCube, i ) \
+ for ( i = 0; (i < Kit_SopCubeNum(cSop)) && ((uCube) = Kit_SopCube(cSop, i)); i++ )
+#define Kit_CubeForEachLiteral( uCube, Lit, nLits, i ) \
+ for ( i = 0; (i < (nLits)) && ((Lit) = Kit_CubeHasLit(uCube, i)); i++ )
+
+#define Kit_GraphForEachLeaf( pGraph, pLeaf, i ) \
+ for ( i = 0; (i < (pGraph)->nLeaves) && (((pLeaf) = Kit_GraphNode(pGraph, i)), 1); i++ )
+#define Kit_GraphForEachNode( pGraph, pAnd, i ) \
+ for ( i = (pGraph)->nLeaves; (i < (pGraph)->nSize) && (((pAnd) = Kit_GraphNode(pGraph, i)), 1); i++ )
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/*=== kitBdd.c ==========================================================*/
+extern DdNode * Kit_SopToBdd( DdManager * dd, Kit_Sop_t * cSop, int nVars );
+extern DdNode * Kit_GraphToBdd( DdManager * dd, Kit_Graph_t * pGraph );
+extern DdNode * Kit_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars, int fMSBonTop );
+/*=== kitCloud.c ==========================================================*/
+extern CloudNode * Kit_TruthToCloud( CloudManager * dd, unsigned * pTruth, int nVars );
+extern unsigned * Kit_CloudToTruth( Vec_Int_t * vNodes, int nVars, Vec_Ptr_t * vStore, int fInv );
+extern int Kit_CreateCloud( CloudManager * dd, CloudNode * pFunc, Vec_Int_t * vNodes );
+extern int Kit_CreateCloudFromTruth( CloudManager * dd, unsigned * pTruth, int nVars, Vec_Int_t * vNodes );
+extern unsigned * Kit_TruthCompose( CloudManager * dd, unsigned * pTruth, int nVars, unsigned ** pInputs, int nVarsAll, Vec_Ptr_t * vStore, Vec_Int_t * vNodes );
+extern void Kit_TruthCofSupports( Vec_Int_t * vBddDir, Vec_Int_t * vBddInv, int nVars, Vec_Int_t * vMemory, unsigned * puSupps );
+/*=== kitDsd.c ==========================================================*/
+extern Kit_DsdMan_t * Kit_DsdManAlloc( int nVars, int nNodes );
+extern void Kit_DsdManFree( Kit_DsdMan_t * p );
+extern Kit_DsdNtk_t * Kit_DsdDeriveNtk( unsigned * pTruth, int nVars, int nLutSize );
+extern unsigned * Kit_DsdTruthCompute( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk );
+extern void Kit_DsdTruth( Kit_DsdNtk_t * pNtk, unsigned * pTruthRes );
+extern void Kit_DsdTruthPartial( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned * pTruthRes, unsigned uSupp );
+extern void Kit_DsdTruthPartialTwo( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp, int iVar, unsigned * pTruthCo, unsigned * pTruthDec );
+extern void Kit_DsdPrint( FILE * pFile, Kit_DsdNtk_t * pNtk );
+extern void Kit_DsdPrintExpanded( Kit_DsdNtk_t * pNtk );
+extern void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars );
+extern void Kit_DsdPrintFromTruth2( FILE * pFile, unsigned * pTruth, int nVars );
+extern void Kit_DsdWriteFromTruth( char * pBuffer, unsigned * pTruth, int nVars );
+extern Kit_DsdNtk_t * Kit_DsdDecompose( unsigned * pTruth, int nVars );
+extern Kit_DsdNtk_t * Kit_DsdDecomposeExpand( unsigned * pTruth, int nVars );
+extern Kit_DsdNtk_t * Kit_DsdDecomposeMux( unsigned * pTruth, int nVars, int nDecMux );
+extern void Kit_DsdVerify( Kit_DsdNtk_t * pNtk, unsigned * pTruth, int nVars );
+extern void Kit_DsdNtkFree( Kit_DsdNtk_t * pNtk );
+extern int Kit_DsdNonDsdSizeMax( Kit_DsdNtk_t * pNtk );
+extern Kit_DsdObj_t * Kit_DsdNonDsdPrimeMax( Kit_DsdNtk_t * pNtk );
+extern unsigned Kit_DsdNonDsdSupports( Kit_DsdNtk_t * pNtk );
+extern unsigned Kit_DsdGetSupports( Kit_DsdNtk_t * p );
+extern Kit_DsdNtk_t * Kit_DsdExpand( Kit_DsdNtk_t * p );
+extern Kit_DsdNtk_t * Kit_DsdShrink( Kit_DsdNtk_t * p, int pPrios[] );
+extern void Kit_DsdRotate( Kit_DsdNtk_t * p, int pFreqs[] );
+extern int Kit_DsdCofactoring( unsigned * pTruth, int nVars, int * pCofVars, int nLimit, int fVerbose );
+/*=== kitFactor.c ==========================================================*/
+extern Kit_Graph_t * Kit_SopFactor( Vec_Int_t * vCover, int fCompl, int nVars, Vec_Int_t * vMemory );
+/*=== kitGraph.c ==========================================================*/
+extern Kit_Graph_t * Kit_GraphCreate( int nLeaves );
+extern Kit_Graph_t * Kit_GraphCreateConst0();
+extern Kit_Graph_t * Kit_GraphCreateConst1();
+extern Kit_Graph_t * Kit_GraphCreateLeaf( int iLeaf, int nLeaves, int fCompl );
+extern void Kit_GraphFree( Kit_Graph_t * pGraph );
+extern Kit_Node_t * Kit_GraphAppendNode( Kit_Graph_t * pGraph );
+extern Kit_Edge_t Kit_GraphAddNodeAnd( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 );
+extern Kit_Edge_t Kit_GraphAddNodeOr( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 );
+extern Kit_Edge_t Kit_GraphAddNodeXor( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1, int Type );
+extern Kit_Edge_t Kit_GraphAddNodeMux( Kit_Graph_t * pGraph, Kit_Edge_t eEdgeC, Kit_Edge_t eEdgeT, Kit_Edge_t eEdgeE, int Type );
+extern unsigned Kit_GraphToTruth( Kit_Graph_t * pGraph );
+extern Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars, Vec_Int_t * vMemory );
+extern int Kit_GraphLeafDepth_rec( Kit_Graph_t * pGraph, Kit_Node_t * pNode, Kit_Node_t * pLeaf );
+/*=== kitHop.c ==========================================================*/
+//extern Hop_Obj_t * Kit_GraphToHop( Hop_Man_t * pMan, Kit_Graph_t * pGraph );
+//extern Hop_Obj_t * Kit_TruthToHop( Hop_Man_t * pMan, unsigned * pTruth, int nVars, Vec_Int_t * vMemory );
+//extern Hop_Obj_t * Kit_CoverToHop( Hop_Man_t * pMan, Vec_Int_t * vCover, int nVars, Vec_Int_t * vMemory );
+/*=== kitIsop.c ==========================================================*/
+extern int Kit_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vMemory, int fTryBoth );
+/*=== kitPla.c ==========================================================*/
+extern int Kit_PlaIsConst0( char * pSop );
+extern int Kit_PlaIsConst1( char * pSop );
+extern int Kit_PlaIsBuf( char * pSop );
+extern int Kit_PlaIsInv( char * pSop );
+extern int Kit_PlaGetVarNum( char * pSop );
+extern int Kit_PlaGetCubeNum( char * pSop );
+extern int Kit_PlaIsComplement( char * pSop );
+extern void Kit_PlaComplement( char * pSop );
+extern char * Kit_PlaStart( void * p, int nCubes, int nVars );
+extern char * Kit_PlaCreateFromIsop( void * p, int nVars, Vec_Int_t * vCover );
+extern void Kit_PlaToIsop( char * pSop, Vec_Int_t * vCover );
+extern char * Kit_PlaStoreSop( void * p, char * pSop );
+extern char * Kit_PlaFromTruth( void * p, unsigned * pTruth, int nVars, Vec_Int_t * vCover );
+extern char * Kit_PlaFromTruthNew( unsigned * pTruth, int nVars, Vec_Int_t * vCover, Vec_Str_t * vStr );
+extern ABC_UINT64_T Kit_PlaToTruth6( char * pSop, int nVars );
+extern void Kit_PlaToTruth( char * pSop, int nVars, Vec_Ptr_t * vVars, unsigned * pTemp, unsigned * pTruth );
+/*=== kitSop.c ==========================================================*/
+extern void Kit_SopCreate( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory );
+extern void Kit_SopCreateInverse( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory );
+extern void Kit_SopDup( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory );
+extern void Kit_SopDivideByLiteralQuo( Kit_Sop_t * cSop, int iLit );
+extern void Kit_SopDivideByCube( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory );
+extern void Kit_SopDivideInternal( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory );
+extern void Kit_SopMakeCubeFree( Kit_Sop_t * cSop );
+extern int Kit_SopIsCubeFree( Kit_Sop_t * cSop );
+extern void Kit_SopCommonCubeCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory );
+extern int Kit_SopAnyLiteral( Kit_Sop_t * cSop, int nLits );
+extern int Kit_SopDivisor( Kit_Sop_t * cResult, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory );
+extern void Kit_SopBestLiteralCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, unsigned uCube, int nLits, Vec_Int_t * vMemory );
+/*=== kitTruth.c ==========================================================*/
+extern void Kit_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int Start );
+extern void Kit_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn );
+extern void Kit_TruthPermute( unsigned * pOut, unsigned * pIn, int nVars, char * pPerm, int fReturnIn );
+extern void Kit_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn );
+extern int Kit_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar );
+extern int Kit_TruthSupportSize( unsigned * pTruth, int nVars );
+extern unsigned Kit_TruthSupport( unsigned * pTruth, int nVars );
+extern void Kit_TruthCofactor0( unsigned * pTruth, int nVars, int iVar );
+extern void Kit_TruthCofactor1( unsigned * pTruth, int nVars, int iVar );
+extern void Kit_TruthCofactor0New( unsigned * pOut, unsigned * pIn, int nVars, int iVar );
+extern void Kit_TruthCofactor1New( unsigned * pOut, unsigned * pIn, int nVars, int iVar );
+extern int Kit_TruthVarIsVacuous( unsigned * pOnset, unsigned * pOffset, int nVars, int iVar );
+extern void Kit_TruthExist( unsigned * pTruth, int nVars, int iVar );
+extern void Kit_TruthExistNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar );
+extern void Kit_TruthExistSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask );
+extern void Kit_TruthForall( unsigned * pTruth, int nVars, int iVar );
+extern void Kit_TruthForallNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar );
+extern void Kit_TruthForallSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask );
+extern void Kit_TruthUniqueNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar );
+extern void Kit_TruthMuxVar( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar );
+extern void Kit_TruthMuxVarPhase( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar, int fCompl0 );
+extern void Kit_TruthChangePhase( unsigned * pTruth, int nVars, int iVar );
+extern int Kit_TruthVarsSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1, unsigned * pCof0, unsigned * pCof1 );
+extern int Kit_TruthVarsAntiSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1, unsigned * pCof0, unsigned * pCof1 );
+extern int Kit_TruthMinCofSuppOverlap( unsigned * pTruth, int nVars, int * pVarMin );
+extern int Kit_TruthBestCofVar( unsigned * pTruth, int nVars, unsigned * pCof0, unsigned * pCof1 );
+extern void Kit_TruthCountOnesInCofs( unsigned * pTruth, int nVars, short * pStore );
+extern void Kit_TruthCountOnesInCofs0( unsigned * pTruth, int nVars, short * pStore );
+extern void Kit_TruthCountOnesInCofsSlow( unsigned * pTruth, int nVars, short * pStore, unsigned * pAux );
+extern unsigned Kit_TruthHash( unsigned * pIn, int nWords );
+extern unsigned Kit_TruthSemiCanonicize( unsigned * pInOut, unsigned * pAux, int nVars, char * pCanonPerm, short * pStore );
+extern char * Kit_TruthDumpToFile( unsigned * pTruth, int nVars, int nFile );
+extern void Kit_TruthPrintProfile( unsigned * pTruth, int nVars );
+
+
+
+ABC_NAMESPACE_HEADER_END
+
+
+
+#endif
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
diff --git a/src/bool/kit/kitAig.c b/src/bool/kit/kitAig.c
new file mode 100644
index 00000000..95fccbad
--- /dev/null
+++ b/src/bool/kit/kitAig.c
@@ -0,0 +1,126 @@
+/**CFile****************************************************************
+
+ FileName [kitAig.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [Procedures involving AIGs.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Dec 6, 2006.]
+
+ Revision [$Id: kitAig.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "kit.h"
+#include "src/aig/aig/aig.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Transforms the decomposition graph into the AIG.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Aig_Obj_t * Kit_GraphToAigInternal( Aig_Man_t * pMan, Kit_Graph_t * pGraph )
+{
+ Kit_Node_t * pNode = NULL;
+ Aig_Obj_t * pAnd0, * pAnd1;
+ int i;
+ // check for constant function
+ if ( Kit_GraphIsConst(pGraph) )
+ return Aig_NotCond( Aig_ManConst1(pMan), Kit_GraphIsComplement(pGraph) );
+ // check for a literal
+ if ( Kit_GraphIsVar(pGraph) )
+ return Aig_NotCond( (Aig_Obj_t *)Kit_GraphVar(pGraph)->pFunc, Kit_GraphIsComplement(pGraph) );
+ // build the AIG nodes corresponding to the AND gates of the graph
+ Kit_GraphForEachNode( pGraph, pNode, i )
+ {
+ pAnd0 = Aig_NotCond( (Aig_Obj_t *)Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl );
+ pAnd1 = Aig_NotCond( (Aig_Obj_t *)Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl );
+ pNode->pFunc = Aig_And( pMan, pAnd0, pAnd1 );
+ }
+ // complement the result if necessary
+ return Aig_NotCond( (Aig_Obj_t *)pNode->pFunc, Kit_GraphIsComplement(pGraph) );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Strashes one logic node using its SOP.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Aig_Obj_t * Kit_GraphToAig( Aig_Man_t * pMan, Aig_Obj_t ** pFanins, Kit_Graph_t * pGraph )
+{
+ Kit_Node_t * pNode = NULL;
+ int i;
+ // collect the fanins
+ Kit_GraphForEachLeaf( pGraph, pNode, i )
+ pNode->pFunc = pFanins[i];
+ // perform strashing
+ return Kit_GraphToAigInternal( pMan, pGraph );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Strashed onen logic nodes using its truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Aig_Obj_t * Kit_TruthToAig( Aig_Man_t * pMan, Aig_Obj_t ** pFanins, unsigned * pTruth, int nVars, Vec_Int_t * vMemory )
+{
+ Aig_Obj_t * pObj;
+ Kit_Graph_t * pGraph;
+ // transform truth table into the decomposition tree
+ if ( vMemory == NULL )
+ {
+ vMemory = Vec_IntAlloc( 0 );
+ pGraph = Kit_TruthToGraph( pTruth, nVars, vMemory );
+ Vec_IntFree( vMemory );
+ }
+ else
+ pGraph = Kit_TruthToGraph( pTruth, nVars, vMemory );
+ // derive the AIG for the decomposition tree
+ pObj = Kit_GraphToAig( pMan, pFanins, pGraph );
+ Kit_GraphFree( pGraph );
+ return pObj;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/kitBdd.c b/src/bool/kit/kitBdd.c
new file mode 100644
index 00000000..0d12d0dc
--- /dev/null
+++ b/src/bool/kit/kitBdd.c
@@ -0,0 +1,236 @@
+/**CFile****************************************************************
+
+ FileName [kitBdd.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [Procedures involving BDDs.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Dec 6, 2006.]
+
+ Revision [$Id: kitBdd.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "kit.h"
+#include "src/misc/extra/extraBdd.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Derives the BDD for the given SOP.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+DdNode * Kit_SopToBdd( DdManager * dd, Kit_Sop_t * cSop, int nVars )
+{
+ DdNode * bSum, * bCube, * bTemp, * bVar;
+ unsigned uCube;
+ int Value, i, v;
+ assert( nVars < 16 );
+ // start the cover
+ bSum = Cudd_ReadLogicZero(dd); Cudd_Ref( bSum );
+ // check the logic function of the node
+ Kit_SopForEachCube( cSop, uCube, i )
+ {
+ bCube = Cudd_ReadOne(dd); Cudd_Ref( bCube );
+ for ( v = 0; v < nVars; v++ )
+ {
+ Value = ((uCube >> 2*v) & 3);
+ if ( Value == 1 )
+ bVar = Cudd_Not( Cudd_bddIthVar( dd, v ) );
+ else if ( Value == 2 )
+ bVar = Cudd_bddIthVar( dd, v );
+ else
+ continue;
+ bCube = Cudd_bddAnd( dd, bTemp = bCube, bVar ); Cudd_Ref( bCube );
+ Cudd_RecursiveDeref( dd, bTemp );
+ }
+ bSum = Cudd_bddOr( dd, bTemp = bSum, bCube );
+ Cudd_Ref( bSum );
+ Cudd_RecursiveDeref( dd, bTemp );
+ Cudd_RecursiveDeref( dd, bCube );
+ }
+ // complement the result if necessary
+ Cudd_Deref( bSum );
+ return bSum;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Converts graph to BDD.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+DdNode * Kit_GraphToBdd( DdManager * dd, Kit_Graph_t * pGraph )
+{
+ DdNode * bFunc, * bFunc0, * bFunc1;
+ Kit_Node_t * pNode = NULL; // Suppress "might be used uninitialized"
+ int i;
+
+ // sanity checks
+ assert( Kit_GraphLeaveNum(pGraph) >= 0 );
+ assert( Kit_GraphLeaveNum(pGraph) <= pGraph->nSize );
+
+ // check for constant function
+ if ( Kit_GraphIsConst(pGraph) )
+ return Cudd_NotCond( b1, Kit_GraphIsComplement(pGraph) );
+ // check for a literal
+ if ( Kit_GraphIsVar(pGraph) )
+ return Cudd_NotCond( Cudd_bddIthVar(dd, Kit_GraphVarInt(pGraph)), Kit_GraphIsComplement(pGraph) );
+
+ // assign the elementary variables
+ Kit_GraphForEachLeaf( pGraph, pNode, i )
+ pNode->pFunc = Cudd_bddIthVar( dd, i );
+
+ // compute the function for each internal node
+ Kit_GraphForEachNode( pGraph, pNode, i )
+ {
+ bFunc0 = Cudd_NotCond( Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl );
+ bFunc1 = Cudd_NotCond( Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl );
+ pNode->pFunc = Cudd_bddAnd( dd, bFunc0, bFunc1 ); Cudd_Ref( (DdNode *)pNode->pFunc );
+ }
+
+ // deref the intermediate results
+ bFunc = (DdNode *)pNode->pFunc; Cudd_Ref( bFunc );
+ Kit_GraphForEachNode( pGraph, pNode, i )
+ Cudd_RecursiveDeref( dd, (DdNode *)pNode->pFunc );
+ Cudd_Deref( bFunc );
+
+ // complement the result if necessary
+ return Cudd_NotCond( bFunc, Kit_GraphIsComplement(pGraph) );
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+DdNode * Kit_TruthToBdd_rec( DdManager * dd, unsigned * pTruth, int iBit, int nVars, int nVarsTotal, int fMSBonTop )
+{
+ DdNode * bF0, * bF1, * bF;
+ int Var;
+ if ( nVars <= 5 )
+ {
+ unsigned uTruth, uMask;
+ uMask = ((~(unsigned)0) >> (32 - (1<<nVars)));
+ uTruth = (pTruth[iBit>>5] >> (iBit&31)) & uMask;
+ if ( uTruth == 0 )
+ return b0;
+ if ( uTruth == uMask )
+ return b1;
+ }
+ // find the variable to use
+ Var = fMSBonTop? nVarsTotal-nVars : nVars-1;
+ // other special cases can be added
+ bF0 = Kit_TruthToBdd_rec( dd, pTruth, iBit, nVars-1, nVarsTotal, fMSBonTop ); Cudd_Ref( bF0 );
+ bF1 = Kit_TruthToBdd_rec( dd, pTruth, iBit+(1<<(nVars-1)), nVars-1, nVarsTotal, fMSBonTop ); Cudd_Ref( bF1 );
+ bF = Cudd_bddIte( dd, dd->vars[Var], bF1, bF0 ); Cudd_Ref( bF );
+ Cudd_RecursiveDeref( dd, bF0 );
+ Cudd_RecursiveDeref( dd, bF1 );
+ Cudd_Deref( bF );
+ return bF;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Compute BDD corresponding to the truth table.]
+
+ Description [If truth table has N vars, the BDD depends on N topmost
+ variables of the BDD manager. The most significant variable of the table
+ is encoded by the topmost variable of the manager. BDD construction is
+ efficient in this case because BDD is constructed one node at a time,
+ by simply adding BDD nodes on top of existent BDD nodes.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+DdNode * Kit_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars, int fMSBonTop )
+{
+ return Kit_TruthToBdd_rec( dd, pTruth, 0, nVars, nVars, fMSBonTop );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Verifies that the factoring is correct.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_SopFactorVerify( Vec_Int_t * vCover, Kit_Graph_t * pFForm, int nVars )
+{
+ static DdManager * dd = NULL;
+ Kit_Sop_t Sop, * cSop = &Sop;
+ DdNode * bFunc1, * bFunc2;
+ Vec_Int_t * vMemory;
+ int RetValue;
+ // get the manager
+ if ( dd == NULL )
+ dd = Cudd_Init( 16, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
+ // derive SOP
+ vMemory = Vec_IntAlloc( Vec_IntSize(vCover) );
+ Kit_SopCreate( cSop, vCover, nVars, vMemory );
+ // get the functions
+ bFunc1 = Kit_SopToBdd( dd, cSop, nVars ); Cudd_Ref( bFunc1 );
+ bFunc2 = Kit_GraphToBdd( dd, pFForm ); Cudd_Ref( bFunc2 );
+//Extra_bddPrint( dd, bFunc1 ); printf("\n");
+//Extra_bddPrint( dd, bFunc2 ); printf("\n");
+ RetValue = (bFunc1 == bFunc2);
+ if ( bFunc1 != bFunc2 )
+ {
+ int s;
+ Extra_bddPrint( dd, bFunc1 ); printf("\n");
+ Extra_bddPrint( dd, bFunc2 ); printf("\n");
+ s = 0;
+ }
+ Cudd_RecursiveDeref( dd, bFunc1 );
+ Cudd_RecursiveDeref( dd, bFunc2 );
+ Vec_IntFree( vMemory );
+ return RetValue;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/kitCloud.c b/src/bool/kit/kitCloud.c
new file mode 100644
index 00000000..dea56749
--- /dev/null
+++ b/src/bool/kit/kitCloud.c
@@ -0,0 +1,378 @@
+/**CFile****************************************************************
+
+ FileName [kitCloud.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [Procedures using BDD package CLOUD.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Dec 6, 2006.]
+
+ Revision [$Id: kitCloud.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "kit.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+// internal representation of the function to be decomposed
+typedef struct Kit_Mux_t_ Kit_Mux_t;
+struct Kit_Mux_t_
+{
+ unsigned v : 5; // variable
+ unsigned t : 12; // then edge
+ unsigned e : 12; // else edge
+ unsigned c : 1; // complemented attr of else edge
+ unsigned i : 1; // complemented attr of top node
+};
+
+static inline int Kit_Mux2Int( Kit_Mux_t m ) { union { Kit_Mux_t x; int y; } v; v.x = m; return v.y; }
+static inline Kit_Mux_t Kit_Int2Mux( int m ) { union { Kit_Mux_t x; int y; } v; v.y = m; return v.x; }
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Derive BDD from the truth table for 5 variable functions.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+CloudNode * Kit_TruthToCloud5_rec( CloudManager * dd, unsigned uTruth, int nVars, int nVarsAll )
+{
+ static unsigned uVars[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 };
+ CloudNode * pCof0, * pCof1;
+ unsigned uCof0, uCof1;
+ assert( nVars <= 5 );
+ if ( uTruth == 0 )
+ return dd->zero;
+ if ( uTruth == ~0 )
+ return dd->one;
+ if ( nVars == 1 )
+ {
+ if ( uTruth == uVars[0] )
+ return dd->vars[nVarsAll-1];
+ if ( uTruth == ~uVars[0] )
+ return Cloud_Not(dd->vars[nVarsAll-1]);
+ assert( 0 );
+ }
+// Count++;
+ assert( nVars > 1 );
+ uCof0 = uTruth & ~uVars[nVars-1];
+ uCof1 = uTruth & uVars[nVars-1];
+ uCof0 |= uCof0 << (1<<(nVars-1));
+ uCof1 |= uCof1 >> (1<<(nVars-1));
+ if ( uCof0 == uCof1 )
+ return Kit_TruthToCloud5_rec( dd, uCof0, nVars - 1, nVarsAll );
+ if ( uCof0 == ~uCof1 )
+ {
+ pCof0 = Kit_TruthToCloud5_rec( dd, uCof0, nVars - 1, nVarsAll );
+ pCof1 = Cloud_Not( pCof0 );
+ }
+ else
+ {
+ pCof0 = Kit_TruthToCloud5_rec( dd, uCof0, nVars - 1, nVarsAll );
+ pCof1 = Kit_TruthToCloud5_rec( dd, uCof1, nVars - 1, nVarsAll );
+ }
+ return Cloud_MakeNode( dd, nVarsAll - nVars, pCof1, pCof0 );
+}
+
+/**Function********************************************************************
+
+ Synopsis [Compute BDD for the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+CloudNode * Kit_TruthToCloud_rec( CloudManager * dd, unsigned * pTruth, int nVars, int nVarsAll )
+{
+ CloudNode * pCof0, * pCof1;
+ unsigned * pTruth0, * pTruth1;
+ if ( nVars <= 5 )
+ return Kit_TruthToCloud5_rec( dd, pTruth[0], nVars, nVarsAll );
+ if ( Kit_TruthIsConst0(pTruth, nVars) )
+ return dd->zero;
+ if ( Kit_TruthIsConst1(pTruth, nVars) )
+ return dd->one;
+// Count++;
+ pTruth0 = pTruth;
+ pTruth1 = pTruth + Kit_TruthWordNum(nVars-1);
+ if ( Kit_TruthIsEqual( pTruth0, pTruth1, nVars - 1 ) )
+ return Kit_TruthToCloud_rec( dd, pTruth0, nVars - 1, nVarsAll );
+ if ( Kit_TruthIsOpposite( pTruth0, pTruth1, nVars - 1 ) )
+ {
+ pCof0 = Kit_TruthToCloud_rec( dd, pTruth0, nVars - 1, nVarsAll );
+ pCof1 = Cloud_Not( pCof0 );
+ }
+ else
+ {
+ pCof0 = Kit_TruthToCloud_rec( dd, pTruth0, nVars - 1, nVarsAll );
+ pCof1 = Kit_TruthToCloud_rec( dd, pTruth1, nVars - 1, nVarsAll );
+ }
+ return Cloud_MakeNode( dd, nVarsAll - nVars, pCof1, pCof0 );
+}
+
+/**Function********************************************************************
+
+ Synopsis [Compute BDD for the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+CloudNode * Kit_TruthToCloud( CloudManager * dd, unsigned * pTruth, int nVars )
+{
+ CloudNode * pRes;
+ pRes = Kit_TruthToCloud_rec( dd, pTruth, nVars, nVars );
+// printf( "%d/%d ", Count, Cloud_DagSize(dd, pRes) );
+ return pRes;
+}
+
+/**Function********************************************************************
+
+ Synopsis [Transforms the array of BDDs into the integer array.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+int Kit_CreateCloud( CloudManager * dd, CloudNode * pFunc, Vec_Int_t * vNodes )
+{
+ Kit_Mux_t Mux;
+ int nNodes, i;
+ // collect BDD nodes
+ nNodes = Cloud_DagCollect( dd, pFunc );
+ if ( nNodes >= (1<<12) ) // because in Kit_Mux_t edge is 12 bit
+ return 0;
+ assert( nNodes == Cloud_DagSize( dd, pFunc ) );
+ assert( nNodes < dd->nNodesLimit );
+ Vec_IntClear( vNodes );
+ Vec_IntPush( vNodes, 0 ); // const1 node
+ dd->ppNodes[0]->s = 0;
+ for ( i = 1; i < nNodes; i++ )
+ {
+ dd->ppNodes[i]->s = i;
+ Mux.v = dd->ppNodes[i]->v;
+ Mux.t = dd->ppNodes[i]->t->s;
+ Mux.e = Cloud_Regular(dd->ppNodes[i]->e)->s;
+ Mux.c = Cloud_IsComplement(dd->ppNodes[i]->e);
+ Mux.i = (i == nNodes - 1)? Cloud_IsComplement(pFunc) : 0;
+ // put the MUX into the array
+ Vec_IntPush( vNodes, Kit_Mux2Int(Mux) );
+ }
+ assert( Vec_IntSize(vNodes) == nNodes );
+ // reset signatures
+ for ( i = 0; i < nNodes; i++ )
+ dd->ppNodes[i]->s = dd->nSignCur;
+ return 1;
+}
+
+/**Function********************************************************************
+
+ Synopsis [Transforms the array of BDDs into the integer array.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+int Kit_CreateCloudFromTruth( CloudManager * dd, unsigned * pTruth, int nVars, Vec_Int_t * vNodes )
+{
+ CloudNode * pFunc;
+ Cloud_Restart( dd );
+ pFunc = Kit_TruthToCloud( dd, pTruth, nVars );
+ Vec_IntClear( vNodes );
+ return Kit_CreateCloud( dd, pFunc, vNodes );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes composition of truth tables.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned * Kit_CloudToTruth( Vec_Int_t * vNodes, int nVars, Vec_Ptr_t * vStore, int fInv )
+{
+ unsigned * pThis, * pFan0, * pFan1;
+ Kit_Mux_t Mux;
+ int i, Entry;
+ assert( Vec_IntSize(vNodes) <= Vec_PtrSize(vStore) );
+ pThis = (unsigned *)Vec_PtrEntry( vStore, 0 );
+ Kit_TruthFill( pThis, nVars );
+ Vec_IntForEachEntryStart( vNodes, Entry, i, 1 )
+ {
+ Mux = Kit_Int2Mux(Entry);
+ assert( (int)Mux.e < i && (int)Mux.t < i && (int)Mux.v < nVars );
+ pFan0 = (unsigned *)Vec_PtrEntry( vStore, Mux.e );
+ pFan1 = (unsigned *)Vec_PtrEntry( vStore, Mux.t );
+ pThis = (unsigned *)Vec_PtrEntry( vStore, i );
+ Kit_TruthMuxVarPhase( pThis, pFan0, pFan1, nVars, fInv? Mux.v : nVars-1-Mux.v, Mux.c );
+ }
+ // complement the result
+ if ( Mux.i )
+ Kit_TruthNot( pThis, pThis, nVars );
+ return pThis;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes composition of truth tables.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned * Kit_TruthCompose( CloudManager * dd, unsigned * pTruth, int nVars,
+ unsigned ** pInputs, int nVarsAll, Vec_Ptr_t * vStore, Vec_Int_t * vNodes )
+{
+ CloudNode * pFunc;
+ unsigned * pThis, * pFan0, * pFan1;
+ Kit_Mux_t Mux;
+ int i, Entry, RetValue;
+ // derive BDD from truth table
+ Cloud_Restart( dd );
+ pFunc = Kit_TruthToCloud( dd, pTruth, nVars );
+ // convert it into nodes
+ RetValue = Kit_CreateCloud( dd, pFunc, vNodes );
+ if ( RetValue == 0 )
+ printf( "Kit_TruthCompose(): Internal failure!!!\n" );
+ // verify the result
+// pFan0 = Kit_CloudToTruth( vNodes, nVars, vStore, 0 );
+// if ( !Kit_TruthIsEqual( pTruth, pFan0, nVars ) )
+// printf( "Failed!\n" );
+ // compute truth table from the BDD
+ assert( Vec_IntSize(vNodes) <= Vec_PtrSize(vStore) );
+ pThis = (unsigned *)Vec_PtrEntry( vStore, 0 );
+ Kit_TruthFill( pThis, nVarsAll );
+ Vec_IntForEachEntryStart( vNodes, Entry, i, 1 )
+ {
+ Mux = Kit_Int2Mux(Entry);
+ pFan0 = (unsigned *)Vec_PtrEntry( vStore, Mux.e );
+ pFan1 = (unsigned *)Vec_PtrEntry( vStore, Mux.t );
+ pThis = (unsigned *)Vec_PtrEntry( vStore, i );
+ Kit_TruthMuxPhase( pThis, pFan0, pFan1, pInputs[nVars-1-Mux.v], nVarsAll, Mux.c );
+ }
+ // complement the result
+ if ( Mux.i )
+ Kit_TruthNot( pThis, pThis, nVarsAll );
+ return pThis;
+}
+
+/**Function********************************************************************
+
+ Synopsis [Compute BDD for the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+void Kit_TruthCofSupports( Vec_Int_t * vBddDir, Vec_Int_t * vBddInv, int nVars, Vec_Int_t * vMemory, unsigned * puSupps )
+{
+ Kit_Mux_t Mux;
+ unsigned * puSuppAll;
+ unsigned * pThis = NULL; // Suppress "might be used uninitialized"
+ unsigned * pFan0, * pFan1;
+ int i, v, Var, Entry, nSupps;
+ nSupps = 2 * nVars;
+
+ // extend storage
+ if ( Vec_IntSize( vMemory ) < nSupps * Vec_IntSize(vBddDir) )
+ Vec_IntGrow( vMemory, nSupps * Vec_IntSize(vBddDir) );
+ puSuppAll = (unsigned *)Vec_IntArray( vMemory );
+ // clear storage for the const node
+ memset( puSuppAll, 0, sizeof(unsigned) * nSupps );
+ // compute supports from nodes
+ Vec_IntForEachEntryStart( vBddDir, Entry, i, 1 )
+ {
+ Mux = Kit_Int2Mux(Entry);
+ Var = nVars - 1 - Mux.v;
+ pFan0 = puSuppAll + nSupps * Mux.e;
+ pFan1 = puSuppAll + nSupps * Mux.t;
+ pThis = puSuppAll + nSupps * i;
+ for ( v = 0; v < nSupps; v++ )
+ pThis[v] = pFan0[v] | pFan1[v] | (1<<Var);
+ assert( pFan0[2*Var + 0] == pFan0[2*Var + 1] );
+ assert( pFan1[2*Var + 0] == pFan1[2*Var + 1] );
+ pThis[2*Var + 0] = pFan0[2*Var + 0];// | pFan0[2*Var + 1];
+ pThis[2*Var + 1] = pFan1[2*Var + 0];// | pFan1[2*Var + 1];
+ }
+ // copy the result
+ memcpy( puSupps, pThis, sizeof(unsigned) * nSupps );
+ // compute the inverse
+
+ // extend storage
+ if ( Vec_IntSize( vMemory ) < nSupps * Vec_IntSize(vBddInv) )
+ Vec_IntGrow( vMemory, nSupps * Vec_IntSize(vBddInv) );
+ puSuppAll = (unsigned *)Vec_IntArray( vMemory );
+ // clear storage for the const node
+ memset( puSuppAll, 0, sizeof(unsigned) * nSupps );
+ // compute supports from nodes
+ Vec_IntForEachEntryStart( vBddInv, Entry, i, 1 )
+ {
+ Mux = Kit_Int2Mux(Entry);
+// Var = nVars - 1 - Mux.v;
+ Var = Mux.v;
+ pFan0 = puSuppAll + nSupps * Mux.e;
+ pFan1 = puSuppAll + nSupps * Mux.t;
+ pThis = puSuppAll + nSupps * i;
+ for ( v = 0; v < nSupps; v++ )
+ pThis[v] = pFan0[v] | pFan1[v] | (1<<Var);
+ assert( pFan0[2*Var + 0] == pFan0[2*Var + 1] );
+ assert( pFan1[2*Var + 0] == pFan1[2*Var + 1] );
+ pThis[2*Var + 0] = pFan0[2*Var + 0];// | pFan0[2*Var + 1];
+ pThis[2*Var + 1] = pFan1[2*Var + 0];// | pFan1[2*Var + 1];
+ }
+
+ // merge supports
+ for ( Var = 0; Var < nSupps; Var++ )
+ puSupps[Var] = (puSupps[Var] & Kit_BitMask(Var/2)) | (pThis[Var] & ~Kit_BitMask(Var/2));
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/kitDec.c b/src/bool/kit/kitDec.c
new file mode 100644
index 00000000..1da35e73
--- /dev/null
+++ b/src/bool/kit/kitDec.c
@@ -0,0 +1,343 @@
+/**CFile****************************************************************
+
+ FileName [kitDec.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [Decomposition manager.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - November 18, 2009.]
