summaryrefslogtreecommitdiffstats
path: root/src/proof/llb/llb2Core.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/proof/llb/llb2Core.c')
-rw-r--r--src/proof/llb/llb2Core.c775
1 files changed, 775 insertions, 0 deletions
diff --git a/src/proof/llb/llb2Core.c b/src/proof/llb/llb2Core.c
new file mode 100644
index 00000000..c15574c2
--- /dev/null
+++ b/src/proof/llb/llb2Core.c
@@ -0,0 +1,775 @@
+/**CFile****************************************************************
+
+ FileName [llb2Core.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [BDD based reachability.]
+
+ Synopsis [Core procedure.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: llb2Core.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "llbInt.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+typedef struct Llb_Img_t_ Llb_Img_t;
+struct Llb_Img_t_
+{
+ Aig_Man_t * pInit; // AIG manager
+ Aig_Man_t * pAig; // AIG manager
+ Gia_ParLlb_t * pPars; // parameters
+
+ DdManager * dd; // BDD manager
+ DdManager * ddG; // BDD manager
+ DdManager * ddR; // BDD manager
+ Vec_Ptr_t * vDdMans; // BDD managers for each partition
+ Vec_Ptr_t * vRings; // onion rings in ddR
+
+ Vec_Int_t * vDriRefs; // driver references
+ Vec_Int_t * vVarsCs; // cur state variables
+ Vec_Int_t * vVarsNs; // next state variables
+
+ Vec_Int_t * vCs2Glo; // cur state variables into global variables
+ Vec_Int_t * vNs2Glo; // next state variables into global variables
+ Vec_Int_t * vGlo2Cs; // global variables into cur state variables
+ Vec_Int_t * vGlo2Ns; // global variables into next state variables
+};
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Computes cube composed of given variables with given values.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+DdNode * Llb_CoreComputeCube( DdManager * dd, Vec_Int_t * vVars, int fUseVarIndex, char * pValues )
+{
+ DdNode * bRes, * bVar, * bTemp;
+ int i, iVar, Index, TimeStop;
+ TimeStop = dd->TimeStop; dd->TimeStop = 0;
+ bRes = Cudd_ReadOne( dd ); Cudd_Ref( bRes );
+ Vec_IntForEachEntry( vVars, Index, i )
+ {
+ iVar = fUseVarIndex ? Index : i;
+ bVar = Cudd_NotCond( Cudd_bddIthVar(dd, iVar), (int)(pValues == NULL || pValues[i] != 1) );
+ bRes = Cudd_bddAnd( dd, bTemp = bRes, bVar ); Cudd_Ref( bRes );
+ Cudd_RecursiveDeref( dd, bTemp );
+ }
+ Cudd_Deref( bRes );
+ dd->TimeStop = TimeStop;
+ return bRes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives counter-example by backward reachability.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Cex_t * Llb_CoreDeriveCex( Llb_Img_t * p )
+{
+ Abc_Cex_t * pCex;
+ Aig_Obj_t * pObj;
+ Vec_Ptr_t * vSupps, * vQuant0, * vQuant1;
+ DdNode * bState, * bImage, * bOneCube, * bTemp, * bRing;
+ int i, v, RetValue, nPiOffset;
+ char * pValues = ABC_ALLOC( char, Cudd_ReadSize(p->ddR) );
+ assert( Vec_PtrSize(p->vRings) > 0 );
+
+ p->dd->TimeStop = 0;
+ p->ddR->TimeStop = 0;
+
+ // get supports and quantified variables
