summaryrefslogtreecommitdiffstats
path: root/src/sat/fraig
diff options
context:
space:
mode:
Diffstat (limited to 'src/sat/fraig')
-rw-r--r--src/sat/fraig/fraig.h267
-rw-r--r--src/sat/fraig/fraigApi.c297
-rw-r--r--src/sat/fraig/fraigCanon.c218
-rw-r--r--src/sat/fraig/fraigChoice.c241
-rw-r--r--src/sat/fraig/fraigFanout.c175
-rw-r--r--src/sat/fraig/fraigFeed.c909
-rw-r--r--src/sat/fraig/fraigInt.h451
-rw-r--r--src/sat/fraig/fraigMan.c540
-rw-r--r--src/sat/fraig/fraigMem.c246
-rw-r--r--src/sat/fraig/fraigNode.c313
-rw-r--r--src/sat/fraig/fraigPrime.c144
-rw-r--r--src/sat/fraig/fraigSat.c1455
-rw-r--r--src/sat/fraig/fraigTable.c657
-rw-r--r--src/sat/fraig/fraigUtil.c1034
-rw-r--r--src/sat/fraig/fraigVec.c545
-rw-r--r--src/sat/fraig/module.make12
16 files changed, 7504 insertions, 0 deletions
diff --git a/src/sat/fraig/fraig.h b/src/sat/fraig/fraig.h
new file mode 100644
index 00000000..1dad21e2
--- /dev/null
+++ b/src/sat/fraig/fraig.h
@@ -0,0 +1,267 @@
+/**CFile****************************************************************
+
+ FileName [fraig.h]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [External declarations of the FRAIG package.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraig.h,v 1.18 2005/07/08 01:01:30 alanmi Exp $]
+
+***********************************************************************/
+
+#ifndef __FRAIG_H__
+#define __FRAIG_H__
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+////////////////////////////////////////////////////////////////////////
+/// INCLUDES ///
+////////////////////////////////////////////////////////////////////////
+
+#ifndef SINT64
+#define SINT64
+
+#ifdef _WIN32
+typedef signed __int64 sint64; // compatible with MS VS 6.0
+#else
+typedef long long sint64;
+#endif
+
+#endif
+
+////////////////////////////////////////////////////////////////////////
+/// PARAMETERS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// STRUCTURE DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+typedef struct Fraig_ManStruct_t_ Fraig_Man_t;
+typedef struct Fraig_NodeStruct_t_ Fraig_Node_t;
+typedef struct Fraig_NodeVecStruct_t_ Fraig_NodeVec_t;
+typedef struct Fraig_HashTableStruct_t_ Fraig_HashTable_t;
+typedef struct Fraig_ParamsStruct_t_ Fraig_Params_t;
+typedef struct Fraig_PatternsStruct_t_ Fraig_Patterns_t;
+typedef struct Prove_ParamsStruct_t_ Prove_Params_t;
+
+struct Fraig_ParamsStruct_t_
+{
+ int nPatsRand; // the number of words of random simulation info
+ int nPatsDyna; // the number of words of dynamic simulation info
+ int nBTLimit; // the max number of backtracks to perform
+ int nSeconds; // the timeout for the final proof
+ int fFuncRed; // performs only one level hashing
+ int fFeedBack; // enables solver feedback
+ int fDist1Pats; // enables distance-1 patterns
+ int fDoSparse; // performs equiv tests for sparse functions
+ int fChoicing; // enables recording structural choices
+ int fTryProve; // tries to solve the final miter
+ int fVerbose; // the verbosiness flag
+ int fVerboseP; // the verbosiness flag (for proof reporting)
+ int fInternal; // is set to 1 for internal fraig calls
+ int nConfLimit; // the limit on the number of conflicts
+ sint64 nInspLimit; // the limit on the number of inspections
+};
+
+struct Prove_ParamsStruct_t_
+{
+ // general parameters
+ int fUseFraiging; // enables fraiging
+ int fUseRewriting; // enables rewriting
+ int fUseBdds; // enables BDD construction when other methods fail
+ int fVerbose; // prints verbose stats
+ // iterations
+ int nItersMax; // the number of iterations
+ // mitering
+ int nMiteringLimitStart; // starting mitering limit