+
+ Revision [$Id: kitDec.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "kit.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+// decomposition manager
+typedef struct Kit_ManDec_t_ Kit_ManDec_t;
+struct Kit_ManDec_t_
+{
+ int nVarsMax; // the max number of variables
+ int nWordsMax; // the max number of words
+ Vec_Ptr_t * vTruthVars; // elementary truth tables
+ Vec_Ptr_t * vTruthNodes; // internal truth tables
+ // current problem
+ int nVarsIn; // the current number of variables
+ Vec_Int_t * vLutsIn; // LUT truth tables
+ Vec_Int_t * vSuppIn; // LUT supports
+ char ATimeIn[64]; // variable arrival times
+ // extracted information
+ unsigned * pTruthIn; // computed truth table
+ unsigned * pTruthOut; // computed truth table
+ int nVarsOut; // the current number of variables
+ int nWordsOut; // the current number of words
+ char Order[32]; // new vars into old vars after supp minimization
+ // computed information
+ Vec_Int_t * vLutsOut; // problem decomposition
+ Vec_Int_t * vSuppOut; // problem decomposition
+ char ATimeOut[64]; // variable arrival times
+};
+
+static inline int Kit_DecOuputArrival( int nVars, Vec_Int_t * vLuts, char ATimes[] ) { return ATimes[nVars + Vec_IntSize(vLuts) - 1]; }
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Starts Decmetry manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_ManDec_t * Kit_ManDecStart( int nVarsMax )
+{
+ Kit_ManDec_t * p;
+ assert( nVarsMax <= 20 );
+ p = ABC_CALLOC( Kit_ManDec_t, 1 );
+ p->nVarsMax = nVarsMax;
+ p->nWordsMax = Kit_TruthWordNum( p->nVarsMax );
+ p->vTruthVars = Vec_PtrAllocTruthTables( p->nVarsMax );
+ p->vTruthNodes = Vec_PtrAllocSimInfo( 64, p->nWordsMax );
+ p->vLutsIn = Vec_IntAlloc( 50 );
+ p->vSuppIn = Vec_IntAlloc( 50 );
+ p->vLutsOut = Vec_IntAlloc( 50 );
+ p->vSuppOut = Vec_IntAlloc( 50 );
+ p->pTruthIn = ABC_ALLOC( unsigned, p->nWordsMax );
+ p->pTruthOut = ABC_ALLOC( unsigned, p->nWordsMax );
+ return p;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Stops Decmetry manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_ManDecStop( Kit_ManDec_t * p )
+{
+ ABC_FREE( p->pTruthIn );
+ ABC_FREE( p->pTruthOut );
+ Vec_IntFreeP( &p->vLutsIn );
+ Vec_IntFreeP( &p->vSuppIn );
+ Vec_IntFreeP( &p->vLutsOut );
+ Vec_IntFreeP( &p->vSuppOut );
+ Vec_PtrFreeP( &p->vTruthVars );
+ Vec_PtrFreeP( &p->vTruthNodes );
+ ABC_FREE( p );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Deriving timing information for the decomposed structure.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DecComputeOuputArrival( int nVars, Vec_Int_t * vSupps, int LutSize, char ATimesIn[], char ATimesOut[] )
+{
+ int i, v, iVar, nLuts, Delay;
+ nLuts = Vec_IntSize(vSupps) / LutSize;
+ assert( nLuts > 0 );
+ assert( Vec_IntSize(vSupps) % LutSize == 0 );
+ for ( v = 0; v < nVars; v++ )
+ ATimesOut[v] = ATimesIn[v];
+ for ( v = 0; v < nLuts; v++ )
+ {
+ Delay = 0;
+ for ( i = 0; i < LutSize; i++ )
+ {
+ iVar = Vec_IntEntry( vSupps, v * LutSize + i );
+ assert( iVar < nVars + v );
+ Delay = Abc_MaxInt( Delay, ATimesOut[iVar] );
+ }
+ ATimesOut[nVars + v] = Delay + 1;
+ }
+ return ATimesOut[nVars + nLuts - 1];
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the truth table]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DecComputeTruthOne( int LutSize, unsigned * pTruthLut, int nVars, unsigned * pTruths[], unsigned * pTemp, unsigned * pRes )
+{
+ int i, v;
+ Kit_TruthClear( pRes, nVars );
+ for ( i = 0; i < (1<<LutSize); i++ )
+ {
+ if ( !Kit_TruthHasBit( pTruthLut, i ) )
+ continue;
+ Kit_TruthFill( pTemp, nVars );
+ for ( v = 0; v < LutSize; v++ )
+ if ( i & (1<<v) )
+ Kit_TruthAnd( pTemp, pTemp, pTruths[v], nVars );
+ else
+ Kit_TruthSharp( pTemp, pTemp, pTruths[v], nVars );
+ Kit_TruthOr( pRes, pRes, pTemp, nVars );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the truth table]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DecComputeTruth( Kit_ManDec_t * p, int nVars, Vec_Int_t * vSupps, int LutSize, Vec_Int_t * vLuts, unsigned * pRes )
+{
+ unsigned * pResult, * pTruthLuts, * pTruths[17];
+ int nTruthLutWords, i, v, iVar, nLuts;
+ nLuts = Vec_IntSize(vSupps) / LutSize;
+ pTruthLuts = (unsigned *)Vec_IntArray( vLuts );
+ nTruthLutWords = Kit_TruthWordNum( LutSize );
+ assert( nLuts > 0 );
+ assert( Vec_IntSize(vSupps) % LutSize == 0 );
+ assert( nLuts * nTruthLutWords == Vec_IntSize(vLuts) );
+ for ( v = 0; v < nLuts; v++ )
+ {
+ for ( i = 0; i < LutSize; i++ )
+ {
+ iVar = Vec_IntEntry( vSupps, v * LutSize + i );
+ assert( iVar < nVars + v );
+ pTruths[i] = (iVar < nVars)? (unsigned *)Vec_PtrEntry(p->vTruthVars, iVar) : (unsigned *)Vec_PtrEntry(p->vTruthNodes, iVar-nVars);
+ }
+ pResult = (v == nLuts - 1) ? pRes : (unsigned *)Vec_PtrEntry(p->vTruthNodes, v);
+ Kit_DecComputeTruthOne( LutSize, pTruthLuts, nVars, pTruths, (unsigned *)Vec_PtrEntry(p->vTruthNodes, v+1), pResult );
+ pTruthLuts += nTruthLutWords;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the truth table]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DecComputePattern( int nVars, unsigned * pTruth, int LutSize, int Pattern[] )
+{
+ int nCofs = (1 << LutSize);
+ int i, k, nMyu = 0;
+ assert( LutSize <= 6 );
+ assert( LutSize < nVars );
+ if ( nVars - LutSize <= 5 )
+ {
+ unsigned uCofs[64];
+ int nBits = (1 << (nVars - LutSize));
+ for ( i = 0; i < nCofs; i++ )
+ uCofs[i] = (pTruth[(i*nBits)/32] >> ((i*nBits)%32)) & ((1<<nBits)-1);
+ for ( i = 0; i < nCofs; i++ )
+ {
+ for ( k = 0; k < nMyu; k++ )
+ if ( uCofs[i] == uCofs[k] )
+ {
+ Pattern[i] = k;
+ break;
+ }
+ if ( k == i )
+ Pattern[nMyu++] = i;
+ }
+ }
+ else
+ {
+ unsigned * puCofs[64];
+ int nWords = (1 << (nVars - LutSize - 5));
+ for ( i = 0; i < nCofs; i++ )
+ puCofs[i] = pTruth + nWords;
+ for ( i = 0; i < nCofs; i++ )
+ {
+ for ( k = 0; k < nMyu; k++ )
+ if ( Kit_TruthIsEqual( puCofs[i], puCofs[k], nVars - LutSize - 5 ) )
+ {
+ Pattern[i] = k;
+ break;
+ }
+ if ( k == i )
+ Pattern[nMyu++] = i;
+ }
+ }
+ return nMyu;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the number of shared variables.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DecComputeShared_rec( int Pattern[], int Vars[], int nVars, int Shared[], int iVarTry )
+{
+ int Pat0[32], Pat1[32], Shared0[5], Shared1[5], VarsNext[5];
+ int v, u, iVarsNext, iPat0, iPat1, m, nMints = (1 << nVars);
+ int nShared0, nShared1, nShared = 0;
+ for ( v = iVarTry; v < nVars; v++ )
+ {
+ iVarsNext = 0;
+ for ( u = 0; u < nVars; u++ )
+ if ( u == v )
+ VarsNext[iVarsNext++] = Vars[u];
+ iPat0 = iPat1 = 0;
+ for ( m = 0; m < nMints; m++ )
+ if ( m & (1 << v) )
+ Pat1[iPat1++] = m;
+ else
+ Pat0[iPat0++] = m;
+ assert( iPat0 == nMints / 2 );
+ assert( iPat1 == nMints / 2 );
+ nShared0 = Kit_DecComputeShared_rec( Pat0, VarsNext, nVars-1, Shared0, v + 1 );
+ if ( nShared0 == 0 )
+ continue;
+ nShared1 = Kit_DecComputeShared_rec( Pat1, VarsNext, nVars-1, Shared1, v + 1 );
+ if ( nShared1 == 0 )
+ continue;
+ Shared[nShared++] = v;
+ for ( u = 0; u < nShared0; u++ )
+ for ( m = 0; m < nShared1; m++ )
+ if ( Shared0[u] >= 0 && Shared1[m] >= 0 && Shared0[u] == Shared1[m] )
+ {
+ Shared[nShared++] = Shared0[u];
+ Shared0[u] = Shared1[m] = -1;
+ }
+ return nShared;
+ }
+ return 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the number of shared variables.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DecComputeShared( int Pattern[], int LutSize, int Shared[] )
+{
+ int i, Vars[6];
+ assert( LutSize <= 6 );
+ for ( i = 0; i < LutSize; i++ )
+ Vars[i] = i;
+ return Kit_DecComputeShared_rec( Pattern, Vars, LutSize, Shared, 0 );
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/kitDsd.c b/src/bool/kit/kitDsd.c
new file mode 100644
index 00000000..3df16d8c
--- /dev/null
+++ b/src/bool/kit/kitDsd.c
@@ -0,0 +1,3200 @@
+/**CFile****************************************************************
+
+ FileName [kitDsd.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [Performs disjoint-support decomposition based on truth tables.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Dec 6, 2006.]
+
+ Revision [$Id: kitDsd.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "kit.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Allocates the DSD manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_DsdMan_t * Kit_DsdManAlloc( int nVars, int nNodes )
+{
+ Kit_DsdMan_t * p;
+ p = ABC_ALLOC( Kit_DsdMan_t, 1 );
+ memset( p, 0, sizeof(Kit_DsdMan_t) );
+ p->nVars = nVars;
+ p->nWords = Kit_TruthWordNum( p->nVars );
+ p->vTtElems = Vec_PtrAllocTruthTables( p->nVars );
+ p->vTtNodes = Vec_PtrAllocSimInfo( nNodes, p->nWords );
+ p->dd = Cloud_Init( 16, 14 );
+ p->vTtBdds = Vec_PtrAllocSimInfo( (1<<12), p->nWords );
+ p->vNodes = Vec_IntAlloc( 512 );
+ return p;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Deallocates the DSD manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdManFree( Kit_DsdMan_t * p )
+{
+ Cloud_Quit( p->dd );
+ Vec_IntFree( p->vNodes );
+ Vec_PtrFree( p->vTtBdds );
+ Vec_PtrFree( p->vTtElems );
+ Vec_PtrFree( p->vTtNodes );
+ ABC_FREE( p );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Allocates the DSD node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_DsdObj_t * Kit_DsdObjAlloc( Kit_DsdNtk_t * pNtk, Kit_Dsd_t Type, int nFans )
+{
+ Kit_DsdObj_t * pObj;
+ int nSize = sizeof(Kit_DsdObj_t) + sizeof(unsigned) * (Kit_DsdObjOffset(nFans) + (Type == KIT_DSD_PRIME) * Kit_TruthWordNum(nFans));
+ pObj = (Kit_DsdObj_t *)ABC_ALLOC( char, nSize );
+ memset( pObj, 0, nSize );
+ pObj->Id = pNtk->nVars + pNtk->nNodes;
+ pObj->Type = Type;
+ pObj->nFans = nFans;
+ pObj->Offset = Kit_DsdObjOffset( nFans );
+ // add the object
+ if ( pNtk->nNodes == pNtk->nNodesAlloc )
+ {
+ pNtk->nNodesAlloc *= 2;
+ pNtk->pNodes = ABC_REALLOC( Kit_DsdObj_t *, pNtk->pNodes, pNtk->nNodesAlloc );
+ }
+ assert( pNtk->nNodes < pNtk->nNodesAlloc );
+ pNtk->pNodes[pNtk->nNodes++] = pObj;
+ return pObj;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Deallocates the DSD node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdObjFree( Kit_DsdNtk_t * p, Kit_DsdObj_t * pObj )
+{
+ ABC_FREE( pObj );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Allocates the DSD network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_DsdNtk_t * Kit_DsdNtkAlloc( int nVars )
+{
+ Kit_DsdNtk_t * pNtk;
+ pNtk = ABC_ALLOC( Kit_DsdNtk_t, 1 );
+ memset( pNtk, 0, sizeof(Kit_DsdNtk_t) );
+ pNtk->pNodes = ABC_ALLOC( Kit_DsdObj_t *, nVars+1 );
+ pNtk->nVars = nVars;
+ pNtk->nNodesAlloc = nVars+1;
+ pNtk->pMem = ABC_ALLOC( unsigned, 6 * Kit_TruthWordNum(nVars) );
+ return pNtk;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Deallocate the DSD network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdNtkFree( Kit_DsdNtk_t * pNtk )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned i;
+ Kit_DsdNtkForEachObj( pNtk, pObj, i )
+ ABC_FREE( pObj );
+ ABC_FREE( pNtk->pSupps );
+ ABC_FREE( pNtk->pNodes );
+ ABC_FREE( pNtk->pMem );
+ ABC_FREE( pNtk );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Prints the hex unsigned into a file.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdPrintHex( FILE * pFile, unsigned * pTruth, int nFans )
+{
+ int nDigits, Digit, k;
+ nDigits = (1 << nFans) / 4;
+ for ( k = nDigits - 1; k >= 0; k-- )
+ {
+ Digit = ((pTruth[k/8] >> ((k%8) * 4)) & 15);
+ if ( Digit < 10 )
+ fprintf( pFile, "%d", Digit );
+ else
+ fprintf( pFile, "%c", 'A' + Digit-10 );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Prints the hex unsigned into a file.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+char * Kit_DsdWriteHex( char * pBuff, unsigned * pTruth, int nFans )
+{
+ int nDigits, Digit, k;
+ nDigits = (1 << nFans) / 4;
+ for ( k = nDigits - 1; k >= 0; k-- )
+ {
+ Digit = ((pTruth[k/8] >> ((k%8) * 4)) & 15);
+ if ( Digit < 10 )
+ *pBuff++ = '0' + Digit;
+ else
+ *pBuff++ = 'A' + Digit-10;
+ }
+ return pBuff;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Recursively print the DSD formula.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdPrint2_rec( FILE * pFile, Kit_DsdNtk_t * pNtk, int Id )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned iLit, i;
+ char Symbol;
+
+ pObj = Kit_DsdNtkObj( pNtk, Id );
+ if ( pObj == NULL )
+ {
+ assert( Id < pNtk->nVars );
+ fprintf( pFile, "%c", 'a' + Id );
+ return;
+ }
+
+ if ( pObj->Type == KIT_DSD_CONST1 )
+ {
+ assert( pObj->nFans == 0 );
+ fprintf( pFile, "Const1" );
+ return;
+ }
+
+ if ( pObj->Type == KIT_DSD_VAR )
+ assert( pObj->nFans == 1 );
+
+ if ( pObj->Type == KIT_DSD_AND )
+ Symbol = '*';
+ else if ( pObj->Type == KIT_DSD_XOR )
+ Symbol = '+';
+ else
+ Symbol = ',';
+
+ if ( pObj->Type == KIT_DSD_PRIME )
+ fprintf( pFile, "[" );
+ else
+ fprintf( pFile, "(" );
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ {
+ if ( Abc_LitIsCompl(iLit) )
+ fprintf( pFile, "!" );
+ Kit_DsdPrint2_rec( pFile, pNtk, Abc_Lit2Var(iLit) );
+ if ( i < pObj->nFans - 1 )
+ fprintf( pFile, "%c", Symbol );
+ }
+ if ( pObj->Type == KIT_DSD_PRIME )
+ fprintf( pFile, "]" );
+ else
+ fprintf( pFile, ")" );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Print the DSD formula.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdPrint2( FILE * pFile, Kit_DsdNtk_t * pNtk )
+{
+// fprintf( pFile, "F = " );
+ if ( Abc_LitIsCompl(pNtk->Root) )
+ fprintf( pFile, "!" );
+ Kit_DsdPrint2_rec( pFile, pNtk, Abc_Lit2Var(pNtk->Root) );
+// fprintf( pFile, "\n" );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Recursively print the DSD formula.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdPrint_rec( FILE * pFile, Kit_DsdNtk_t * pNtk, int Id )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned iLit, i;
+ char Symbol;
+
+ pObj = Kit_DsdNtkObj( pNtk, Id );
+ if ( pObj == NULL )
+ {
+ assert( Id < pNtk->nVars );
+ fprintf( pFile, "%c", 'a' + Id );
+ return;
+ }
+
+ if ( pObj->Type == KIT_DSD_CONST1 )
+ {
+ assert( pObj->nFans == 0 );
+ fprintf( pFile, "Const1" );
+ return;
+ }
+
+ if ( pObj->Type == KIT_DSD_VAR )
+ assert( pObj->nFans == 1 );
+
+ if ( pObj->Type == KIT_DSD_AND )
+ Symbol = '*';
+ else if ( pObj->Type == KIT_DSD_XOR )
+ Symbol = '+';
+ else
+ Symbol = ',';
+
+ if ( pObj->Type == KIT_DSD_PRIME )
+ Kit_DsdPrintHex( pFile, Kit_DsdObjTruth(pObj), pObj->nFans );
+
+ fprintf( pFile, "(" );
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ {
+ if ( Abc_LitIsCompl(iLit) )
+ fprintf( pFile, "!" );
+ Kit_DsdPrint_rec( pFile, pNtk, Abc_Lit2Var(iLit) );
+ if ( i < pObj->nFans - 1 )
+ fprintf( pFile, "%c", Symbol );
+ }
+ fprintf( pFile, ")" );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Print the DSD formula.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdPrint( FILE * pFile, Kit_DsdNtk_t * pNtk )
+{
+ fprintf( pFile, "F = " );
+ if ( Abc_LitIsCompl(pNtk->Root) )
+ fprintf( pFile, "!" );
+ Kit_DsdPrint_rec( pFile, pNtk, Abc_Lit2Var(pNtk->Root) );
+// fprintf( pFile, "\n" );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Recursively print the DSD formula.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+char * Kit_DsdWrite_rec( char * pBuff, Kit_DsdNtk_t * pNtk, int Id )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned iLit, i;
+ char Symbol;
+
+ pObj = Kit_DsdNtkObj( pNtk, Id );
+ if ( pObj == NULL )
+ {
+ assert( Id < pNtk->nVars );
+ *pBuff++ = 'a' + Id;
+ return pBuff;
+ }
+
+ if ( pObj->Type == KIT_DSD_CONST1 )
+ {
+ assert( pObj->nFans == 0 );
+ sprintf( pBuff, "%s", "Const1" );
+ return pBuff + strlen("Const1");
+ }
+
+ if ( pObj->Type == KIT_DSD_VAR )
+ assert( pObj->nFans == 1 );
+
+ if ( pObj->Type == KIT_DSD_AND )
+ Symbol = '*';
+ else if ( pObj->Type == KIT_DSD_XOR )
+ Symbol = '+';
+ else
+ Symbol = ',';
+
+ if ( pObj->Type == KIT_DSD_PRIME )
+ pBuff = Kit_DsdWriteHex( pBuff, Kit_DsdObjTruth(pObj), pObj->nFans );
+
+ *pBuff++ = '(';
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ {
+ if ( Abc_LitIsCompl(iLit) )
+ *pBuff++ = '!';
+ pBuff = Kit_DsdWrite_rec( pBuff, pNtk, Abc_Lit2Var(iLit) );
+ if ( i < pObj->nFans - 1 )
+ *pBuff++ = Symbol;
+ }
+ *pBuff++ = ')';
+ return pBuff;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Print the DSD formula.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdWrite( char * pBuff, Kit_DsdNtk_t * pNtk )
+{
+ if ( Abc_LitIsCompl(pNtk->Root) )
+ *pBuff++ = '!';
+ pBuff = Kit_DsdWrite_rec( pBuff, pNtk, Abc_Lit2Var(pNtk->Root) );
+ *pBuff = 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Print the DSD formula.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdPrintExpanded( Kit_DsdNtk_t * pNtk )
+{
+ Kit_DsdNtk_t * pTemp;
+ pTemp = Kit_DsdExpand( pNtk );
+ Kit_DsdPrint( stdout, pTemp );
+ Kit_DsdNtkFree( pTemp );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Print the DSD formula.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars )
+{
+ Kit_DsdNtk_t * pTemp, * pTemp2;
+// pTemp = Kit_DsdDecomposeMux( pTruth, nVars, 5 );
+ pTemp = Kit_DsdDecomposeMux( pTruth, nVars, 8 );
+// Kit_DsdPrintExpanded( pTemp );
+ pTemp2 = Kit_DsdExpand( pTemp );
+ Kit_DsdPrint( stdout, pTemp2 );
+ Kit_DsdVerify( pTemp2, pTruth, nVars );
+ Kit_DsdNtkFree( pTemp2 );
+ Kit_DsdNtkFree( pTemp );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Print the DSD formula.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdPrintFromTruth2( FILE * pFile, unsigned * pTruth, int nVars )
+{
+ Kit_DsdNtk_t * pTemp, * pTemp2;
+ pTemp = Kit_DsdDecomposeMux( pTruth, nVars, 0 );
+ pTemp2 = Kit_DsdExpand( pTemp );
+ Kit_DsdPrint2( pFile, pTemp2 );
+ Kit_DsdVerify( pTemp2, pTruth, nVars );
+ Kit_DsdNtkFree( pTemp2 );
+ Kit_DsdNtkFree( pTemp );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Print the DSD formula.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdWriteFromTruth( char * pBuffer, unsigned * pTruth, int nVars )
+{
+ Kit_DsdNtk_t * pTemp, * pTemp2;
+// pTemp = Kit_DsdDecomposeMux( pTruth, nVars, 5 );
+ pTemp = Kit_DsdDecomposeMux( pTruth, nVars, 8 );
+// Kit_DsdPrintExpanded( pTemp );
+ pTemp2 = Kit_DsdExpand( pTemp );
+ Kit_DsdWrite( pBuffer, pTemp2 );
+ Kit_DsdVerify( pTemp2, pTruth, nVars );
+ Kit_DsdNtkFree( pTemp2 );
+ Kit_DsdNtkFree( pTemp );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the truth table of the DSD node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned * Kit_DsdTruthComputeNode_rec( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, int Id )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned * pTruthRes, * pTruthFans[16], * pTruthTemp;
+ unsigned i, iLit, fCompl;
+// unsigned m, nMints, * pTruthPrime, * pTruthMint;
+
+ // get the node with this ID
+ pObj = Kit_DsdNtkObj( pNtk, Id );
+ pTruthRes = (unsigned *)Vec_PtrEntry( p->vTtNodes, Id );
+
+ // special case: literal of an internal node
+ if ( pObj == NULL )
+ {
+ assert( Id < pNtk->nVars );
+ return pTruthRes;
+ }
+
+ // constant node
+ if ( pObj->Type == KIT_DSD_CONST1 )
+ {
+ assert( pObj->nFans == 0 );
+ Kit_TruthFill( pTruthRes, pNtk->nVars );
+ return pTruthRes;
+ }
+
+ // elementary variable node
+ if ( pObj->Type == KIT_DSD_VAR )
+ {
+ assert( pObj->nFans == 1 );
+ iLit = pObj->pFans[0];
+ pTruthFans[0] = Kit_DsdTruthComputeNode_rec( p, pNtk, Abc_Lit2Var(iLit) );
+ if ( Abc_LitIsCompl(iLit) )
+ Kit_TruthNot( pTruthRes, pTruthFans[0], pNtk->nVars );
+ else
+ Kit_TruthCopy( pTruthRes, pTruthFans[0], pNtk->nVars );
+ return pTruthRes;
+ }
+
+ // collect the truth tables of the fanins
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ pTruthFans[i] = Kit_DsdTruthComputeNode_rec( p, pNtk, Abc_Lit2Var(iLit) );
+ // create the truth table
+
+ // simple gates
+ if ( pObj->Type == KIT_DSD_AND )
+ {
+ Kit_TruthFill( pTruthRes, pNtk->nVars );
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Abc_LitIsCompl(iLit) );
+ return pTruthRes;
+ }
+ if ( pObj->Type == KIT_DSD_XOR )
+ {
+ Kit_TruthClear( pTruthRes, pNtk->nVars );
+ fCompl = 0;
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ {
+ Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars );
+ fCompl ^= Abc_LitIsCompl(iLit);
+ }
+ if ( fCompl )
+ Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
+ return pTruthRes;
+ }
+ assert( pObj->Type == KIT_DSD_PRIME );
+/*
+ // get the truth table of the prime node
+ pTruthPrime = Kit_DsdObjTruth( pObj );
+ // get storage for the temporary minterm
+ pTruthMint = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes);
+ // go through the minterms
+ nMints = (1 << pObj->nFans);
+ Kit_TruthClear( pTruthRes, pNtk->nVars );
+ for ( m = 0; m < nMints; m++ )
+ {
+ if ( !Kit_TruthHasBit(pTruthPrime, m) )
+ continue;
+ Kit_TruthFill( pTruthMint, pNtk->nVars );
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ Kit_TruthAndPhase( pTruthMint, pTruthMint, pTruthFans[i], pNtk->nVars, 0, ((m & (1<<i)) == 0) ^ Abc_LitIsCompl(iLit) );
+ Kit_TruthOr( pTruthRes, pTruthRes, pTruthMint, pNtk->nVars );
+ }
+*/
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ if ( Abc_LitIsCompl(iLit) )
+ Kit_TruthNot( pTruthFans[i], pTruthFans[i], pNtk->nVars );
+ pTruthTemp = Kit_TruthCompose( p->dd, Kit_DsdObjTruth(pObj), pObj->nFans, pTruthFans, pNtk->nVars, p->vTtBdds, p->vNodes );
+ Kit_TruthCopy( pTruthRes, pTruthTemp, pNtk->nVars );
+ return pTruthRes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the truth table of the DSD network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned * Kit_DsdTruthCompute( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk )
+{
+ unsigned * pTruthRes;
+ int i;
+ // assign elementary truth ables
+ assert( pNtk->nVars <= p->nVars );
+ for ( i = 0; i < (int)pNtk->nVars; i++ )
+ Kit_TruthCopy( (unsigned *)Vec_PtrEntry(p->vTtNodes, i), (unsigned *)Vec_PtrEntry(p->vTtElems, i), p->nVars );
+ // compute truth table for each node
+ pTruthRes = Kit_DsdTruthComputeNode_rec( p, pNtk, Abc_Lit2Var(pNtk->Root) );
+ // complement the truth table if needed
+ if ( Abc_LitIsCompl(pNtk->Root) )
+ Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
+ return pTruthRes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the truth table of the DSD node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned * Kit_DsdTruthComputeNodeOne_rec( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, int Id, unsigned uSupp )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned * pTruthRes, * pTruthFans[16], * pTruthTemp;
+ unsigned i, iLit, fCompl, nPartial = 0;
+// unsigned m, nMints, * pTruthPrime, * pTruthMint;
+
+ // get the node with this ID
+ pObj = Kit_DsdNtkObj( pNtk, Id );
+ pTruthRes = (unsigned *)Vec_PtrEntry( p->vTtNodes, Id );
+
+ // special case: literal of an internal node
+ if ( pObj == NULL )
+ {
+ assert( Id < pNtk->nVars );
+ assert( !uSupp || uSupp != (uSupp & ~(1<<Id)) );
+ return pTruthRes;
+ }
+
+ // constant node
+ if ( pObj->Type == KIT_DSD_CONST1 )
+ {
+ assert( pObj->nFans == 0 );
+ Kit_TruthFill( pTruthRes, pNtk->nVars );
+ return pTruthRes;
+ }
+
+ // elementary variable node
+ if ( pObj->Type == KIT_DSD_VAR )
+ {
+ assert( pObj->nFans == 1 );
+ iLit = pObj->pFans[0];
+ assert( Kit_DsdLitIsLeaf( pNtk, iLit ) );
+ pTruthFans[0] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Abc_Lit2Var(iLit), uSupp );
+ if ( Abc_LitIsCompl(iLit) )
+ Kit_TruthNot( pTruthRes, pTruthFans[0], pNtk->nVars );
+ else
+ Kit_TruthCopy( pTruthRes, pTruthFans[0], pNtk->nVars );
+ return pTruthRes;
+ }
+
+ // collect the truth tables of the fanins
+ if ( uSupp )
+ {
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ if ( uSupp != (uSupp & ~Kit_DsdLitSupport(pNtk, iLit)) )
+ pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Abc_Lit2Var(iLit), uSupp );
+ else
+ {
+ pTruthFans[i] = NULL;
+ nPartial = 1;
+ }
+ }
+ else
+ {
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Abc_Lit2Var(iLit), uSupp );
+ }
+ // create the truth table
+
+ // simple gates
+ if ( pObj->Type == KIT_DSD_AND )
+ {
+ Kit_TruthFill( pTruthRes, pNtk->nVars );
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ if ( pTruthFans[i] )
+ Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Abc_LitIsCompl(iLit) );
+ return pTruthRes;
+ }
+ if ( pObj->Type == KIT_DSD_XOR )
+ {
+ Kit_TruthClear( pTruthRes, pNtk->nVars );
+ fCompl = 0;
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ {
+ if ( pTruthFans[i] )
+ {
+ Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars );
+ fCompl ^= Abc_LitIsCompl(iLit);
+ }
+ }
+ if ( fCompl )
+ Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
+ return pTruthRes;
+ }
+ assert( pObj->Type == KIT_DSD_PRIME );
+
+ if ( uSupp && nPartial )
+ {
+ // find the only non-empty component
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ if ( pTruthFans[i] )
+ break;
+ assert( i < pObj->nFans );
+ return pTruthFans[i];
+ }
+/*
+ // get the truth table of the prime node
+ pTruthPrime = Kit_DsdObjTruth( pObj );
+ // get storage for the temporary minterm
+ pTruthMint = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes);
+ // go through the minterms
+ nMints = (1 << pObj->nFans);
+ Kit_TruthClear( pTruthRes, pNtk->nVars );
+ for ( m = 0; m < nMints; m++ )
+ {
+ if ( !Kit_TruthHasBit(pTruthPrime, m) )
+ continue;
+ Kit_TruthFill( pTruthMint, pNtk->nVars );
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ Kit_TruthAndPhase( pTruthMint, pTruthMint, pTruthFans[i], pNtk->nVars, 0, ((m & (1<<i)) == 0) ^ Abc_LitIsCompl(iLit) );
+ Kit_TruthOr( pTruthRes, pTruthRes, pTruthMint, pNtk->nVars );
+ }
+*/
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ if ( Abc_LitIsCompl(iLit) )
+ Kit_TruthNot( pTruthFans[i], pTruthFans[i], pNtk->nVars );
+ pTruthTemp = Kit_TruthCompose( p->dd, Kit_DsdObjTruth(pObj), pObj->nFans, pTruthFans, pNtk->nVars, p->vTtBdds, p->vNodes );
+ Kit_TruthCopy( pTruthRes, pTruthTemp, pNtk->nVars );
+ return pTruthRes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the truth table of the DSD network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned * Kit_DsdTruthComputeOne( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp )
+{
+ unsigned * pTruthRes;
+ int i;
+ // if support is specified, request that supports are available
+ if ( uSupp )
+ Kit_DsdGetSupports( pNtk );
+ // assign elementary truth tables
+ assert( pNtk->nVars <= p->nVars );
+ for ( i = 0; i < (int)pNtk->nVars; i++ )
+ Kit_TruthCopy( (unsigned *)Vec_PtrEntry(p->vTtNodes, i), (unsigned *)Vec_PtrEntry(p->vTtElems, i), p->nVars );
+ // compute truth table for each node
+ pTruthRes = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Abc_Lit2Var(pNtk->Root), uSupp );
+ // complement the truth table if needed
+ if ( Abc_LitIsCompl(pNtk->Root) )
+ Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
+ return pTruthRes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the truth table of the DSD node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned * Kit_DsdTruthComputeNodeTwo_rec( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, int Id, unsigned uSupp, int iVar, unsigned * pTruthDec )