+ Vec_PtrReverseOrder( p->vDdMans );
+ vSupps = Llb_ImgSupports( p->pAig, p->vDdMans, p->vVarsNs, p->vVarsCs, 1, 0 );
+ Llb_ImgSchedule( vSupps, &vQuant0, &vQuant1, 0 );
+ Vec_VecFree( (Vec_Vec_t *)vSupps );
+ Llb_ImgQuantifyReset( p->vDdMans );
+// Llb_ImgQuantifyFirst( p->pAig, p->vDdMans, vQuant0 );
+
+ // allocate room for the counter-example
+ pCex = Abc_CexAlloc( Saig_ManRegNum(p->pAig), Saig_ManPiNum(p->pAig), Vec_PtrSize(p->vRings) );
+ pCex->iFrame = Vec_PtrSize(p->vRings) - 1;
+ pCex->iPo = -1;
+
+ // get the last cube
+ bOneCube = Cudd_bddIntersect( p->ddR, (DdNode *)Vec_PtrEntryLast(p->vRings), p->ddR->bFunc ); Cudd_Ref( bOneCube );
+ RetValue = Cudd_bddPickOneCube( p->ddR, bOneCube, pValues );
+ Cudd_RecursiveDeref( p->ddR, bOneCube );
+ assert( RetValue );
+
+ // write PIs of counter-example
+ nPiOffset = Saig_ManRegNum(p->pAig) + Saig_ManPiNum(p->pAig) * (Vec_PtrSize(p->vRings) - 1);
+ Saig_ManForEachPi( p->pAig, pObj, i )
+ if ( pValues[Saig_ManRegNum(p->pAig)+i] == 1 )
+ Abc_InfoSetBit( pCex->pData, nPiOffset + i );
+
+ // write state in terms of NS variables
+ if ( Vec_PtrSize(p->vRings) > 1 )
+ {
+ bState = Llb_CoreComputeCube( p->dd, p->vVarsNs, 1, pValues ); Cudd_Ref( bState );
+ }
+ // perform backward analysis
+ Vec_PtrForEachEntryReverse( DdNode *, p->vRings, bRing, v )
+ {
+ if ( v == Vec_PtrSize(p->vRings) - 1 )
+ continue;
+ // compute the next states
+ bImage = Llb_ImgComputeImage( p->pAig, p->vDdMans, p->dd, bState,
+ vQuant0, vQuant1, p->vDriRefs, p->pPars->TimeTarget, 1, 0, 0 );
+ assert( bImage != NULL );
+ Cudd_Ref( bImage );
+ Cudd_RecursiveDeref( p->dd, bState );
+//Extra_bddPrintSupport( p->dd, bImage ); printf( "\n" );
+
+ // move reached states into ring manager
+ bImage = Extra_TransferPermute( p->dd, p->ddR, bTemp = bImage, Vec_IntArray(p->vCs2Glo) ); Cudd_Ref( bImage );
+ Cudd_RecursiveDeref( p->dd, bTemp );
+
+ // intersect with the previous set
+ bOneCube = Cudd_bddIntersect( p->ddR, bImage, bRing ); Cudd_Ref( bOneCube );
+ Cudd_RecursiveDeref( p->ddR, bImage );
+
+ // find any assignment of the BDD
+ RetValue = Cudd_bddPickOneCube( p->ddR, bOneCube, pValues );
+ Cudd_RecursiveDeref( p->ddR, bOneCube );
+ assert( RetValue );
+
+ // write PIs of counter-example
+ nPiOffset -= Saig_ManPiNum(p->pAig);
+ Saig_ManForEachPi( p->pAig, pObj, i )
+ if ( pValues[Saig_ManRegNum(p->pAig)+i] == 1 )
+ Abc_InfoSetBit( pCex->pData, nPiOffset + i );
+
+ // check that we get the init state
+ if ( v == 0 )
+ {
+ Saig_ManForEachLo( p->pAig, pObj, i )
+ assert( pValues[i] == 0 );
+ break;
+ }
+
+ // write state in terms of NS variables
+ bState = Llb_CoreComputeCube( p->dd, p->vVarsNs, 1, pValues ); Cudd_Ref( bState );
+ }
+ assert( nPiOffset == Saig_ManRegNum(p->pAig) );
+ // update the output number
+ RetValue = Saig_ManFindFailedPoCex( p->pInit, pCex );
+ assert( RetValue >= 0 && RetValue < Saig_ManPoNum(p->pInit) ); // invalid CEX!!!