+ float nMiteringLimitMulti; // multiplicative coefficient to increase the limit in each iteration
+ // rewriting
+ int nRewritingLimitStart; // the number of rewriting iterations
+ float nRewritingLimitMulti; // multiplicative coefficient to increase the limit in each iteration
+ // fraiging
+ int nFraigingLimitStart; // starting backtrack(conflict) limit
+ float nFraigingLimitMulti; // multiplicative coefficient to increase the limit in each iteration
+ // last-gasp BDD construction
+ int nBddSizeLimit; // the number of BDD nodes when construction is aborted
+ int fBddReorder; // enables dynamic BDD variable reordering
+ // last-gasp mitering
+ int nMiteringLimitLast; // final mitering limit
+ // global SAT solver limits
+ sint64 nTotalBacktrackLimit; // global limit on the number of backtracks
+ sint64 nTotalInspectLimit; // global limit on the number of clause inspects
+ // global resources applied
+ sint64 nTotalBacktracksMade; // the total number of backtracks made
+ sint64 nTotalInspectsMade; // the total number of inspects made
+};
+
+////////////////////////////////////////////////////////////////////////
+/// GLOBAL VARIABLES ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// MACRO DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+// macros working with complemented attributes of the nodes
+#define Fraig_IsComplement(p) (((int)((unsigned long) (p) & 01)))
+#define Fraig_Regular(p) ((Fraig_Node_t *)((unsigned long)(p) & ~01))
+#define Fraig_Not(p) ((Fraig_Node_t *)((unsigned long)(p) ^ 01))
+#define Fraig_NotCond(p,c) ((Fraig_Node_t *)((unsigned long)(p) ^ (c)))
+
+// these are currently not used
+#define Fraig_Ref(p)
+#define Fraig_Deref(p)
+#define Fraig_RecursiveDeref(p,c)
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/*=== fraigApi.c =============================================================*/
+extern Fraig_NodeVec_t * Fraig_ManReadVecInputs( Fraig_Man_t * p );
+extern Fraig_NodeVec_t * Fraig_ManReadVecOutputs( Fraig_Man_t * p );
+extern Fraig_NodeVec_t * Fraig_ManReadVecNodes( Fraig_Man_t * p );
+extern Fraig_Node_t ** Fraig_ManReadInputs ( Fraig_Man_t * p );
+extern Fraig_Node_t ** Fraig_ManReadOutputs( Fraig_Man_t * p );
+extern Fraig_Node_t ** Fraig_ManReadNodes( Fraig_Man_t * p );
+extern int Fraig_ManReadInputNum ( Fraig_Man_t * p );
+extern int Fraig_ManReadOutputNum( Fraig_Man_t * p );
+extern int Fraig_ManReadNodeNum( Fraig_Man_t * p );
+extern Fraig_Node_t * Fraig_ManReadConst1 ( Fraig_Man_t * p );
+extern Fraig_Node_t * Fraig_ManReadIthVar( Fraig_Man_t * p, int i );
+extern Fraig_Node_t * Fraig_ManReadIthNode( Fraig_Man_t * p, int i );
+extern char ** Fraig_ManReadInputNames( Fraig_Man_t * p );
+extern char ** Fraig_ManReadOutputNames( Fraig_Man_t * p );
+extern char * Fraig_ManReadVarsInt( Fraig_Man_t * p );
+extern char * Fraig_ManReadSat( Fraig_Man_t * p );
+extern int Fraig_ManReadFuncRed( Fraig_Man_t * p );
+extern int Fraig_ManReadFeedBack( Fraig_Man_t * p );
+extern int Fraig_ManReadDoSparse( Fraig_Man_t * p );
+extern int Fraig_ManReadChoicing( Fraig_Man_t * p );
+extern int Fraig_ManReadVerbose( Fraig_Man_t * p );
+extern int * Fraig_ManReadModel( Fraig_Man_t * p );
+extern int Fraig_ManReadPatternNumRandom( Fraig_Man_t * p );
+extern int Fraig_ManReadPatternNumDynamic( Fraig_Man_t * p );
+extern int Fraig_ManReadPatternNumDynamicFiltered( Fraig_Man_t * p );
+extern int Fraig_ManReadSatFails( Fraig_Man_t * p );
+extern int Fraig_ManReadConflicts( Fraig_Man_t * p );
+extern int Fraig_ManReadInspects( Fraig_Man_t * p );
+
+extern void Fraig_ManSetFuncRed( Fraig_Man_t * p, int fFuncRed );
+extern void Fraig_ManSetFeedBack( Fraig_Man_t * p, int fFeedBack );