+{
+ Kit_DsdObj_t * pObj;
+ int pfBoundSet[16];
+ unsigned * pTruthRes, * pTruthFans[16], * pTruthTemp;
+ unsigned i, iLit, fCompl, nPartial, uSuppFan, uSuppCur;
+// unsigned m, nMints, * pTruthPrime, * pTruthMint;
+ assert( uSupp > 0 );
+
+ // get the node with this ID
+ pObj = Kit_DsdNtkObj( pNtk, Id );
+ pTruthRes = (unsigned *)Vec_PtrEntry( p->vTtNodes, Id );
+ if ( pObj == NULL )
+ {
+ assert( Id < pNtk->nVars );
+ return pTruthRes;
+ }
+ assert( pObj->Type != KIT_DSD_CONST1 );
+ assert( pObj->Type != KIT_DSD_VAR );
+
+ // count the number of intersecting fanins
+ // collect the total support of the intersecting fanins
+ nPartial = 0;
+ uSuppFan = 0;
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ {
+ uSuppCur = Kit_DsdLitSupport(pNtk, iLit);
+ if ( uSupp & uSuppCur )
+ {
+ nPartial++;
+ uSuppFan |= uSuppCur;
+ }
+ }
+
+ // if there is no intersection, or full intersection, use simple procedure
+ if ( nPartial == 0 || nPartial == pObj->nFans )
+ return Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Id, 0 );
+
+ // if support of the component includes some other variables
+ // we need to continue constructing it as usual by the two-function procedure
+ if ( uSuppFan != (uSuppFan & uSupp) )
+ {
+ assert( nPartial == 1 );
+// return Kit_DsdTruthComputeNodeTwo_rec( p, pNtk, Id, uSupp, iVar, pTruthDec );
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ {
+ if ( uSupp & Kit_DsdLitSupport(pNtk, iLit) )
+ pTruthFans[i] = Kit_DsdTruthComputeNodeTwo_rec( p, pNtk, Abc_Lit2Var(iLit), uSupp, iVar, pTruthDec );
+ else
+ pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Abc_Lit2Var(iLit), 0 );
+ }
+
+ // create composition/decomposition functions
+ if ( pObj->Type == KIT_DSD_AND )
+ {
+ Kit_TruthFill( pTruthRes, pNtk->nVars );
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Abc_LitIsCompl(iLit) );
+ return pTruthRes;
+ }
+ if ( pObj->Type == KIT_DSD_XOR )
+ {
+ Kit_TruthClear( pTruthRes, pNtk->nVars );
+ fCompl = 0;
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ {
+ fCompl ^= Abc_LitIsCompl(iLit);
+ Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars );
+ }
+ if ( fCompl )
+ Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
+ return pTruthRes;
+ }
+ assert( pObj->Type == KIT_DSD_PRIME );
+ }
+ else
+ {
+ assert( uSuppFan == (uSuppFan & uSupp) );
+ assert( nPartial < pObj->nFans );
+ // the support of the insecting component(s) is contained in the bound-set
+ // and yet there are components that are not contained in the bound set
+
+ // solve the fanins and collect info, which components belong to the bound set
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ {
+ pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Abc_Lit2Var(iLit), 0 );
+ pfBoundSet[i] = (int)((uSupp & Kit_DsdLitSupport(pNtk, iLit)) > 0);
+ }
+
+ // create composition/decomposition functions
+ if ( pObj->Type == KIT_DSD_AND )
+ {
+ Kit_TruthIthVar( pTruthRes, pNtk->nVars, iVar );
+ Kit_TruthFill( pTruthDec, pNtk->nVars );
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ if ( pfBoundSet[i] )
+ Kit_TruthAndPhase( pTruthDec, pTruthDec, pTruthFans[i], pNtk->nVars, 0, Abc_LitIsCompl(iLit) );
+ else
+ Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Abc_LitIsCompl(iLit) );
+ return pTruthRes;
+ }
+ if ( pObj->Type == KIT_DSD_XOR )
+ {
+ Kit_TruthIthVar( pTruthRes, pNtk->nVars, iVar );
+ Kit_TruthClear( pTruthDec, pNtk->nVars );
+ fCompl = 0;
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ {
+ fCompl ^= Abc_LitIsCompl(iLit);
+ if ( pfBoundSet[i] )
+ Kit_TruthXor( pTruthDec, pTruthDec, pTruthFans[i], pNtk->nVars );
+ else
+ Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars );
+ }
+ if ( fCompl )
+ Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
+ return pTruthRes;
+ }
+ assert( pObj->Type == KIT_DSD_PRIME );
+ assert( nPartial == 1 );
+
+ // find the only non-empty component
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ if ( pfBoundSet[i] )
+ break;
+ assert( i < pObj->nFans );
+
+ // save this component as the decomposed function
+ Kit_TruthCopy( pTruthDec, pTruthFans[i], pNtk->nVars );
+ // set the corresponding component to be the new variable
+ Kit_TruthIthVar( pTruthFans[i], pNtk->nVars, iVar );
+ }
+/*
+ // get the truth table of the prime node
+ pTruthPrime = Kit_DsdObjTruth( pObj );
+ // get storage for the temporary minterm
+ pTruthMint = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes);
+ // go through the minterms
+ nMints = (1 << pObj->nFans);
+ Kit_TruthClear( pTruthRes, pNtk->nVars );
+ for ( m = 0; m < nMints; m++ )
+ {
+ if ( !Kit_TruthHasBit(pTruthPrime, m) )
+ continue;
+ Kit_TruthFill( pTruthMint, pNtk->nVars );
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ Kit_TruthAndPhase( pTruthMint, pTruthMint, pTruthFans[i], pNtk->nVars, 0, ((m & (1<<i)) == 0) ^ Abc_LitIsCompl(iLit) );
+ Kit_TruthOr( pTruthRes, pTruthRes, pTruthMint, pNtk->nVars );
+ }
+*/
+// Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+// assert( !Abc_LitIsCompl(iLit) );
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ if ( Abc_LitIsCompl(iLit) )
+ Kit_TruthNot( pTruthFans[i], pTruthFans[i], pNtk->nVars );
+ pTruthTemp = Kit_TruthCompose( p->dd, Kit_DsdObjTruth(pObj), pObj->nFans, pTruthFans, pNtk->nVars, p->vTtBdds, p->vNodes );
+ Kit_TruthCopy( pTruthRes, pTruthTemp, pNtk->nVars );
+ return pTruthRes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the truth table of the DSD network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned * Kit_DsdTruthComputeTwo( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp, int iVar, unsigned * pTruthDec )
+{
+ unsigned * pTruthRes, uSuppAll;
+ int i;
+ assert( uSupp > 0 );
+ assert( pNtk->nVars <= p->nVars );
+ // compute support of all nodes
+ uSuppAll = Kit_DsdGetSupports( pNtk );
+ // consider special case - there is no overlap
+ if ( (uSupp & uSuppAll) == 0 )
+ {
+ Kit_TruthClear( pTruthDec, pNtk->nVars );
+ return Kit_DsdTruthCompute( p, pNtk );
+ }
+ // consider special case - support is fully contained
+ if ( (uSupp & uSuppAll) == uSuppAll )
+ {
+ pTruthRes = Kit_DsdTruthCompute( p, pNtk );
+ Kit_TruthCopy( pTruthDec, pTruthRes, pNtk->nVars );
+ Kit_TruthIthVar( pTruthRes, pNtk->nVars, iVar );
+ return pTruthRes;
+ }
+ // assign elementary truth tables
+ for ( i = 0; i < (int)pNtk->nVars; i++ )
+ Kit_TruthCopy( (unsigned *)Vec_PtrEntry(p->vTtNodes, i), (unsigned *)Vec_PtrEntry(p->vTtElems, i), p->nVars );
+ // compute truth table for each node
+ pTruthRes = Kit_DsdTruthComputeNodeTwo_rec( p, pNtk, Abc_Lit2Var(pNtk->Root), uSupp, iVar, pTruthDec );
+ // complement the truth table if needed
+ if ( Abc_LitIsCompl(pNtk->Root) )
+ Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
+ return pTruthRes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the truth table of the DSD network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdTruth( Kit_DsdNtk_t * pNtk, unsigned * pTruthRes )
+{
+ Kit_DsdMan_t * p;
+ unsigned * pTruth;
+ p = Kit_DsdManAlloc( pNtk->nVars, Kit_DsdNtkObjNum(pNtk) );
+ pTruth = Kit_DsdTruthCompute( p, pNtk );
+ Kit_TruthCopy( pTruthRes, pTruth, pNtk->nVars );
+ Kit_DsdManFree( p );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the truth table of the DSD network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdTruthPartialTwo( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp, int iVar, unsigned * pTruthCo, unsigned * pTruthDec )
+{
+ unsigned * pTruth = Kit_DsdTruthComputeTwo( p, pNtk, uSupp, iVar, pTruthDec );
+ if ( pTruthCo )
+ Kit_TruthCopy( pTruthCo, pTruth, pNtk->nVars );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the truth table of the DSD network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdTruthPartial( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned * pTruthRes, unsigned uSupp )
+{
+ unsigned * pTruth = Kit_DsdTruthComputeOne( p, pNtk, uSupp );
+ Kit_TruthCopy( pTruthRes, pTruth, pNtk->nVars );
+/*
+ // verification
+ {
+ // compute the same function using different procedure
+ unsigned * pTruthTemp = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes + 1);
+ pNtk->pSupps = NULL;
+ Kit_DsdTruthComputeTwo( p, pNtk, uSupp, -1, pTruthTemp );
+// if ( !Kit_TruthIsEqual( pTruthTemp, pTruthRes, pNtk->nVars ) )
+ if ( !Kit_TruthIsEqualWithPhase( pTruthTemp, pTruthRes, pNtk->nVars ) )
+ {
+ printf( "Verification FAILED!\n" );
+ Kit_DsdPrint( stdout, pNtk );
+ Kit_DsdPrintFromTruth( pTruthRes, pNtk->nVars );
+ Kit_DsdPrintFromTruth( pTruthTemp, pNtk->nVars );
+ }
+// else
+// printf( "Verification successful.\n" );
+ }
+*/
+}
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of blocks of the given number of inputs.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DsdCountLuts_rec( Kit_DsdNtk_t * pNtk, int nLutSize, int Id, int * pCounter )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned iLit, i, Res0, Res1;
+ pObj = Kit_DsdNtkObj( pNtk, Id );
+ if ( pObj == NULL )
+ return 0;
+ if ( pObj->Type == KIT_DSD_AND || pObj->Type == KIT_DSD_XOR )
+ {
+ assert( pObj->nFans == 2 );
+ Res0 = Kit_DsdCountLuts_rec( pNtk, nLutSize, Abc_Lit2Var(pObj->pFans[0]), pCounter );
+ Res1 = Kit_DsdCountLuts_rec( pNtk, nLutSize, Abc_Lit2Var(pObj->pFans[1]), pCounter );
+ if ( Res0 == 0 && Res1 > 0 )
+ return Res1 - 1;
+ if ( Res0 > 0 && Res1 == 0 )
+ return Res0 - 1;
+ (*pCounter)++;
+ return nLutSize - 2;
+ }
+ assert( pObj->Type == KIT_DSD_PRIME );
+ if ( (int)pObj->nFans > nLutSize ) //+ 1 )
+ {
+ *pCounter = 1000;
+ return 0;
+ }
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ Kit_DsdCountLuts_rec( pNtk, nLutSize, Abc_Lit2Var(iLit), pCounter );
+ (*pCounter)++;
+// if ( (int)pObj->nFans == nLutSize + 1 )
+// (*pCounter)++;
+ return nLutSize - pObj->nFans;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of blocks of the given number of inputs.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DsdCountLuts( Kit_DsdNtk_t * pNtk, int nLutSize )
+{
+ int Counter = 0;
+ if ( Kit_DsdNtkRoot(pNtk)->Type == KIT_DSD_CONST1 )
+ return 0;
+ if ( Kit_DsdNtkRoot(pNtk)->Type == KIT_DSD_VAR )
+ return 0;
+ Kit_DsdCountLuts_rec( pNtk, nLutSize, Abc_Lit2Var(pNtk->Root), &Counter );
+ if ( Counter >= 1000 )
+ return -1;
+ return Counter;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the size of the largest non-DSD block.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DsdNonDsdSizeMax( Kit_DsdNtk_t * pNtk )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned i, nSizeMax = 0;
+ Kit_DsdNtkForEachObj( pNtk, pObj, i )
+ {
+ if ( pObj->Type != KIT_DSD_PRIME )
+ continue;
+ if ( nSizeMax < pObj->nFans )
+ nSizeMax = pObj->nFans;
+ }
+ return nSizeMax;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the largest non-DSD block.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_DsdObj_t * Kit_DsdNonDsdPrimeMax( Kit_DsdNtk_t * pNtk )
+{
+ Kit_DsdObj_t * pObj, * pObjMax = NULL;
+ unsigned i, nSizeMax = 0;
+ Kit_DsdNtkForEachObj( pNtk, pObj, i )
+ {
+ if ( pObj->Type != KIT_DSD_PRIME )
+ continue;
+ if ( nSizeMax < pObj->nFans )
+ {
+ nSizeMax = pObj->nFans;
+ pObjMax = pObj;
+ }
+ }
+ return pObjMax;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Finds the union of supports of the non-DSD blocks.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned Kit_DsdNonDsdSupports( Kit_DsdNtk_t * pNtk )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned i, uSupport = 0;
+// ABC_FREE( pNtk->pSupps );
+ Kit_DsdGetSupports( pNtk );
+ Kit_DsdNtkForEachObj( pNtk, pObj, i )
+ {
+ if ( pObj->Type != KIT_DSD_PRIME )
+ continue;
+ uSupport |= Kit_DsdLitSupport( pNtk, Abc_Var2Lit(pObj->Id,0) );
+ }
+ return uSupport;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Expands the node.]
+
+ Description [Returns the new literal.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdExpandCollectAnd_rec( Kit_DsdNtk_t * p, unsigned iLit, unsigned * piLitsNew, int * nLitsNew )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned i, iLitFanin;
+ // check the end of the supergate
+ pObj = Kit_DsdNtkObj( p, Abc_Lit2Var(iLit) );
+ if ( Abc_LitIsCompl(iLit) || Abc_Lit2Var(iLit) < p->nVars || pObj->Type != KIT_DSD_AND )
+ {
+ piLitsNew[(*nLitsNew)++] = iLit;
+ return;
+ }
+ // iterate through the fanins
+ Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i )
+ Kit_DsdExpandCollectAnd_rec( p, iLitFanin, piLitsNew, nLitsNew );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Expands the node.]
+
+ Description [Returns the new literal.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdExpandCollectXor_rec( Kit_DsdNtk_t * p, unsigned iLit, unsigned * piLitsNew, int * nLitsNew )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned i, iLitFanin;
+ // check the end of the supergate
+ pObj = Kit_DsdNtkObj( p, Abc_Lit2Var(iLit) );
+ if ( Abc_Lit2Var(iLit) < p->nVars || pObj->Type != KIT_DSD_XOR )
+ {
+ piLitsNew[(*nLitsNew)++] = iLit;
+ return;
+ }
+ // iterate through the fanins
+ pObj = Kit_DsdNtkObj( p, Abc_Lit2Var(iLit) );
+ Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i )
+ Kit_DsdExpandCollectXor_rec( p, iLitFanin, piLitsNew, nLitsNew );
+ // if the literal was complemented, pass the complemented attribute somewhere
+ if ( Abc_LitIsCompl(iLit) )
+ piLitsNew[0] = Abc_LitNot( piLitsNew[0] );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Expands the node.]
+
+ Description [Returns the new literal.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DsdExpandNode_rec( Kit_DsdNtk_t * pNew, Kit_DsdNtk_t * p, int iLit )
+{
+ unsigned * pTruth, * pTruthNew;
+ unsigned i, iLitFanin, piLitsNew[16], nLitsNew = 0;
+ Kit_DsdObj_t * pObj, * pObjNew;
+
+ // consider the case of simple gate
+ pObj = Kit_DsdNtkObj( p, Abc_Lit2Var(iLit) );
+ if ( pObj == NULL )
+ return iLit;
+ if ( pObj->Type == KIT_DSD_AND )
+ {
+ Kit_DsdExpandCollectAnd_rec( p, Abc_LitRegular(iLit), piLitsNew, (int *)&nLitsNew );
+ pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_AND, nLitsNew );
+ for ( i = 0; i < pObjNew->nFans; i++ )
+ pObjNew->pFans[i] = Kit_DsdExpandNode_rec( pNew, p, piLitsNew[i] );
+ return Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(iLit) );
+ }
+ if ( pObj->Type == KIT_DSD_XOR )
+ {
+ int fCompl = Abc_LitIsCompl(iLit);
+ Kit_DsdExpandCollectXor_rec( p, Abc_LitRegular(iLit), piLitsNew, (int *)&nLitsNew );
+ pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_XOR, nLitsNew );
+ for ( i = 0; i < pObjNew->nFans; i++ )
+ {
+ pObjNew->pFans[i] = Kit_DsdExpandNode_rec( pNew, p, Abc_LitRegular(piLitsNew[i]) );
+ fCompl ^= Abc_LitIsCompl(piLitsNew[i]);
+ }
+ return Abc_Var2Lit( pObjNew->Id, fCompl );
+ }
+ assert( pObj->Type == KIT_DSD_PRIME );
+
+ // create new PRIME node
+ pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_PRIME, pObj->nFans );
+ // copy the truth table
+ pTruth = Kit_DsdObjTruth( pObj );
+ pTruthNew = Kit_DsdObjTruth( pObjNew );
+ Kit_TruthCopy( pTruthNew, pTruth, pObj->nFans );
+ // create fanins
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLitFanin, i )
+ {
+ pObjNew->pFans[i] = Kit_DsdExpandNode_rec( pNew, p, iLitFanin );
+ // complement the corresponding inputs of the truth table
+ if ( Abc_LitIsCompl(pObjNew->pFans[i]) )
+ {
+ pObjNew->pFans[i] = Abc_LitRegular(pObjNew->pFans[i]);
+ Kit_TruthChangePhase( pTruthNew, pObjNew->nFans, i );
+ }
+ }
+
+ if ( pObj->nFans == 3 &&
+ (pTruthNew[0] == 0xCACACACA || pTruthNew[0] == 0xC5C5C5C5 ||
+ pTruthNew[0] == 0x3A3A3A3A || pTruthNew[0] == 0x35353535) )
+ {
+ // translate into regular MUXes
+ if ( pTruthNew[0] == 0xC5C5C5C5 )
+ pObjNew->pFans[0] = Abc_LitNot(pObjNew->pFans[0]);
+ else if ( pTruthNew[0] == 0x3A3A3A3A )
+ pObjNew->pFans[1] = Abc_LitNot(pObjNew->pFans[1]);
+ else if ( pTruthNew[0] == 0x35353535 )
+ {
+ pObjNew->pFans[0] = Abc_LitNot(pObjNew->pFans[0]);
+ pObjNew->pFans[1] = Abc_LitNot(pObjNew->pFans[1]);
+ }
+ pTruthNew[0] = 0xCACACACA;
+ // resolve the complemented control input
+ if ( Abc_LitIsCompl(pObjNew->pFans[2]) )
+ {
+ unsigned char Temp = pObjNew->pFans[0];
+ pObjNew->pFans[0] = pObjNew->pFans[1];
+ pObjNew->pFans[1] = Temp;
+ pObjNew->pFans[2] = Abc_LitNot(pObjNew->pFans[2]);
+ }
+ // resolve the complemented true input
+ if ( Abc_LitIsCompl(pObjNew->pFans[1]) )
+ {
+ iLit = Abc_LitNot(iLit);
+ pObjNew->pFans[0] = Abc_LitNot(pObjNew->pFans[0]);
+ pObjNew->pFans[1] = Abc_LitNot(pObjNew->pFans[1]);
+ }
+ return Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(iLit) );
+ }
+ else
+ {
+ // if the incoming phase is complemented, absorb it into the prime node
+ if ( Abc_LitIsCompl(iLit) )
+ Kit_TruthNot( pTruthNew, pTruthNew, pObj->nFans );
+ return Abc_Var2Lit( pObjNew->Id, 0 );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Expands the network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_DsdNtk_t * Kit_DsdExpand( Kit_DsdNtk_t * p )
+{
+ Kit_DsdNtk_t * pNew;
+ Kit_DsdObj_t * pObjNew;
+ assert( p->nVars <= 16 );
+ // create a new network
+ pNew = Kit_DsdNtkAlloc( p->nVars );
+ // consider simple special cases
+ if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_CONST1 )
+ {
+ pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_CONST1, 0 );
+ pNew->Root = Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(p->Root) );
+ return pNew;
+ }
+ if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_VAR )
+ {
+ pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_VAR, 1 );
+ pObjNew->pFans[0] = Kit_DsdNtkRoot(p)->pFans[0];
+ pNew->Root = Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(p->Root) );
+ return pNew;
+ }
+ // convert the root node
+ pNew->Root = Kit_DsdExpandNode_rec( pNew, p, p->Root );
+ return pNew;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Sorts the literals by their support.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdCompSort( int pPrios[], unsigned uSupps[], unsigned char * piLits, int nVars, unsigned piLitsRes[] )
+{
+ int nSuppSizes[16], Priority[16], pOrder[16];
+ int i, k, iVarBest, SuppMax, PrioMax;
+ // compute support sizes and priorities of the components
+ for ( i = 0; i < nVars; i++ )
+ {
+ assert( uSupps[i] );
+ pOrder[i] = i;
+ Priority[i] = KIT_INFINITY;
+ for ( k = 0; k < 16; k++ )
+ if ( uSupps[i] & (1 << k) )
+ Priority[i] = KIT_MIN( Priority[i], pPrios[k] );
+ assert( Priority[i] != 16 );
+ nSuppSizes[i] = Kit_WordCountOnes(uSupps[i]);
+ }
+ // sort the components by pririty
+ Extra_BubbleSort( pOrder, Priority, nVars, 0 );
+ // find the component by with largest size and lowest priority
+ iVarBest = -1;
+ SuppMax = 0;
+ PrioMax = 0;
+ for ( i = 0; i < nVars; i++ )
+ {
+ if ( SuppMax < nSuppSizes[i] || (SuppMax == nSuppSizes[i] && PrioMax < Priority[i]) )
+ {
+ SuppMax = nSuppSizes[i];
+ PrioMax = Priority[i];
+ iVarBest = i;
+ }
+ }
+ assert( iVarBest != -1 );
+ // copy the resulting literals
+ k = 0;
+ piLitsRes[k++] = piLits[iVarBest];
+ for ( i = 0; i < nVars; i++ )
+ {
+ if ( pOrder[i] == iVarBest )
+ continue;
+ piLitsRes[k++] = piLits[pOrder[i]];
+ }
+ assert( k == nVars );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Shrinks multi-input nodes.]
+
+ Description [Takes the array of variable priorities pPrios.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DsdShrink_rec( Kit_DsdNtk_t * pNew, Kit_DsdNtk_t * p, int iLit, int pPrios[] )
+{
+ Kit_DsdObj_t * pObj;
+ Kit_DsdObj_t * pObjNew = NULL; // Suppress "might be used uninitialized"
+ unsigned * pTruth, * pTruthNew;
+ unsigned i, piLitsNew[16], uSupps[16];
+ int iLitFanin, iLitNew;
+
+ // consider the case of simple gate
+ pObj = Kit_DsdNtkObj( p, Abc_Lit2Var(iLit) );
+ if ( pObj == NULL )
+ return iLit;
+ if ( pObj->Type == KIT_DSD_AND )
+ {
+ // get the supports
+ Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i )
+ uSupps[i] = Kit_DsdLitSupport( p, iLitFanin );
+ // put the largest component last
+ // sort other components in the decreasing order of priority of their vars
+ Kit_DsdCompSort( pPrios, uSupps, pObj->pFans, pObj->nFans, piLitsNew );
+ // construct the two-input node network
+ iLitNew = Kit_DsdShrink_rec( pNew, p, piLitsNew[0], pPrios );
+ for ( i = 1; i < pObj->nFans; i++ )
+ {
+ pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_AND, 2 );
+ pObjNew->pFans[0] = Kit_DsdShrink_rec( pNew, p, piLitsNew[i], pPrios );
+ pObjNew->pFans[1] = iLitNew;
+ iLitNew = Abc_Var2Lit( pObjNew->Id, 0 );
+ }
+ return Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(iLit) );
+ }
+ if ( pObj->Type == KIT_DSD_XOR )
+ {
+ // get the supports
+ Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i )
+ {
+ assert( !Abc_LitIsCompl(iLitFanin) );
+ uSupps[i] = Kit_DsdLitSupport( p, iLitFanin );
+ }
+ // put the largest component last
+ // sort other components in the decreasing order of priority of their vars
+ Kit_DsdCompSort( pPrios, uSupps, pObj->pFans, pObj->nFans, piLitsNew );
+ // construct the two-input node network
+ iLitNew = Kit_DsdShrink_rec( pNew, p, piLitsNew[0], pPrios );
+ for ( i = 1; i < pObj->nFans; i++ )
+ {
+ pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_XOR, 2 );
+ pObjNew->pFans[0] = Kit_DsdShrink_rec( pNew, p, piLitsNew[i], pPrios );
+ pObjNew->pFans[1] = iLitNew;
+ iLitNew = Abc_Var2Lit( pObjNew->Id, 0 );
+ }
+ return Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(iLit) );
+ }
+ assert( pObj->Type == KIT_DSD_PRIME );
+
+ // create new PRIME node
+ pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_PRIME, pObj->nFans );
+ // copy the truth table
+ pTruth = Kit_DsdObjTruth( pObj );
+ pTruthNew = Kit_DsdObjTruth( pObjNew );
+ Kit_TruthCopy( pTruthNew, pTruth, pObj->nFans );
+ // create fanins
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLitFanin, i )
+ {
+ pObjNew->pFans[i] = Kit_DsdShrink_rec( pNew, p, iLitFanin, pPrios );
+ // complement the corresponding inputs of the truth table
+ if ( Abc_LitIsCompl(pObjNew->pFans[i]) )
+ {
+ pObjNew->pFans[i] = Abc_LitRegular(pObjNew->pFans[i]);
+ Kit_TruthChangePhase( pTruthNew, pObjNew->nFans, i );
+ }
+ }
+ // if the incoming phase is complemented, absorb it into the prime node
+ if ( Abc_LitIsCompl(iLit) )
+ Kit_TruthNot( pTruthNew, pTruthNew, pObj->nFans );
+ return Abc_Var2Lit( pObjNew->Id, 0 );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Shrinks the network.]
+
+ Description [Transforms the network to have two-input nodes so that the
+ higher-ordered nodes were decomposed out first.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_DsdNtk_t * Kit_DsdShrink( Kit_DsdNtk_t * p, int pPrios[] )
+{
+ Kit_DsdNtk_t * pNew;
+ Kit_DsdObj_t * pObjNew;
+ assert( p->nVars <= 16 );
+ // create a new network
+ pNew = Kit_DsdNtkAlloc( p->nVars );
+ // consider simple special cases
+ if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_CONST1 )
+ {
+ pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_CONST1, 0 );
+ pNew->Root = Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(p->Root) );
+ return pNew;
+ }
+ if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_VAR )
+ {
+ pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_VAR, 1 );
+ pObjNew->pFans[0] = Kit_DsdNtkRoot(p)->pFans[0];
+ pNew->Root = Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(p->Root) );
+ return pNew;
+ }
+ // convert the root node
+ pNew->Root = Kit_DsdShrink_rec( pNew, p, p->Root, pPrios );
+ return pNew;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Rotates the network.]
+
+ Description [Transforms prime nodes to have the fanin with the
+ highest frequency of supports go first.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdRotate( Kit_DsdNtk_t * p, int pFreqs[] )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned * pIn, * pOut, * pTemp, k;
+ int i, v, Temp, uSuppFanin, iFaninLit, WeightMax, FaninMax, nSwaps;
+ int Weights[16];
+ // go through the prime nodes
+ Kit_DsdNtkForEachObj( p, pObj, i )
+ {
+ if ( pObj->Type != KIT_DSD_PRIME )
+ continue;
+ // count the fanin frequencies
+ Kit_DsdObjForEachFanin( p, pObj, iFaninLit, k )
+ {
+ uSuppFanin = Kit_DsdLitSupport( p, iFaninLit );
+ Weights[k] = 0;
+ for ( v = 0; v < 16; v++ )
+ if ( uSuppFanin & (1 << v) )
+ Weights[k] += pFreqs[v] - 1;
+ }
+ // find the most frequent fanin
+ WeightMax = 0;
+ FaninMax = -1;
+ for ( k = 0; k < pObj->nFans; k++ )
+ if ( WeightMax < Weights[k] )
+ {
+ WeightMax = Weights[k];
+ FaninMax = k;
+ }
+ // no need to reorder if there are no frequent fanins
+ if ( FaninMax == -1 )
+ continue;
+ // move the fanins number k to the first place
+ nSwaps = 0;
+ pIn = Kit_DsdObjTruth(pObj);
+ pOut = p->pMem;
+// for ( v = FaninMax; v < ((int)pObj->nFans)-1; v++ )
+ for ( v = FaninMax-1; v >= 0; v-- )
+ {
+ // swap the fanins
+ Temp = pObj->pFans[v];
+ pObj->pFans[v] = pObj->pFans[v+1];
+ pObj->pFans[v+1] = Temp;
+ // swap the truth table variables
+ Kit_TruthSwapAdjacentVars( pOut, pIn, pObj->nFans, v );
+ pTemp = pIn; pIn = pOut; pOut = pTemp;
+ nSwaps++;
+ }
+ if ( nSwaps & 1 )
+ Kit_TruthCopy( pOut, pIn, pObj->nFans );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Compute the support.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned Kit_DsdGetSupports_rec( Kit_DsdNtk_t * p, int iLit )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned uSupport, k;
+ int iFaninLit;
+ pObj = Kit_DsdNtkObj( p, Abc_Lit2Var(iLit) );
+ if ( pObj == NULL )
+ return Kit_DsdLitSupport( p, iLit );
+ uSupport = 0;
+ Kit_DsdObjForEachFanin( p, pObj, iFaninLit, k )
+ uSupport |= Kit_DsdGetSupports_rec( p, iFaninLit );
+ p->pSupps[pObj->Id - p->nVars] = uSupport;
+ assert( uSupport <= 0xFFFF );
+ return uSupport;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Compute the support.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned Kit_DsdGetSupports( Kit_DsdNtk_t * p )
+{
+ Kit_DsdObj_t * pRoot;
+ unsigned uSupport;
+ assert( p->pSupps == NULL );
+ p->pSupps = ABC_ALLOC( unsigned, p->nNodes );
+ // consider simple special cases
+ pRoot = Kit_DsdNtkRoot(p);
+ if ( pRoot->Type == KIT_DSD_CONST1 )
+ {
+ assert( p->nNodes == 1 );
+ uSupport = p->pSupps[0] = 0;
+ }
+ if ( pRoot->Type == KIT_DSD_VAR )
+ {
+ assert( p->nNodes == 1 );
+ uSupport = p->pSupps[0] = Kit_DsdLitSupport( p, pRoot->pFans[0] );
+ }
+ else
+ uSupport = Kit_DsdGetSupports_rec( p, p->Root );
+ assert( uSupport <= 0xFFFF );
+ return uSupport;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if there is a component with more than 3 inputs.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DsdFindLargeBox_rec( Kit_DsdNtk_t * pNtk, int Id, int Size )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned iLit, i, RetValue;
+ pObj = Kit_DsdNtkObj( pNtk, Id );
+ if ( pObj == NULL )
+ return 0;
+ if ( pObj->Type == KIT_DSD_PRIME && (int)pObj->nFans > Size )
+ return 1;
+ RetValue = 0;
+ Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
+ RetValue |= Kit_DsdFindLargeBox_rec( pNtk, Abc_Lit2Var(iLit), Size );