+ pCex->iPo = RetValue;
+ // cleanup
+ ABC_FREE( pValues );
+ Vec_VecFree( (Vec_Vec_t *)vQuant0 );
+ Vec_VecFree( (Vec_Vec_t *)vQuant1 );
+ return pCex;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Llb_CoreReachability_int( Llb_Img_t * p, Vec_Ptr_t * vQuant0, Vec_Ptr_t * vQuant1 )
+{
+ int * pLoc2Glo = p->pPars->fBackward? Vec_IntArray( p->vCs2Glo ) : Vec_IntArray( p->vNs2Glo );
+ int * pLoc2GloR = p->pPars->fBackward? Vec_IntArray( p->vNs2Glo ) : Vec_IntArray( p->vCs2Glo );
+ int * pGlo2Loc = p->pPars->fBackward? Vec_IntArray( p->vGlo2Ns ) : Vec_IntArray( p->vGlo2Cs );
+ DdNode * bCurrent, * bReached, * bNext, * bTemp;
+ int clk2, clk = clock(), nIters, nBddSize, iOutFail = -1;
+/*
+ // compute time to stop
+ if ( p->pPars->TimeLimit )
+ p->pPars->TimeTarget = clock() + p->pPars->TimeLimit * CLOCKS_PER_SEC;
+ else
+ p->pPars->TimeTarget = 0;
+*/
+
+ if ( time(NULL) > p->pPars->TimeTarget )
+ {
+ if ( !p->pPars->fSilent )
+ printf( "Reached timeout (%d seconds) before image computation.\n", p->pPars->TimeLimit );
+ p->pPars->iFrame = -1;
+ return -1;
+ }
+
+ // set the stop time parameter
+ p->dd->TimeStop = p->pPars->TimeTarget;
+ p->ddG->TimeStop = p->pPars->TimeTarget;
+ p->ddR->TimeStop = p->pPars->TimeTarget;
+
+ // compute initial states
+ if ( p->pPars->fBackward )
+ {
+ // create init state in the global manager
+ bTemp = Llb_BddComputeBad( p->pInit, p->ddR, p->pPars->TimeTarget );
+ if ( bTemp == NULL )
+ {
+ if ( !p->pPars->fSilent )
+ printf( "Reached timeout (%d seconds) while computing bad states.\n", p->pPars->TimeLimit );
+ p->pPars->iFrame = -1;
+ return -1;
+ }
+ Cudd_Ref( bTemp );
+ // create bad state in the ring manager
+ p->ddR->bFunc = Llb_CoreComputeCube( p->ddR, p->vVarsCs, 0, NULL ); Cudd_Ref( p->ddR->bFunc );
+ bCurrent = Llb_BddQuantifyPis( p->pInit, p->ddR, bTemp ); Cudd_Ref( bCurrent );
+ Cudd_RecursiveDeref( p->ddR, bTemp );
+ bReached = Cudd_bddTransfer( p->ddR, p->ddG, bCurrent ); Cudd_Ref( bReached );
+ Cudd_RecursiveDeref( p->ddR, bCurrent );
+ // move init state to the working manager
+ bCurrent = Extra_TransferPermute( p->ddG, p->dd, bReached, pGlo2Loc );
+ if ( bCurrent == NULL )
+ {
+ Cudd_RecursiveDeref( p->ddG, bReached );
+ if ( !p->pPars->fSilent )
+ printf( "Reached timeout (%d seconds) during transfer 0.\n", p->pPars->TimeLimit );
+ p->pPars->iFrame = -1;
+ return -1;
+ }
+ Cudd_Ref( bCurrent );
+ }
+ else
+ {
+ // create bad state in the ring manager
+ p->ddR->bFunc = Llb_BddComputeBad( p->pInit, p->ddR, p->pPars->TimeTarget );
+ if ( p->ddR->bFunc == NULL )
+ {
+ if ( !p->pPars->fSilent )
+ printf( "Reached timeout (%d seconds) while computing bad states.\n", p->pPars->TimeLimit );
+ p->pPars->iFrame = -1;
+ return -1;
+ }
+ Cudd_Ref( p->ddR->bFunc );
+ // create init state in the working and global manager
+ bCurrent = Llb_CoreComputeCube( p->dd, p->vVarsCs, 1, NULL ); Cudd_Ref( bCurrent );