+extern void Fraig_ManSetDoSparse( Fraig_Man_t * p, int fDoSparse );
+extern void Fraig_ManSetChoicing( Fraig_Man_t * p, int fChoicing );
+extern void Fraig_ManSetTryProve( Fraig_Man_t * p, int fTryProve );
+extern void Fraig_ManSetVerbose( Fraig_Man_t * p, int fVerbose );
+extern void Fraig_ManSetTimeToGraph( Fraig_Man_t * p, int Time );
+extern void Fraig_ManSetTimeToNet( Fraig_Man_t * p, int Time );
+extern void Fraig_ManSetTimeTotal( Fraig_Man_t * p, int Time );
+extern void Fraig_ManSetOutputNames( Fraig_Man_t * p, char ** ppNames );
+extern void Fraig_ManSetInputNames( Fraig_Man_t * p, char ** ppNames );
+extern void Fraig_ManSetPo( Fraig_Man_t * p, Fraig_Node_t * pNode );
+
+extern Fraig_Node_t * Fraig_NodeReadData0( Fraig_Node_t * p );
+extern Fraig_Node_t * Fraig_NodeReadData1( Fraig_Node_t * p );
+extern int Fraig_NodeReadNum( Fraig_Node_t * p );
+extern Fraig_Node_t * Fraig_NodeReadOne( Fraig_Node_t * p );
+extern Fraig_Node_t * Fraig_NodeReadTwo( Fraig_Node_t * p );
+extern Fraig_Node_t * Fraig_NodeReadNextE( Fraig_Node_t * p );
+extern Fraig_Node_t * Fraig_NodeReadRepr( Fraig_Node_t * p );
+extern int Fraig_NodeReadNumRefs( Fraig_Node_t * p );
+extern int Fraig_NodeReadNumFanouts( Fraig_Node_t * p );
+extern int Fraig_NodeReadSimInv( Fraig_Node_t * p );
+extern int Fraig_NodeReadNumOnes( Fraig_Node_t * p );
+extern unsigned * Fraig_NodeReadPatternsRandom( Fraig_Node_t * p );
+extern unsigned * Fraig_NodeReadPatternsDynamic( Fraig_Node_t * p );
+
+extern void Fraig_NodeSetData0( Fraig_Node_t * p, Fraig_Node_t * pData );
+extern void Fraig_NodeSetData1( Fraig_Node_t * p, Fraig_Node_t * pData );
+
+extern int Fraig_NodeIsConst( Fraig_Node_t * p );
+extern int Fraig_NodeIsVar( Fraig_Node_t * p );
+extern int Fraig_NodeIsAnd( Fraig_Node_t * p );
+extern int Fraig_NodeComparePhase( Fraig_Node_t * p1, Fraig_Node_t * p2 );
+
+extern Fraig_Node_t * Fraig_NodeOr( Fraig_Man_t * p, Fraig_Node_t * p1, Fraig_Node_t * p2 );
+extern Fraig_Node_t * Fraig_NodeAnd( Fraig_Man_t * p, Fraig_Node_t * p1, Fraig_Node_t * p2 );
+extern Fraig_Node_t * Fraig_NodeOr( Fraig_Man_t * p, Fraig_Node_t * p1, Fraig_Node_t * p2 );
+extern Fraig_Node_t * Fraig_NodeExor( Fraig_Man_t * p, Fraig_Node_t * p1, Fraig_Node_t * p2 );
+extern Fraig_Node_t * Fraig_NodeMux( Fraig_Man_t * p, Fraig_Node_t * pNode, Fraig_Node_t * pNodeT, Fraig_Node_t * pNodeE );
+extern void Fraig_NodeSetChoice( Fraig_Man_t * pMan, Fraig_Node_t * pNodeOld, Fraig_Node_t * pNodeNew );
+
+/*=== fraigMan.c =============================================================*/
+extern void Prove_ParamsSetDefault( Prove_Params_t * pParams );
+extern void Fraig_ParamsSetDefault( Fraig_Params_t * pParams );
+extern void Fraig_ParamsSetDefaultFull( Fraig_Params_t * pParams );
+extern Fraig_Man_t * Fraig_ManCreate( Fraig_Params_t * pParams );
+extern void Fraig_ManFree( Fraig_Man_t * pMan );
+extern void Fraig_ManPrintStats( Fraig_Man_t * p );
+extern Fraig_NodeVec_t * Fraig_ManGetSimInfo( Fraig_Man_t * p );
+extern int Fraig_ManCheckClauseUsingSimInfo( Fraig_Man_t * p, Fraig_Node_t * pNode1, Fraig_Node_t * pNode2 );
+extern void Fraig_ManAddClause( Fraig_Man_t * p, Fraig_Node_t ** ppNodes, int nNodes );
+
+/*=== fraigDfs.c =============================================================*/
+extern Fraig_NodeVec_t * Fraig_Dfs( Fraig_Man_t * pMan, int fEquiv );
+extern Fraig_NodeVec_t * Fraig_DfsOne( Fraig_Man_t * pMan, Fraig_Node_t * pNode, int fEquiv );
+extern Fraig_NodeVec_t * Fraig_DfsNodes( Fraig_Man_t * pMan, Fraig_Node_t ** ppNodes, int nNodes, int fEquiv );
+extern Fraig_NodeVec_t * Fraig_DfsReverse( Fraig_Man_t * pMan );