+ return RetValue;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if there is a component with more than 3 inputs.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DsdFindLargeBox( Kit_DsdNtk_t * pNtk, int Size )
+{
+ return Kit_DsdFindLargeBox_rec( pNtk, Abc_Lit2Var(pNtk->Root), Size );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if the non-DSD 4-var func is implementable with two 3-LUTs.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DsdRootNodeHasCommonVars( Kit_DsdObj_t * pObj0, Kit_DsdObj_t * pObj1 )
+{
+ unsigned i, k;
+ for ( i = 0; i < pObj0->nFans; i++ )
+ {
+ if ( Abc_Lit2Var(pObj0->pFans[i]) >= 4 )
+ continue;
+ for ( k = 0; k < pObj1->nFans; k++ )
+ if ( Abc_Lit2Var(pObj0->pFans[i]) == Abc_Lit2Var(pObj1->pFans[k]) )
+ return 1;
+ }
+ return 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if the non-DSD 4-var func is implementable with two 3-LUTs.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DsdCheckVar4Dec2( Kit_DsdNtk_t * pNtk0, Kit_DsdNtk_t * pNtk1 )
+{
+ assert( pNtk0->nVars == 4 );
+ assert( pNtk1->nVars == 4 );
+ if ( Kit_DsdFindLargeBox(pNtk0, 2) )
+ return 0;
+ if ( Kit_DsdFindLargeBox(pNtk1, 2) )
+ return 0;
+ return Kit_DsdRootNodeHasCommonVars( Kit_DsdNtkRoot(pNtk0), Kit_DsdNtkRoot(pNtk1) );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs decomposition of the node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdDecompose_rec( Kit_DsdNtk_t * pNtk, Kit_DsdObj_t * pObj, unsigned uSupp, unsigned char * pPar, int nDecMux )
+{
+ Kit_DsdObj_t * pRes, * pRes0, * pRes1;
+ int nWords = Kit_TruthWordNum(pObj->nFans);
+ unsigned * pTruth = Kit_DsdObjTruth(pObj);
+ unsigned * pCofs2[2] = { pNtk->pMem, pNtk->pMem + nWords };
+ unsigned * pCofs4[2][2] = { {pNtk->pMem + 2 * nWords, pNtk->pMem + 3 * nWords}, {pNtk->pMem + 4 * nWords, pNtk->pMem + 5 * nWords} };
+ int i, iLit0, iLit1, nFans0, nFans1, nPairs;
+ int fEquals[2][2], fOppos, fPairs[4][4];
+ unsigned j, k, nFansNew, uSupp0, uSupp1;
+
+ assert( pObj->nFans > 0 );
+ assert( pObj->Type == KIT_DSD_PRIME );
+ assert( uSupp == (uSupp0 = (unsigned)Kit_TruthSupport(pTruth, pObj->nFans)) );
+
+ // compress the truth table
+ if ( uSupp != Kit_BitMask(pObj->nFans) )
+ {
+ nFansNew = Kit_WordCountOnes(uSupp);
+ Kit_TruthShrink( pNtk->pMem, pTruth, nFansNew, pObj->nFans, uSupp, 1 );
+ for ( j = k = 0; j < pObj->nFans; j++ )
+ if ( uSupp & (1 << j) )
+ pObj->pFans[k++] = pObj->pFans[j];
+ assert( k == nFansNew );
+ pObj->nFans = k;
+ uSupp = Kit_BitMask(pObj->nFans);
+ }
+
+ // consider the single variable case
+ if ( pObj->nFans == 1 )
+ {
+ pObj->Type = KIT_DSD_NONE;
+ if ( pTruth[0] == 0x55555555 )
+ pObj->pFans[0] = Abc_LitNot(pObj->pFans[0]);
+ else
+ assert( pTruth[0] == 0xAAAAAAAA );
+ // update the parent pointer
+ *pPar = Abc_LitNotCond( pObj->pFans[0], Abc_LitIsCompl(*pPar) );
+ return;
+ }
+
+ // decompose the output
+ if ( !pObj->fMark )
+ for ( i = pObj->nFans - 1; i >= 0; i-- )
+ {
+ // get the two-variable cofactors
+ Kit_TruthCofactor0New( pCofs2[0], pTruth, pObj->nFans, i );
+ Kit_TruthCofactor1New( pCofs2[1], pTruth, pObj->nFans, i );
+// assert( !Kit_TruthVarInSupport( pCofs2[0], pObj->nFans, i) );
+// assert( !Kit_TruthVarInSupport( pCofs2[1], pObj->nFans, i) );
+ // get the constant cofs
+ fEquals[0][0] = Kit_TruthIsConst0( pCofs2[0], pObj->nFans );
+ fEquals[0][1] = Kit_TruthIsConst0( pCofs2[1], pObj->nFans );
+ fEquals[1][0] = Kit_TruthIsConst1( pCofs2[0], pObj->nFans );
+ fEquals[1][1] = Kit_TruthIsConst1( pCofs2[1], pObj->nFans );
+ fOppos = Kit_TruthIsOpposite( pCofs2[0], pCofs2[1], pObj->nFans );
+ assert( !Kit_TruthIsEqual(pCofs2[0], pCofs2[1], pObj->nFans) );
+ if ( fEquals[0][0] + fEquals[0][1] + fEquals[1][0] + fEquals[1][1] + fOppos == 0 )
+ {
+ // check the MUX decomposition
+ uSupp0 = Kit_TruthSupport( pCofs2[0], pObj->nFans );
+ uSupp1 = Kit_TruthSupport( pCofs2[1], pObj->nFans );
+ assert( uSupp == (uSupp0 | uSupp1 | (1<<i)) );
+ if ( uSupp0 & uSupp1 )
+ continue;
+ // perform MUX decomposition
+ pRes0 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans );
+ pRes1 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans );
+ for ( k = 0; k < pObj->nFans; k++ )
+ {
+ pRes0->pFans[k] = (uSupp0 & (1 << k))? pObj->pFans[k] : 127;
+ pRes1->pFans[k] = (uSupp1 & (1 << k))? pObj->pFans[k] : 127;
+ }
+ Kit_TruthCopy( Kit_DsdObjTruth(pRes0), pCofs2[0], pObj->nFans );
+ Kit_TruthCopy( Kit_DsdObjTruth(pRes1), pCofs2[1], pObj->nFans );
+ // update the current one
+ assert( pObj->Type == KIT_DSD_PRIME );
+ pTruth[0] = 0xCACACACA;
+ pObj->nFans = 3;
+ pObj->pFans[2] = pObj->pFans[i];
+ pObj->pFans[0] = 2*pRes0->Id; pRes0->nRefs++;
+ pObj->pFans[1] = 2*pRes1->Id; pRes1->nRefs++;
+ // call recursively
+ Kit_DsdDecompose_rec( pNtk, pRes0, uSupp0, pObj->pFans + 0, nDecMux );
+ Kit_DsdDecompose_rec( pNtk, pRes1, uSupp1, pObj->pFans + 1, nDecMux );
+ return;
+ }
+
+ // create the new node
+ pRes = Kit_DsdObjAlloc( pNtk, KIT_DSD_AND, 2 );
+ pRes->nRefs++;
+ pRes->nFans = 2;
+ pRes->pFans[0] = pObj->pFans[i]; pObj->pFans[i] = 127; uSupp &= ~(1 << i);
+ pRes->pFans[1] = 2*pObj->Id;
+ // update the parent pointer
+ *pPar = Abc_LitNotCond( 2 * pRes->Id, Abc_LitIsCompl(*pPar) );
+ // consider different decompositions
+ if ( fEquals[0][0] )
+ {
+ Kit_TruthCopy( pTruth, pCofs2[1], pObj->nFans );
+ }
+ else if ( fEquals[0][1] )
+ {
+ pRes->pFans[0] = Abc_LitNot(pRes->pFans[0]);
+ Kit_TruthCopy( pTruth, pCofs2[0], pObj->nFans );
+ }
+ else if ( fEquals[1][0] )
+ {
+ *pPar = Abc_LitNot(*pPar);
+ pRes->pFans[1] = Abc_LitNot(pRes->pFans[1]);
+ Kit_TruthCopy( pTruth, pCofs2[1], pObj->nFans );
+ }
+ else if ( fEquals[1][1] )
+ {
+ *pPar = Abc_LitNot(*pPar);
+ pRes->pFans[0] = Abc_LitNot(pRes->pFans[0]);
+ pRes->pFans[1] = Abc_LitNot(pRes->pFans[1]);
+ Kit_TruthCopy( pTruth, pCofs2[0], pObj->nFans );
+ }
+ else if ( fOppos )
+ {
+ pRes->Type = KIT_DSD_XOR;
+ Kit_TruthCopy( pTruth, pCofs2[0], pObj->nFans );
+ }
+ else
+ assert( 0 );
+ // decompose the remainder
+ assert( Kit_DsdObjTruth(pObj) == pTruth );
+ Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pRes->pFans + 1, nDecMux );
+ return;
+ }
+ pObj->fMark = 1;
+
+ // decompose the input
+ for ( i = pObj->nFans - 1; i >= 0; i-- )
+ {
+ assert( Kit_TruthVarInSupport( pTruth, pObj->nFans, i ) );
+ // get the single variale cofactors
+ Kit_TruthCofactor0New( pCofs2[0], pTruth, pObj->nFans, i );
+ Kit_TruthCofactor1New( pCofs2[1], pTruth, pObj->nFans, i );
+ // check the existence of MUX decomposition
+ uSupp0 = Kit_TruthSupport( pCofs2[0], pObj->nFans );
+ uSupp1 = Kit_TruthSupport( pCofs2[1], pObj->nFans );
+ assert( uSupp == (uSupp0 | uSupp1 | (1<<i)) );
+ // if one of the cofs is a constant, it is time to check the output again
+ if ( uSupp0 == 0 || uSupp1 == 0 )
+ {
+ pObj->fMark = 0;
+ Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pPar, nDecMux );
+ return;
+ }
+ assert( uSupp0 && uSupp1 );
+ // get the number of unique variables
+ nFans0 = Kit_WordCountOnes( uSupp0 & ~uSupp1 );
+ nFans1 = Kit_WordCountOnes( uSupp1 & ~uSupp0 );
+ if ( nFans0 == 1 && nFans1 == 1 )
+ {
+ // get the cofactors w.r.t. the unique variables
+ iLit0 = Kit_WordFindFirstBit( uSupp0 & ~uSupp1 );
+ iLit1 = Kit_WordFindFirstBit( uSupp1 & ~uSupp0 );
+ // get four cofactors
+ Kit_TruthCofactor0New( pCofs4[0][0], pCofs2[0], pObj->nFans, iLit0 );
+ Kit_TruthCofactor1New( pCofs4[0][1], pCofs2[0], pObj->nFans, iLit0 );
+ Kit_TruthCofactor0New( pCofs4[1][0], pCofs2[1], pObj->nFans, iLit1 );
+ Kit_TruthCofactor1New( pCofs4[1][1], pCofs2[1], pObj->nFans, iLit1 );
+ // check existence conditions
+ fEquals[0][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][0], pObj->nFans );
+ fEquals[0][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][1], pObj->nFans );
+ fEquals[1][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][1], pObj->nFans );
+ fEquals[1][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][0], pObj->nFans );
+ if ( (fEquals[0][0] && fEquals[0][1]) || (fEquals[1][0] && fEquals[1][1]) )
+ {
+ // construct the MUX
+ pRes = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, 3 );
+ Kit_DsdObjTruth(pRes)[0] = 0xCACACACA;
+ pRes->nRefs++;
+ pRes->nFans = 3;
+ pRes->pFans[0] = pObj->pFans[iLit0]; pObj->pFans[iLit0] = 127; uSupp &= ~(1 << iLit0);
+ pRes->pFans[1] = pObj->pFans[iLit1]; pObj->pFans[iLit1] = 127; uSupp &= ~(1 << iLit1);
+ pRes->pFans[2] = pObj->pFans[i]; pObj->pFans[i] = 2 * pRes->Id; // remains in support
+ // update the node
+// if ( fEquals[0][0] && fEquals[0][1] )
+// Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[0][1], pObj->nFans, i );
+// else
+// Kit_TruthMuxVar( pTruth, pCofs4[0][1], pCofs4[0][0], pObj->nFans, i );
+ Kit_TruthMuxVar( pTruth, pCofs4[1][0], pCofs4[1][1], pObj->nFans, i );
+ if ( fEquals[1][0] && fEquals[1][1] )
+ pRes->pFans[0] = Abc_LitNot(pRes->pFans[0]);
+ // decompose the remainder
+ Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pPar, nDecMux );
+ return;
+ }
+ }
+
+ // try other inputs
+ for ( k = i+1; k < pObj->nFans; k++ )
+ {
+ // get four cofactors ik
+ Kit_TruthCofactor0New( pCofs4[0][0], pCofs2[0], pObj->nFans, k ); // 00
+ Kit_TruthCofactor1New( pCofs4[0][1], pCofs2[0], pObj->nFans, k ); // 01
+ Kit_TruthCofactor0New( pCofs4[1][0], pCofs2[1], pObj->nFans, k ); // 10
+ Kit_TruthCofactor1New( pCofs4[1][1], pCofs2[1], pObj->nFans, k ); // 11
+ // compare equal pairs
+ fPairs[0][1] = fPairs[1][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[0][1], pObj->nFans );
+ fPairs[0][2] = fPairs[2][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][0], pObj->nFans );
+ fPairs[0][3] = fPairs[3][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][1], pObj->nFans );
+ fPairs[1][2] = fPairs[2][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][0], pObj->nFans );
+ fPairs[1][3] = fPairs[3][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][1], pObj->nFans );
+ fPairs[2][3] = fPairs[3][2] = Kit_TruthIsEqual( pCofs4[1][0], pCofs4[1][1], pObj->nFans );
+ nPairs = fPairs[0][1] + fPairs[0][2] + fPairs[0][3] + fPairs[1][2] + fPairs[1][3] + fPairs[2][3];
+ if ( nPairs != 3 && nPairs != 2 )
+ continue;
+
+ // decomposition exists
+ pRes = Kit_DsdObjAlloc( pNtk, KIT_DSD_AND, 2 );
+ pRes->nRefs++;
+ pRes->nFans = 2;
+ pRes->pFans[0] = pObj->pFans[k]; pObj->pFans[k] = 2 * pRes->Id; // remains in support
+ pRes->pFans[1] = pObj->pFans[i]; pObj->pFans[i] = 127; uSupp &= ~(1 << i);
+ if ( !fPairs[0][1] && !fPairs[0][2] && !fPairs[0][3] ) // 00
+ {
+ pRes->pFans[0] = Abc_LitNot(pRes->pFans[0]);
+ pRes->pFans[1] = Abc_LitNot(pRes->pFans[1]);
+ Kit_TruthMuxVar( pTruth, pCofs4[1][1], pCofs4[0][0], pObj->nFans, k );
+ }
+ else if ( !fPairs[1][0] && !fPairs[1][2] && !fPairs[1][3] ) // 01
+ {
+ pRes->pFans[1] = Abc_LitNot(pRes->pFans[1]);
+ Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[0][1], pObj->nFans, k );
+ }
+ else if ( !fPairs[2][0] && !fPairs[2][1] && !fPairs[2][3] ) // 10
+ {
+ pRes->pFans[0] = Abc_LitNot(pRes->pFans[0]);
+ Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[1][0], pObj->nFans, k );
+ }
+ else if ( !fPairs[3][0] && !fPairs[3][1] && !fPairs[3][2] ) // 11
+ {
+// unsigned uSupp0 = Kit_TruthSupport(pCofs4[0][0], pObj->nFans);
+// unsigned uSupp1 = Kit_TruthSupport(pCofs4[1][1], pObj->nFans);
+// unsigned uSupp;
+// Extra_PrintBinary( stdout, &uSupp0, pObj->nFans ); printf( "\n" );
+// Extra_PrintBinary( stdout, &uSupp1, pObj->nFans ); printf( "\n" );
+ Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[1][1], pObj->nFans, k );
+// uSupp = Kit_TruthSupport(pTruth, pObj->nFans);
+// Extra_PrintBinary( stdout, &uSupp, pObj->nFans ); printf( "\n" ); printf( "\n" );
+ }
+ else
+ {
+ assert( fPairs[0][3] && fPairs[1][2] );
+ pRes->Type = KIT_DSD_XOR;;
+ Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[0][1], pObj->nFans, k );
+ }
+ // decompose the remainder
+ Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pPar, nDecMux );
+ return;
+ }
+ }
+
+ // if all decomposition methods failed and we are still above the limit, perform MUX-decomposition
+ if ( nDecMux > 0 && (int)pObj->nFans > nDecMux )
+ {
+ int iBestVar = Kit_TruthBestCofVar( pTruth, pObj->nFans, pCofs2[0], pCofs2[1] );
+ uSupp0 = Kit_TruthSupport( pCofs2[0], pObj->nFans );
+ uSupp1 = Kit_TruthSupport( pCofs2[1], pObj->nFans );
+ // perform MUX decomposition
+ pRes0 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans );
+ pRes1 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans );
+ for ( k = 0; k < pObj->nFans; k++ )
+ pRes0->pFans[k] = pRes1->pFans[k] = pObj->pFans[k];
+ Kit_TruthCopy( Kit_DsdObjTruth(pRes0), pCofs2[0], pObj->nFans );
+ Kit_TruthCopy( Kit_DsdObjTruth(pRes1), pCofs2[1], pObj->nFans );
+ // update the current one
+ assert( pObj->Type == KIT_DSD_PRIME );
+ pTruth[0] = 0xCACACACA;
+ pObj->nFans = 3;
+ pObj->pFans[2] = pObj->pFans[iBestVar];
+ pObj->pFans[0] = 2*pRes0->Id; pRes0->nRefs++;
+ pObj->pFans[1] = 2*pRes1->Id; pRes1->nRefs++;
+ // call recursively
+ Kit_DsdDecompose_rec( pNtk, pRes0, uSupp0, pObj->pFans + 0, nDecMux );
+ Kit_DsdDecompose_rec( pNtk, pRes1, uSupp1, pObj->pFans + 1, nDecMux );
+ }
+
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs decomposition of the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_DsdNtk_t * Kit_DsdDecomposeInt( unsigned * pTruth, int nVars, int nDecMux )
+{
+ Kit_DsdNtk_t * pNtk;
+ Kit_DsdObj_t * pObj;
+ unsigned uSupp;
+ int i, nVarsReal;
+ assert( nVars <= 16 );
+ pNtk = Kit_DsdNtkAlloc( nVars );
+ pNtk->Root = Abc_Var2Lit( pNtk->nVars, 0 );
+ // create the first node
+ pObj = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, nVars );
+ assert( pNtk->pNodes[0] == pObj );
+ for ( i = 0; i < nVars; i++ )
+ pObj->pFans[i] = Abc_Var2Lit( i, 0 );
+ Kit_TruthCopy( Kit_DsdObjTruth(pObj), pTruth, nVars );
+ uSupp = Kit_TruthSupport( pTruth, nVars );
+ // consider special cases
+ nVarsReal = Kit_WordCountOnes( uSupp );
+ if ( nVarsReal == 0 )
+ {
+ pObj->Type = KIT_DSD_CONST1;
+ pObj->nFans = 0;
+ if ( pTruth[0] == 0 )
+ pNtk->Root = Abc_LitNot(pNtk->Root);
+ return pNtk;
+ }
+ if ( nVarsReal == 1 )
+ {
+ pObj->Type = KIT_DSD_VAR;
+ pObj->nFans = 1;
+ pObj->pFans[0] = Abc_Var2Lit( Kit_WordFindFirstBit(uSupp), (pTruth[0] & 1) );
+ return pNtk;
+ }
+ Kit_DsdDecompose_rec( pNtk, pNtk->pNodes[0], uSupp, &pNtk->Root, nDecMux );
+ return pNtk;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs decomposition of the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_DsdNtk_t * Kit_DsdDecompose( unsigned * pTruth, int nVars )
+{
+ return Kit_DsdDecomposeInt( pTruth, nVars, 0 );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs decomposition of the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_DsdNtk_t * Kit_DsdDecomposeExpand( unsigned * pTruth, int nVars )
+{
+ Kit_DsdNtk_t * pNtk, * pTemp;
+ pNtk = Kit_DsdDecomposeInt( pTruth, nVars, 0 );
+ pNtk = Kit_DsdExpand( pTemp = pNtk );
+ Kit_DsdNtkFree( pTemp );
+ return pNtk;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs decomposition of the truth table.]
+
+ Description [Uses MUXes to break-down large prime nodes.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_DsdNtk_t * Kit_DsdDecomposeMux( unsigned * pTruth, int nVars, int nDecMux )
+{
+/*
+ Kit_DsdNtk_t * pNew;
+ Kit_DsdObj_t * pObjNew;
+ assert( nVars <= 16 );
+ // create a new network
+ pNew = Kit_DsdNtkAlloc( nVars );
+ // consider simple special cases
+ if ( nVars == 0 )
+ {
+ pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_CONST1, 0 );
+ pNew->Root = Abc_Var2Lit( pObjNew->Id, (int)(pTruth[0] == 0) );
+ return pNew;
+ }
+ if ( nVars == 1 )
+ {
+ pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_VAR, 1 );
+ pObjNew->pFans[0] = Abc_Var2Lit( 0, 0 );
+ pNew->Root = Abc_Var2Lit( pObjNew->Id, (int)(pTruth[0] != 0xAAAAAAAA) );
+ return pNew;
+ }
+*/
+ return Kit_DsdDecomposeInt( pTruth, nVars, nDecMux );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs decomposition of the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DsdTestCofs( Kit_DsdNtk_t * pNtk, unsigned * pTruthInit )
+{
+ Kit_DsdNtk_t * pNtk0, * pNtk1, * pTemp;
+// Kit_DsdObj_t * pRoot;
+ unsigned * pCofs2[2] = { pNtk->pMem, pNtk->pMem + Kit_TruthWordNum(pNtk->nVars) };
+ unsigned i, * pTruth;
+ int fVerbose = 1;
+ int RetValue = 0;
+
+ pTruth = pTruthInit;
+// pRoot = Kit_DsdNtkRoot(pNtk);
+// pTruth = Kit_DsdObjTruth(pRoot);
+// assert( pRoot->nFans == pNtk->nVars );
+
+ if ( fVerbose )
+ {
+ printf( "Function: " );
+// Extra_PrintBinary( stdout, pTruth, (1 << pNtk->nVars) );
+ Extra_PrintHexadecimal( stdout, pTruth, pNtk->nVars );
+ printf( "\n" );
+ Kit_DsdPrint( stdout, pNtk ), printf( "\n" );
+ }
+ for ( i = 0; i < pNtk->nVars; i++ )
+ {
+ Kit_TruthCofactor0New( pCofs2[0], pTruth, pNtk->nVars, i );
+ pNtk0 = Kit_DsdDecompose( pCofs2[0], pNtk->nVars );
+ pNtk0 = Kit_DsdExpand( pTemp = pNtk0 );
+ Kit_DsdNtkFree( pTemp );
+
+ if ( fVerbose )
+ {
+ printf( "Cof%d0: ", i );
+ Kit_DsdPrint( stdout, pNtk0 ), printf( "\n" );
+ }
+
+ Kit_TruthCofactor1New( pCofs2[1], pTruth, pNtk->nVars, i );
+ pNtk1 = Kit_DsdDecompose( pCofs2[1], pNtk->nVars );
+ pNtk1 = Kit_DsdExpand( pTemp = pNtk1 );
+ Kit_DsdNtkFree( pTemp );
+
+ if ( fVerbose )
+ {
+ printf( "Cof%d1: ", i );
+ Kit_DsdPrint( stdout, pNtk1 ), printf( "\n" );
+ }
+
+// if ( Kit_DsdCheckVar4Dec2( pNtk0, pNtk1 ) )
+// RetValue = 1;
+
+ Kit_DsdNtkFree( pNtk0 );
+ Kit_DsdNtkFree( pNtk1 );
+ }
+ if ( fVerbose )
+ printf( "\n" );
+
+ return RetValue;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs decomposition of the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DsdEval( unsigned * pTruth, int nVars, int nLutSize )
+{
+ Kit_DsdMan_t * p;
+ Kit_DsdNtk_t * pNtk;
+ unsigned * pTruthC;
+ int Result;
+
+ // decompose the function
+ pNtk = Kit_DsdDecompose( pTruth, nVars );
+ Result = Kit_DsdCountLuts( pNtk, nLutSize );
+// printf( "\n" );
+// Kit_DsdPrint( stdout, pNtk );
+// printf( "Eval = %d.\n", Result );
+
+ // recompute the truth table
+ p = Kit_DsdManAlloc( nVars, Kit_DsdNtkObjNum(pNtk) );
+ pTruthC = Kit_DsdTruthCompute( p, pNtk );
+ if ( !Kit_TruthIsEqual( pTruth, pTruthC, nVars ) )
+ printf( "Verification failed.\n" );
+ Kit_DsdManFree( p );
+
+ Kit_DsdNtkFree( pNtk );
+ return Result;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs decomposition of the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdVerify( Kit_DsdNtk_t * pNtk, unsigned * pTruth, int nVars )
+{
+ Kit_DsdMan_t * p;
+ unsigned * pTruthC;
+ p = Kit_DsdManAlloc( nVars, Kit_DsdNtkObjNum(pNtk)+2 );
+ pTruthC = Kit_DsdTruthCompute( p, pNtk );
+ if ( !Extra_TruthIsEqual( pTruth, pTruthC, nVars ) )
+ printf( "Verification failed.\n" );
+ Kit_DsdManFree( p );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs decomposition of the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdTest( unsigned * pTruth, int nVars )
+{
+ Kit_DsdMan_t * p;
+ unsigned * pTruthC;
+ Kit_DsdNtk_t * pNtk, * pTemp;
+ pNtk = Kit_DsdDecompose( pTruth, nVars );
+
+// if ( Kit_DsdFindLargeBox(pNtk, Abc_Lit2Var(pNtk->Root)) )
+// Kit_DsdPrint( stdout, pNtk );
+
+// if ( Kit_DsdNtkRoot(pNtk)->nFans == (unsigned)nVars && nVars == 6 )
+
+// printf( "\n" );
+// Kit_DsdPrint( stdout, pNtk );
+
+ pNtk = Kit_DsdExpand( pTemp = pNtk );
+ Kit_DsdNtkFree( pTemp );
+
+ Kit_DsdPrint( stdout, pNtk ), printf( "\n" );
+
+// if ( Kit_DsdFindLargeBox(pNtk, Abc_Lit2Var(pNtk->Root)) )
+// Kit_DsdTestCofs( pNtk, pTruth );
+
+ // recompute the truth table
+ p = Kit_DsdManAlloc( nVars, Kit_DsdNtkObjNum(pNtk) );
+ pTruthC = Kit_DsdTruthCompute( p, pNtk );
+// Extra_PrintBinary( stdout, pTruth, 1 << nVars ); printf( "\n" );
+// Extra_PrintBinary( stdout, pTruthC, 1 << nVars ); printf( "\n" );
+ if ( Extra_TruthIsEqual( pTruth, pTruthC, nVars ) )
+ {
+// printf( "Verification is okay.\n" );
+ }
+ else
+ printf( "Verification failed.\n" );
+ Kit_DsdManFree( p );
+
+
+ Kit_DsdNtkFree( pNtk );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs decomposition of the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdPrecompute4Vars()
+{
+ Kit_DsdMan_t * p;
+ Kit_DsdNtk_t * pNtk, * pTemp;
+ FILE * pFile;
+ unsigned uTruth;
+ unsigned * pTruthC;
+ char Buffer[256];
+ int i, RetValue;
+ int Counter1 = 0, Counter2 = 0;
+
+ pFile = fopen( "5npn/npn4.txt", "r" );
+ for ( i = 0; fgets( Buffer, 100, pFile ); i++ )
+ {
+ Buffer[6] = 0;
+ Extra_ReadHexadecimal( &uTruth, Buffer+2, 4 );
+ uTruth = ((uTruth & 0xffff) << 16) | (uTruth & 0xffff);
+ pNtk = Kit_DsdDecompose( &uTruth, 4 );
+
+ pNtk = Kit_DsdExpand( pTemp = pNtk );
+ Kit_DsdNtkFree( pTemp );
+
+
+ if ( Kit_DsdFindLargeBox(pNtk, 3) )
+ {
+// RetValue = 0;
+ RetValue = Kit_DsdTestCofs( pNtk, &uTruth );
+ printf( "\n" );
+ printf( "%3d : Non-DSD function %s %s\n", i, Buffer + 2, RetValue? "implementable" : "" );
+ Kit_DsdPrint( stdout, pNtk ), printf( "\n" );
+
+ Counter1++;
+ Counter2 += RetValue;
+ }
+
+/*
+ printf( "%3d : Function %s ", i, Buffer + 2 );
+ if ( !Kit_DsdFindLargeBox(pNtk, 3) )
+ Kit_DsdPrint( stdout, pNtk );
+ else
+ printf( "\n" );
+*/
+
+ p = Kit_DsdManAlloc( 4, Kit_DsdNtkObjNum(pNtk) );
+ pTruthC = Kit_DsdTruthCompute( p, pNtk );
+ if ( !Extra_TruthIsEqual( &uTruth, pTruthC, 4 ) )
+ printf( "Verification failed.\n" );
+ Kit_DsdManFree( p );
+
+ Kit_DsdNtkFree( pNtk );
+ }
+ fclose( pFile );
+ printf( "non-DSD = %d implementable = %d\n", Counter1, Counter2 );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Returns the set of cofactoring variables.]
+
+ Description [If there is no DSD components returns 0.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DsdCofactoringGetVars( Kit_DsdNtk_t ** ppNtk, int nSize, int * pVars )
+{
+ Kit_DsdObj_t * pObj;
+ unsigned m;
+ int i, k, v, Var, nVars, iFaninLit;
+ // go through all the networks
+ nVars = 0;
+ for ( i = 0; i < nSize; i++ )
+ {
+ // go through the prime objects of each networks
+ Kit_DsdNtkForEachObj( ppNtk[i], pObj, k )
+ {
+ if ( pObj->Type != KIT_DSD_PRIME )
+ continue;
+ if ( pObj->nFans == 3 )
+ continue;
+ // collect direct fanin variables
+ Kit_DsdObjForEachFanin( ppNtk[i], pObj, iFaninLit, m )
+ {
+ if ( !Kit_DsdLitIsLeaf(ppNtk[i], iFaninLit) )
+ continue;
+ // add it to the array
+ Var = Abc_Lit2Var( iFaninLit );
+ for ( v = 0; v < nVars; v++ )
+ if ( pVars[v] == Var )
+ break;
+ if ( v == nVars )
+ pVars[nVars++] = Var;
+ }
+ }
+ }
+ return nVars;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Canonical decomposition into completely DSD-structure.]
+
+ Description [Returns the number of cofactoring steps. Also returns
+ the cofactoring variables in pVars.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_DsdCofactoring( unsigned * pTruth, int nVars, int * pCofVars, int nLimit, int fVerbose )
+{
+ Kit_DsdNtk_t * ppNtks[5][16] = {
+ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
+ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
+ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
+ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
+ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
+ };
+ Kit_DsdNtk_t * pTemp;
+ unsigned * ppCofs[5][16];
+ int pTryVars[16], nTryVars;
+ int nPrimeSizeMin, nPrimeSizeMax, nPrimeSizeCur;
+ int nSuppSizeMin, nSuppSizeMax, iVarBest;
+ int i, k, v, nStep, nSize, nMemSize;
+ assert( nLimit < 5 );
+
+ // allocate storage for cofactors
+ nMemSize = Kit_TruthWordNum(nVars);
+ ppCofs[0][0] = ABC_ALLOC( unsigned, 80 * nMemSize );
+ nSize = 0;
+ for ( i = 0; i < 5; i++ )
+ for ( k = 0; k < 16; k++ )
+ ppCofs[i][k] = ppCofs[0][0] + nMemSize * nSize++;
+ assert( nSize == 80 );
+
+ // copy the function
+ Kit_TruthCopy( ppCofs[0][0], pTruth, nVars );
+ ppNtks[0][0] = Kit_DsdDecompose( ppCofs[0][0], nVars );
+
+ if ( fVerbose )
+ printf( "\nProcessing prime function with %d support variables:\n", nVars );
+
+ // perform recursive cofactoring
+ for ( nStep = 0; nStep < nLimit; nStep++ )
+ {
+ nSize = (1 << nStep);
+ // find the variables to use in the cofactoring step
+ nTryVars = Kit_DsdCofactoringGetVars( ppNtks[nStep], nSize, pTryVars );
+ if ( nTryVars == 0 )
+ break;
+ // cofactor w.r.t. the above variables
+ iVarBest = -1;
+ nPrimeSizeMin = 10000;
+ nSuppSizeMin = 10000;
+ for ( v = 0; v < nTryVars; v++ )
+ {
+ nPrimeSizeMax = 0;
+ nSuppSizeMax = 0;
+ for ( i = 0; i < nSize; i++ )
+ {
+ // cofactor and decompose cofactors
+ Kit_TruthCofactor0New( ppCofs[nStep+1][2*i+0], ppCofs[nStep][i], nVars, pTryVars[v] );
+ Kit_TruthCofactor1New( ppCofs[nStep+1][2*i+1], ppCofs[nStep][i], nVars, pTryVars[v] );
+ ppNtks[nStep+1][2*i+0] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+0], nVars );
+ ppNtks[nStep+1][2*i+1] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+1], nVars );
+ // compute the largest non-decomp block
+ nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[nStep+1][2*i+0]);
+ nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur );
+ nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[nStep+1][2*i+1]);
+ nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur );
+ // compute the sum total of supports
+ nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nStep+1][2*i+0], nVars );
+ nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nStep+1][2*i+1], nVars );
+ // free the networks
+ Kit_DsdNtkFree( ppNtks[nStep+1][2*i+0] );
+ Kit_DsdNtkFree( ppNtks[nStep+1][2*i+1] );
+ }
+ // find the min max support size of the prime component
+ if ( nPrimeSizeMin > nPrimeSizeMax || (nPrimeSizeMin == nPrimeSizeMax && nSuppSizeMin > nSuppSizeMax) )
+ {
+ nPrimeSizeMin = nPrimeSizeMax;
+ nSuppSizeMin = nSuppSizeMax;
+ iVarBest = pTryVars[v];
+ }
+ }
+ assert( iVarBest != -1 );
+ // save the variable
+ if ( pCofVars )
+ pCofVars[nStep] = iVarBest;
+ // cofactor w.r.t. the best
+ for ( i = 0; i < nSize; i++ )
+ {
+ Kit_TruthCofactor0New( ppCofs[nStep+1][2*i+0], ppCofs[nStep][i], nVars, iVarBest );
+ Kit_TruthCofactor1New( ppCofs[nStep+1][2*i+1], ppCofs[nStep][i], nVars, iVarBest );
+ ppNtks[nStep+1][2*i+0] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+0], nVars );
+ ppNtks[nStep+1][2*i+1] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+1], nVars );
+ if ( fVerbose )
+ {
+ ppNtks[nStep+1][2*i+0] = Kit_DsdExpand( pTemp = ppNtks[nStep+1][2*i+0] );
+ Kit_DsdNtkFree( pTemp );
+ ppNtks[nStep+1][2*i+1] = Kit_DsdExpand( pTemp = ppNtks[nStep+1][2*i+1] );
+ Kit_DsdNtkFree( pTemp );
+
+ printf( "Cof%d%d: ", nStep+1, 2*i+0 );
+ Kit_DsdPrint( stdout, ppNtks[nStep+1][2*i+0] ), printf( "\n" );
+ printf( "Cof%d%d: ", nStep+1, 2*i+1 );
+ Kit_DsdPrint( stdout, ppNtks[nStep+1][2*i+1] ), printf( "\n" );
+ }
+ }
+ }
+
+ // free the networks
+ for ( i = 0; i < 5; i++ )
+ for ( k = 0; k < 16; k++ )
+ if ( ppNtks[i][k] )
+ Kit_DsdNtkFree( ppNtks[i][k] );
+ ABC_FREE( ppCofs[0][0] );
+
+ assert( nStep <= nLimit );
+ return nStep;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Canonical decomposition into completely DSD-structure.]