+ bReached = Llb_CoreComputeCube( p->ddG, p->vVarsCs, 0, NULL ); Cudd_Ref( bReached );
+//Extra_bddPrint( p->dd, bCurrent ); printf( "\n" );
+//Extra_bddPrint( p->ddG, bReached ); printf( "\n" );
+ }
+
+ // compute onion rings
+ for ( nIters = 0; nIters < p->pPars->nIterMax; nIters++ )
+ {
+ clk2 = clock();
+ // check the runtime limit
+ if ( p->pPars->TimeLimit && time(NULL) > p->pPars->TimeTarget )
+ {
+ if ( !p->pPars->fSilent )
+ printf( "Reached timeout (%d seconds) during image computation.\n", p->pPars->TimeLimit );
+ p->pPars->iFrame = nIters - 1;
+ Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
+ Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
+ return -1;
+ }
+
+ // save the onion ring
+ bTemp = Extra_TransferPermute( p->dd, p->ddR, bCurrent, pLoc2GloR );
+ if ( bTemp == NULL )
+ {
+ if ( !p->pPars->fSilent )
+ printf( "Reached timeout (%d seconds) during image computation.\n", p->pPars->TimeLimit );
+ p->pPars->iFrame = nIters - 1;
+ Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
+ Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
+ return -1;
+ }
+ Cudd_Ref( bTemp );
+ Vec_PtrPush( p->vRings, bTemp );
+
+ // check it for bad states
+ if ( !p->pPars->fSkipOutCheck && !Cudd_bddLeq( p->ddR, bTemp, Cudd_Not(p->ddR->bFunc) ) )
+ {
+ assert( p->pInit->pSeqModel == NULL );
+ if ( !p->pPars->fBackward )
+ p->pInit->pSeqModel = Llb_CoreDeriveCex( p );
+ Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
+ Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
+ if ( !p->pPars->fSilent )
+ {
+ if ( !p->pPars->fBackward )
+ printf( "Output %d was asserted in frame %d (use \"write_counter\" to dump a witness). ", p->pInit->pSeqModel->iPo, nIters );
+ else
+ printf( "Output ??? was asserted in frame %d (counter-example is not produced). ", nIters );
+ Abc_PrintTime( 1, "Time", clock() - clk );
+ }
+ p->pPars->iFrame = nIters - 1;
+ return 0;
+ }
+
+ // compute the next states
+ bNext = Llb_ImgComputeImage( p->pAig, p->vDdMans, p->dd, bCurrent,
+ vQuant0, vQuant1, p->vDriRefs, p->pPars->TimeTarget,
+ p->pPars->fBackward, p->pPars->fReorder, p->pPars->fVeryVerbose );
+ if ( bNext == NULL )
+ {
+ if ( !p->pPars->fSilent )
+ printf( "Reached timeout (%d seconds) during image computation.\n", p->pPars->TimeLimit );
+ p->pPars->iFrame = nIters - 1;
+ Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
+ Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
+ return -1;
+ }
+ Cudd_Ref( bNext );
+ Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
+//Extra_bddPrintSupport( p->dd, bNext ); printf( "\n" );
+
+ // remap these states into the global manager
+// bNext = Extra_TransferPermute( p->dd, p->ddG, bTemp = bNext, pLoc2Glo ); Cudd_Ref( bNext );
+// Cudd_RecursiveDeref( p->dd, bTemp );
+
+// bNext = Extra_TransferPermuteTime( p->dd, p->ddG, bTemp = bNext, pLoc2Glo, p->pPars->TimeTarget );