+extern int Fraig_CountNodes( Fraig_Man_t * pMan, int fEquiv );
+extern int Fraig_CheckTfi( Fraig_Man_t * pMan, Fraig_Node_t * pOld, Fraig_Node_t * pNew );
+extern int Fraig_CountLevels( Fraig_Man_t * pMan );
+
+/*=== fraigSat.c =============================================================*/
+extern int Fraig_NodesAreEqual( Fraig_Man_t * p, Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int nBTLimit, int nTimeLimit );
+extern int Fraig_NodeIsEquivalent( Fraig_Man_t * p, Fraig_Node_t * pOld, Fraig_Node_t * pNew, int nBTLimit, int nTimeLimit );
+extern void Fraig_ManProveMiter( Fraig_Man_t * p );
+extern int Fraig_ManCheckMiter( Fraig_Man_t * p );
+extern int Fraig_ManCheckClauseUsingSat( Fraig_Man_t * p, Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int nBTLimit );
+
+/*=== fraigVec.c ===============================================================*/
+extern Fraig_NodeVec_t * Fraig_NodeVecAlloc( int nCap );
+extern void Fraig_NodeVecFree( Fraig_NodeVec_t * p );
+extern Fraig_NodeVec_t * Fraig_NodeVecDup( Fraig_NodeVec_t * p );
+extern Fraig_Node_t ** Fraig_NodeVecReadArray( Fraig_NodeVec_t * p );
+extern int Fraig_NodeVecReadSize( Fraig_NodeVec_t * p );
+extern void Fraig_NodeVecGrow( Fraig_NodeVec_t * p, int nCapMin );
+extern void Fraig_NodeVecShrink( Fraig_NodeVec_t * p, int nSizeNew );
+extern void Fraig_NodeVecClear( Fraig_NodeVec_t * p );
+extern void Fraig_NodeVecPush( Fraig_NodeVec_t * p, Fraig_Node_t * Entry );
+extern int Fraig_NodeVecPushUnique( Fraig_NodeVec_t * p, Fraig_Node_t * Entry );
+extern void Fraig_NodeVecPushOrder( Fraig_NodeVec_t * p, Fraig_Node_t * pNode );
+extern int Fraig_NodeVecPushUniqueOrder( Fraig_NodeVec_t * p, Fraig_Node_t * pNode );
+extern void Fraig_NodeVecPushOrderByLevel( Fraig_NodeVec_t * p, Fraig_Node_t * pNode );
+extern int Fraig_NodeVecPushUniqueOrderByLevel( Fraig_NodeVec_t * p, Fraig_Node_t * pNode );
+extern Fraig_Node_t * Fraig_NodeVecPop( Fraig_NodeVec_t * p );
+extern void Fraig_NodeVecRemove( Fraig_NodeVec_t * p, Fraig_Node_t * Entry );
+extern void Fraig_NodeVecWriteEntry( Fraig_NodeVec_t * p, int i, Fraig_Node_t * Entry );
+extern Fraig_Node_t * Fraig_NodeVecReadEntry( Fraig_NodeVec_t * p, int i );
+extern void Fraig_NodeVecSortByLevel( Fraig_NodeVec_t * p, int fIncreasing );
+extern void Fraig_NodeVecSortByNumber( Fraig_NodeVec_t * p );
+
+/*=== fraigUtil.c ===============================================================*/
+extern void Fraig_ManMarkRealFanouts( Fraig_Man_t * p );
+extern int Fraig_ManCheckConsistency( Fraig_Man_t * p );
+extern int Fraig_GetMaxLevel( Fraig_Man_t * pMan );
+extern void Fraig_ManReportChoices( Fraig_Man_t * pMan );
+extern void Fraig_MappingSetChoiceLevels( Fraig_Man_t * pMan, int fMaximum );
+extern Fraig_NodeVec_t * Fraig_CollectSupergate( Fraig_Node_t * pNode, int fStopAtMux );
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
diff --git a/src/sat/fraig/fraigApi.c b/src/sat/fraig/fraigApi.c
new file mode 100644
index 00000000..79a7c224
--- /dev/null
+++ b/src/sat/fraig/fraigApi.c
@@ -0,0 +1,297 @@
+/**CFile****************************************************************
+
+ FileName [fraigApi.c]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [Access APIs for the FRAIG manager and node.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraigApi.c,v 1.2 2005/07/08 01:01:30 alanmi Exp $]
+
+***********************************************************************/
+
+#include "fraigInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Access functions to read the data members of the manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_NodeVec_t * Fraig_ManReadVecInputs( Fraig_Man_t * p ) { return p->vInputs; }