+
+ Description [Returns the number of cofactoring steps. Also returns
+ the cofactoring variables in pVars.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_DsdPrintCofactors( unsigned * pTruth, int nVars, int nCofLevel, int fVerbose )
+{
+ Kit_DsdNtk_t * ppNtks[32] = {0}, * pTemp;
+ unsigned * ppCofs[5][16];
+ int piCofVar[5];
+ int nPrimeSizeMax, nPrimeSizeCur, nSuppSizeMax;
+ int i, k, v1, v2, v3, v4, s, nSteps, nSize, nMemSize;
+ assert( nCofLevel < 5 );
+
+ // print the function
+ ppNtks[0] = Kit_DsdDecompose( pTruth, nVars );
+ ppNtks[0] = Kit_DsdExpand( pTemp = ppNtks[0] );
+ Kit_DsdNtkFree( pTemp );
+ if ( fVerbose )
+ Kit_DsdPrint( stdout, ppNtks[0] ), printf( "\n" );
+ Kit_DsdNtkFree( ppNtks[0] );
+
+ // allocate storage for cofactors
+ nMemSize = Kit_TruthWordNum(nVars);
+ ppCofs[0][0] = ABC_ALLOC( unsigned, 80 * nMemSize );
+ nSize = 0;
+ for ( i = 0; i < 5; i++ )
+ for ( k = 0; k < 16; k++ )
+ ppCofs[i][k] = ppCofs[0][0] + nMemSize * nSize++;
+ assert( nSize == 80 );
+
+ // copy the function
+ Kit_TruthCopy( ppCofs[0][0], pTruth, nVars );
+
+ if ( nCofLevel == 1 )
+ for ( v1 = 0; v1 < nVars; v1++ )
+ {
+ nSteps = 0;
+ piCofVar[nSteps++] = v1;
+
+ printf( " Variables { " );
+ for ( i = 0; i < nSteps; i++ )
+ printf( "%c ", 'a' + piCofVar[i] );
+ printf( "}\n" );
+
+ // single cofactors
+ for ( s = 1; s <= nSteps; s++ )
+ {
+ for ( k = 0; k < s; k++ )
+ {
+ nSize = (1 << k);
+ for ( i = 0; i < nSize; i++ )
+ {
+ Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] );
+ Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] );
+ }
+ }
+ }
+ // compute DSD networks
+ nSize = (1 << nSteps);
+ nPrimeSizeMax = 0;
+ nSuppSizeMax = 0;
+ for ( i = 0; i < nSize; i++ )
+ {
+ ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars );
+ ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] );
+ Kit_DsdNtkFree( pTemp );
+ if ( fVerbose )
+ {
+ printf( "Cof%d%d: ", nSteps, i );
+ Kit_DsdPrint( stdout, ppNtks[i] ), printf( "\n" );
+ }
+ // compute the largest non-decomp block
+ nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]);
+ nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur );
+ Kit_DsdNtkFree( ppNtks[i] );
+ nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars );
+ }
+ printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax );
+ }
+
+ if ( nCofLevel == 2 )
+ for ( v1 = 0; v1 < nVars; v1++ )
+ for ( v2 = v1+1; v2 < nVars; v2++ )
+ {
+ nSteps = 0;
+ piCofVar[nSteps++] = v1;
+ piCofVar[nSteps++] = v2;
+
+ printf( " Variables { " );
+ for ( i = 0; i < nSteps; i++ )
+ printf( "%c ", 'a' + piCofVar[i] );
+ printf( "}\n" );
+
+ // single cofactors
+ for ( s = 1; s <= nSteps; s++ )
+ {
+ for ( k = 0; k < s; k++ )
+ {
+ nSize = (1 << k);
+ for ( i = 0; i < nSize; i++ )
+ {
+ Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] );
+ Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] );
+ }
+ }
+ }
+ // compute DSD networks
+ nSize = (1 << nSteps);
+ nPrimeSizeMax = 0;
+ nSuppSizeMax = 0;
+ for ( i = 0; i < nSize; i++ )
+ {
+ ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars );
+ ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] );
+ Kit_DsdNtkFree( pTemp );
+ if ( fVerbose )
+ {
+ printf( "Cof%d%d: ", nSteps, i );
+ Kit_DsdPrint( stdout, ppNtks[i] ), printf( "\n" );
+ }
+ // compute the largest non-decomp block
+ nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]);
+ nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur );
+ Kit_DsdNtkFree( ppNtks[i] );
+ nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars );
+ }
+ printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax );
+ }
+
+ if ( nCofLevel == 3 )
+ for ( v1 = 0; v1 < nVars; v1++ )
+ for ( v2 = v1+1; v2 < nVars; v2++ )
+ for ( v3 = v2+1; v3 < nVars; v3++ )
+ {
+ nSteps = 0;
+ piCofVar[nSteps++] = v1;
+ piCofVar[nSteps++] = v2;
+ piCofVar[nSteps++] = v3;
+
+ printf( " Variables { " );
+ for ( i = 0; i < nSteps; i++ )
+ printf( "%c ", 'a' + piCofVar[i] );
+ printf( "}\n" );
+
+ // single cofactors
+ for ( s = 1; s <= nSteps; s++ )
+ {
+ for ( k = 0; k < s; k++ )
+ {
+ nSize = (1 << k);
+ for ( i = 0; i < nSize; i++ )
+ {
+ Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] );
+ Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] );
+ }
+ }
+ }
+ // compute DSD networks
+ nSize = (1 << nSteps);
+ nPrimeSizeMax = 0;
+ nSuppSizeMax = 0;
+ for ( i = 0; i < nSize; i++ )
+ {
+ ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars );
+ ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] );
+ Kit_DsdNtkFree( pTemp );
+ if ( fVerbose )
+ {
+ printf( "Cof%d%d: ", nSteps, i );
+ Kit_DsdPrint( stdout, ppNtks[i] ), printf( "\n" );
+ }
+ // compute the largest non-decomp block
+ nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]);
+ nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur );
+ Kit_DsdNtkFree( ppNtks[i] );
+ nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars );
+ }
+ printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax );
+ }
+
+ if ( nCofLevel == 4 )
+ for ( v1 = 0; v1 < nVars; v1++ )
+ for ( v2 = v1+1; v2 < nVars; v2++ )
+ for ( v3 = v2+1; v3 < nVars; v3++ )
+ for ( v4 = v3+1; v4 < nVars; v4++ )
+ {
+ nSteps = 0;
+ piCofVar[nSteps++] = v1;
+ piCofVar[nSteps++] = v2;
+ piCofVar[nSteps++] = v3;
+ piCofVar[nSteps++] = v4;
+
+ printf( " Variables { " );
+ for ( i = 0; i < nSteps; i++ )
+ printf( "%c ", 'a' + piCofVar[i] );
+ printf( "}\n" );
+
+ // single cofactors
+ for ( s = 1; s <= nSteps; s++ )
+ {
+ for ( k = 0; k < s; k++ )
+ {
+ nSize = (1 << k);
+ for ( i = 0; i < nSize; i++ )
+ {
+ Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] );
+ Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] );
+ }
+ }
+ }
+ // compute DSD networks
+ nSize = (1 << nSteps);
+ nPrimeSizeMax = 0;
+ nSuppSizeMax = 0;
+ for ( i = 0; i < nSize; i++ )
+ {
+ ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars );
+ ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] );
+ Kit_DsdNtkFree( pTemp );
+ if ( fVerbose )
+ {
+ printf( "Cof%d%d: ", nSteps, i );
+ Kit_DsdPrint( stdout, ppNtks[i] ), printf( "\n" );
+ }
+ // compute the largest non-decomp block
+ nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]);
+ nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur );
+ Kit_DsdNtkFree( ppNtks[i] );
+ nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars );
+ }
+ printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax );
+ }
+
+
+ ABC_FREE( ppCofs[0][0] );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+char ** Kit_DsdNpn4ClassNames()
+{
+ static const char * pNames[222] = {
+ "F = 0", /* 0 */
+ "F = (!d*(!c*(!b*!a)))", /* 1 */
+ "F = (!d*(!c*!b))", /* 2 */
+ "F = (!d*(!c*(b+a)))", /* 3 */
+ "F = (!d*(!c*!(b*a)))", /* 4 */
+ "F = (!d*!c)", /* 5 */
+ "F = (!d*16(a,b,c))", /* 6 */
+ "F = (!d*17(a,b,c))", /* 7 */
+ "F = (!d*18(a,b,c))", /* 8 */
+ "F = (!d*19(a,b,c))", /* 9 */
+ "F = (!d*CA(!b,!c,a))", /* 10 */
+ "F = (!d*(c+!(!b*!a)))", /* 11 */
+ "F = (!d*!(c*!(!b*!a)))", /* 12 */
+ "F = (!d*(c+b))", /* 13 */
+ "F = (!d*3D(a,b,c))", /* 14 */
+ "F = (!d*!(c*b))", /* 15 */
+ "F = (!d*(c+(b+!a)))", /* 16 */
+ "F = (!d*6B(a,b,c))", /* 17 */
+ "F = (!d*!(c*!(b+a)))", /* 18 */
+ "F = (!d*7E(a,b,c))", /* 19 */
+ "F = (!d*!(c*(b*a)))", /* 20 */
+ "F = (!d)", /* 21 */
+ "F = 0116(a,b,c,d)", /* 22 */
+ "F = 0117(a,b,c,d)", /* 23 */
+ "F = 0118(a,b,c,d)", /* 24 */
+ "F = 0119(a,b,c,d)", /* 25 */
+ "F = 011A(a,b,c,d)", /* 26 */
+ "F = 011B(a,b,c,d)", /* 27 */
+ "F = 29((!b*!a),c,d)", /* 28 */
+ "F = 2B((!b*!a),c,d)", /* 29 */
+ "F = 012C(a,b,c,d)", /* 30 */
+ "F = 012D(a,b,c,d)", /* 31 */
+ "F = 012F(a,b,c,d)", /* 32 */
+ "F = 013C(a,b,c,d)", /* 33 */
+ "F = 013D(a,b,c,d)", /* 34 */
+ "F = 013E(a,b,c,d)", /* 35 */
+ "F = 013F(a,b,c,d)", /* 36 */
+ "F = 0168(a,b,c,d)", /* 37 */
+ "F = 0169(a,b,c,d)", /* 38 */
+ "F = 016A(a,b,c,d)", /* 39 */
+ "F = 016B(a,b,c,d)", /* 40 */
+ "F = 016E(a,b,c,d)", /* 41 */
+ "F = 016F(a,b,c,d)", /* 42 */
+ "F = 017E(a,b,c,d)", /* 43 */
+ "F = 017F(a,b,c,d)", /* 44 */
+ "F = 0180(a,b,c,d)", /* 45 */
+ "F = 0181(a,b,c,d)", /* 46 */
+ "F = 0182(a,b,c,d)", /* 47 */
+ "F = 0183(a,b,c,d)", /* 48 */
+ "F = 0186(a,b,c,d)", /* 49 */
+ "F = 0187(a,b,c,d)", /* 50 */
+ "F = 0189(a,b,c,d)", /* 51 */
+ "F = 018B(a,b,c,d)", /* 52 */
+ "F = 018F(a,b,c,d)", /* 53 */
+ "F = 0196(a,b,c,d)", /* 54 */
+ "F = 0197(a,b,c,d)", /* 55 */
+ "F = 0198(a,b,c,d)", /* 56 */
+ "F = 0199(a,b,c,d)", /* 57 */
+ "F = 019A(a,b,c,d)", /* 58 */
+ "F = 019B(a,b,c,d)", /* 59 */
+ "F = 019E(a,b,c,d)", /* 60 */
+ "F = 019F(a,b,c,d)", /* 61 */
+ "F = 42(a,(!c*!b),d)", /* 62 */
+ "F = 46(a,(!c*!b),d)", /* 63 */
+ "F = 4A(a,(!c*!b),d)", /* 64 */
+ "F = CA((!c*!b),!d,a)", /* 65 */
+ "F = 01AC(a,b,c,d)", /* 66 */
+ "F = 01AD(a,b,c,d)", /* 67 */
+ "F = 01AE(a,b,c,d)", /* 68 */
+ "F = 01AF(a,b,c,d)", /* 69 */
+ "F = 01BC(a,b,c,d)", /* 70 */
+ "F = 01BD(a,b,c,d)", /* 71 */
+ "F = 01BE(a,b,c,d)", /* 72 */
+ "F = 01BF(a,b,c,d)", /* 73 */
+ "F = 01E8(a,b,c,d)", /* 74 */
+ "F = 01E9(a,b,c,d)", /* 75 */
+ "F = 01EA(a,b,c,d)", /* 76 */
+ "F = 01EB(a,b,c,d)", /* 77 */
+ "F = 25((!b*!a),c,d)", /* 78 */
+ "F = !CA(d,c,(!b*!a))", /* 79 */
+ "F = (d+!(!c*(!b*!a)))", /* 80 */
+ "F = 16(b,c,d)", /* 81 */
+ "F = 033D(a,b,c,d)", /* 82 */
+ "F = 17(b,c,d)", /* 83 */
+ "F = ((!d*!a)+(!c*!b))", /* 84 */
+ "F = !(!(!c*!b)*!(!d*!a))", /* 85 */
+ "F = 0358(a,b,c,d)", /* 86 */
+ "F = 0359(a,b,c,d)", /* 87 */
+ "F = 035A(a,b,c,d)", /* 88 */
+ "F = 035B(a,b,c,d)", /* 89 */
+ "F = 035E(a,b,c,d)", /* 90 */
+ "F = 035F(a,b,c,d)", /* 91 */
+ "F = 0368(a,b,c,d)", /* 92 */
+ "F = 0369(a,b,c,d)", /* 93 */
+ "F = 036A(a,b,c,d)", /* 94 */
+ "F = 036B(a,b,c,d)", /* 95 */
+ "F = 036C(a,b,c,d)", /* 96 */
+ "F = 036D(a,b,c,d)", /* 97 */
+ "F = 036E(a,b,c,d)", /* 98 */
+ "F = 036F(a,b,c,d)", /* 99 */
+ "F = 037C(a,b,c,d)", /* 100 */
+ "F = 037D(a,b,c,d)", /* 101 */
+ "F = 037E(a,b,c,d)", /* 102 */
+ "F = 18(b,c,d)", /* 103 */
+ "F = 03C1(a,b,c,d)", /* 104 */
+ "F = 19(b,c,d)", /* 105 */
+ "F = 03C5(a,b,c,d)", /* 106 */
+ "F = 03C6(a,b,c,d)", /* 107 */
+ "F = 03C7(a,b,c,d)", /* 108 */
+ "F = CA(!c,!d,b)", /* 109 */
+ "F = 03D4(a,b,c,d)", /* 110 */
+ "F = 03D5(a,b,c,d)", /* 111 */
+ "F = 03D6(a,b,c,d)", /* 112 */
+ "F = 03D7(a,b,c,d)", /* 113 */
+ "F = 03D8(a,b,c,d)", /* 114 */
+ "F = 03D9(a,b,c,d)", /* 115 */
+ "F = 03DB(a,b,c,d)", /* 116 */
+ "F = 03DC(a,b,c,d)", /* 117 */
+ "F = 03DD(a,b,c,d)", /* 118 */
+ "F = 03DE(a,b,c,d)", /* 119 */
+ "F = (d+!(!c*!b))", /* 120 */
+ "F = ((d+c)*(b+a))", /* 121 */
+ "F = 0661(a,b,c,d)", /* 122 */
+ "F = 0662(a,b,c,d)", /* 123 */
+ "F = 0663(a,b,c,d)", /* 124 */
+ "F = (!(d*c)*(b+a))", /* 125 */
+ "F = 0667(a,b,c,d)", /* 126 */
+ "F = 29((b+a),c,d)", /* 127 */
+ "F = 066B(a,b,c,d)", /* 128 */
+ "F = 2B((b+a),c,d)", /* 129 */
+ "F = 0672(a,b,c,d)", /* 130 */
+ "F = 0673(a,b,c,d)", /* 131 */
+ "F = 0676(a,b,c,d)", /* 132 */
+ "F = 0678(a,b,c,d)", /* 133 */
+ "F = 0679(a,b,c,d)", /* 134 */
+ "F = 067A(a,b,c,d)", /* 135 */
+ "F = 067B(a,b,c,d)", /* 136 */
+ "F = 067E(a,b,c,d)", /* 137 */
+ "F = 24((b+a),c,d)", /* 138 */
+ "F = 0691(a,b,c,d)", /* 139 */
+ "F = 0693(a,b,c,d)", /* 140 */
+ "F = 26((b+a),c,d)", /* 141 */
+ "F = 0697(a,b,c,d)", /* 142 */
+ "F = !CA(d,c,(b+a))", /* 143 */
+ "F = 06B0(a,b,c,d)", /* 144 */
+ "F = 06B1(a,b,c,d)", /* 145 */
+ "F = 06B2(a,b,c,d)", /* 146 */
+ "F = 06B3(a,b,c,d)", /* 147 */
+ "F = 06B4(a,b,c,d)", /* 148 */
+ "F = 06B5(a,b,c,d)", /* 149 */
+ "F = 06B6(a,b,c,d)", /* 150 */
+ "F = 06B7(a,b,c,d)", /* 151 */
+ "F = 06B9(a,b,c,d)", /* 152 */
+ "F = 06BD(a,b,c,d)", /* 153 */
+ "F = 2C((b+a),c,d)", /* 154 */
+ "F = 06F1(a,b,c,d)", /* 155 */
+ "F = 06F2(a,b,c,d)", /* 156 */
+ "F = CA((b+a),!d,c)", /* 157 */
+ "F = (d+!(!c*!(b+!a)))", /* 158 */
+ "F = 0776(a,b,c,d)", /* 159 */
+ "F = 16((b*a),c,d)", /* 160 */
+ "F = 0779(a,b,c,d)", /* 161 */
+ "F = 077A(a,b,c,d)", /* 162 */
+ "F = 077E(a,b,c,d)", /* 163 */
+ "F = 07B0(a,b,c,d)", /* 164 */
+ "F = 07B1(a,b,c,d)", /* 165 */
+ "F = 07B4(a,b,c,d)", /* 166 */
+ "F = 07B5(a,b,c,d)", /* 167 */
+ "F = 07B6(a,b,c,d)", /* 168 */
+ "F = 07BC(a,b,c,d)", /* 169 */
+ "F = 07E0(a,b,c,d)", /* 170 */
+ "F = 07E1(a,b,c,d)", /* 171 */
+ "F = 07E2(a,b,c,d)", /* 172 */
+ "F = 07E3(a,b,c,d)", /* 173 */
+ "F = 07E6(a,b,c,d)", /* 174 */
+ "F = 07E9(a,b,c,d)", /* 175 */
+ "F = 1C((b*a),c,d)", /* 176 */
+ "F = 07F1(a,b,c,d)", /* 177 */
+ "F = 07F2(a,b,c,d)", /* 178 */
+ "F = (d+!(!c*!(b*a)))", /* 179 */
+ "F = (d+c)", /* 180 */
+ "F = 1668(a,b,c,d)", /* 181 */
+ "F = 1669(a,b,c,d)", /* 182 */
+ "F = 166A(a,b,c,d)", /* 183 */
+ "F = 166B(a,b,c,d)", /* 184 */
+ "F = 166E(a,b,c,d)", /* 185 */
+ "F = 167E(a,b,c,d)", /* 186 */
+ "F = 1681(a,b,c,d)", /* 187 */
+ "F = 1683(a,b,c,d)", /* 188 */
+ "F = 1686(a,b,c,d)", /* 189 */
+ "F = 1687(a,b,c,d)", /* 190 */
+ "F = 1689(a,b,c,d)", /* 191 */
+ "F = 168B(a,b,c,d)", /* 192 */
+ "F = 168E(a,b,c,d)", /* 193 */
+ "F = 1696(a,b,c,d)", /* 194 */
+ "F = 1697(a,b,c,d)", /* 195 */
+ "F = 1698(a,b,c,d)", /* 196 */
+ "F = 1699(a,b,c,d)", /* 197 */
+ "F = 169A(a,b,c,d)", /* 198 */
+ "F = 169B(a,b,c,d)", /* 199 */
+ "F = 169E(a,b,c,d)", /* 200 */
+ "F = 16A9(a,b,c,d)", /* 201 */
+ "F = 16AC(a,b,c,d)", /* 202 */
+ "F = 16AD(a,b,c,d)", /* 203 */
+ "F = 16BC(a,b,c,d)", /* 204 */
+ "F = (d+E9(a,b,c))", /* 205 */
+ "F = 177E(a,b,c,d)", /* 206 */
+ "F = 178E(a,b,c,d)", /* 207 */
+ "F = 1796(a,b,c,d)", /* 208 */
+ "F = 1798(a,b,c,d)", /* 209 */
+ "F = 179A(a,b,c,d)", /* 210 */
+ "F = 17AC(a,b,c,d)", /* 211 */
+ "F = (d+E8(a,b,c))", /* 212 */
+ "F = (d+E7(a,b,c))", /* 213 */
+ "F = 19E1(a,b,c,d)", /* 214 */
+ "F = 19E3(a,b,c,d)", /* 215 */
+ "F = (d+E6(a,b,c))", /* 216 */
+ "F = 1BD8(a,b,c,d)", /* 217 */
+ "F = (d+CA(b,c,a))", /* 218 */
+ "F = (d+(c+(!b*!a)))", /* 219 */
+ "F = (d+(c+!b))", /* 220 */
+ "F = (d+(c+(b+a)))" /* 221 */
+ };
+ return (char **)pNames;
+}
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/kitFactor.c b/src/bool/kit/kitFactor.c
new file mode 100644
index 00000000..ec4775ca
--- /dev/null
+++ b/src/bool/kit/kitFactor.c
@@ -0,0 +1,344 @@
+/**CFile****************************************************************
+
+ FileName [kitFactor.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [Algebraic factoring.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Dec 6, 2006.]
+
+ Revision [$Id: kitFactor.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "kit.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+// factoring fails if intermediate memory usage exceed this limit
+#define KIT_FACTOR_MEM_LIMIT (1<<20)
+
+static Kit_Edge_t Kit_SopFactor_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory );
+static Kit_Edge_t Kit_SopFactorLF_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, Kit_Sop_t * cSimple, int nLits, Vec_Int_t * vMemory );
+static Kit_Edge_t Kit_SopFactorTrivial( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits );
+static Kit_Edge_t Kit_SopFactorTrivialCube( Kit_Graph_t * pFForm, unsigned uCube, int nLits );
+
+extern int Kit_SopFactorVerify( Vec_Int_t * cSop, Kit_Graph_t * pFForm, int nVars );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Factors the cover.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Graph_t * Kit_SopFactor( Vec_Int_t * vCover, int fCompl, int nVars, Vec_Int_t * vMemory )
+{
+ Kit_Sop_t Sop, * cSop = &Sop;
+ Kit_Graph_t * pFForm;
+ Kit_Edge_t eRoot;
+// int nCubes;
+
+ // works for up to 15 variables because division procedure
+ // used the last bit for marking the cubes going to the remainder
+ assert( nVars < 16 );
+
+ // check for trivial functions
+ if ( Vec_IntSize(vCover) == 0 )
+ return Kit_GraphCreateConst0();
+ if ( Vec_IntSize(vCover) == 1 && Vec_IntEntry(vCover, 0) == 0 )
+ return Kit_GraphCreateConst1();
+
+ // prepare memory manager
+// Vec_IntClear( vMemory );
+ Vec_IntGrow( vMemory, KIT_FACTOR_MEM_LIMIT );
+
+ // perform CST
+ Kit_SopCreateInverse( cSop, vCover, 2 * nVars, vMemory ); // CST
+
+ // start the factored form
+ pFForm = Kit_GraphCreate( nVars );
+ // factor the cover
+ eRoot = Kit_SopFactor_rec( pFForm, cSop, 2 * nVars, vMemory );
+ // finalize the factored form
+ Kit_GraphSetRoot( pFForm, eRoot );
+ if ( fCompl )
+ Kit_GraphComplement( pFForm );
+
+ // verify the factored form
+// nCubes = Vec_IntSize(vCover);
+// Vec_IntShrink( vCover, nCubes );
+// if ( !Kit_SopFactorVerify( vCover, pFForm, nVars ) )
+// printf( "Verification has failed.\n" );
+ return pFForm;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Recursive factoring procedure.]
+
+ Description [For the pseudo-code, see Hachtel/Somenzi,
+ Logic synthesis and verification algorithms, Kluwer, 1996, p. 432.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Edge_t Kit_SopFactor_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory )
+{
+ Kit_Sop_t Div, Quo, Rem, Com;
+ Kit_Sop_t * cDiv = &Div, * cQuo = &Quo, * cRem = &Rem, * cCom = &Com;
+ Kit_Edge_t eNodeDiv, eNodeQuo, eNodeRem, eNodeAnd;
+
+ // make sure the cover contains some cubes
+ assert( Kit_SopCubeNum(cSop) > 0 );
+
+ // get the divisor
+ if ( !Kit_SopDivisor(cDiv, cSop, nLits, vMemory) )
+ return Kit_SopFactorTrivial( pFForm, cSop, nLits );
+
+ // divide the cover by the divisor
+ Kit_SopDivideInternal( cSop, cDiv, cQuo, cRem, vMemory );
+
+ // check the trivial case
+ assert( Kit_SopCubeNum(cQuo) > 0 );
+ if ( Kit_SopCubeNum(cQuo) == 1 )
+ return Kit_SopFactorLF_rec( pFForm, cSop, cQuo, nLits, vMemory );
+
+ // make the quotient cube ABC_FREE
+ Kit_SopMakeCubeFree( cQuo );
+
+ // divide the cover by the quotient
+ Kit_SopDivideInternal( cSop, cQuo, cDiv, cRem, vMemory );
+
+ // check the trivial case
+ if ( Kit_SopIsCubeFree( cDiv ) )
+ {
+ eNodeDiv = Kit_SopFactor_rec( pFForm, cDiv, nLits, vMemory );
+ eNodeQuo = Kit_SopFactor_rec( pFForm, cQuo, nLits, vMemory );
+ eNodeAnd = Kit_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo );
+ if ( Kit_SopCubeNum(cRem) == 0 )
+ return eNodeAnd;
+ eNodeRem = Kit_SopFactor_rec( pFForm, cRem, nLits, vMemory );
+ return Kit_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem );
+ }
+
+ // get the common cube
+ Kit_SopCommonCubeCover( cCom, cDiv, vMemory );
+
+ // solve the simple problem
+ return Kit_SopFactorLF_rec( pFForm, cSop, cCom, nLits, vMemory );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Internal recursive factoring procedure for the leaf case.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Edge_t Kit_SopFactorLF_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, Kit_Sop_t * cSimple, int nLits, Vec_Int_t * vMemory )
+{
+ Kit_Sop_t Div, Quo, Rem;
+ Kit_Sop_t * cDiv = &Div, * cQuo = &Quo, * cRem = &Rem;
+ Kit_Edge_t eNodeDiv, eNodeQuo, eNodeRem, eNodeAnd;
+ assert( Kit_SopCubeNum(cSimple) == 1 );
+ // get the most often occurring literal
+ Kit_SopBestLiteralCover( cDiv, cSop, Kit_SopCube(cSimple, 0), nLits, vMemory );
+ // divide the cover by the literal
+ Kit_SopDivideByCube( cSop, cDiv, cQuo, cRem, vMemory );
+ // get the node pointer for the literal
+ eNodeDiv = Kit_SopFactorTrivialCube( pFForm, Kit_SopCube(cDiv, 0), nLits );
+ // factor the quotient and remainder
+ eNodeQuo = Kit_SopFactor_rec( pFForm, cQuo, nLits, vMemory );
+ eNodeAnd = Kit_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo );
+ if ( Kit_SopCubeNum(cRem) == 0 )
+ return eNodeAnd;
+ eNodeRem = Kit_SopFactor_rec( pFForm, cRem, nLits, vMemory );
+ return Kit_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Factoring cube.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Edge_t Kit_SopFactorTrivialCube_rec( Kit_Graph_t * pFForm, unsigned uCube, int nStart, int nFinish )
+{
+ Kit_Edge_t eNode1, eNode2;
+ int i, iLit = -1, nLits, nLits1, nLits2;
+ assert( uCube );
+ // count the number of literals in this interval
+ nLits = 0;
+ for ( i = nStart; i < nFinish; i++ )
+ if ( Kit_CubeHasLit(uCube, i) )
+ {
+ iLit = i;
+ nLits++;
+ }
+ assert( iLit != -1 );
+ // quit if there is only one literal
+ if ( nLits == 1 )
+ return Kit_EdgeCreate( iLit/2, iLit%2 ); // CST
+ // split the literals into two parts
+ nLits1 = nLits/2;
+ nLits2 = nLits - nLits1;
+// nLits2 = nLits/2;
+// nLits1 = nLits - nLits2;
+ // find the splitting point
+ nLits = 0;
+ for ( i = nStart; i < nFinish; i++ )
+ if ( Kit_CubeHasLit(uCube, i) )
+ {
+ if ( nLits == nLits1 )
+ break;
+ nLits++;
+ }
+ // recursively construct the tree for the parts
+ eNode1 = Kit_SopFactorTrivialCube_rec( pFForm, uCube, nStart, i );
+ eNode2 = Kit_SopFactorTrivialCube_rec( pFForm, uCube, i, nFinish );
+ return Kit_GraphAddNodeAnd( pFForm, eNode1, eNode2 );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Factoring cube.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Edge_t Kit_SopFactorTrivialCube( Kit_Graph_t * pFForm, unsigned uCube, int nLits )
+{
+ return Kit_SopFactorTrivialCube_rec( pFForm, uCube, 0, nLits );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Factoring SOP.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Edge_t Kit_SopFactorTrivial_rec( Kit_Graph_t * pFForm, unsigned * pCubes, int nCubes, int nLits )
+{
+ Kit_Edge_t eNode1, eNode2;
+ int nCubes1, nCubes2;
+ if ( nCubes == 1 )
+ return Kit_SopFactorTrivialCube_rec( pFForm, pCubes[0], 0, nLits );
+ // split the cubes into two parts
+ nCubes1 = nCubes/2;
+ nCubes2 = nCubes - nCubes1;
+// nCubes2 = nCubes/2;
+// nCubes1 = nCubes - nCubes2;
+ // recursively construct the tree for the parts
+ eNode1 = Kit_SopFactorTrivial_rec( pFForm, pCubes, nCubes1, nLits );
+ eNode2 = Kit_SopFactorTrivial_rec( pFForm, pCubes + nCubes1, nCubes2, nLits );
+ return Kit_GraphAddNodeOr( pFForm, eNode1, eNode2 );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Factoring the cover, which has no algebraic divisors.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Edge_t Kit_SopFactorTrivial( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits )
+{
+ return Kit_SopFactorTrivial_rec( pFForm, cSop->pCubes, cSop->nCubes, nLits );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Testing procedure for the factoring code.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_FactorTest( unsigned * pTruth, int nVars )
+{
+ Vec_Int_t * vCover, * vMemory;
+ Kit_Graph_t * pGraph;
+// unsigned uTruthRes;
+ int RetValue;
+
+ // derive SOP
+ vCover = Vec_IntAlloc( 0 );
+ RetValue = Kit_TruthIsop( pTruth, nVars, vCover, 0 );
+ assert( RetValue == 0 );
+
+ // derive factored form
+ vMemory = Vec_IntAlloc( 0 );
+ pGraph = Kit_SopFactor( vCover, 0, nVars, vMemory );
+/*
+ // derive truth table
+ assert( nVars <= 5 );
+ uTruthRes = Kit_GraphToTruth( pGraph );
+ if ( uTruthRes != pTruth[0] )
+ printf( "Verification failed!" );
+*/
+ printf( "Vars = %2d. Cubes = %3d. FFNodes = %3d. FF_memory = %3d.\n",
+ nVars, Vec_IntSize(vCover), Kit_GraphNodeNum(pGraph), Vec_IntSize(vMemory) );
+
+ Vec_IntFree( vMemory );
+ Vec_IntFree( vCover );
+ Kit_GraphFree( pGraph );
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/kitGraph.c b/src/bool/kit/kitGraph.c
new file mode 100644
index 00000000..e4eea885
--- /dev/null
+++ b/src/bool/kit/kitGraph.c
@@ -0,0 +1,402 @@
+/**CFile****************************************************************
+
+ FileName [kitGraph.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [Decomposition graph representation.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Dec 6, 2006.]
+
+ Revision [$Id: kitGraph.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "kit.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Creates a graph with the given number of leaves.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Graph_t * Kit_GraphCreate( int nLeaves )
+{
+ Kit_Graph_t * pGraph;
+ pGraph = ABC_ALLOC( Kit_Graph_t, 1 );
+ memset( pGraph, 0, sizeof(Kit_Graph_t) );
+ pGraph->nLeaves = nLeaves;
+ pGraph->nSize = nLeaves;
+ pGraph->nCap = 2 * nLeaves + 50;
+ pGraph->pNodes = ABC_ALLOC( Kit_Node_t, pGraph->nCap );
+ memset( pGraph->pNodes, 0, sizeof(Kit_Node_t) * pGraph->nSize );
+ return pGraph;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates constant 0 graph.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Graph_t * Kit_GraphCreateConst0()
+{
+ Kit_Graph_t * pGraph;
+ pGraph = ABC_ALLOC( Kit_Graph_t, 1 );
+ memset( pGraph, 0, sizeof(Kit_Graph_t) );
+ pGraph->fConst = 1;
+ pGraph->eRoot.fCompl = 1;
+ return pGraph;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates constant 1 graph.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Graph_t * Kit_GraphCreateConst1()
+{
+ Kit_Graph_t * pGraph;
+ pGraph = ABC_ALLOC( Kit_Graph_t, 1 );
+ memset( pGraph, 0, sizeof(Kit_Graph_t) );
+ pGraph->fConst = 1;
+ return pGraph;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates the literal graph.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Graph_t * Kit_GraphCreateLeaf( int iLeaf, int nLeaves, int fCompl )
+{
+ Kit_Graph_t * pGraph;
+ assert( 0 <= iLeaf && iLeaf < nLeaves );
+ pGraph = Kit_GraphCreate( nLeaves );
+ pGraph->eRoot.Node = iLeaf;
+ pGraph->eRoot.fCompl = fCompl;
+ return pGraph;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates a graph with the given number of leaves.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_GraphFree( Kit_Graph_t * pGraph )
+{
+ ABC_FREE( pGraph->pNodes );
+ ABC_FREE( pGraph );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Appends a new node to the graph.]
+
+ Description [This procedure is meant for internal use.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Node_t * Kit_GraphAppendNode( Kit_Graph_t * pGraph )
+{
+ Kit_Node_t * pNode;
+ if ( pGraph->nSize == pGraph->nCap )
+ {
+ pGraph->pNodes = ABC_REALLOC( Kit_Node_t, pGraph->pNodes, 2 * pGraph->nCap );
+ pGraph->nCap = 2 * pGraph->nCap;
+ }
+ pNode = pGraph->pNodes + pGraph->nSize++;
+ memset( pNode, 0, sizeof(Kit_Node_t) );
+ return pNode;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates an AND node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Edge_t Kit_GraphAddNodeAnd( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 )
+{
+ Kit_Node_t * pNode;
+ // get the new node
+ pNode = Kit_GraphAppendNode( pGraph );
+ // set the inputs and other info
+ pNode->eEdge0 = eEdge0;
+ pNode->eEdge1 = eEdge1;
+ pNode->fCompl0 = eEdge0.fCompl;
+ pNode->fCompl1 = eEdge1.fCompl;
+ return Kit_EdgeCreate( pGraph->nSize - 1, 0 );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates an OR node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Edge_t Kit_GraphAddNodeOr( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 )
+{
+ Kit_Node_t * pNode;
+ // get the new node
+ pNode = Kit_GraphAppendNode( pGraph );
+ // set the inputs and other info
+ pNode->eEdge0 = eEdge0;
+ pNode->eEdge1 = eEdge1;
+ pNode->fCompl0 = eEdge0.fCompl;
+ pNode->fCompl1 = eEdge1.fCompl;
+ // make adjustments for the OR gate
+ pNode->fNodeOr = 1;
+ pNode->eEdge0.fCompl = !pNode->eEdge0.fCompl;
+ pNode->eEdge1.fCompl = !pNode->eEdge1.fCompl;
+ return Kit_EdgeCreate( pGraph->nSize - 1, 1 );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates an XOR node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Edge_t Kit_GraphAddNodeXor( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1, int Type )
+{
+ Kit_Edge_t eNode0, eNode1, eNode;
+ if ( Type == 0 )
+ {
+ // derive the first AND
+ eEdge0.fCompl ^= 1;
+ eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 );
+ eEdge0.fCompl ^= 1;
+ // derive the second AND
+ eEdge1.fCompl ^= 1;
+ eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 );
+ // derive the final OR
+ eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 );
+ }
+ else
+ {
+ // derive the first AND
+ eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 );
+ // derive the second AND
+ eEdge0.fCompl ^= 1;
+ eEdge1.fCompl ^= 1;
+ eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 );
+ // derive the final OR
+ eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 );
+ eNode.fCompl ^= 1;
+ }
+ return eNode;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates an XOR node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Edge_t Kit_GraphAddNodeMux( Kit_Graph_t * pGraph, Kit_Edge_t eEdgeC, Kit_Edge_t eEdgeT, Kit_Edge_t eEdgeE, int Type )
+{
+ Kit_Edge_t eNode0, eNode1, eNode;
+ if ( Type == 0 )
+ {
+ // derive the first AND
+ eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT );
+ // derive the second AND
+ eEdgeC.fCompl ^= 1;
+ eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE );
+ // derive the final OR
+ eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 );
+ }
+ else
+ {
+ // complement the arguments
+ eEdgeT.fCompl ^= 1;
+ eEdgeE.fCompl ^= 1;
+ // derive the first AND
+ eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT );
+ // derive the second AND
+ eEdgeC.fCompl ^= 1;
+ eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE );
+ // derive the final OR
+ eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 );
+ eNode.fCompl ^= 1;
+ }
+ return eNode;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned Kit_GraphToTruth( Kit_Graph_t * pGraph )
+{
+ unsigned uTruths[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 };
+ unsigned uTruth = 0, uTruth0, uTruth1;
+ Kit_Node_t * pNode;
+ int i;
+
+ // sanity checks
+ assert( Kit_GraphLeaveNum(pGraph) >= 0 );
+ assert( Kit_GraphLeaveNum(pGraph) <= pGraph->nSize );
+ assert( Kit_GraphLeaveNum(pGraph) <= 5 );
+
+ // check for constant function
+ if ( Kit_GraphIsConst(pGraph) )
+ return Kit_GraphIsComplement(pGraph)? 0 : ~((unsigned)0);
+ // check for a literal
+ if ( Kit_GraphIsVar(pGraph) )
+ return Kit_GraphIsComplement(pGraph)? ~uTruths[Kit_GraphVarInt(pGraph)] : uTruths[Kit_GraphVarInt(pGraph)];
+
+ // assign the elementary variables
+ Kit_GraphForEachLeaf( pGraph, pNode, i )
+ pNode->pFunc = (void *)(long)uTruths[i];
+
+ // compute the function for each internal node
+ Kit_GraphForEachNode( pGraph, pNode, i )
+ {
+ uTruth0 = (unsigned)(long)Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc;
+ uTruth1 = (unsigned)(long)Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc;
+ uTruth0 = pNode->eEdge0.fCompl? ~uTruth0 : uTruth0;
+ uTruth1 = pNode->eEdge1.fCompl? ~uTruth1 : uTruth1;
+ uTruth = uTruth0 & uTruth1;
+ pNode->pFunc = (void *)(long)uTruth;
+ }
+
+ // complement the result if necessary
+ return Kit_GraphIsComplement(pGraph)? ~uTruth : uTruth;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the factored form from the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars, Vec_Int_t * vMemory )
+{
+ Kit_Graph_t * pGraph;
+ int RetValue;
+ // derive SOP
+ RetValue = Kit_TruthIsop( pTruth, nVars, vMemory, 1 ); // tried 1 and found not useful in "renode"
+ if ( RetValue == -1 )
+ return NULL;
+ if ( Vec_IntSize(vMemory) > (1<<16) )
+ return NULL;
+// printf( "Isop size = %d.\n", Vec_IntSize(vMemory) );
+ assert( RetValue == 0 || RetValue == 1 );
+ // derive factored form
+ pGraph = Kit_SopFactor( vMemory, RetValue, nVars, vMemory );
+ return pGraph;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the maximum depth from the leaf to the root.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_GraphLeafDepth_rec( Kit_Graph_t * pGraph, Kit_Node_t * pNode, Kit_Node_t * pLeaf )
+{
+ int Depth0, Depth1, Depth;
+ if ( pNode == pLeaf )
+ return 0;
+ if ( Kit_GraphNodeIsVar(pGraph, pNode) )
+ return -100;
+ Depth0 = Kit_GraphLeafDepth_rec( pGraph, Kit_GraphNodeFanin0(pGraph, pNode), pLeaf );
+ Depth1 = Kit_GraphLeafDepth_rec( pGraph, Kit_GraphNodeFanin1(pGraph, pNode), pLeaf );
+ Depth = KIT_MAX( Depth0, Depth1 );
+ Depth = (Depth == -100) ? -100 : Depth + 1;
+ return Depth;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/kitHop.c b/src/bool/kit/kitHop.c
new file mode 100644
index 00000000..28f4e714
--- /dev/null
+++ b/src/bool/kit/kitHop.c
@@ -0,0 +1,155 @@
+/**CFile****************************************************************
+
+ FileName [kitHop.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [Procedures involving AIGs.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Dec 6, 2006.]