+ bNext = Extra_TransferPermute( p->dd, p->ddG, bTemp = bNext, pLoc2Glo );
+ if ( bNext == NULL )
+ {
+ if ( !p->pPars->fSilent )
+ printf( "Reached timeout (%d seconds) during image computation in transfer 1.\n", p->pPars->TimeLimit );
+ p->pPars->iFrame = nIters - 1;
+ Cudd_RecursiveDeref( p->dd, bTemp );
+ Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
+ return -1;
+ }
+ Cudd_Ref( bNext );
+ Cudd_RecursiveDeref( p->dd, bTemp );
+
+ nBddSize = Cudd_DagSize(bNext);
+ // check if there are any new states
+ if ( Cudd_bddLeq( p->ddG, bNext, bReached ) ) // implication = no new states
+ {
+ Cudd_RecursiveDeref( p->ddG, bNext ); bNext = NULL;
+ break;
+ }
+
+ // get the new states
+ bCurrent = Cudd_bddAnd( p->ddG, bNext, Cudd_Not(bReached) );
+ if ( bCurrent == NULL )
+ {
+ if ( !p->pPars->fSilent )
+ printf( "Reached timeout (%d seconds) during image computation in transfer 2.\n", p->pPars->TimeLimit );
+ p->pPars->iFrame = nIters - 1;
+ Cudd_RecursiveDeref( p->ddG, bNext );
+ Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
+ return -1;
+ }
+ Cudd_Ref( bCurrent );
+
+ // remap these states into the current state vars
+// bCurrent = Extra_TransferPermute( p->ddG, p->dd, bTemp = bCurrent, pGlo2Loc ); Cudd_Ref( bCurrent );
+// Cudd_RecursiveDeref( p->ddG, bTemp );
+
+// bCurrent = Extra_TransferPermuteTime( p->ddG, p->dd, bTemp = bCurrent, pGlo2Loc, p->pPars->TimeTarget );
+ bCurrent = Extra_TransferPermute( p->ddG, p->dd, bTemp = bCurrent, pGlo2Loc );
+ if ( bCurrent == NULL )
+ {
+ if ( !p->pPars->fSilent )
+ printf( "Reached timeout (%d seconds) during image computation in transfer 2.\n", p->pPars->TimeLimit );
+ p->pPars->iFrame = nIters - 1;
+ Cudd_RecursiveDeref( p->ddG, bTemp );
+ Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
+ return -1;
+ }
+ Cudd_Ref( bCurrent );
+ Cudd_RecursiveDeref( p->ddG, bTemp );
+
+ // add to the reached states
+ bReached = Cudd_bddOr( p->ddG, bTemp = bReached, bNext ); Cudd_Ref( bReached );
+ Cudd_RecursiveDeref( p->ddG, bTemp );
+ Cudd_RecursiveDeref( p->ddG, bNext );
+ bNext = NULL;
+
+ if ( p->pPars->fVeryVerbose )
+ {
+ double nMints = Cudd_CountMinterm(p->ddG, bReached, Saig_ManRegNum(p->pAig) );
+// Extra_bddPrint( p->ddG, bReached );printf( "\n" );
+ fprintf( stdout, " Reachable states = %.0f. (Ratio = %.4f %%)\n", nMints, 100.0*nMints/pow(2.0, Saig_ManRegNum(p->pAig)) );
+ fflush( stdout );
+ }
+ if ( p->pPars->fVerbose )
+ {
+ fprintf( stdout, "F =%3d : ", nIters );
+ fprintf( stdout, "Image =%6d ", nBddSize );
+ fprintf( stdout, "(%4d%4d) ",
+ Cudd_ReadReorderings(p->dd), Cudd_ReadGarbageCollections(p->dd) );
+ fprintf( stdout, "Reach =%6d ", Cudd_DagSize(bReached) );
+ fprintf( stdout, "(%4d%4d) ",
+ Cudd_ReadReorderings(p->ddG), Cudd_ReadGarbageCollections(p->ddG) );
+ Abc_PrintTime( 1, "Time", clock() - clk2 );
+ }
+
+ // check timeframe limit