+Fraig_NodeVec_t * Fraig_ManReadVecOutputs( Fraig_Man_t * p ) { return p->vOutputs; }
+Fraig_NodeVec_t * Fraig_ManReadVecNodes( Fraig_Man_t * p ) { return p->vNodes; }
+Fraig_Node_t ** Fraig_ManReadInputs ( Fraig_Man_t * p ) { return p->vInputs->pArray; }
+Fraig_Node_t ** Fraig_ManReadOutputs( Fraig_Man_t * p ) { return p->vOutputs->pArray; }
+Fraig_Node_t ** Fraig_ManReadNodes( Fraig_Man_t * p ) { return p->vNodes->pArray; }
+int Fraig_ManReadInputNum ( Fraig_Man_t * p ) { return p->vInputs->nSize; }
+int Fraig_ManReadOutputNum( Fraig_Man_t * p ) { return p->vOutputs->nSize; }
+int Fraig_ManReadNodeNum( Fraig_Man_t * p ) { return p->vNodes->nSize; }
+Fraig_Node_t * Fraig_ManReadConst1 ( Fraig_Man_t * p ) { return p->pConst1; }
+Fraig_Node_t * Fraig_ManReadIthNode( Fraig_Man_t * p, int i ) { assert ( i < p->vNodes->nSize ); return p->vNodes->pArray[i]; }
+char ** Fraig_ManReadInputNames( Fraig_Man_t * p ) { return p->ppInputNames; }
+char ** Fraig_ManReadOutputNames( Fraig_Man_t * p ) { return p->ppOutputNames; }
+char * Fraig_ManReadVarsInt( Fraig_Man_t * p ) { return (char *)p->vVarsInt; }
+char * Fraig_ManReadSat( Fraig_Man_t * p ) { return (char *)p->pSat; }
+int Fraig_ManReadFuncRed( Fraig_Man_t * p ) { return p->fFuncRed; }
+int Fraig_ManReadFeedBack( Fraig_Man_t * p ) { return p->fFeedBack; }
+int Fraig_ManReadDoSparse( Fraig_Man_t * p ) { return p->fDoSparse; }
+int Fraig_ManReadChoicing( Fraig_Man_t * p ) { return p->fChoicing; }
+int Fraig_ManReadVerbose( Fraig_Man_t * p ) { return p->fVerbose; }
+int * Fraig_ManReadModel( Fraig_Man_t * p ) { return p->pModel; }
+// returns the number of patterns used for random simulation (this number is fixed for the FRAIG run)
+int Fraig_ManReadPatternNumRandom( Fraig_Man_t * p ) { return p->nWordsRand * 32; }
+// returns the number of dynamic patterns accumulated at runtime (include SAT solver counter-examples and distance-1 patterns derived from them)
+int Fraig_ManReadPatternNumDynamic( Fraig_Man_t * p ) { return p->iWordStart * 32; }
+// returns the number of dynamic patterns proved useful to distinquish some FRAIG nodes (this number is more than 0 after the first garbage collection of patterns)
+int Fraig_ManReadPatternNumDynamicFiltered( Fraig_Man_t * p ) { return p->iPatsPerm; }
+// returns the number of times FRAIG package timed out
+int Fraig_ManReadSatFails( Fraig_Man_t * p ) { return p->nSatFailsReal; }
+// returns the number of conflicts in the SAT solver
+int Fraig_ManReadConflicts( Fraig_Man_t * p ) { return p->pSat? Msat_SolverReadBackTracks(p->pSat) : 0; }
+// returns the number of inspections in the SAT solver
+int Fraig_ManReadInspects( Fraig_Man_t * p ) { return p->pSat? Msat_SolverReadInspects(p->pSat) : 0; }
+
+/**Function*************************************************************
+
+ Synopsis [Access functions to set the data members of the manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ManSetFuncRed( Fraig_Man_t * p, int fFuncRed ) { p->fFuncRed = fFuncRed; }
+void Fraig_ManSetFeedBack( Fraig_Man_t * p, int fFeedBack ) { p->fFeedBack = fFeedBack; }
+void Fraig_ManSetDoSparse( Fraig_Man_t * p, int fDoSparse ) { p->fDoSparse = fDoSparse; }
+void Fraig_ManSetChoicing( Fraig_Man_t * p, int fChoicing ) { p->fChoicing = fChoicing; }
+void Fraig_ManSetTryProve( Fraig_Man_t * p, int fTryProve ) { p->fTryProve = fTryProve; }
+void Fraig_ManSetVerbose( Fraig_Man_t * p, int fVerbose ) { p->fVerbose = fVerbose; }
+void Fraig_ManSetTimeToGraph( Fraig_Man_t * p, int Time ) { p->timeToAig = Time; }
+void Fraig_ManSetTimeToNet( Fraig_Man_t * p, int Time ) { p->timeToNet = Time; }