+
+ Revision [$Id: kitHop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "kit.h"
+#include "src/aig/hop/hop.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Transforms the decomposition graph into the AIG.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Hop_Obj_t * Kit_GraphToHopInternal( Hop_Man_t * pMan, Kit_Graph_t * pGraph )
+{
+ Kit_Node_t * pNode = NULL;
+ Hop_Obj_t * pAnd0, * pAnd1;
+ int i;
+ // check for constant function
+ if ( Kit_GraphIsConst(pGraph) )
+ return Hop_NotCond( Hop_ManConst1(pMan), Kit_GraphIsComplement(pGraph) );
+ // check for a literal
+ if ( Kit_GraphIsVar(pGraph) )
+ return Hop_NotCond( (Hop_Obj_t *)Kit_GraphVar(pGraph)->pFunc, Kit_GraphIsComplement(pGraph) );
+ // build the AIG nodes corresponding to the AND gates of the graph
+ Kit_GraphForEachNode( pGraph, pNode, i )
+ {
+ pAnd0 = Hop_NotCond( (Hop_Obj_t *)Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl );
+ pAnd1 = Hop_NotCond( (Hop_Obj_t *)Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl );
+ pNode->pFunc = Hop_And( pMan, pAnd0, pAnd1 );
+ }
+ // complement the result if necessary
+ return Hop_NotCond( (Hop_Obj_t *)pNode->pFunc, Kit_GraphIsComplement(pGraph) );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Strashes one logic node using its SOP.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Hop_Obj_t * Kit_GraphToHop( Hop_Man_t * pMan, Kit_Graph_t * pGraph )
+{
+ Kit_Node_t * pNode = NULL;
+ int i;
+ // collect the fanins
+ Kit_GraphForEachLeaf( pGraph, pNode, i )
+ pNode->pFunc = Hop_IthVar( pMan, i );
+ // perform strashing
+ return Kit_GraphToHopInternal( pMan, pGraph );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Strashed onen logic nodes using its truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Hop_Obj_t * Kit_TruthToHop( Hop_Man_t * pMan, unsigned * pTruth, int nVars, Vec_Int_t * vMemory )
+{
+ Hop_Obj_t * pObj;
+ Kit_Graph_t * pGraph;
+ // transform truth table into the decomposition tree
+ if ( vMemory == NULL )
+ {
+ vMemory = Vec_IntAlloc( 0 );
+ pGraph = Kit_TruthToGraph( pTruth, nVars, vMemory );
+ Vec_IntFree( vMemory );
+ }
+ else
+ pGraph = Kit_TruthToGraph( pTruth, nVars, vMemory );
+ if ( pGraph == NULL )
+ {
+ printf( "Kit_TruthToHop(): Converting truth table to AIG has failed for function:\n" );
+ Kit_DsdPrintFromTruth( pTruth, nVars ); printf( "\n" );
+ }
+ // derive the AIG for the decomposition tree
+ pObj = Kit_GraphToHop( pMan, pGraph );
+ Kit_GraphFree( pGraph );
+ return pObj;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Strashes one logic node using its SOP.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Hop_Obj_t * Kit_CoverToHop( Hop_Man_t * pMan, Vec_Int_t * vCover, int nVars, Vec_Int_t * vMemory )
+{
+ Kit_Graph_t * pGraph;
+ Hop_Obj_t * pFunc;
+ // perform factoring
+ Vec_IntClear( vMemory );
+ pGraph = Kit_SopFactor( vCover, 0, nVars, vMemory );
+ // convert graph to the AIG
+ pFunc = Kit_GraphToHop( pMan, pGraph );
+ Kit_GraphFree( pGraph );
+ return pFunc;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/kitIsop.c b/src/bool/kit/kitIsop.c
new file mode 100644
index 00000000..fc017c0e
--- /dev/null
+++ b/src/bool/kit/kitIsop.c
@@ -0,0 +1,330 @@
+/**CFile****************************************************************
+
+ FileName [kitIsop.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [ISOP computation based on Morreale's algorithm.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Dec 6, 2006.]
+
+ Revision [$Id: kitIsop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "kit.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+// ISOP computation fails if intermediate memory usage exceed this limit
+#define KIT_ISOP_MEM_LIMIT (1<<20)
+
+// static procedures to compute ISOP
+static unsigned * Kit_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore );
+static unsigned Kit_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Computes ISOP from TT.]
+
+ Description [Returns the cover in vMemory. Uses the rest of array in vMemory
+ as an intermediate memory storage. Returns the cover with -1 cubes, if the
+ the computation exceeded the memory limit (KIT_ISOP_MEM_LIMIT words of
+ intermediate data).]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vMemory, int fTryBoth )
+{
+ Kit_Sop_t cRes, * pcRes = &cRes;
+ Kit_Sop_t cRes2, * pcRes2 = &cRes2;
+ unsigned * pResult;
+ int RetValue = 0;
+ assert( nVars >= 0 && nVars < 16 );
+ // if nVars < 5, make sure it does not depend on those vars
+// for ( i = nVars; i < 5; i++ )
+// assert( !Kit_TruthVarInSupport(puTruth, 5, i) );
+ // prepare memory manager
+ Vec_IntClear( vMemory );
+ Vec_IntGrow( vMemory, KIT_ISOP_MEM_LIMIT );
+ // compute ISOP for the direct polarity
+ pResult = Kit_TruthIsop_rec( puTruth, puTruth, nVars, pcRes, vMemory );
+ if ( pcRes->nCubes == -1 )
+ {
+ vMemory->nSize = -1;
+ return -1;
+ }
+ assert( Kit_TruthIsEqual( puTruth, pResult, nVars ) );
+ if ( pcRes->nCubes == 0 || (pcRes->nCubes == 1 && pcRes->pCubes[0] == 0) )
+ {
+ vMemory->pArray[0] = 0;
+ Vec_IntShrink( vMemory, pcRes->nCubes );
+ return 0;
+ }
+ if ( fTryBoth )
+ {
+ // compute ISOP for the complemented polarity
+ Kit_TruthNot( puTruth, puTruth, nVars );
+ pResult = Kit_TruthIsop_rec( puTruth, puTruth, nVars, pcRes2, vMemory );
+ if ( pcRes2->nCubes >= 0 )
+ {
+ assert( Kit_TruthIsEqual( puTruth, pResult, nVars ) );
+ if ( pcRes->nCubes > pcRes2->nCubes )
+ {
+ RetValue = 1;
+ pcRes = pcRes2;
+ }
+ }
+ Kit_TruthNot( puTruth, puTruth, nVars );
+ }
+// printf( "%d ", vMemory->nSize );
+ // move the cover representation to the beginning of the memory buffer
+ memmove( vMemory->pArray, pcRes->pCubes, pcRes->nCubes * sizeof(unsigned) );
+ Vec_IntShrink( vMemory, pcRes->nCubes );
+ return RetValue;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes ISOP 6 variables or more.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned * Kit_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore )
+{
+ Kit_Sop_t cRes0, cRes1, cRes2;
+ Kit_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2;
+ unsigned * puRes0, * puRes1, * puRes2;
+ unsigned * puOn0, * puOn1, * puOnDc0, * puOnDc1, * pTemp, * pTemp0, * pTemp1;
+ int i, k, Var, nWords, nWordsAll;
+// assert( Kit_TruthIsImply( puOn, puOnDc, nVars ) );
+ // allocate room for the resulting truth table
+ nWordsAll = Kit_TruthWordNum( nVars );
+ pTemp = Vec_IntFetch( vStore, nWordsAll );
+ if ( pTemp == NULL )
+ {
+ pcRes->nCubes = -1;
+ return NULL;
+ }
+ // check for constants
+ if ( Kit_TruthIsConst0( puOn, nVars ) )
+ {
+ pcRes->nCubes = 0;
+ pcRes->pCubes = NULL;
+ Kit_TruthClear( pTemp, nVars );
+ return pTemp;
+ }
+ if ( Kit_TruthIsConst1( puOnDc, nVars ) )
+ {
+ pcRes->nCubes = 1;
+ pcRes->pCubes = Vec_IntFetch( vStore, 1 );
+ if ( pcRes->pCubes == NULL )
+ {
+ pcRes->nCubes = -1;
+ return NULL;
+ }
+ pcRes->pCubes[0] = 0;
+ Kit_TruthFill( pTemp, nVars );
+ return pTemp;
+ }
+ assert( nVars > 0 );
+ // find the topmost var
+ for ( Var = nVars-1; Var >= 0; Var-- )
+ if ( Kit_TruthVarInSupport( puOn, nVars, Var ) ||
+ Kit_TruthVarInSupport( puOnDc, nVars, Var ) )
+ break;
+ assert( Var >= 0 );
+ // consider a simple case when one-word computation can be used
+ if ( Var < 5 )
+ {
+ unsigned uRes = Kit_TruthIsop5_rec( puOn[0], puOnDc[0], Var+1, pcRes, vStore );
+ for ( i = 0; i < nWordsAll; i++ )
+ pTemp[i] = uRes;
+ return pTemp;
+ }
+ assert( Var >= 5 );
+ nWords = Kit_TruthWordNum( Var );
+ // cofactor
+ puOn0 = puOn; puOn1 = puOn + nWords;
+ puOnDc0 = puOnDc; puOnDc1 = puOnDc + nWords;
+ pTemp0 = pTemp; pTemp1 = pTemp + nWords;
+ // solve for cofactors
+ Kit_TruthSharp( pTemp0, puOn0, puOnDc1, Var );
+ puRes0 = Kit_TruthIsop_rec( pTemp0, puOnDc0, Var, pcRes0, vStore );
+ if ( pcRes0->nCubes == -1 )
+ {
+ pcRes->nCubes = -1;
+ return NULL;
+ }
+ Kit_TruthSharp( pTemp1, puOn1, puOnDc0, Var );
+ puRes1 = Kit_TruthIsop_rec( pTemp1, puOnDc1, Var, pcRes1, vStore );
+ if ( pcRes1->nCubes == -1 )
+ {
+ pcRes->nCubes = -1;
+ return NULL;
+ }
+ Kit_TruthSharp( pTemp0, puOn0, puRes0, Var );
+ Kit_TruthSharp( pTemp1, puOn1, puRes1, Var );
+ Kit_TruthOr( pTemp0, pTemp0, pTemp1, Var );
+ Kit_TruthAnd( pTemp1, puOnDc0, puOnDc1, Var );
+ puRes2 = Kit_TruthIsop_rec( pTemp0, pTemp1, Var, pcRes2, vStore );
+ if ( pcRes2->nCubes == -1 )
+ {
+ pcRes->nCubes = -1;
+ return NULL;
+ }
+ // create the resulting cover
+ pcRes->nCubes = pcRes0->nCubes + pcRes1->nCubes + pcRes2->nCubes;
+ pcRes->pCubes = Vec_IntFetch( vStore, pcRes->nCubes );
+ if ( pcRes->pCubes == NULL )
+ {
+ pcRes->nCubes = -1;
+ return NULL;
+ }
+ k = 0;
+ for ( i = 0; i < pcRes0->nCubes; i++ )
+ pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+0));
+ for ( i = 0; i < pcRes1->nCubes; i++ )
+ pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+1));
+ for ( i = 0; i < pcRes2->nCubes; i++ )
+ pcRes->pCubes[k++] = pcRes2->pCubes[i];
+ assert( k == pcRes->nCubes );
+ // create the resulting truth table
+ Kit_TruthOr( pTemp0, puRes0, puRes2, Var );
+ Kit_TruthOr( pTemp1, puRes1, puRes2, Var );
+ // copy the table if needed
+ nWords <<= 1;
+ for ( i = 1; i < nWordsAll/nWords; i++ )
+ for ( k = 0; k < nWords; k++ )
+ pTemp[i*nWords + k] = pTemp[k];
+ // verify in the end
+// assert( Kit_TruthIsImply( puOn, pTemp, nVars ) );
+// assert( Kit_TruthIsImply( pTemp, puOnDc, nVars ) );
+ return pTemp;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes ISOP for 5 variables or less.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned Kit_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore )
+{
+ unsigned uMasks[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 };
+ Kit_Sop_t cRes0, cRes1, cRes2;
+ Kit_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2;
+ unsigned uOn0, uOn1, uOnDc0, uOnDc1, uRes0, uRes1, uRes2;
+ int i, k, Var;
+ assert( nVars <= 5 );
+ assert( (uOn & ~uOnDc) == 0 );
+ if ( uOn == 0 )
+ {
+ pcRes->nCubes = 0;
+ pcRes->pCubes = NULL;
+ return 0;
+ }
+ if ( uOnDc == 0xFFFFFFFF )
+ {
+ pcRes->nCubes = 1;
+ pcRes->pCubes = Vec_IntFetch( vStore, 1 );
+ if ( pcRes->pCubes == NULL )
+ {
+ pcRes->nCubes = -1;
+ return 0;
+ }
+ pcRes->pCubes[0] = 0;
+ return 0xFFFFFFFF;
+ }
+ assert( nVars > 0 );
+ // find the topmost var
+ for ( Var = nVars-1; Var >= 0; Var-- )
+ if ( Kit_TruthVarInSupport( &uOn, 5, Var ) ||
+ Kit_TruthVarInSupport( &uOnDc, 5, Var ) )
+ break;
+ assert( Var >= 0 );
+ // cofactor
+ uOn0 = uOn1 = uOn;
+ uOnDc0 = uOnDc1 = uOnDc;
+ Kit_TruthCofactor0( &uOn0, Var + 1, Var );
+ Kit_TruthCofactor1( &uOn1, Var + 1, Var );
+ Kit_TruthCofactor0( &uOnDc0, Var + 1, Var );
+ Kit_TruthCofactor1( &uOnDc1, Var + 1, Var );
+ // solve for cofactors
+ uRes0 = Kit_TruthIsop5_rec( uOn0 & ~uOnDc1, uOnDc0, Var, pcRes0, vStore );
+ if ( pcRes0->nCubes == -1 )
+ {
+ pcRes->nCubes = -1;
+ return 0;
+ }
+ uRes1 = Kit_TruthIsop5_rec( uOn1 & ~uOnDc0, uOnDc1, Var, pcRes1, vStore );
+ if ( pcRes1->nCubes == -1 )
+ {
+ pcRes->nCubes = -1;
+ return 0;
+ }
+ uRes2 = Kit_TruthIsop5_rec( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, Var, pcRes2, vStore );
+ if ( pcRes2->nCubes == -1 )
+ {
+ pcRes->nCubes = -1;
+ return 0;
+ }
+ // create the resulting cover
+ pcRes->nCubes = pcRes0->nCubes + pcRes1->nCubes + pcRes2->nCubes;
+ pcRes->pCubes = Vec_IntFetch( vStore, pcRes->nCubes );
+ if ( pcRes->pCubes == NULL )
+ {
+ pcRes->nCubes = -1;
+ return 0;
+ }
+ k = 0;
+ for ( i = 0; i < pcRes0->nCubes; i++ )
+ pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+0));
+ for ( i = 0; i < pcRes1->nCubes; i++ )
+ pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+1));
+ for ( i = 0; i < pcRes2->nCubes; i++ )
+ pcRes->pCubes[k++] = pcRes2->pCubes[i];
+ assert( k == pcRes->nCubes );
+ // derive the final truth table
+ uRes2 |= (uRes0 & ~uMasks[Var]) | (uRes1 & uMasks[Var]);
+// assert( (uOn & ~uRes2) == 0 );
+// assert( (uRes2 & ~uOnDc) == 0 );
+ return uRes2;
+}
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/kitPerm.c b/src/bool/kit/kitPerm.c
new file mode 100644
index 00000000..d3e9ff5a
--- /dev/null
+++ b/src/bool/kit/kitPerm.c
@@ -0,0 +1,355 @@
+/**CFile****************************************************************
+
+ FileName [kitPerm.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [Procedures for permuting truth tables.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Oct 26, 2011.]
+
+ Revision [$Id: kitPerm.c,v 1.00 2011/11/26 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <time.h>
+
+#define inline __inline // compatible with MS VS 6.0
+
+//ABC_NAMESPACE_IMPL_START
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+typedef unsigned __int64 word;
+typedef unsigned short shot;
+typedef unsigned char byte;
+
+static shot S[256] =
+{
+ 0x0000, 0x0001, 0x0004, 0x0005, 0x0010, 0x0011, 0x0014, 0x0015,
+ 0x0040, 0x0041, 0x0044, 0x0045, 0x0050, 0x0051, 0x0054, 0x0055,
+ 0x0100, 0x0101, 0x0104, 0x0105, 0x0110, 0x0111, 0x0114, 0x0115,
+ 0x0140, 0x0141, 0x0144, 0x0145, 0x0150, 0x0151, 0x0154, 0x0155,
+ 0x0400, 0x0401, 0x0404, 0x0405, 0x0410, 0x0411, 0x0414, 0x0415,
+ 0x0440, 0x0441, 0x0444, 0x0445, 0x0450, 0x0451, 0x0454, 0x0455,
+ 0x0500, 0x0501, 0x0504, 0x0505, 0x0510, 0x0511, 0x0514, 0x0515,
+ 0x0540, 0x0541, 0x0544, 0x0545, 0x0550, 0x0551, 0x0554, 0x0555,
+ 0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015,
+ 0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055,
+ 0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, 0x1115,
+ 0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, 0x1155,
+ 0x1400, 0x1401, 0x1404, 0x1405, 0x1410, 0x1411, 0x1414, 0x1415,
+ 0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455,
+ 0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515,
+ 0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555,
+ 0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015,
+ 0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055,
+ 0x4100, 0x4101, 0x4104, 0x4105, 0x4110, 0x4111, 0x4114, 0x4115,
+ 0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155,
+ 0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415,
+ 0x4440, 0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455,
+ 0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515,
+ 0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555,
+ 0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015,
+ 0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055,
+ 0x5100, 0x5101, 0x5104, 0x5105, 0x5110, 0x5111, 0x5114, 0x5115,
+ 0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155,
+ 0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415,
+ 0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455,
+ 0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515,
+ 0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555
+};
+
+static byte P[256] =
+{
+ 0x00, 0x01, 0x10, 0x11, 0x04, 0x05, 0x14, 0x15, 0x40, 0x41, 0x50, 0x51, 0x44, 0x45, 0x54, 0x55,
+ 0x02, 0x03, 0x12, 0x13, 0x06, 0x07, 0x16, 0x17, 0x42, 0x43, 0x52, 0x53, 0x46, 0x47, 0x56, 0x57,
+ 0x20, 0x21, 0x30, 0x31, 0x24, 0x25, 0x34, 0x35, 0x60, 0x61, 0x70, 0x71, 0x64, 0x65, 0x74, 0x75,
+ 0x22, 0x23, 0x32, 0x33, 0x26, 0x27, 0x36, 0x37, 0x62, 0x63, 0x72, 0x73, 0x66, 0x67, 0x76, 0x77,
+ 0x08, 0x09, 0x18, 0x19, 0x0c, 0x0d, 0x1c, 0x1d, 0x48, 0x49, 0x58, 0x59, 0x4c, 0x4d, 0x5c, 0x5d,
+ 0x0a, 0x0b, 0x1a, 0x1b, 0x0e, 0x0f, 0x1e, 0x1f, 0x4a, 0x4b, 0x5a, 0x5b, 0x4e, 0x4f, 0x5e, 0x5f,
+ 0x28, 0x29, 0x38, 0x39, 0x2c, 0x2d, 0x3c, 0x3d, 0x68, 0x69, 0x78, 0x79, 0x6c, 0x6d, 0x7c, 0x7d,
+ 0x2a, 0x2b, 0x3a, 0x3b, 0x2e, 0x2f, 0x3e, 0x3f, 0x6a, 0x6b, 0x7a, 0x7b, 0x6e, 0x6f, 0x7e, 0x7f,
+ 0x80, 0x81, 0x90, 0x91, 0x84, 0x85, 0x94, 0x95, 0xc0, 0xc1, 0xd0, 0xd1, 0xc4, 0xc5, 0xd4, 0xd5,
+ 0x82, 0x83, 0x92, 0x93, 0x86, 0x87, 0x96, 0x97, 0xc2, 0xc3, 0xd2, 0xd3, 0xc6, 0xc7, 0xd6, 0xd7,
+ 0xa0, 0xa1, 0xb0, 0xb1, 0xa4, 0xa5, 0xb4, 0xb5, 0xe0, 0xe1, 0xf0, 0xf1, 0xe4, 0xe5, 0xf4, 0xf5,
+ 0xa2, 0xa3, 0xb2, 0xb3, 0xa6, 0xa7, 0xb6, 0xb7, 0xe2, 0xe3, 0xf2, 0xf3, 0xe6, 0xe7, 0xf6, 0xf7,
+ 0x88, 0x89, 0x98, 0x99, 0x8c, 0x8d, 0x9c, 0x9d, 0xc8, 0xc9, 0xd8, 0xd9, 0xcc, 0xcd, 0xdc, 0xdd,
+ 0x8a, 0x8b, 0x9a, 0x9b, 0x8e, 0x8f, 0x9e, 0x9f, 0xca, 0xcb, 0xda, 0xdb, 0xce, 0xcf, 0xde, 0xdf,
+ 0xa8, 0xa9, 0xb8, 0xb9, 0xac, 0xad, 0xbc, 0xbd, 0xe8, 0xe9, 0xf8, 0xf9, 0xec, 0xed, 0xfc, 0xfd,
+ 0xaa, 0xab, 0xba, 0xbb, 0xae, 0xaf, 0xbe, 0xbf, 0xea, 0xeb, 0xfa, 0xfb, 0xee, 0xef, 0xfe, 0xff
+};
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_PermCreateS()
+{
+ int i, n, r;
+ for ( i = 0; i < 256; i++ )
+ {
+ if ( i % 8 == 0 )
+ printf( "\n" );
+ for ( r = n = 0; n < 8; n++ )
+ r |= ((i & (1 << n)) << n);
+ printf( "0x%04x, ", r );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_PermCreateP()
+{
+ int i, s1, s2, r;
+ for ( i = 0; i < 256; i++ )
+ {
+ if ( i % 16 == 0 )
+ printf( "\n" );
+ s1 = i & 0x0A;
+ s2 = i & 0x50;
+ r = i ^ s1 ^ s2 ^ (s1 << 3) ^ (s2 >> 3);
+ assert( r < 256 );
+ printf( "0x%02x, ", r );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+static inline void Kit_PermCycleOne( shot * s, byte * b, int v )
+{
+ int i, n = (1 << (v-3));
+ assert( v > 2 && v < 16 );
+ for ( i = 0; i < n; i++ )
+ s[i] = S[b[i]] | (S[b[i+n]] << 1);
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+static inline void Kit_PermCycleMany( shot * s, byte * b, int V, int v )
+{
+ int i, n = (1 << (V - 1 - v)), m = (1 << (v-2));
+ assert( v > 2 && v < V );
+ for ( i = 0; i < n; i++, s += (m >> 1), b += m )
+ Kit_PermCycleOne( s, b, v );
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_PermCompute( word * o, word * i, int V )
+{
+ word * t;
+ int v, n = (1 << (V-3));
+ assert( V >= 6 && V <= 16 );
+ for ( v = 0; v < n; v++ )
+ ((byte *)i)[v] = P[((byte *)i)[v]];
+ for ( v = 3; v < V; v++ )
+ {
+ Kit_PermCycleMany( (shot *)o, (byte *)i, V, v );
+ t = i; i = o; o = t;
+ }
+ if ( V & 1 )
+ {
+ n = (1 << (V-6));
+ for ( v = 0; v < n; v++ )
+ o[v] = i[v];
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_PermComputeNaive( word * F, int nVars )
+{
+ extern void If_CluReverseOrder( word * pF, int nVars, int * V2P, int * P2V, int iVarStart );
+ int i, V2P[16], P2V[16];
+ for ( i = 0; i < nVars; i++ )
+ V2P[i] = P2V[i] = i;
+ If_CluReverseOrder( F, nVars, V2P, P2V, 0 );
+}
+
+
+word M ( word f1, word f2, int n)
+{
+ word temp = 0;
+ word a = 1;
+ int i;
+ for( i = 0; i < n; i++)
+ temp = temp + (((f1>>i)&a) << (2*i) ) + (((f2>>i)&a) << (2*i+1));
+ return temp;
+}
+
+word Tf ( word f, int n)
+{
+ if(n==1)
+ return f;
+ else
+ {
+// int x = (int)pow(2,n-1);
+ int x;
+ x = (1 << (n-1));
+ return ( M (Tf( (f << x) >> x, n-1), Tf( (f >> x), n-1), x) ); //def. of M just below the function
+ }
+}
+
+
+#define ABC_PRT(a,t) (printf("%s = ", (a)), printf("%7.2f sec\n", (float)(t)/(float)(CLOCKS_PER_SEC)))
+#define NFUNCS (1<<20)
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_PermComputeTest()
+{
+ word * T = (word *)malloc( 8 * NFUNCS );
+ word i, o, w = 0;
+ int k, b, clk;
+
+ srand( 0 );
+
+ clk = clock();
+ for ( k = 0; k < NFUNCS; k++ )
+ for ( b = 0; b < 8; b++ )
+ ((byte *)(T + k))[b] = (byte)(rand() & 0xFF);
+ ABC_PRT( "Assign", clock() - clk );
+
+// T[0] = 0xacaccacaaccaacca;
+// Kit_DsdPrintFromTruth( T, 6 );
+
+ // perform measurements
+ clk = clock();
+ for ( k = 0; k < NFUNCS; k++ )
+ {
+ i = T[k];
+// Kit_PermComputeNaive( &i, 6 );
+ Tf( i, 6 );
+ }
+ ABC_PRT( "Perm1 ", clock() - clk );
+
+ // perform measurements
+ clk = clock();
+ for ( k = 0; k < NFUNCS; k++ )
+ {
+ i = T[k];
+ Kit_PermCompute( &o, &i, 6 );
+
+// w = T[k];
+// Kit_PermComputeNaive( &w, 6 );
+// assert( w == o );
+ }
+ ABC_PRT( "Perm2 ", clock() - clk );
+
+ assert( w == 0 );
+ free( T );
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+`
+***********************************************************************/
+void Kit_PermComputeTest_()
+{
+ word t, s;
+ t = 0xacaccacaaccaacca;
+// Kit_DsdPrintFromTruth( &t, 6 ); printf( "\n" );
+ s = Tf( t, 6 );
+// Kit_PermComputeNaive( &t, 6 );
+// Kit_DsdPrintFromTruth( &s, 6 ); printf( "\n" );
+}
+
+/*
+ {
+ extern void Kit_PermComputeTest();
+ Kit_PermComputeTest();
+ }
+*/
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+//ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/kitPla.c b/src/bool/kit/kitPla.c
new file mode 100644
index 00000000..acc163fc
--- /dev/null
+++ b/src/bool/kit/kitPla.c
@@ -0,0 +1,535 @@
+/**CFile****************************************************************
+
+ FileName [kitPla.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [Manipulating SOP in the form of a C-string.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Dec 6, 2006.]
+
+ Revision [$Id: kitPla.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "kit.h"
+#include "src/aig/aig/aig.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Checks if the cover is constant 0.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_PlaIsConst0( char * pSop )
+{
+ return pSop[0] == ' ' && pSop[1] == '0';
+}
+
+/**Function*************************************************************
+
+ Synopsis [Checks if the cover is constant 1.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_PlaIsConst1( char * pSop )
+{
+ return pSop[0] == ' ' && pSop[1] == '1';
+}
+
+/**Function*************************************************************
+
+ Synopsis [Checks if the cover is a buffer.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_PlaIsBuf( char * pSop )
+{
+ if ( pSop[4] != 0 )
+ return 0;
+ if ( (pSop[0] == '1' && pSop[2] == '1') || (pSop[0] == '0' && pSop[2] == '0') )
+ return 1;
+ return 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Checks if the cover is an inverter.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_PlaIsInv( char * pSop )
+{
+ if ( pSop[4] != 0 )
+ return 0;
+ if ( (pSop[0] == '0' && pSop[2] == '1') || (pSop[0] == '1' && pSop[2] == '0') )
+ return 1;
+ return 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Reads the number of variables in the cover.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_PlaGetVarNum( char * pSop )
+{
+ char * pCur;
+ for ( pCur = pSop; *pCur != '\n'; pCur++ )
+ if ( *pCur == 0 )
+ return -1;
+ return pCur - pSop - 2;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Reads the number of cubes in the cover.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_PlaGetCubeNum( char * pSop )
+{
+ char * pCur;
+ int nCubes = 0;
+ if ( pSop == NULL )
+ return 0;
+ for ( pCur = pSop; *pCur; pCur++ )
+ nCubes += (*pCur == '\n');
+ return nCubes;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_PlaIsComplement( char * pSop )
+{
+ char * pCur;
+ for ( pCur = pSop; *pCur; pCur++ )
+ if ( *pCur == '\n' )
+ return (int)(*(pCur - 1) == '0' || *(pCur - 1) == 'n');
+ assert( 0 );
+ return 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_PlaComplement( char * pSop )
+{
+ char * pCur;
+ for ( pCur = pSop; *pCur; pCur++ )
+ if ( *pCur == '\n' )
+ {
+ if ( *(pCur - 1) == '0' )
+ *(pCur - 1) = '1';
+ else if ( *(pCur - 1) == '1' )
+ *(pCur - 1) = '0';
+ else if ( *(pCur - 1) == 'x' )
+ *(pCur - 1) = 'n';
+ else if ( *(pCur - 1) == 'n' )
+ *(pCur - 1) = 'x';
+ else
+ assert( 0 );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates the constant 1 cover with the given number of variables and cubes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+char * Kit_PlaStart( void * p, int nCubes, int nVars )
+{
+ Aig_MmFlex_t * pMan = (Aig_MmFlex_t *)p;
+ char * pSopCover, * pCube;
+ int i, Length;
+
+ Length = nCubes * (nVars + 3);
+ pSopCover = Aig_MmFlexEntryFetch( pMan, Length + 1 );
+ memset( pSopCover, '-', Length );
+ pSopCover[Length] = 0;
+
+ for ( i = 0; i < nCubes; i++ )
+ {
+ pCube = pSopCover + i * (nVars + 3);
+ pCube[nVars + 0] = ' ';
+ pCube[nVars + 1] = '1';
+ pCube[nVars + 2] = '\n';
+ }
+ return pSopCover;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates the cover from the ISOP computed from TT.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+char * Kit_PlaCreateFromIsop( void * p, int nVars, Vec_Int_t * vCover )
+{
+ Aig_MmFlex_t * pMan = (Aig_MmFlex_t *)p;
+ char * pSop, * pCube;
+ int i, k, Entry, Literal;
+ assert( Vec_IntSize(vCover) > 0 );
+ if ( Vec_IntSize(vCover) == 0 )
+ return NULL;
+ // start the cover
+ pSop = Kit_PlaStart( pMan, Vec_IntSize(vCover), nVars );
+ // create cubes
+ Vec_IntForEachEntry( vCover, Entry, i )
+ {
+ pCube = pSop + i * (nVars + 3);
+ for ( k = 0; k < nVars; k++ )
+ {
+ Literal = 3 & (Entry >> (k << 1));
+ if ( Literal == 1 )
+ pCube[k] = '0';
+ else if ( Literal == 2 )
+ pCube[k] = '1';
+ else if ( Literal != 0 )
+ assert( 0 );
+ }
+ }
+ return pSop;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates the cover from the ISOP computed from TT.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_PlaToIsop( char * pSop, Vec_Int_t * vCover )
+{
+ char * pCube;
+ int k, nVars, Entry;
+ nVars = Kit_PlaGetVarNum( pSop );
+ assert( nVars > 0 );
+ // create cubes
+ Vec_IntClear( vCover );
+ for ( pCube = pSop; *pCube; pCube += nVars + 3 )
+ {
+ Entry = 0;
+ for ( k = nVars - 1; k >= 0; k-- )
+ if ( pCube[k] == '0' )
+ Entry = (Entry << 2) | 1;
+ else if ( pCube[k] == '1' )
+ Entry = (Entry << 2) | 2;
+ else if ( pCube[k] == '-' )
+ Entry = (Entry << 2);
+ else
+ assert( 0 );
+ Vec_IntPush( vCover, Entry );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Allocates memory and copies the SOP into it.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+char * Kit_PlaStoreSop( void * p, char * pSop )
+{
+ Aig_MmFlex_t * pMan = (Aig_MmFlex_t *)p;
+ char * pStore;
+ pStore = Aig_MmFlexEntryFetch( pMan, strlen(pSop) + 1 );
+ strcpy( pStore, pSop );
+ return pStore;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Transforms truth table into the SOP.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+char * Kit_PlaFromTruth( void * p, unsigned * pTruth, int nVars, Vec_Int_t * vCover )
+{
+ Aig_MmFlex_t * pMan = (Aig_MmFlex_t *)p;
+ char * pSop;
+ int RetValue;
+ if ( Kit_TruthIsConst0(pTruth, nVars) )
+ return Kit_PlaStoreSop( pMan, " 0\n" );
+ if ( Kit_TruthIsConst1(pTruth, nVars) )
+ return Kit_PlaStoreSop( pMan, " 1\n" );
+ RetValue = Kit_TruthIsop( pTruth, nVars, vCover, 0 ); // 1 );
+ assert( RetValue == 0 || RetValue == 1 );
+ pSop = Kit_PlaCreateFromIsop( pMan, nVars, vCover );
+ if ( RetValue )
+ Kit_PlaComplement( pSop );
+ return pSop;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Creates the cover from the ISOP computed from TT.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+char * Kit_PlaFromIsop( Vec_Str_t * vStr, int nVars, Vec_Int_t * vCover )
+{
+ int i, k, Entry, Literal;
+ assert( Vec_IntSize(vCover) > 0 );
+ if ( Vec_IntSize(vCover) == 0 )
+ return NULL;
+ Vec_StrClear( vStr );
+ Vec_IntForEachEntry( vCover, Entry, i )
+ {
+ for ( k = 0; k < nVars; k++ )
+ {
+ Literal = 3 & (Entry >> (k << 1));
+ if ( Literal == 1 )
+ Vec_StrPush( vStr, '0' );
+ else if ( Literal == 2 )
+ Vec_StrPush( vStr, '1' );
+ else if ( Literal == 0 )
+ Vec_StrPush( vStr, '-' );
+ else
+ assert( 0 );
+ }
+ Vec_StrPush( vStr, ' ' );
+ Vec_StrPush( vStr, '1' );
+ Vec_StrPush( vStr, '\n' );
+ }
+ Vec_StrPush( vStr, '\0' );
+ return Vec_StrArray( vStr );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates the SOP from TT.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+char * Kit_PlaFromTruthNew( unsigned * pTruth, int nVars, Vec_Int_t * vCover, Vec_Str_t * vStr )
+{
+ char * pResult;
+ // transform truth table into the SOP
+ int RetValue = Kit_TruthIsop( pTruth, nVars, vCover, 1 );
+ assert( RetValue == 0 || RetValue == 1 );
+ // check the case of constant cover
+ if ( Vec_IntSize(vCover) == 0 || (Vec_IntSize(vCover) == 1 && Vec_IntEntry(vCover,0) == 0) )
+ {
+ assert( RetValue == 0 );
+ Vec_StrClear( vStr );
+ Vec_StrAppend( vStr, (Vec_IntSize(vCover) == 0) ? " 0\n" : " 1\n" );
+ Vec_StrPush( vStr, '\0' );
+ return Vec_StrArray( vStr );
+ }
+ pResult = Kit_PlaFromIsop( vStr, nVars, vCover );
+ if ( RetValue )
+ Kit_PlaComplement( pResult );
+ if ( nVars < 6 )
+ assert( pTruth[0] == (unsigned)Kit_PlaToTruth6(pResult, nVars) );
+ else if ( nVars == 6 )
+ assert( *((ABC_UINT64_T*)pTruth) == Kit_PlaToTruth6(pResult, nVars) );
+ return pResult;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Converts SOP into a truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+ABC_UINT64_T Kit_PlaToTruth6( char * pSop, int nVars )
+{
+ static ABC_UINT64_T Truth[8] = {
+ 0xAAAAAAAAAAAAAAAA,
+ 0xCCCCCCCCCCCCCCCC,
+ 0xF0F0F0F0F0F0F0F0,
+ 0xFF00FF00FF00FF00,
+ 0xFFFF0000FFFF0000,
+ 0xFFFFFFFF00000000,
+ 0x0000000000000000,
+ 0xFFFFFFFFFFFFFFFF
+ };
+ ABC_UINT64_T valueAnd, valueOr = Truth[6];
+ int v, lit = 0;
+ assert( nVars < 7 );
+ do {
+ valueAnd = Truth[7];
+ for ( v = 0; v < nVars; v++, lit++ )
+ {
+ if ( pSop[lit] == '1' )
+ valueAnd &= Truth[v];
+ else if ( pSop[lit] == '0' )
+ valueAnd &= ~Truth[v];
+ else if ( pSop[lit] != '-' )
+ assert( 0 );
+ }
+ valueOr |= valueAnd;
+ assert( pSop[lit] == ' ' );
+ lit++;
+ lit++;
+ assert( pSop[lit] == '\n' );
+ lit++;
+ } while ( pSop[lit] );
+ if ( Kit_PlaIsComplement(pSop) )
+ valueOr = ~valueOr;
+ return valueOr;
+}
+
+/**Fnction*************************************************************
+
+ Synopsis [Converting SOP into a truth table.]