+ if ( nIters == p->pPars->nIterMax - 1 )
+ {
+ if ( !p->pPars->fSilent )
+ printf( "Reached limit on the number of timeframes (%d).\n", p->pPars->nIterMax );
+ p->pPars->iFrame = nIters;
+ Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
+ Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
+ return -1;
+ }
+ }
+ if ( bReached == NULL )
+ {
+ p->pPars->iFrame = nIters - 1;
+ return 0; // reachable
+ }
+ if ( bCurrent )
+ Cudd_RecursiveDeref( p->dd, bCurrent );
+ // report the stats
+ if ( p->pPars->fVerbose )
+ {
+ double nMints = Cudd_CountMinterm(p->ddG, bReached, Saig_ManRegNum(p->pAig) );
+ if ( nIters >= p->pPars->nIterMax )
+ fprintf( stdout, "Reachability analysis is stopped after %d frames.\n", nIters );
+ else
+ fprintf( stdout, "Reachability analysis completed after %d frames.\n", nIters );
+ fprintf( stdout, "Reachable states = %.0f. (Ratio = %.4f %%)\n", nMints, 100.0*nMints/pow(2.0, Saig_ManRegNum(p->pAig)) );
+ fflush( stdout );
+ }
+ if ( p->pPars->fDumpReached )
+ {
+ Llb_ManDumpReached( p->ddG, bReached, p->pAig->pName, "reached.blif" );
+ printf( "Reached states with %d BDD nodes are dumpted into file \"reached.blif\".\n", Cudd_DagSize(bReached) );
+ }
+ Cudd_RecursiveDeref( p->ddG, bReached );
+ if ( nIters >= p->pPars->nIterMax )
+ {
+ if ( !p->pPars->fSilent )
+ {
+ printf( "Verified only for states reachable in %d frames. ", nIters );
+ Abc_PrintTime( 1, "Time", clock() - clk );
+ }
+ p->pPars->iFrame = p->pPars->nIterMax;
+ return -1; // undecided
+ }
+ if ( !p->pPars->fSilent )
+ {
+ printf( "The miter is proved unreachable after %d iterations. ", nIters );
+ Abc_PrintTime( 1, "Time", clock() - clk );
+ }
+ p->pPars->iFrame = nIters - 1;
+ return 1; // unreachable
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Llb_CoreReachability( Llb_Img_t * p )
+{
+ Vec_Ptr_t * vSupps, * vQuant0, * vQuant1;
+ int RetValue;
+ // get supports and quantified variables
+ if ( p->pPars->fBackward )
+ {
+ Vec_PtrReverseOrder( p->vDdMans );
+ vSupps = Llb_ImgSupports( p->pAig, p->vDdMans, p->vVarsNs, p->vVarsCs, 0, p->pPars->fVeryVerbose );
+ }
+ else
+ vSupps = Llb_ImgSupports( p->pAig, p->vDdMans, p->vVarsCs, p->vVarsNs, 0, p->pPars->fVeryVerbose );
+ Llb_ImgSchedule( vSupps, &vQuant0, &vQuant1, p->pPars->fVeryVerbose );
+ Vec_VecFree( (Vec_Vec_t *)vSupps );
+ // remove variables
+ Llb_ImgQuantifyFirst( p->pAig, p->vDdMans, vQuant0, p->pPars->fVeryVerbose );
+ // perform reachability
+ RetValue = Llb_CoreReachability_int( p, vQuant0, vQuant1 );
+ Vec_VecFree( (Vec_Vec_t *)vQuant0 );
+ Vec_VecFree( (Vec_Vec_t *)vQuant1 );
+ return RetValue;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Vec_Ptr_t * Llb_CoreConstructAll( Aig_Man_t * p, Vec_Ptr_t * vResult, Vec_Int_t * vVarsNs, int TimeTarget )
+{
+ DdManager * dd;
+ Vec_Ptr_t * vDdMans;
+ Vec_Ptr_t * vLower, * vUpper;
+ int i;