+void Fraig_ManSetTimeTotal( Fraig_Man_t * p, int Time ) { p->timeTotal = Time; }
+void Fraig_ManSetOutputNames( Fraig_Man_t * p, char ** ppNames ) { p->ppOutputNames = ppNames; }
+void Fraig_ManSetInputNames( Fraig_Man_t * p, char ** ppNames ) { p->ppInputNames = ppNames; }
+
+/**Function*************************************************************
+
+ Synopsis [Access functions to read the data members of the node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_NodeReadData0( Fraig_Node_t * p ) { return p->pData0; }
+Fraig_Node_t * Fraig_NodeReadData1( Fraig_Node_t * p ) { return p->pData1; }
+int Fraig_NodeReadNum( Fraig_Node_t * p ) { return p->Num; }
+Fraig_Node_t * Fraig_NodeReadOne( Fraig_Node_t * p ) { assert (!Fraig_IsComplement(p)); return p->p1; }
+Fraig_Node_t * Fraig_NodeReadTwo( Fraig_Node_t * p ) { assert (!Fraig_IsComplement(p)); return p->p2; }
+Fraig_Node_t * Fraig_NodeReadNextE( Fraig_Node_t * p ) { return p->pNextE; }
+Fraig_Node_t * Fraig_NodeReadRepr( Fraig_Node_t * p ) { return p->pRepr; }
+int Fraig_NodeReadNumRefs( Fraig_Node_t * p ) { return p->nRefs; }
+int Fraig_NodeReadNumFanouts( Fraig_Node_t * p ) { return p->nFanouts; }
+int Fraig_NodeReadSimInv( Fraig_Node_t * p ) { return p->fInv; }
+int Fraig_NodeReadNumOnes( Fraig_Node_t * p ) { return p->nOnes; }
+// returns the pointer to the random simulation patterns (their number is returned by Fraig_ManReadPatternNumRandom)
+// memory pointed to by this and the following procedure is maintained by the FRAIG package and exists as long as the package runs
+unsigned * Fraig_NodeReadPatternsRandom( Fraig_Node_t * p ) { return p->puSimR; }
+// returns the pointer to the dynamic simulation patterns (their number is returned by Fraig_ManReadPatternNumDynamic or Fraig_ManReadPatternNumDynamicFiltered)
+// if the number of patterns is not evenly divisible by 32, the patterns beyond the given number contain garbage
+unsigned * Fraig_NodeReadPatternsDynamic( Fraig_Node_t * p ) { return p->puSimD; }
+
+/**Function*************************************************************
+
+ Synopsis [Access functions to set the data members of the node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeSetData0( Fraig_Node_t * p, Fraig_Node_t * pData ) { p->pData0 = pData; }
+void Fraig_NodeSetData1( Fraig_Node_t * p, Fraig_Node_t * pData ) { p->pData1 = pData; }
+
+/**Function*************************************************************
+
+ Synopsis [Checks the type of the node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeIsConst( Fraig_Node_t * p ) { return (Fraig_Regular(p))->Num == 0; }
+int Fraig_NodeIsVar( Fraig_Node_t * p ) { return (Fraig_Regular(p))->NumPi >= 0; }
+int Fraig_NodeIsAnd( Fraig_Node_t * p ) { return (Fraig_Regular(p))->NumPi < 0 && (Fraig_Regular(p))->Num > 0; }
+int Fraig_NodeComparePhase( Fraig_Node_t * p1, Fraig_Node_t * p2 ) { assert( !Fraig_IsComplement(p1) ); assert( !Fraig_IsComplement(p2) ); return p1->fInv ^ p2->fInv; }
+
+/**Function*************************************************************
+
+ Synopsis [Returns a new primary input node.]
+
+ Description [If the node with this number does not exist,
+ create a new PI node with this number.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_ManReadIthVar( Fraig_Man_t * p, int i )
+{
+ int k;
+ if ( i < 0 )
+ {
+ printf( "Requesting a PI with a negative number\n" );
+ return NULL;
+ }
+ // create the PIs to fill in the interval
+ if ( i >= p->vInputs->nSize )
+ for ( k = p->vInputs->nSize; k <= i; k++ )
+ Fraig_NodeCreatePi( p );
+ return p->vInputs->pArray[i];
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates a new PO node.]