+
+ Description [The SOP is represented as a C-string, as documented in
+ file "bblif.h". The truth table is returned as a bit-string composed
+ of 2^nVars bits. For functions of less than 6 variables, the full
+ machine word is returned. (The truth table looks as if the function
+ had 5 variables.) The use of this procedure should be limited to
+ Boolean functions with no more than 16 inputs.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_PlaToTruth( char * pSop, int nVars, Vec_Ptr_t * vVars, unsigned * pTemp, unsigned * pTruth )
+{
+ int v, c, nCubes, fCompl = 0;
+ assert( pSop != NULL );
+ assert( nVars >= 0 );
+ if ( strlen(pSop) % (nVars + 3) != 0 )
+ {
+ printf( "Kit_PlaToTruth(): SOP is represented incorrectly.\n" );
+ return;
+ }
+ // iterate through the cubes
+ Kit_TruthClear( pTruth, nVars );
+ nCubes = strlen(pSop) / (nVars + 3);
+ for ( c = 0; c < nCubes; c++ )
+ {
+ fCompl = (pSop[nVars+1] == '0');
+ Kit_TruthFill( pTemp, nVars );
+ // iterate through the literals of the cube
+ for ( v = 0; v < nVars; v++ )
+ if ( pSop[v] == '1' )
+ Kit_TruthAnd( pTemp, pTemp, (unsigned *)Vec_PtrEntry(vVars, v), nVars );
+ else if ( pSop[v] == '0' )
+ Kit_TruthSharp( pTemp, pTemp, (unsigned *)Vec_PtrEntry(vVars, v), nVars );
+ // add cube to storage
+ Kit_TruthOr( pTruth, pTruth, pTemp, nVars );
+ // go to the next cube
+ pSop += (nVars + 3);
+ }
+ if ( fCompl )
+ Kit_TruthNot( pTruth, pTruth, nVars );
+}
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/kitSop.c b/src/bool/kit/kitSop.c
new file mode 100644
index 00000000..21ea69b8
--- /dev/null
+++ b/src/bool/kit/kitSop.c
@@ -0,0 +1,579 @@
+/**CFile****************************************************************
+
+ FileName [kitSop.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [Procedures involving SOPs.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Dec 6, 2006.]
+
+ Revision [$Id: kitSop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "kit.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Creates SOP from the cube array.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_SopCreate( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory )
+{
+ unsigned uCube;
+ int i;
+ // start the cover
+ cResult->nCubes = 0;
+ cResult->pCubes = Vec_IntFetch( vMemory, Vec_IntSize(vInput) );
+ // add the cubes
+ Vec_IntForEachEntry( vInput, uCube, i )
+ Kit_SopPushCube( cResult, uCube );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates SOP from the cube array.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_SopCreateInverse( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nLits, Vec_Int_t * vMemory )
+{
+ unsigned uCube, uMask = 0;
+ int i, nCubes = Vec_IntSize(vInput);
+ // start the cover
+ cResult->nCubes = 0;
+ cResult->pCubes = Vec_IntFetch( vMemory, nCubes );
+ // add the cubes
+// Vec_IntForEachEntry( vInput, uCube, i )
+ for ( i = 0; i < nCubes; i++ )
+ {
+ uCube = Vec_IntEntry( vInput, i );
+ uMask = ((uCube | (uCube >> 1)) & 0x55555555);
+ uMask |= (uMask << 1);
+ Kit_SopPushCube( cResult, uCube ^ uMask );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Duplicates SOP.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_SopDup( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory )
+{
+ unsigned uCube;
+ int i;
+ // start the cover
+ cResult->nCubes = 0;
+ cResult->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) );
+ // add the cubes
+ Kit_SopForEachCube( cSop, uCube, i )
+ Kit_SopPushCube( cResult, uCube );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the quotient of division by literal.]
+
+ Description [Reduces the cover to be equal to the result of
+ division of the given cover by the literal.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_SopDivideByLiteralQuo( Kit_Sop_t * cSop, int iLit )
+{
+ unsigned uCube;
+ int i, k = 0;
+ Kit_SopForEachCube( cSop, uCube, i )
+ {
+ if ( Kit_CubeHasLit(uCube, iLit) )
+ Kit_SopWriteCube( cSop, Kit_CubeRemLit(uCube, iLit), k++ );
+ }
+ Kit_SopShrink( cSop, k );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Divides cover by one cube.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_SopDivideByCube( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory )
+{
+ unsigned uCube, uDiv;
+ int i;
+ // get the only cube
+ assert( Kit_SopCubeNum(cDiv) == 1 );
+ uDiv = Kit_SopCube(cDiv, 0);
+ // allocate covers
+ vQuo->nCubes = 0;
+ vQuo->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) );
+ vRem->nCubes = 0;
+ vRem->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) );
+ // sort the cubes
+ Kit_SopForEachCube( cSop, uCube, i )
+ {
+ if ( Kit_CubeContains( uCube, uDiv ) )
+ Kit_SopPushCube( vQuo, Kit_CubeSharp(uCube, uDiv) );
+ else
+ Kit_SopPushCube( vRem, uCube );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Divides cover by one cube.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_SopDivideInternal( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory )
+{
+ unsigned uCube, uDiv;
+ unsigned uCube2 = 0; // Suppress "might be used uninitialized"
+ unsigned uDiv2, uQuo;
+ int i, i2, k, k2, nCubesRem;
+ assert( Kit_SopCubeNum(cSop) >= Kit_SopCubeNum(cDiv) );
+ // consider special case
+ if ( Kit_SopCubeNum(cDiv) == 1 )
+ {
+ Kit_SopDivideByCube( cSop, cDiv, vQuo, vRem, vMemory );
+ return;
+ }
+ // allocate quotient
+ vQuo->nCubes = 0;
+ vQuo->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) / Kit_SopCubeNum(cDiv) );
+ // for each cube of the cover
+ // it either belongs to the quotient or to the remainder
+ Kit_SopForEachCube( cSop, uCube, i )
+ {
+ // skip taken cubes
+ if ( Kit_CubeIsMarked(uCube) )
+ continue;
+ // find a matching cube in the divisor
+ uDiv = ~0;
+ Kit_SopForEachCube( cDiv, uDiv, k )
+ if ( Kit_CubeContains( uCube, uDiv ) )
+ break;
+ // the cube is not found
+ if ( k == Kit_SopCubeNum(cDiv) )
+ continue;
+ // the quotient cube exists
+ uQuo = Kit_CubeSharp( uCube, uDiv );
+ // find corresponding cubes for other cubes of the divisor
+ uDiv2 = ~0;
+ Kit_SopForEachCube( cDiv, uDiv2, k2 )
+ {
+ if ( k2 == k )
+ continue;
+ // find a matching cube
+ Kit_SopForEachCube( cSop, uCube2, i2 )
+ {
+ // skip taken cubes
+ if ( Kit_CubeIsMarked(uCube2) )
+ continue;
+ // check if the cube can be used
+ if ( Kit_CubeContains( uCube2, uDiv2 ) && uQuo == Kit_CubeSharp( uCube2, uDiv2 ) )
+ break;
+ }
+ // the case when the cube is not found
+ if ( i2 == Kit_SopCubeNum(cSop) )
+ break;
+ }
+ // we did not find some cubes - continue looking at other cubes
+ if ( k2 != Kit_SopCubeNum(cDiv) )
+ continue;
+ // we found all cubes - add the quotient cube
+ Kit_SopPushCube( vQuo, uQuo );
+
+ // mark the first cube
+ Kit_SopWriteCube( cSop, Kit_CubeMark(uCube), i );
+ // mark other cubes that have this quotient
+ Kit_SopForEachCube( cDiv, uDiv2, k2 )
+ {
+ if ( k2 == k )
+ continue;
+ // find a matching cube
+ Kit_SopForEachCube( cSop, uCube2, i2 )
+ {
+ // skip taken cubes
+ if ( Kit_CubeIsMarked(uCube2) )
+ continue;
+ // check if the cube can be used
+ if ( Kit_CubeContains( uCube2, uDiv2 ) && uQuo == Kit_CubeSharp( uCube2, uDiv2 ) )
+ break;
+ }
+ assert( i2 < Kit_SopCubeNum(cSop) );
+ // the cube is found, mark it
+ // (later we will add all unmarked cubes to the remainder)
+ Kit_SopWriteCube( cSop, Kit_CubeMark(uCube2), i2 );
+ }
+ }
+ // determine the number of cubes in the remainder
+ nCubesRem = Kit_SopCubeNum(cSop) - Kit_SopCubeNum(vQuo) * Kit_SopCubeNum(cDiv);
+ // allocate remainder
+ vRem->nCubes = 0;
+ vRem->pCubes = Vec_IntFetch( vMemory, nCubesRem );
+ // finally add the remaining unmarked cubes to the remainder
+ // and clean the marked cubes in the cover
+ Kit_SopForEachCube( cSop, uCube, i )
+ {
+ if ( !Kit_CubeIsMarked(uCube) )
+ {
+ Kit_SopPushCube( vRem, uCube );
+ continue;
+ }
+ Kit_SopWriteCube( cSop, Kit_CubeUnmark(uCube), i );
+ }
+ assert( nCubesRem == Kit_SopCubeNum(vRem) );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the common cube.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+static inline unsigned Kit_SopCommonCube( Kit_Sop_t * cSop )
+{
+ unsigned uMask, uCube;
+ int i;
+ uMask = ~(unsigned)0;
+ Kit_SopForEachCube( cSop, uCube, i )
+ uMask &= uCube;
+ return uMask;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Makes the cover cube-ABC_FREE.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_SopMakeCubeFree( Kit_Sop_t * cSop )
+{
+ unsigned uMask, uCube;
+ int i;
+ uMask = Kit_SopCommonCube( cSop );
+ if ( uMask == 0 )
+ return;
+ // remove the common cube
+ Kit_SopForEachCube( cSop, uCube, i )
+ Kit_SopWriteCube( cSop, Kit_CubeSharp(uCube, uMask), i );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Checks if the cover is cube-ABC_FREE.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_SopIsCubeFree( Kit_Sop_t * cSop )
+{
+ return Kit_SopCommonCube( cSop ) == 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates SOP composes of the common cube of the given SOP.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_SopCommonCubeCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory )
+{
+ assert( Kit_SopCubeNum(cSop) > 0 );
+ cResult->nCubes = 0;
+ cResult->pCubes = Vec_IntFetch( vMemory, 1 );
+ Kit_SopPushCube( cResult, Kit_SopCommonCube(cSop) );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Find any literal that occurs more than once.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_SopAnyLiteral( Kit_Sop_t * cSop, int nLits )
+{
+ unsigned uCube;
+ int i, k, nLitsCur;
+ // go through each literal
+ for ( i = 0; i < nLits; i++ )
+ {
+ // go through all the cubes
+ nLitsCur = 0;
+ Kit_SopForEachCube( cSop, uCube, k )
+ if ( Kit_CubeHasLit(uCube, i) )
+ nLitsCur++;
+ if ( nLitsCur > 1 )
+ return i;
+ }
+ return -1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Find the least often occurring literal.]
+
+ Description [Find the least often occurring literal among those
+ that occur more than once.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_SopWorstLiteral( Kit_Sop_t * cSop, int nLits )
+{
+ unsigned uCube;
+ int i, k, iMin, nLitsMin, nLitsCur;
+ int fUseFirst = 1;
+
+ // go through each literal
+ iMin = -1;
+ nLitsMin = 1000000;
+ for ( i = 0; i < nLits; i++ )
+ {
+ // go through all the cubes
+ nLitsCur = 0;
+ Kit_SopForEachCube( cSop, uCube, k )
+ if ( Kit_CubeHasLit(uCube, i) )
+ nLitsCur++;
+ // skip the literal that does not occur or occurs once
+ if ( nLitsCur < 2 )
+ continue;
+ // check if this is the best literal
+ if ( fUseFirst )
+ {
+ if ( nLitsMin > nLitsCur )
+ {
+ nLitsMin = nLitsCur;
+ iMin = i;
+ }
+ }
+ else
+ {
+ if ( nLitsMin >= nLitsCur )
+ {
+ nLitsMin = nLitsCur;
+ iMin = i;
+ }
+ }
+ }
+ if ( nLitsMin < 1000000 )
+ return iMin;
+ return -1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Find the least often occurring literal.]
+
+ Description [Find the least often occurring literal among those
+ that occur more than once.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_SopBestLiteral( Kit_Sop_t * cSop, int nLits, unsigned uMask )
+{
+ unsigned uCube;
+ int i, k, iMax, nLitsMax, nLitsCur;
+ int fUseFirst = 1;
+
+ // go through each literal
+ iMax = -1;
+ nLitsMax = -1;
+ for ( i = 0; i < nLits; i++ )
+ {
+ if ( !Kit_CubeHasLit(uMask, i) )
+ continue;
+ // go through all the cubes
+ nLitsCur = 0;
+ Kit_SopForEachCube( cSop, uCube, k )
+ if ( Kit_CubeHasLit(uCube, i) )
+ nLitsCur++;
+ // skip the literal that does not occur or occurs once
+ if ( nLitsCur < 2 )
+ continue;
+ // check if this is the best literal
+ if ( fUseFirst )
+ {
+ if ( nLitsMax < nLitsCur )
+ {
+ nLitsMax = nLitsCur;
+ iMax = i;
+ }
+ }
+ else
+ {
+ if ( nLitsMax <= nLitsCur )
+ {
+ nLitsMax = nLitsCur;
+ iMax = i;
+ }
+ }
+ }
+ if ( nLitsMax >= 0 )
+ return iMax;
+ return -1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes a level-zero kernel.]
+
+ Description [Modifies the cover to contain one level-zero kernel.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_SopDivisorZeroKernel_rec( Kit_Sop_t * cSop, int nLits )
+{
+ int iLit;
+ // find any literal that occurs at least two times
+ iLit = Kit_SopWorstLiteral( cSop, nLits );
+ if ( iLit == -1 )
+ return;
+ // derive the cube-free quotient
+ Kit_SopDivideByLiteralQuo( cSop, iLit ); // the same cover
+ Kit_SopMakeCubeFree( cSop ); // the same cover
+ // call recursively
+ Kit_SopDivisorZeroKernel_rec( cSop, nLits ); // the same cover
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the quick divisor of the cover.]
+
+ Description [Returns 0, if there is no divisor other than trivial.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_SopDivisor( Kit_Sop_t * cResult, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory )
+{
+ if ( Kit_SopCubeNum(cSop) <= 1 )
+ return 0;
+ if ( Kit_SopAnyLiteral( cSop, nLits ) == -1 )
+ return 0;
+ // duplicate the cover
+ Kit_SopDup( cResult, cSop, vMemory );
+ // perform the kerneling
+ Kit_SopDivisorZeroKernel_rec( cResult, nLits );
+ assert( Kit_SopCubeNum(cResult) > 0 );
+ return 1;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Create the one-literal cover with the best literal from cSop.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_SopBestLiteralCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, unsigned uCube, int nLits, Vec_Int_t * vMemory )
+{
+ int iLitBest;
+ // get the best literal
+ iLitBest = Kit_SopBestLiteral( cSop, nLits, uCube );
+ // start the cover
+ cResult->nCubes = 0;
+ cResult->pCubes = Vec_IntFetch( vMemory, 1 );
+ // set the cube
+ Kit_SopPushCube( cResult, Kit_CubeSetLit(0, iLitBest) );
+}
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/kitTruth.c b/src/bool/kit/kitTruth.c
new file mode 100644
index 00000000..bd8bbb1c
--- /dev/null
+++ b/src/bool/kit/kitTruth.c
@@ -0,0 +1,2222 @@
+/**CFile****************************************************************
+
+ FileName [kitTruth.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis [Procedures involving truth tables.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Dec 6, 2006.]
+
+ Revision [$Id: kitTruth.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "kit.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Swaps two adjacent variables in the truth table.]
+
+ Description [Swaps var number Start and var number Start+1 (0-based numbers).
+ The input truth table is pIn. The output truth table is pOut.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int iVar )
+{
+ static unsigned PMasks[4][3] = {
+ { 0x99999999, 0x22222222, 0x44444444 },
+ { 0xC3C3C3C3, 0x0C0C0C0C, 0x30303030 },
+ { 0xF00FF00F, 0x00F000F0, 0x0F000F00 },
+ { 0xFF0000FF, 0x0000FF00, 0x00FF0000 }
+ };
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step, Shift;
+
+ assert( iVar < nVars - 1 );
+ if ( iVar < 4 )
+ {
+ Shift = (1 << iVar);
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & PMasks[iVar][0]) | ((pIn[i] & PMasks[iVar][1]) << Shift) | ((pIn[i] & PMasks[iVar][2]) >> Shift);
+ }
+ else if ( iVar > 4 )
+ {
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 4*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ pOut[i] = pIn[i];
+ for ( i = 0; i < Step; i++ )
+ pOut[Step+i] = pIn[2*Step+i];
+ for ( i = 0; i < Step; i++ )
+ pOut[2*Step+i] = pIn[Step+i];
+ for ( i = 0; i < Step; i++ )
+ pOut[3*Step+i] = pIn[3*Step+i];
+ pIn += 4*Step;
+ pOut += 4*Step;
+ }
+ }
+ else // if ( iVar == 4 )
+ {
+ for ( i = 0; i < nWords; i += 2 )
+ {
+ pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16);
+ pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16);
+ }
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Swaps two adjacent variables in the truth table.]
+
+ Description [Swaps var number Start and var number Start+1 (0-based numbers).
+ The input truth table is pIn. The output truth table is pOut.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthSwapAdjacentVars2( unsigned * pIn, unsigned * pOut, int nVars, int Start )
+{
+ int nWords = (nVars <= 5)? 1 : (1 << (nVars-5));
+ int i, k, Step;
+
+ assert( Start < nVars - 1 );
+ switch ( Start )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0x99999999) | ((pIn[i] & 0x22222222) << 1) | ((pIn[i] & 0x44444444) >> 1);
+ return;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0xC3C3C3C3) | ((pIn[i] & 0x0C0C0C0C) << 2) | ((pIn[i] & 0x30303030) >> 2);
+ return;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0xF00FF00F) | ((pIn[i] & 0x00F000F0) << 4) | ((pIn[i] & 0x0F000F00) >> 4);
+ return;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0xFF0000FF) | ((pIn[i] & 0x0000FF00) << 8) | ((pIn[i] & 0x00FF0000) >> 8);
+ return;
+ case 4:
+ for ( i = 0; i < nWords; i += 2 )
+ {
+ pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16);
+ pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16);
+ }
+ return;
+ default:
+ Step = (1 << (Start - 5));
+ for ( k = 0; k < nWords; k += 4*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ pOut[i] = pIn[i];
+ for ( i = 0; i < Step; i++ )
+ pOut[Step+i] = pIn[2*Step+i];
+ for ( i = 0; i < Step; i++ )
+ pOut[2*Step+i] = pIn[Step+i];
+ for ( i = 0; i < Step; i++ )
+ pOut[3*Step+i] = pIn[3*Step+i];
+ pIn += 4*Step;
+ pOut += 4*Step;
+ }
+ return;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Expands the truth table according to the phase.]
+
+ Description [The input and output truth tables are in pIn/pOut. The current number
+ of variables is nVars. The total number of variables in nVarsAll. The last argument
+ (Phase) contains shows where the variables should go.]
+
+ SideEffects [The input truth table is modified.]
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn )
+{
+ unsigned * pTemp;
+ int i, k, Var = nVars - 1, Counter = 0;
+ for ( i = nVarsAll - 1; i >= 0; i-- )
+ if ( Phase & (1 << i) )
+ {
+ for ( k = Var; k < i; k++ )
+ {
+ Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k );
+ pTemp = pIn; pIn = pOut; pOut = pTemp;
+ Counter++;
+ }
+ Var--;
+ }
+ assert( Var == -1 );
+ // swap if it was moved an even number of times
+ if ( fReturnIn ^ !(Counter & 1) )
+ Kit_TruthCopy( pOut, pIn, nVarsAll );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Shrinks the truth table according to the phase.]
+
+ Description [The input and output truth tables are in pIn/pOut. The current number
+ of variables is nVars. The total number of variables in nVarsAll. The last argument
+ (Phase) shows what variables should remain.]
+
+ SideEffects [The input truth table is modified.]
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn )
+{
+ unsigned * pTemp;
+ int i, k, Var = 0, Counter = 0;
+ for ( i = 0; i < nVarsAll; i++ )
+ if ( Phase & (1 << i) )
+ {
+ for ( k = i-1; k >= Var; k-- )
+ {
+ Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k );
+ pTemp = pIn; pIn = pOut; pOut = pTemp;
+ Counter++;
+ }
+ Var++;
+ }
+ assert( Var == nVars );
+ // swap if it was moved an even number of times
+ if ( fReturnIn ^ !(Counter & 1) )
+ Kit_TruthCopy( pOut, pIn, nVarsAll );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Implement give permutation.]
+
+ Description [The input and output truth tables are in pIn/pOut.
+ The number of variables is nVars. Permutation is in pPerm.]
+
+ SideEffects [The input truth table is modified.]
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthPermute( unsigned * pOut, unsigned * pIn, int nVars, char * pPerm, int fReturnIn )
+{
+ unsigned * pTemp;
+ int i, Temp, fChange, Counter = 0;
+ do {
+ fChange = 0;
+ for ( i = 0; i < nVars-1; i++ )
+ {
+ assert( pPerm[i] != pPerm[i+1] );
+ if ( pPerm[i] <= pPerm[i+1] )
+ continue;
+ Counter++;
+ fChange = 1;
+
+ Temp = pPerm[i];
+ pPerm[i] = pPerm[i+1];
+ pPerm[i+1] = Temp;
+
+ Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, i );
+ pTemp = pIn; pIn = pOut; pOut = pTemp;
+ }
+ } while ( fChange );
+ if ( fReturnIn ^ !(Counter & 1) )
+ Kit_TruthCopy( pOut, pIn, nVars );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if TT depends on the given variable.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ if ( (pTruth[i] & 0x55555555) != ((pTruth[i] & 0xAAAAAAAA) >> 1) )
+ return 1;
+ return 0;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ if ( (pTruth[i] & 0x33333333) != ((pTruth[i] & 0xCCCCCCCC) >> 2) )
+ return 1;
+ return 0;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ if ( (pTruth[i] & 0x0F0F0F0F) != ((pTruth[i] & 0xF0F0F0F0) >> 4) )
+ return 1;
+ return 0;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ if ( (pTruth[i] & 0x00FF00FF) != ((pTruth[i] & 0xFF00FF00) >> 8) )
+ return 1;
+ return 0;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ if ( (pTruth[i] & 0x0000FFFF) != ((pTruth[i] & 0xFFFF0000) >> 16) )
+ return 1;
+ return 0;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ if ( pTruth[i] != pTruth[Step+i] )
+ return 1;
+ pTruth += 2*Step;
+ }
+ return 0;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the number of support vars.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_TruthSupportSize( unsigned * pTruth, int nVars )
+{
+ int i, Counter = 0;
+ for ( i = 0; i < nVars; i++ )
+ Counter += Kit_TruthVarInSupport( pTruth, nVars, i );
+ return Counter;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns support of the function.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned Kit_TruthSupport( unsigned * pTruth, int nVars )
+{
+ int i, Support = 0;
+ for ( i = 0; i < nVars; i++ )
+ if ( Kit_TruthVarInSupport( pTruth, nVars, i ) )
+ Support |= (1 << i);
+ return Support;
+}
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Computes negative cofactor of the function.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthCofactor0( unsigned * pTruth, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = (pTruth[i] & 0x55555555) | ((pTruth[i] & 0x55555555) << 1);
+ return;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = (pTruth[i] & 0x33333333) | ((pTruth[i] & 0x33333333) << 2);
+ return;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = (pTruth[i] & 0x0F0F0F0F) | ((pTruth[i] & 0x0F0F0F0F) << 4);
+ return;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = (pTruth[i] & 0x00FF00FF) | ((pTruth[i] & 0x00FF00FF) << 8);
+ return;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = (pTruth[i] & 0x0000FFFF) | ((pTruth[i] & 0x0000FFFF) << 16);
+ return;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ pTruth[Step+i] = pTruth[i];
+ pTruth += 2*Step;
+ }
+ return;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes negative cofactor of the function.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_TruthCofactor0Count( unsigned * pTruth, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step, Counter = 0;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ Counter += Kit_WordCountOnes(pTruth[i] & 0x55555555);
+ return Counter;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ Counter += Kit_WordCountOnes(pTruth[i] & 0x33333333);
+ return Counter;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ Counter += Kit_WordCountOnes(pTruth[i] & 0x0F0F0F0F);
+ return Counter;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ Counter += Kit_WordCountOnes(pTruth[i] & 0x00FF00FF);
+ return Counter;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ Counter += Kit_WordCountOnes(pTruth[i] & 0x0000FFFF);
+ return Counter;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ Counter += Kit_WordCountOnes(pTruth[i]);
+ pTruth += 2*Step;
+ }
+ return Counter;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes positive cofactor of the function.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthCofactor1( unsigned * pTruth, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = (pTruth[i] & 0xAAAAAAAA) | ((pTruth[i] & 0xAAAAAAAA) >> 1);
+ return;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = (pTruth[i] & 0xCCCCCCCC) | ((pTruth[i] & 0xCCCCCCCC) >> 2);
+ return;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = (pTruth[i] & 0xF0F0F0F0) | ((pTruth[i] & 0xF0F0F0F0) >> 4);
+ return;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = (pTruth[i] & 0xFF00FF00) | ((pTruth[i] & 0xFF00FF00) >> 8);
+ return;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = (pTruth[i] & 0xFFFF0000) | ((pTruth[i] & 0xFFFF0000) >> 16);
+ return;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ pTruth[i] = pTruth[Step+i];
+ pTruth += 2*Step;
+ }
+ return;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes positive cofactor of the function.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthCofactor0New( unsigned * pOut, unsigned * pIn, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0x55555555) | ((pIn[i] & 0x55555555) << 1);
+ return;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0x33333333) | ((pIn[i] & 0x33333333) << 2);
+ return;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0x0F0F0F0F) | ((pIn[i] & 0x0F0F0F0F) << 4);
+ return;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0x00FF00FF) | ((pIn[i] & 0x00FF00FF) << 8);
+ return;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i] & 0x0000FFFF) << 16);
+ return;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ pOut[i] = pOut[Step+i] = pIn[i];
+ pIn += 2*Step;
+ pOut += 2*Step;
+ }
+ return;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes positive cofactor of the function.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthCofactor1New( unsigned * pOut, unsigned * pIn, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0xAAAAAAAA) | ((pIn[i] & 0xAAAAAAAA) >> 1);
+ return;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0xCCCCCCCC) | ((pIn[i] & 0xCCCCCCCC) >> 2);
+ return;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0xF0F0F0F0) | ((pIn[i] & 0xF0F0F0F0) >> 4);
+ return;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0xFF00FF00) | ((pIn[i] & 0xFF00FF00) >> 8);
+ return;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16);
+ return;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ pOut[i] = pOut[Step+i] = pIn[Step+i];
+ pIn += 2*Step;
+ pOut += 2*Step;
+ }
+ return;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes negative cofactor of the function.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_TruthVarIsVacuous( unsigned * pOnset, unsigned * pOffset, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ if ( ((pOnset[i] & (pOffset[i] >> 1)) | (pOffset[i] & (pOnset[i] >> 1))) & 0x55555555 )
+ return 0;
+ return 1;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ if ( ((pOnset[i] & (pOffset[i] >> 2)) | (pOffset[i] & (pOnset[i] >> 2))) & 0x33333333 )
+ return 0;
+ return 1;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ if ( ((pOnset[i] & (pOffset[i] >> 4)) | (pOffset[i] & (pOnset[i] >> 4))) & 0x0F0F0F0F )
+ return 0;
+ return 1;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ if ( ((pOnset[i] & (pOffset[i] >> 8)) | (pOffset[i] & (pOnset[i] >> 8))) & 0x00FF00FF )
+ return 0;
+ return 1;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ if ( ((pOnset[i] & (pOffset[i] >> 16)) | (pOffset[i] & (pOnset[i] >> 16))) & 0x0000FFFF )
+ return 0;
+ return 1;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ if ( (pOnset[i] & pOffset[Step+i]) | (pOffset[i] & pOnset[Step+i]) )
+ return 0;
+ pOnset += 2*Step;
+ pOffset += 2*Step;
+ }
+ return 1;
+ }
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Existentially quantifies the variable.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthExist( unsigned * pTruth, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] |= ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1);
+ return;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] |= ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2);
+ return;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] |= ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4);
+ return;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] |= ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8);
+ return;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] |= ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16);
+ return;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ {
+ pTruth[i] |= pTruth[Step+i];
+ pTruth[Step+i] = pTruth[i];
+ }
+ pTruth += 2*Step;
+ }
+ return;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Existentially quantifies the variable.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthExistNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] | ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1);
+ return;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] | ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2);
+ return;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] | ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4);
+ return;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] | ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8);
+ return;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] | ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16);
+ return;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ {
+ pRes[i] = pTruth[i] | pTruth[Step+i];
+ pRes[Step+i] = pRes[i];
+ }
+ pRes += 2*Step;
+ pTruth += 2*Step;
+ }
+ return;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Existantially quantifies the set of variables.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthExistSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask )
+{
+ int v;
+ Kit_TruthCopy( pRes, pTruth, nVars );
+ for ( v = 0; v < nVars; v++ )
+ if ( uMask & (1 << v) )
+ Kit_TruthExist( pRes, nVars, v );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Unversally quantifies the variable.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthForall( unsigned * pTruth, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] &= ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1);
+ return;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] &= ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2);
+ return;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] &= ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4);
+ return;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] &= ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8);
+ return;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] &= ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16);
+ return;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ {
+ pTruth[i] &= pTruth[Step+i];
+ pTruth[Step+i] = pTruth[i];
+ }
+ pTruth += 2*Step;
+ }
+ return;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Universally quantifies the variable.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthForallNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] & (((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1));
+ return;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] & (((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2));
+ return;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] & (((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4));
+ return;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] & (((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8));
+ return;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] & (((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16));
+ return;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ {
+ pRes[i] = pTruth[i] & pTruth[Step+i];
+ pRes[Step+i] = pRes[i];
+ }
+ pRes += 2*Step;
+ pTruth += 2*Step;
+ }
+ return;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Universally quantifies the variable.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthUniqueNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1));
+ return;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2));
+ return;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4));
+ return;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8));
+ return;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16));
+ return;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ {
+ pRes[i] = pTruth[i] ^ pTruth[Step+i];
+ pRes[Step+i] = pRes[i];
+ }
+ pRes += 2*Step;
+ pTruth += 2*Step;
+ }
+ return;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the number of minterms in the Boolean difference.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_TruthBooleanDiffCount( unsigned * pTruth, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step, Counter = 0;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >> 1)) & 0x55555555 );
+ return Counter;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >> 2)) & 0x33333333 );
+ return Counter;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >> 4)) & 0x0F0F0F0F );
+ return Counter;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >> 8)) & 0x00FF00FF );
+ return Counter;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >>16)) & 0x0000FFFF );
+ return Counter;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ Counter += Kit_WordCountOnes( pTruth[i] ^ pTruth[Step+i] );
+ pTruth += 2*Step;
+ }
+ return Counter;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the number of minterms in the Boolean difference.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_TruthXorCount( unsigned * pTruth0, unsigned * pTruth1, int nVars )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, Counter = 0;
+ for ( i = 0; i < nWords; i++ )
+ Counter += Kit_WordCountOnes( pTruth0[i] ^ pTruth1[i] );
+ return Counter;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Universally quantifies the set of variables.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthForallSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask )
+{
+ int v;
+ Kit_TruthCopy( pRes, pTruth, nVars );
+ for ( v = 0; v < nVars; v++ )
+ if ( uMask & (1 << v) )
+ Kit_TruthForall( pRes, nVars, v );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Multiplexes two functions with the given variable.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthMuxVar( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pCof0[i] & 0x55555555) | (pCof1[i] & 0xAAAAAAAA);
+ return;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pCof0[i] & 0x33333333) | (pCof1[i] & 0xCCCCCCCC);
+ return;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pCof0[i] & 0x0F0F0F0F) | (pCof1[i] & 0xF0F0F0F0);
+ return;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pCof0[i] & 0x00FF00FF) | (pCof1[i] & 0xFF00FF00);
+ return;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pCof0[i] & 0x0000FFFF) | (pCof1[i] & 0xFFFF0000);
+ return;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ {
+ pOut[i] = pCof0[i];
+ pOut[Step+i] = pCof1[Step+i];
+ }
+ pOut += 2*Step;
+ pCof0 += 2*Step;
+ pCof1 += 2*Step;
+ }
+ return;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Multiplexes two functions with the given variable.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthMuxVarPhase( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar, int fCompl0 )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+
+ if ( fCompl0 == 0 )
+ {
+ Kit_TruthMuxVar( pOut, pCof0, pCof1, nVars, iVar );
+ return;
+ }
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (~pCof0[i] & 0x55555555) | (pCof1[i] & 0xAAAAAAAA);
+ return;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (~pCof0[i] & 0x33333333) | (pCof1[i] & 0xCCCCCCCC);
+ return;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (~pCof0[i] & 0x0F0F0F0F) | (pCof1[i] & 0xF0F0F0F0);
+ return;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (~pCof0[i] & 0x00FF00FF) | (pCof1[i] & 0xFF00FF00);
+ return;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (~pCof0[i] & 0x0000FFFF) | (pCof1[i] & 0xFFFF0000);
+ return;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ {
+ pOut[i] = ~pCof0[i];
+ pOut[Step+i] = pCof1[Step+i];
+ }
+ pOut += 2*Step;
+ pCof0 += 2*Step;
+ pCof1 += 2*Step;
+ }
+ return;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Checks symmetry of two variables.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_TruthVarsSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1, unsigned * pCof0, unsigned * pCof1 )
+{
+ static unsigned uTemp0[32], uTemp1[32];
+ if ( pCof0 == NULL )
+ {
+ assert( nVars <= 10 );
+ pCof0 = uTemp0;
+ }
+ if ( pCof1 == NULL )
+ {
+ assert( nVars <= 10 );
+ pCof1 = uTemp1;
+ }
+ // compute Cof01
+ Kit_TruthCopy( pCof0, pTruth, nVars );
+ Kit_TruthCofactor0( pCof0, nVars, iVar0 );
+ Kit_TruthCofactor1( pCof0, nVars, iVar1 );
+ // compute Cof10
+ Kit_TruthCopy( pCof1, pTruth, nVars );
+ Kit_TruthCofactor1( pCof1, nVars, iVar0 );
+ Kit_TruthCofactor0( pCof1, nVars, iVar1 );
+ // compare
+ return Kit_TruthIsEqual( pCof0, pCof1, nVars );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Checks antisymmetry of two variables.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_TruthVarsAntiSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1, unsigned * pCof0, unsigned * pCof1 )
+{
+ static unsigned uTemp0[32], uTemp1[32];
+ if ( pCof0 == NULL )
+ {
+ assert( nVars <= 10 );
+ pCof0 = uTemp0;
+ }
+ if ( pCof1 == NULL )
+ {
+ assert( nVars <= 10 );
+ pCof1 = uTemp1;
+ }
+ // compute Cof00
+ Kit_TruthCopy( pCof0, pTruth, nVars );
+ Kit_TruthCofactor0( pCof0, nVars, iVar0 );
+ Kit_TruthCofactor0( pCof0, nVars, iVar1 );
+ // compute Cof11
+ Kit_TruthCopy( pCof1, pTruth, nVars );
+ Kit_TruthCofactor1( pCof1, nVars, iVar0 );
+ Kit_TruthCofactor1( pCof1, nVars, iVar1 );
+ // compare
+ return Kit_TruthIsEqual( pCof0, pCof1, nVars );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Changes phase of the function w.r.t. one variable.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthChangePhase( unsigned * pTruth, int nVars, int iVar )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Step;
+ unsigned Temp;
+
+ assert( iVar < nVars );
+ switch ( iVar )
+ {
+ case 0:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = ((pTruth[i] & 0x55555555) << 1) | ((pTruth[i] & 0xAAAAAAAA) >> 1);
+ return;
+ case 1:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = ((pTruth[i] & 0x33333333) << 2) | ((pTruth[i] & 0xCCCCCCCC) >> 2);
+ return;
+ case 2:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = ((pTruth[i] & 0x0F0F0F0F) << 4) | ((pTruth[i] & 0xF0F0F0F0) >> 4);
+ return;
+ case 3:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = ((pTruth[i] & 0x00FF00FF) << 8) | ((pTruth[i] & 0xFF00FF00) >> 8);
+ return;
+ case 4:
+ for ( i = 0; i < nWords; i++ )
+ pTruth[i] = ((pTruth[i] & 0x0000FFFF) << 16) | ((pTruth[i] & 0xFFFF0000) >> 16);
+ return;
+ default:
+ Step = (1 << (iVar - 5));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ {
+ Temp = pTruth[i];
+ pTruth[i] = pTruth[Step+i];
+ pTruth[Step+i] = Temp;
+ }
+ pTruth += 2*Step;
+ }
+ return;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes minimum overlap in supports of cofactors.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_TruthMinCofSuppOverlap( unsigned * pTruth, int nVars, int * pVarMin )
+{
+ static unsigned uCofactor[16];
+ int i, ValueCur, ValueMin, VarMin;
+ unsigned uSupp0, uSupp1;
+ int nVars0, nVars1;
+ assert( nVars <= 9 );
+ ValueMin = 32;
+ VarMin = -1;
+ for ( i = 0; i < nVars; i++ )
+ {
+ // get negative cofactor
+ Kit_TruthCopy( uCofactor, pTruth, nVars );
+ Kit_TruthCofactor0( uCofactor, nVars, i );
+ uSupp0 = Kit_TruthSupport( uCofactor, nVars );
+ nVars0 = Kit_WordCountOnes( uSupp0 );
+//Kit_PrintBinary( stdout, &uSupp0, 8 ); printf( "\n" );
+ // get positive cofactor
+ Kit_TruthCopy( uCofactor, pTruth, nVars );
+ Kit_TruthCofactor1( uCofactor, nVars, i );
+ uSupp1 = Kit_TruthSupport( uCofactor, nVars );
+ nVars1 = Kit_WordCountOnes( uSupp1 );
+//Kit_PrintBinary( stdout, &uSupp1, 8 ); printf( "\n" );
+ // get the number of common vars
+ ValueCur = Kit_WordCountOnes( uSupp0 & uSupp1 );
+ if ( ValueMin > ValueCur && nVars0 <= 5 && nVars1 <= 5 )
+ {
+ ValueMin = ValueCur;
+ VarMin = i;
+ }
+ if ( ValueMin == 0 )
+ break;
+ }
+ if ( pVarMin )
+ *pVarMin = VarMin;
+ return ValueMin;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Find the best cofactoring variable.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_TruthBestCofVar( unsigned * pTruth, int nVars, unsigned * pCof0, unsigned * pCof1 )
+{
+ int i, iBestVar, nSuppSizeCur0, nSuppSizeCur1, nSuppSizeCur, nSuppSizeMin;
+ if ( Kit_TruthIsConst0(pTruth, nVars) || Kit_TruthIsConst1(pTruth, nVars) )
+ return -1;
+ // iterate through variables
+ iBestVar = -1;
+ nSuppSizeMin = KIT_INFINITY;
+ for ( i = 0; i < nVars; i++ )
+ {
+ // cofactor the functiona and get support sizes
+ Kit_TruthCofactor0New( pCof0, pTruth, nVars, i );
+ Kit_TruthCofactor1New( pCof1, pTruth, nVars, i );
+ nSuppSizeCur0 = Kit_TruthSupportSize( pCof0, nVars );
+ nSuppSizeCur1 = Kit_TruthSupportSize( pCof1, nVars );
+ nSuppSizeCur = nSuppSizeCur0 + nSuppSizeCur1;
+ // compare this variable with other variables
+ if ( nSuppSizeMin > nSuppSizeCur )
+ {
+ nSuppSizeMin = nSuppSizeCur;
+ iBestVar = i;
+ }
+ }
+ assert( iBestVar != -1 );
+ // cofactor w.r.t. this variable
+ Kit_TruthCofactor0New( pCof0, pTruth, nVars, iBestVar );
+ Kit_TruthCofactor1New( pCof1, pTruth, nVars, iBestVar );
+ return iBestVar;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of 1's in each cofactor.]