+ vDdMans = Vec_PtrStart( Vec_PtrSize(vResult) );
+ Vec_PtrForEachEntryReverse( Vec_Ptr_t *, vResult, vLower, i )
+ {
+ if ( i < Vec_PtrSize(vResult) - 1 )
+ dd = Llb_ImgPartition( p, vLower, vUpper, TimeTarget );
+ else
+ dd = Llb_DriverLastPartition( p, vVarsNs, TimeTarget );
+ if ( dd == NULL )
+ {
+ Vec_PtrForEachEntry( DdManager *, vDdMans, dd, i )
+ {
+ if ( dd == NULL )
+ continue;
+ if ( dd->bFunc )
+ Cudd_RecursiveDeref( dd, dd->bFunc );
+ Extra_StopManager( dd );
+ }
+ Vec_PtrFree( vDdMans );
+ return NULL;
+ }
+ Vec_PtrWriteEntry( vDdMans, i, dd );
+ vUpper = vLower;
+ }
+ return vDdMans;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Llb_CoreSetVarMaps( Llb_Img_t * p )
+{
+ Aig_Obj_t * pObj;
+ int i, iVarCs, iVarNs;
+ assert( p->vVarsCs != NULL );
+ assert( p->vVarsNs != NULL );
+ assert( p->vCs2Glo == NULL );
+ assert( p->vNs2Glo == NULL );
+ assert( p->vGlo2Cs == NULL );
+ assert( p->vGlo2Ns == NULL );
+ p->vCs2Glo = Vec_IntStartFull( Aig_ManObjNumMax(p->pAig) );
+ p->vNs2Glo = Vec_IntStartFull( Aig_ManObjNumMax(p->pAig) );
+ p->vGlo2Cs = Vec_IntStartFull( Aig_ManRegNum(p->pAig) );
+ p->vGlo2Ns = Vec_IntStartFull( Aig_ManRegNum(p->pAig) );
+ for ( i = 0; i < Aig_ManRegNum(p->pAig); i++ )
+ {
+ iVarCs = Vec_IntEntry( p->vVarsCs, i );
+ iVarNs = Vec_IntEntry( p->vVarsNs, i );
+ assert( iVarCs >= 0 && iVarCs < Aig_ManObjNumMax(p->pAig) );
+ assert( iVarNs >= 0 && iVarNs < Aig_ManObjNumMax(p->pAig) );
+ Vec_IntWriteEntry( p->vCs2Glo, iVarCs, i );
+ Vec_IntWriteEntry( p->vNs2Glo, iVarNs, i );
+ Vec_IntWriteEntry( p->vGlo2Cs, i, iVarCs );
+ Vec_IntWriteEntry( p->vGlo2Ns, i, iVarNs );
+ }
+ // add mapping of the PIs
+ Saig_ManForEachPi( p->pAig, pObj, i )
+ Vec_IntWriteEntry( p->vCs2Glo, Aig_ObjId(pObj), Aig_ManRegNum(p->pAig)+i );
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Llb_Img_t * Llb_CoreStart( Aig_Man_t * pInit, Aig_Man_t * pAig, Gia_ParLlb_t * pPars )
+{
+ Llb_Img_t * p;
+ p = ABC_CALLOC( Llb_Img_t, 1 );
+ p->pInit = pInit;
+ p->pAig = pAig;
+ p->pPars = pPars;
+ p->dd = Cudd_Init( Aig_ManObjNumMax(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
+ p->ddG = Cudd_Init( Aig_ManRegNum(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
+ p->ddR = Cudd_Init( Aig_ManPiNum(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
+ Cudd_AutodynEnable( p->dd, CUDD_REORDER_SYMM_SIFT );
+ Cudd_AutodynEnable( p->ddG, CUDD_REORDER_SYMM_SIFT );
+ Cudd_AutodynEnable( p->ddR, CUDD_REORDER_SYMM_SIFT );
+ p->vRings = Vec_PtrAlloc( 100 );
+ p->vDriRefs = Llb_DriverCountRefs( pAig );
+ p->vVarsCs = Llb_DriverCollectCs( pAig );
+ p->vVarsNs = Llb_DriverCollectNs( pAig, p->vDriRefs );
+ Llb_CoreSetVarMaps( p );
+ return p;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Llb_CoreStop( Llb_Img_t * p )
+{
+ DdManager * dd;
+ DdNode * bTemp;
+ int i;
+ if ( p->vDdMans )
+ Vec_PtrForEachEntry( DdManager *, p->vDdMans, dd, i )