+
+ Description [This procedure may take a complemented node.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ManSetPo( Fraig_Man_t * p, Fraig_Node_t * pNode )
+{
+ // internal node may be a PO two times
+ Fraig_Regular(pNode)->fNodePo = 1;
+ Fraig_NodeVecPush( p->vOutputs, pNode );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Perfoms the AND operation with functional hashing.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_NodeAnd( Fraig_Man_t * p, Fraig_Node_t * p1, Fraig_Node_t * p2 )
+{
+ return Fraig_NodeAndCanon( p, p1, p2 );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Perfoms the OR operation with functional hashing.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_NodeOr( Fraig_Man_t * p, Fraig_Node_t * p1, Fraig_Node_t * p2 )
+{
+ return Fraig_Not( Fraig_NodeAndCanon( p, Fraig_Not(p1), Fraig_Not(p2) ) );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Perfoms the EXOR operation with functional hashing.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_NodeExor( Fraig_Man_t * p, Fraig_Node_t * p1, Fraig_Node_t * p2 )
+{
+ return Fraig_NodeMux( p, p1, Fraig_Not(p2), p2 );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Perfoms the MUX operation with functional hashing.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_NodeMux( Fraig_Man_t * p, Fraig_Node_t * pC, Fraig_Node_t * pT, Fraig_Node_t * pE )
+{
+ Fraig_Node_t * pAnd1, * pAnd2, * pRes;
+ pAnd1 = Fraig_NodeAndCanon( p, pC, pT ); Fraig_Ref( pAnd1 );
+ pAnd2 = Fraig_NodeAndCanon( p, Fraig_Not(pC), pE ); Fraig_Ref( pAnd2 );
+ pRes = Fraig_NodeOr( p, pAnd1, pAnd2 );
+ Fraig_RecursiveDeref( p, pAnd1 );
+ Fraig_RecursiveDeref( p, pAnd2 );
+ Fraig_Deref( pRes );
+ return pRes;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Sets the node to be equivalent to the given one.]
+
+ Description [This procedure is a work-around for the equivalence check.
+ Does not verify the equivalence. Use at the user's risk.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeSetChoice( Fraig_Man_t * pMan, Fraig_Node_t * pNodeOld, Fraig_Node_t * pNodeNew )
+{
+// assert( pMan->fChoicing );
+ pNodeNew->pNextE = pNodeOld->pNextE;
+ pNodeOld->pNextE = pNodeNew;
+ pNodeNew->pRepr = pNodeOld;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/sat/fraig/fraigCanon.c b/src/sat/fraig/fraigCanon.c
new file mode 100644
index 00000000..89bc924f
--- /dev/null
+++ b/src/sat/fraig/fraigCanon.c
@@ -0,0 +1,218 @@
+/**CFile****************************************************************
+
+ FileName [fraigCanon.c]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [AND-node creation and elementary AND-operation.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraigCanon.c,v 1.4 2005/07/08 01:01:31 alanmi Exp $]
+
+***********************************************************************/
+
+#include <limits.h>
+#include "fraigInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [The internal AND operation for the two FRAIG nodes.]
+
+ Description [This procedure is the core of the FRAIG package, because
+ it performs the two-step canonicization of FRAIG nodes. The first step
+ involves the lookup in the structural hash table (which hashes two ANDs
+ into a node that has them as fanins, if such a node exists). If the node
+ is not found in the structural hash table, an attempt is made to find a
+ functionally equivalent node in another hash table (which hashes the
+ simulation info into the nodes, which has this simulation info). Some
+ tricks used on the way are described in the comments to the code and
+ in the paper "FRAIGs: Functionally reduced AND-INV graphs".]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_NodeAndCanon( Fraig_Man_t * pMan, Fraig_Node_t * p1, Fraig_Node_t * p2 )
+{
+ Fraig_Node_t * pNodeNew, * pNodeOld, * pNodeRepr;
+ int fUseSatCheck;
+// int RetValue;
+
+ // check for trivial cases
+ if ( p1 == p2 )
+ return p1;
+ if ( p1 == Fraig_Not(p2) )
+ return Fraig_Not(pMan->pConst1);
+ if ( Fraig_NodeIsConst(p1) )
+ {
+ if ( p1 == pMan->pConst1 )
+ return p2;
+ return Fraig_Not(pMan->pConst1);
+ }
+ if ( Fraig_NodeIsConst(p2) )
+ {
+ if ( p2 == pMan->pConst1 )
+ return p1;
+ return Fraig_Not(pMan->pConst1);
+ }
+/*
+ // check for less trivial cases
+ if ( Fraig_IsComplement(p1) )
+ {
+ if ( RetValue = Fraig_NodeIsInSupergate( Fraig_Regular(p1), p2 ) )
+ {
+ if ( RetValue == -1 )
+ pMan->nImplies0++;
+ else
+ pMan->nImplies1++;