+
+ Description [The resulting numbers are stored in the array of shorts,
+ whose length is 2*nVars. The number of 1's is counted in a different
+ space than the original function. For example, if the function depends
+ on k variables, the cofactors are assumed to depend on k-1 variables.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthCountOnesInCofs( unsigned * pTruth, int nVars, short * pStore )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Counter;
+ memset( pStore, 0, sizeof(short) * 2 * nVars );
+ if ( nVars <= 5 )
+ {
+ if ( nVars > 0 )
+ {
+ pStore[2*0+0] = Kit_WordCountOnes( pTruth[0] & 0x55555555 );
+ pStore[2*0+1] = Kit_WordCountOnes( pTruth[0] & 0xAAAAAAAA );
+ }
+ if ( nVars > 1 )
+ {
+ pStore[2*1+0] = Kit_WordCountOnes( pTruth[0] & 0x33333333 );
+ pStore[2*1+1] = Kit_WordCountOnes( pTruth[0] & 0xCCCCCCCC );
+ }
+ if ( nVars > 2 )
+ {
+ pStore[2*2+0] = Kit_WordCountOnes( pTruth[0] & 0x0F0F0F0F );
+ pStore[2*2+1] = Kit_WordCountOnes( pTruth[0] & 0xF0F0F0F0 );
+ }
+ if ( nVars > 3 )
+ {
+ pStore[2*3+0] = Kit_WordCountOnes( pTruth[0] & 0x00FF00FF );
+ pStore[2*3+1] = Kit_WordCountOnes( pTruth[0] & 0xFF00FF00 );
+ }
+ if ( nVars > 4 )
+ {
+ pStore[2*4+0] = Kit_WordCountOnes( pTruth[0] & 0x0000FFFF );
+ pStore[2*4+1] = Kit_WordCountOnes( pTruth[0] & 0xFFFF0000 );
+ }
+ return;
+ }
+ // nVars >= 6
+ // count 1's for all other variables
+ for ( k = 0; k < nWords; k++ )
+ {
+ Counter = Kit_WordCountOnes( pTruth[k] );
+ for ( i = 5; i < nVars; i++ )
+ if ( k & (1 << (i-5)) )
+ pStore[2*i+1] += Counter;
+ else
+ pStore[2*i+0] += Counter;
+ }
+ // count 1's for the first five variables
+ for ( k = 0; k < nWords/2; k++ )
+ {
+ pStore[2*0+0] += Kit_WordCountOnes( (pTruth[0] & 0x55555555) | ((pTruth[1] & 0x55555555) << 1) );
+ pStore[2*0+1] += Kit_WordCountOnes( (pTruth[0] & 0xAAAAAAAA) | ((pTruth[1] & 0xAAAAAAAA) >> 1) );
+ pStore[2*1+0] += Kit_WordCountOnes( (pTruth[0] & 0x33333333) | ((pTruth[1] & 0x33333333) << 2) );
+ pStore[2*1+1] += Kit_WordCountOnes( (pTruth[0] & 0xCCCCCCCC) | ((pTruth[1] & 0xCCCCCCCC) >> 2) );
+ pStore[2*2+0] += Kit_WordCountOnes( (pTruth[0] & 0x0F0F0F0F) | ((pTruth[1] & 0x0F0F0F0F) << 4) );
+ pStore[2*2+1] += Kit_WordCountOnes( (pTruth[0] & 0xF0F0F0F0) | ((pTruth[1] & 0xF0F0F0F0) >> 4) );
+ pStore[2*3+0] += Kit_WordCountOnes( (pTruth[0] & 0x00FF00FF) | ((pTruth[1] & 0x00FF00FF) << 8) );
+ pStore[2*3+1] += Kit_WordCountOnes( (pTruth[0] & 0xFF00FF00) | ((pTruth[1] & 0xFF00FF00) >> 8) );
+ pStore[2*4+0] += Kit_WordCountOnes( (pTruth[0] & 0x0000FFFF) | ((pTruth[1] & 0x0000FFFF) << 16) );
+ pStore[2*4+1] += Kit_WordCountOnes( (pTruth[0] & 0xFFFF0000) | ((pTruth[1] & 0xFFFF0000) >> 16) );
+ pTruth += 2;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of 1's in each negative cofactor.]
+
+ Description [The resulting numbers are stored in the array of shorts,
+ whose length is nVars. The number of 1's is counted in a different
+ space than the original function. For example, if the function depends
+ on k variables, the cofactors are assumed to depend on k-1 variables.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthCountOnesInCofs0( unsigned * pTruth, int nVars, short * pStore )
+{
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, k, Counter;
+ memset( pStore, 0, sizeof(short) * nVars );
+ if ( nVars <= 5 )
+ {
+ if ( nVars > 0 )
+ pStore[0] = Kit_WordCountOnes( pTruth[0] & 0x55555555 );
+ if ( nVars > 1 )
+ pStore[1] = Kit_WordCountOnes( pTruth[0] & 0x33333333 );
+ if ( nVars > 2 )
+ pStore[2] = Kit_WordCountOnes( pTruth[0] & 0x0F0F0F0F );
+ if ( nVars > 3 )
+ pStore[3] = Kit_WordCountOnes( pTruth[0] & 0x00FF00FF );
+ if ( nVars > 4 )
+ pStore[4] = Kit_WordCountOnes( pTruth[0] & 0x0000FFFF );
+ return;
+ }
+ // nVars >= 6
+ // count 1's for all other variables
+ for ( k = 0; k < nWords; k++ )
+ {
+ Counter = Kit_WordCountOnes( pTruth[k] );
+ for ( i = 5; i < nVars; i++ )
+ if ( (k & (1 << (i-5))) == 0 )
+ pStore[i] += Counter;
+ }
+ // count 1's for the first five variables
+ for ( k = 0; k < nWords/2; k++ )
+ {
+ pStore[0] += Kit_WordCountOnes( (pTruth[0] & 0x55555555) | ((pTruth[1] & 0x55555555) << 1) );
+ pStore[1] += Kit_WordCountOnes( (pTruth[0] & 0x33333333) | ((pTruth[1] & 0x33333333) << 2) );
+ pStore[2] += Kit_WordCountOnes( (pTruth[0] & 0x0F0F0F0F) | ((pTruth[1] & 0x0F0F0F0F) << 4) );
+ pStore[3] += Kit_WordCountOnes( (pTruth[0] & 0x00FF00FF) | ((pTruth[1] & 0x00FF00FF) << 8) );
+ pStore[4] += Kit_WordCountOnes( (pTruth[0] & 0x0000FFFF) | ((pTruth[1] & 0x0000FFFF) << 16) );
+ pTruth += 2;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of 1's in each cofactor.]
+
+ Description [Verifies the above procedure.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthCountOnesInCofsSlow( unsigned * pTruth, int nVars, short * pStore, unsigned * pAux )
+{
+ int i;
+ for ( i = 0; i < nVars; i++ )
+ {
+ Kit_TruthCofactor0New( pAux, pTruth, nVars, i );
+ pStore[2*i+0] = Kit_TruthCountOnes( pAux, nVars ) / 2;
+ Kit_TruthCofactor1New( pAux, pTruth, nVars, i );
+ pStore[2*i+1] = Kit_TruthCountOnes( pAux, nVars ) / 2;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Canonicize the truth table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned Kit_TruthHash( unsigned * pIn, int nWords )
+{
+ // The 1,024 smallest prime numbers used to compute the hash value
+ // http://www.math.utah.edu/~alfeld/math/primelist.html
+ static int HashPrimes[1024] = { 2, 3, 5,
+ 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
+ 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,
+ 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,
+ 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
+ 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,
+ 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
+ 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751,
+ 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877,
+ 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,
+ 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091,
+ 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193,
+ 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291,
+ 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423,
+ 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493,
+ 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601,
+ 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699,
+ 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811,
+ 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,
+ 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029,
+ 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137,
+ 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267,
+ 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,
+ 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459,
+ 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593,
+ 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693,
+ 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791,
+ 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903,
+ 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023,
+ 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167,
+ 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271,
+ 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373,
+ 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511,
+ 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607,
+ 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709,
+ 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833,
+ 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931,
+ 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057,
+ 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177,
+ 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283,
+ 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423,
+ 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547,
+ 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657,
+ 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789,
+ 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931,
+ 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011,
+ 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147,
+ 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279,
+ 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413,
+ 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507,
+ 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647,
+ 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743,
+ 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857,
+ 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007,
+ 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121,
+ 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247,
+ 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343,
+ 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473,
+ 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607,
+ 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733,
+ 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857,
+ 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971,
+ 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103,
+ 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229,
+ 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369,
+ 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517,
+ 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603,
+ 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723,
+ 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873,
+ 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009,
+ 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123,
+ 8147, 8161 };
+ int i;
+ unsigned uHashKey;
+ assert( nWords <= 1024 );
+ uHashKey = 0;
+ for ( i = 0; i < nWords; i++ )
+ uHashKey ^= HashPrimes[i] * pIn[i];
+ return uHashKey;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Canonicize the truth table.]
+
+ Description [Returns the phase. ]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+unsigned Kit_TruthSemiCanonicize( unsigned * pInOut, unsigned * pAux, int nVars, char * pCanonPerm, short * pStore )
+{
+// short pStore2[32];
+ unsigned * pIn = pInOut, * pOut = pAux, * pTemp;
+ int nWords = Kit_TruthWordNum( nVars );
+ int i, Temp, fChange, Counter, nOnes;//, k, j, w, Limit;
+ unsigned uCanonPhase;
+
+ // canonicize output
+ uCanonPhase = 0;
+
+ nOnes = Kit_TruthCountOnes(pIn, nVars);
+ //if(pIn[0] & 1)
+ if ( (nOnes > nWords * 16) )//|| ((nOnes == nWords * 16) && (pIn[0] & 1)) )
+ {
+ uCanonPhase |= (1 << nVars);
+ Kit_TruthNot( pIn, pIn, nVars );
+ }
+
+ // collect the minterm counts
+ Kit_TruthCountOnesInCofs( pIn, nVars, pStore );
+/*
+ Kit_TruthCountOnesInCofsSlow( pIn, nVars, pStore2, pAux );
+ for ( i = 0; i < 2*nVars; i++ )
+ {
+ assert( pStore[i] == pStore2[i] );
+ }
+*/
+ // canonicize phase
+ for ( i = 0; i < nVars; i++ )
+ {
+ if ( pStore[2*i+0] <= pStore[2*i+1] )
+ continue;
+ uCanonPhase |= (1 << i);
+ Temp = pStore[2*i+0];
+ pStore[2*i+0] = pStore[2*i+1];
+ pStore[2*i+1] = Temp;
+ Kit_TruthChangePhase( pIn, nVars, i );
+ }
+
+// Kit_PrintHexadecimal( stdout, pIn, nVars );
+// printf( "\n" );
+
+ // permute
+ Counter = 0;
+ do {
+ fChange = 0;
+ for ( i = 0; i < nVars-1; i++ )
+ {
+ if ( pStore[2*i] <= pStore[2*(i+1)] )
+ continue;
+ Counter++;
+ fChange = 1;
+
+ Temp = pCanonPerm[i];
+ pCanonPerm[i] = pCanonPerm[i+1];
+ pCanonPerm[i+1] = Temp;
+
+ Temp = pStore[2*i];
+ pStore[2*i] = pStore[2*(i+1)];
+ pStore[2*(i+1)] = Temp;
+
+ Temp = pStore[2*i+1];
+ pStore[2*i+1] = pStore[2*(i+1)+1];
+ pStore[2*(i+1)+1] = Temp;
+
+ // if the polarity of variables is different, swap them
+ if ( ((uCanonPhase & (1 << i)) > 0) != ((uCanonPhase & (1 << (i+1))) > 0) )
+ {
+ uCanonPhase ^= (1 << i);
+ uCanonPhase ^= (1 << (i+1));
+ }
+
+ Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, i );
+ pTemp = pIn; pIn = pOut; pOut = pTemp;
+ }
+ } while ( fChange );
+
+
+/*
+ Extra_PrintBinary( stdout, &uCanonPhase, nVars+1 ); printf( " : " );
+ for ( i = 0; i < nVars; i++ )
+ printf( "%d=%d/%d ", pCanonPerm[i], pStore[2*i], pStore[2*i+1] );
+ printf( " C = %d\n", Counter );
+ Extra_PrintHexadecimal( stdout, pIn, nVars );
+ printf( "\n" );
+*/
+
+/*
+ // process symmetric variable groups
+ uSymms = 0;
+ for ( i = 0; i < nVars-1; i++ )
+ {
+ if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric
+ continue;
+ if ( pStore[2*i] != pStore[2*i+1] )
+ continue;
+ if ( Kit_TruthVarsSymm( pIn, nVars, i, i+1 ) )
+ continue;
+ if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, i+1 ) )
+ Kit_TruthChangePhase( pIn, nVars, i+1 );
+ }
+*/
+
+/*
+ // process symmetric variable groups
+ uSymms = 0;
+ for ( i = 0; i < nVars-1; i++ )
+ {
+ if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric
+ continue;
+ // i and i+1 can be symmetric
+ // find the end of this group
+ for ( k = i+1; k < nVars; k++ )
+ if ( pStore[2*i] != pStore[2*k] )
+ break;
+ Limit = k;
+ assert( i < Limit-1 );
+ // go through the variables in this group
+ for ( j = i + 1; j < Limit; j++ )
+ {
+ // check symmetry
+ if ( Kit_TruthVarsSymm( pIn, nVars, i, j ) )
+ {
+ uSymms |= (1 << j);
+ continue;
+ }
+ // they are phase-unknown
+ if ( pStore[2*i] == pStore[2*i+1] )
+ {
+ if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, j ) )
+ {
+ Kit_TruthChangePhase( pIn, nVars, j );
+ uCanonPhase ^= (1 << j);
+ uSymms |= (1 << j);
+ continue;
+ }
+ }
+
+ // they are not symmetric - move j as far as it goes in the group
+ for ( k = j; k < Limit-1; k++ )
+ {
+ Counter++;
+
+ Temp = pCanonPerm[k];
+ pCanonPerm[k] = pCanonPerm[k+1];
+ pCanonPerm[k+1] = Temp;
+
+ assert( pStore[2*k] == pStore[2*(k+1)] );
+ Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, k );
+ pTemp = pIn; pIn = pOut; pOut = pTemp;
+ }
+ Limit--;
+ j--;
+ }
+ i = Limit - 1;
+ }
+*/
+
+ // swap if it was moved an even number of times
+ if ( Counter & 1 )
+ Kit_TruthCopy( pOut, pIn, nVars );
+ return uCanonPhase;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Fast counting minterms in the cofactors of a function.]
+
+ Description [Returns the total number of minterms in the function.
+ The resulting array (pRes) contains the number of minterms in 0-cofactor
+ w.r.t. each variables. The additional array (pBytes) is used for internal
+ storage. It should have the size equal to the number of truth table bytes.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Kit_TruthCountMinterms( unsigned * pTruth, int nVars, int * pRes, int * pBytesInit )
+{
+ // the number of 1s if every byte as well as in the 0-cofactors w.r.t. three variables
+ static unsigned Table[256] = {
+ 0x00000000, 0x01010101, 0x01010001, 0x02020102, 0x01000101, 0x02010202, 0x02010102, 0x03020203,
+ 0x01000001, 0x02010102, 0x02010002, 0x03020103, 0x02000102, 0x03010203, 0x03010103, 0x04020204,
+ 0x00010101, 0x01020202, 0x01020102, 0x02030203, 0x01010202, 0x02020303, 0x02020203, 0x03030304,
+ 0x01010102, 0x02020203, 0x02020103, 0x03030204, 0x02010203, 0x03020304, 0x03020204, 0x04030305,
+ 0x00010001, 0x01020102, 0x01020002, 0x02030103, 0x01010102, 0x02020203, 0x02020103, 0x03030204,
+ 0x01010002, 0x02020103, 0x02020003, 0x03030104, 0x02010103, 0x03020204, 0x03020104, 0x04030205,
+ 0x00020102, 0x01030203, 0x01030103, 0x02040204, 0x01020203, 0x02030304, 0x02030204, 0x03040305,
+ 0x01020103, 0x02030204, 0x02030104, 0x03040205, 0x02020204, 0x03030305, 0x03030205, 0x04040306,
+ 0x00000101, 0x01010202, 0x01010102, 0x02020203, 0x01000202, 0x02010303, 0x02010203, 0x03020304,
+ 0x01000102, 0x02010203, 0x02010103, 0x03020204, 0x02000203, 0x03010304, 0x03010204, 0x04020305,
+ 0x00010202, 0x01020303, 0x01020203, 0x02030304, 0x01010303, 0x02020404, 0x02020304, 0x03030405,
+ 0x01010203, 0x02020304, 0x02020204, 0x03030305, 0x02010304, 0x03020405, 0x03020305, 0x04030406,
+ 0x00010102, 0x01020203, 0x01020103, 0x02030204, 0x01010203, 0x02020304, 0x02020204, 0x03030305,
+ 0x01010103, 0x02020204, 0x02020104, 0x03030205, 0x02010204, 0x03020305, 0x03020205, 0x04030306,
+ 0x00020203, 0x01030304, 0x01030204, 0x02040305, 0x01020304, 0x02030405, 0x02030305, 0x03040406,
+ 0x01020204, 0x02030305, 0x02030205, 0x03040306, 0x02020305, 0x03030406, 0x03030306, 0x04040407,
+ 0x00000001, 0x01010102, 0x01010002, 0x02020103, 0x01000102, 0x02010203, 0x02010103, 0x03020204,
+ 0x01000002, 0x02010103, 0x02010003, 0x03020104, 0x02000103, 0x03010204, 0x03010104, 0x04020205,
+ 0x00010102, 0x01020203, 0x01020103, 0x02030204, 0x01010203, 0x02020304, 0x02020204, 0x03030305,
+ 0x01010103, 0x02020204, 0x02020104, 0x03030205, 0x02010204, 0x03020305, 0x03020205, 0x04030306,
+ 0x00010002, 0x01020103, 0x01020003, 0x02030104, 0x01010103, 0x02020204, 0x02020104, 0x03030205,
+ 0x01010003, 0x02020104, 0x02020004, 0x03030105, 0x02010104, 0x03020205, 0x03020105, 0x04030206,
+ 0x00020103, 0x01030204, 0x01030104, 0x02040205, 0x01020204, 0x02030305, 0x02030205, 0x03040306,
+ 0x01020104, 0x02030205, 0x02030105, 0x03040206, 0x02020205, 0x03030306, 0x03030206, 0x04040307,
+ 0x00000102, 0x01010203, 0x01010103, 0x02020204, 0x01000203, 0x02010304, 0x02010204, 0x03020305,
+ 0x01000103, 0x02010204, 0x02010104, 0x03020205, 0x02000204, 0x03010305, 0x03010205, 0x04020306,
+ 0x00010203, 0x01020304, 0x01020204, 0x02030305, 0x01010304, 0x02020405, 0x02020305, 0x03030406,
+ 0x01010204, 0x02020305, 0x02020205, 0x03030306, 0x02010305, 0x03020406, 0x03020306, 0x04030407,
+ 0x00010103, 0x01020204, 0x01020104, 0x02030205, 0x01010204, 0x02020305, 0x02020205, 0x03030306,
+ 0x01010104, 0x02020205, 0x02020105, 0x03030206, 0x02010205, 0x03020306, 0x03020206, 0x04030307,
+ 0x00020204, 0x01030305, 0x01030205, 0x02040306, 0x01020305, 0x02030406, 0x02030306, 0x03040407,
+ 0x01020205, 0x02030306, 0x02030206, 0x03040307, 0x02020306, 0x03030407, 0x03030307, 0x04040408
+ };
+ unsigned uSum;
+ unsigned char * pTruthC, * pLimit;
+ int * pBytes = pBytesInit;
+ int i, iVar, Step, nWords, nBytes, nTotal;
+
+ assert( nVars <= 20 );
+
+ // clear storage
+ memset( pRes, 0, sizeof(int) * nVars );
+
+ // count the number of one's in 0-cofactors of the first three variables
+ nTotal = uSum = 0;
+ nWords = Kit_TruthWordNum( nVars );
+ nBytes = nWords * 4;
+ pTruthC = (unsigned char *)pTruth;
+ pLimit = pTruthC + nBytes;
+ for ( ; pTruthC < pLimit; pTruthC++ )
+ {
+ uSum += Table[*pTruthC];
+ *pBytes++ = (Table[*pTruthC] & 0xff);
+ if ( (uSum & 0xff) > 246 )
+ {
+ nTotal += (uSum & 0xff);
+ pRes[0] += ((uSum >> 8) & 0xff);
+ pRes[2] += ((uSum >> 16) & 0xff);
+ pRes[3] += ((uSum >> 24) & 0xff);
+ uSum = 0;
+ }
+ }
+ if ( uSum )
+ {
+ nTotal += (uSum & 0xff);
+ pRes[0] += ((uSum >> 8) & 0xff);
+ pRes[1] += ((uSum >> 16) & 0xff);
+ pRes[2] += ((uSum >> 24) & 0xff);
+ }
+
+ // count all other variables
+ for ( iVar = 3, Step = 1; Step < nBytes; Step *= 2, iVar++ )
+ for ( i = 0; i < nBytes; i += Step + Step )
+ {
+ pRes[iVar] += pBytesInit[i];
+ pBytesInit[i] += pBytesInit[i+Step];
+ }
+ assert( pBytesInit[0] == nTotal );
+ assert( iVar == nVars );
+
+ for ( i = 0; i < nVars; i++ )
+ assert( pRes[i] == Kit_TruthCofactor0Count(pTruth, nVars, i) );
+ return nTotal;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Prints the hex unsigned into a file.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_PrintHexadecimal( FILE * pFile, unsigned Sign[], int nVars )
+{
+ int nDigits, Digit, k;
+ // write the number into the file
+ nDigits = (1 << nVars) / 4;
+ for ( k = nDigits - 1; k >= 0; k-- )
+ {
+ Digit = ((Sign[k/8] >> ((k%8) * 4)) & 15);
+ if ( Digit < 10 )
+ fprintf( pFile, "%d", Digit );
+ else
+ fprintf( pFile, "%c", 'a' + Digit-10 );
+ }
+// fprintf( pFile, "\n" );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Fast counting minterms for the functions.]
+
+ Description [Returns 0 if the function is a constant.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthCountMintermsPrecomp()
+{
+ int bit_count[256] = {
+ 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
+ 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
+ 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
+ 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
+ 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
+ 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
+ 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
+ 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
+ };
+ unsigned i, uWord;
+ for ( i = 0; i < 256; i++ )
+ {
+ if ( i % 8 == 0 )
+ printf( "\n" );
+ uWord = bit_count[i];
+ uWord |= (bit_count[i & 0x55] << 8);
+ uWord |= (bit_count[i & 0x33] << 16);
+ uWord |= (bit_count[i & 0x0f] << 24);
+ printf( "0x" );
+ Kit_PrintHexadecimal( stdout, &uWord, 5 );
+ printf( ", " );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Dumps truth table into a file.]
+
+ Description [Generates script file for reading into ABC.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+char * Kit_TruthDumpToFile( unsigned * pTruth, int nVars, int nFile )
+{
+ static char pFileName[100];
+ FILE * pFile;
+ sprintf( pFileName, "tt\\s%04d", nFile );
+ pFile = fopen( pFileName, "w" );
+ fprintf( pFile, "rt " );
+ Kit_PrintHexadecimal( pFile, pTruth, nVars );
+ fprintf( pFile, "; bdd; sop; ps\n" );
+ fclose( pFile );
+ return pFileName;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Dumps truth table into a file.]
+
+ Description [Generates script file for reading into ABC.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthPrintProfile_int( unsigned * pTruth, int nVars )
+{
+ int Mints[20];
+ int Mints0[20];
+ int Mints1[20];
+ int Unique1[20];
+ int Total2[20][20];
+ int Unique2[20][20];
+ int Common2[20][20];
+ int nWords = Kit_TruthWordNum( nVars );
+ int * pBytes = ABC_ALLOC( int, nWords * 4 );
+ unsigned * pIn = ABC_ALLOC( unsigned, nWords );
+ unsigned * pOut = ABC_ALLOC( unsigned, nWords );
+ unsigned * pCof00 = ABC_ALLOC( unsigned, nWords );
+ unsigned * pCof01 = ABC_ALLOC( unsigned, nWords );
+ unsigned * pCof10 = ABC_ALLOC( unsigned, nWords );
+ unsigned * pCof11 = ABC_ALLOC( unsigned, nWords );
+ unsigned * pTemp;
+ int nTotalMints, nTotalMints0, nTotalMints1;
+ int v, u, i, iVar, nMints1;
+ int Cof00, Cof01, Cof10, Cof11;
+ int Coz00, Coz01, Coz10, Coz11;
+ assert( nVars <= 20 );
+ assert( nVars >= 6 );
+
+ nTotalMints = Kit_TruthCountMinterms( pTruth, nVars, Mints, pBytes );
+ for ( v = 0; v < nVars; v++ )
+ Unique1[v] = Kit_TruthBooleanDiffCount( pTruth, nVars, v );
+
+ for ( v = 0; v < nVars; v++ )
+ for ( u = 0; u < nVars; u++ )
+ Total2[v][u] = Unique2[v][u] = Common2[v][u] = -1;
+
+ nMints1 = (1<<(nVars-2));
+ for ( v = 0; v < nVars; v++ )
+ {
+ // move this var to be the first
+ Kit_TruthCopy( pIn, pTruth, nVars );
+// Extra_PrintBinary( stdout, pIn, (1<<nVars) ); printf( "\n" );
+ for ( i = v; i < nVars - 1; i++ )
+ {
+ Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, i );
+ pTemp = pIn; pIn = pOut; pOut = pTemp;
+ }
+// Extra_PrintBinary( stdout, pIn, (1<<nVars) ); printf( "\n" );
+// printf( "\n" );
+
+
+ // count minterms in both cofactor
+ nTotalMints0 = Kit_TruthCountMinterms( pIn, nVars-1, Mints0, pBytes );
+ nTotalMints1 = Kit_TruthCountMinterms( pIn+nWords/2, nVars-1, Mints1, pBytes );
+ assert( nTotalMints == nTotalMints0 + nTotalMints1 );
+/*
+ for ( u = 0; u < nVars-1; u++ )
+ printf( "%2d ", Mints0[u] );
+ printf( "\n" );
+
+ for ( u = 0; u < nVars-1; u++ )
+ printf( "%2d ", Mints1[u] );
+ printf( "\n" );
+*/
+ for ( u = 0; u < nVars-1; u++ )
+ {
+ if ( u < v )
+ iVar = u;
+ else
+ iVar = u + 1;
+ assert( v != iVar );
+ // get minter counts in the cofactors
+ Cof00 = Mints0[u]; Coz00 = nMints1 - Cof00;
+ Cof01 = nTotalMints0-Mints0[u]; Coz01 = nMints1 - Cof01;
+ Cof10 = Mints1[u]; Coz10 = nMints1 - Cof10;
+ Cof11 = nTotalMints1-Mints1[u]; Coz11 = nMints1 - Cof11;
+
+ assert( Cof00 >= 0 && Cof00 <= nMints1 );
+ assert( Cof01 >= 0 && Cof01 <= nMints1 );
+ assert( Cof10 >= 0 && Cof10 <= nMints1 );
+ assert( Cof11 >= 0 && Cof11 <= nMints1 );
+
+ assert( Coz00 >= 0 && Coz00 <= nMints1 );
+ assert( Coz01 >= 0 && Coz01 <= nMints1 );
+ assert( Coz10 >= 0 && Coz10 <= nMints1 );
+ assert( Coz11 >= 0 && Coz11 <= nMints1 );
+
+ Common2[v][iVar] = Common2[iVar][v] = Cof00 * Coz11 + Coz00 * Cof11 + Cof01 * Coz10 + Coz01 * Cof10;
+
+ Total2[v][iVar] = Total2[iVar][v] =
+ Cof00 * Coz01 + Coz00 * Cof01 +
+ Cof00 * Coz10 + Coz00 * Cof10 +
+ Cof00 * Coz11 + Coz00 * Cof11 +
+ Cof01 * Coz10 + Coz01 * Cof10 +
+ Cof01 * Coz11 + Coz01 * Cof11 +
+ Cof10 * Coz11 + Coz10 * Cof11 ;
+
+
+ Kit_TruthCofactor0New( pCof00, pIn, nVars-1, u );
+ Kit_TruthCofactor1New( pCof01, pIn, nVars-1, u );
+ Kit_TruthCofactor0New( pCof10, pIn+nWords/2, nVars-1, u );
+ Kit_TruthCofactor1New( pCof11, pIn+nWords/2, nVars-1, u );
+
+ Unique2[v][iVar] = Unique2[iVar][v] =
+ Kit_TruthXorCount( pCof00, pCof01, nVars-1 ) +
+ Kit_TruthXorCount( pCof00, pCof10, nVars-1 ) +
+ Kit_TruthXorCount( pCof00, pCof11, nVars-1 ) +
+ Kit_TruthXorCount( pCof01, pCof10, nVars-1 ) +
+ Kit_TruthXorCount( pCof01, pCof11, nVars-1 ) +
+ Kit_TruthXorCount( pCof10, pCof11, nVars-1 );
+ }
+ }
+
+ printf( "\n" );
+ printf( " V: " );
+ for ( v = 0; v < nVars; v++ )
+ printf( "%8c ", v+'a' );
+ printf( "\n" );
+
+ printf( " M: " );
+ for ( v = 0; v < nVars; v++ )
+ printf( "%8d ", Mints[v] );
+ printf( "\n" );
+
+ printf( " U: " );
+ for ( v = 0; v < nVars; v++ )
+ printf( "%8d ", Unique1[v] );
+ printf( "\n" );
+ printf( "\n" );
+
+ printf( "Unique:\n" );
+ for ( i = 0; i < nVars; i++ )
+ {
+ printf( " %2d ", i );
+ for ( v = 0; v < nVars; v++ )
+ printf( "%8d ", Unique2[i][v] );
+ printf( "\n" );
+ }
+
+ printf( "Common:\n" );
+ for ( i = 0; i < nVars; i++ )
+ {
+ printf( " %2d ", i );
+ for ( v = 0; v < nVars; v++ )
+ printf( "%8d ", Common2[i][v] );
+ printf( "\n" );
+ }
+
+ printf( "Total:\n" );
+ for ( i = 0; i < nVars; i++ )
+ {
+ printf( " %2d ", i );
+ for ( v = 0; v < nVars; v++ )
+ printf( "%8d ", Total2[i][v] );
+ printf( "\n" );
+ }
+
+ ABC_FREE( pIn );
+ ABC_FREE( pOut );
+ ABC_FREE( pCof00 );
+ ABC_FREE( pCof01 );
+ ABC_FREE( pCof10 );
+ ABC_FREE( pCof11 );
+ ABC_FREE( pBytes );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Dumps truth table into a file.]
+
+ Description [Generates script file for reading into ABC.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Kit_TruthPrintProfile( unsigned * pTruth, int nVars )
+{
+ unsigned uTruth[2];
+ if ( nVars >= 6 )
+ {
+ Kit_TruthPrintProfile_int( pTruth, nVars );
+ return;
+ }
+ assert( nVars >= 2 );
+ uTruth[0] = pTruth[0];
+ uTruth[1] = pTruth[0];
+ Kit_TruthPrintProfile( uTruth, 6 );
+}
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/kit_.c b/src/bool/kit/kit_.c
new file mode 100644
index 00000000..37be0b49
--- /dev/null
+++ b/src/bool/kit/kit_.c
@@ -0,0 +1,53 @@
+/**CFile****************************************************************
+
+ FileName [kit_.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Computation kit.]
+
+ Synopsis []
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - Dec 6, 2006.]
+
+ Revision [$Id: kit_.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "kit.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+
diff --git a/src/bool/kit/module.make b/src/bool/kit/module.make
new file mode 100644
index 00000000..ac29f1f7
--- /dev/null
+++ b/src/bool/kit/module.make
@@ -0,0 +1,11 @@
+SRC += src/bool/kit/kitAig.c \
+ src/bool/kit/kitBdd.c \
+ src/bool/kit/kitCloud.c src/bool/kit/cloud.c \
+ src/bool/kit/kitDsd.c \
+ src/bool/kit/kitFactor.c \
+ src/bool/kit/kitGraph.c \
+ src/bool/kit/kitHop.c \
+ src/bool/kit/kitIsop.c \
+ src/bool/kit/kitPla.c \
+ src/bool/kit/kitSop.c \
+ src/bool/kit/kitTruth.c