+ {
+ if ( dd->bFunc )
+ Cudd_RecursiveDeref( dd, dd->bFunc );
+ if ( dd->bFunc2 )
+ Cudd_RecursiveDeref( dd, dd->bFunc2 );
+ Extra_StopManager( dd );
+ }
+ Vec_PtrFreeP( &p->vDdMans );
+ if ( p->ddR->bFunc )
+ Cudd_RecursiveDeref( p->ddR, p->ddR->bFunc );
+ Vec_PtrForEachEntry( DdNode *, p->vRings, bTemp, i )
+ Cudd_RecursiveDeref( p->ddR, bTemp );
+ Vec_PtrFree( p->vRings );
+ Extra_StopManager( p->dd );
+ Extra_StopManager( p->ddG );
+ Extra_StopManager( p->ddR );
+ Vec_IntFreeP( &p->vDriRefs );
+ Vec_IntFreeP( &p->vVarsCs );
+ Vec_IntFreeP( &p->vVarsNs );
+ Vec_IntFreeP( &p->vCs2Glo );
+ Vec_IntFreeP( &p->vNs2Glo );
+ Vec_IntFreeP( &p->vGlo2Cs );
+ Vec_IntFreeP( &p->vGlo2Ns );
+ ABC_FREE( p );
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Llb_CoreExperiment( Aig_Man_t * pInit, Aig_Man_t * pAig, Gia_ParLlb_t * pPars, Vec_Ptr_t * vResult, int TimeTarget )
+{
+ int RetValue;
+ Llb_Img_t * p;
+// printf( "\n" );
+// pPars->fVerbose = 1;
+ p = Llb_CoreStart( pInit, pAig, pPars );
+ p->vDdMans = Llb_CoreConstructAll( pAig, vResult, p->vVarsNs, TimeTarget );
+ if ( p->vDdMans == NULL )
+ {
+ if ( !pPars->fSilent )
+ printf( "Reached timeout (%d seconds) while deriving the partitions.\n", pPars->TimeLimit );
+ Llb_CoreStop( p );
+ return -1;
+ }
+ RetValue = Llb_CoreReachability( p );
+ Llb_CoreStop( p );
+ return RetValue;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Finds balanced cut.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Llb_ManReachMinCut( Aig_Man_t * pAig, Gia_ParLlb_t * pPars )
+{
+ extern Vec_Ptr_t * Llb_ManComputeCuts( Aig_Man_t * p, int Num, int fVerbose, int fVeryVerbose );
+ Vec_Ptr_t * vResult;
+ Aig_Man_t * p;
+ int RetValue = -1;
+ int clk = clock();
+
+ // compute time to stop
+ pPars->TimeTarget = pPars->TimeLimit ? time(NULL) + pPars->TimeLimit : 0;
+
+ p = Aig_ManDupFlopsOnly( pAig );
+//Aig_ManShow( p, 0, NULL );
+ if ( pPars->fVerbose )
+ Aig_ManPrintStats( pAig );
+ if ( pPars->fVerbose )
+ Aig_ManPrintStats( p );
+ Aig_ManFanoutStart( p );
+
+ vResult = Llb_ManComputeCuts( p, pPars->nPartValue, pPars->fVerbose, pPars->fVeryVerbose );
+
+ if ( pPars->TimeLimit && time(NULL) > pPars->TimeTarget )
+ {
+ if ( !pPars->fSilent )
+ printf( "Reached timeout (%d seconds) after partitioning.\n", pPars->TimeLimit );
+
+ Vec_VecFree( (Vec_Vec_t *)vResult );
+ Aig_ManFanoutStop( p );
+ Aig_ManCleanMarkAB( p );
+ Aig_ManStop( p );
+ return RetValue;
+ }
+
+ if ( !pPars->fSkipReach )
+ RetValue = Llb_CoreExperiment( pAig, p, pPars, vResult, pPars->TimeTarget );
+
+ Vec_VecFree( (Vec_Vec_t *)vResult );
+ Aig_ManFanoutStop( p );
+ Aig_ManCleanMarkAB( p );
+ Aig_ManStop( p );
+
+ if ( RetValue == -1 )
+ Abc_PrintTime( 1, "Total runtime of the min-cut-based reachability engine", clock() - clk );
+ return RetValue;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+