+
+ if ( RetValue == -1 )
+ return p2;
+ }
+ }
+ else
+ {
+ if ( RetValue = Fraig_NodeIsInSupergate( p1, p2 ) )
+ {
+ if ( RetValue == 1 )
+ pMan->nSimplifies1++;
+ else
+ pMan->nSimplifies0++;
+
+ if ( RetValue == 1 )
+ return p1;
+ return Fraig_Not(pMan->pConst1);
+ }
+ }
+
+ if ( Fraig_IsComplement(p2) )
+ {
+ if ( RetValue = Fraig_NodeIsInSupergate( Fraig_Regular(p2), p1 ) )
+ {
+ if ( RetValue == -1 )
+ pMan->nImplies0++;
+ else
+ pMan->nImplies1++;
+
+ if ( RetValue == -1 )
+ return p1;
+ }
+ }
+ else
+ {
+ if ( RetValue = Fraig_NodeIsInSupergate( p2, p1 ) )
+ {
+ if ( RetValue == 1 )
+ pMan->nSimplifies1++;
+ else
+ pMan->nSimplifies0++;
+
+ if ( RetValue == 1 )
+ return p2;
+ return Fraig_Not(pMan->pConst1);
+ }
+ }
+*/
+ // perform level-one structural hashing
+ if ( Fraig_HashTableLookupS( pMan, p1, p2, &pNodeNew ) ) // the node with these children is found
+ {
+ // if the existent node is part of the cone of unused logic
+ // (that is logic feeding the node which is equivalent to the given node)
+ // return the canonical representative of this node
+ // determine the phase of the given node, with respect to its canonical form
+ pNodeRepr = Fraig_Regular(pNodeNew)->pRepr;
+ if ( pMan->fFuncRed && pNodeRepr )
+ return Fraig_NotCond( pNodeRepr, Fraig_IsComplement(pNodeNew) ^ Fraig_NodeComparePhase(Fraig_Regular(pNodeNew), pNodeRepr) );
+ // otherwise, the node is itself a canonical representative, return it
+ return pNodeNew;
+ }
+ // the same node is not found, but the new one is created
+
+ // if one level hashing is requested (without functionality hashing), return
+ if ( !pMan->fFuncRed )
+ return pNodeNew;
+
+ // check if the new node is unique using the simulation info
+ if ( pNodeNew->nOnes == 0 || pNodeNew->nOnes == (unsigned)pMan->nWordsRand * 32 )
+ {
+ pMan->nSatZeros++;
+ if ( !pMan->fDoSparse ) // if we do not do sparse functions, skip
+ return pNodeNew;
+ // check the sparse function simulation hash table
+ pNodeOld = Fraig_HashTableLookupF0( pMan, pNodeNew );
+ if ( pNodeOld == NULL ) // the node is unique (it is added to the table)
+ return pNodeNew;
+ }
+ else
+ {
+ // check the simulation hash table
+ pNodeOld = Fraig_HashTableLookupF( pMan, pNodeNew );
+ if ( pNodeOld == NULL ) // the node is unique
+ return pNodeNew;
+ }
+ assert( pNodeOld->pRepr == 0 );
+ // there is another node which looks the same according to simulation
+
+ // use SAT to resolve the ambiguity
+ fUseSatCheck = (pMan->nInspLimit == 0 || Fraig_ManReadInspects(pMan) < pMan->nInspLimit);
+ if ( fUseSatCheck && Fraig_NodeIsEquivalent( pMan, pNodeOld, pNodeNew, pMan->nBTLimit, 1000000 ) )
+ {
+ // set the node to be equivalent with this node
+ // to prevent loops, only set if the old node is not in the TFI of the new node
+ // the loop may happen in the following case: suppose
+ // NodeC = AND(NodeA, NodeB) and at the same time NodeA => NodeB
+ // in this case, NodeA and NodeC are functionally equivalent
+ // however, NodeA is a fanin of node NodeC (this leads to the loop)
+ // add the node to the list of equivalent nodes or dereference it
+ if ( pMan->fChoicing && !Fraig_CheckTfi( pMan, pNodeOld, pNodeNew ) )
+ {
+ // if the old node is not in the TFI of the new node and choicing
+ // is enabled, add the new node to the list of equivalent ones
+ pNodeNew->pNextE = pNodeOld->pNextE;
+ pNodeOld->pNextE = pNodeNew;
+ }
+ // set the canonical representative of this node
+ pNodeNew->pRepr = pNodeOld;
+ // return the equivalent node
+ return Fraig_NotCond( pNodeOld, Fraig_NodeComparePhase(pNodeOld, pNodeNew) );
+ }
+
+ // now we add another member to this simulation class
+ if ( pNodeNew->nOnes == 0 || pNodeNew->nOnes == (unsigned)pMan->nWordsRand * 32 )
+ {
+ Fraig_Node_t * pNodeTemp;
+ assert( pMan->fDoSparse );
+ pNodeTemp = Fraig_HashTableLookupF0( pMan, pNodeNew );
+// assert( pNodeTemp == NULL );
+// Fraig_HashTableInsertF0( pMan, pNodeNew );
+ }
+ else
+ {
+ pNodeNew->pNextD = pNodeOld->pNextD;
+ pNodeOld->pNextD = pNodeNew;
+ }
+ // return the new node
+ assert( pNodeNew->pRepr == 0 );
+ return pNodeNew;
+}
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/sat/fraig/fraigChoice.c b/src/sat/fraig/fraigChoice.c
new file mode 100644
index 00000000..896e5d2d
--- /dev/null
+++ b/src/sat/fraig/fraigChoice.c
@@ -0,0 +1,241 @@
+/**CFile****************************************************************
+
+ FileName [fraigTrans.c]
+
+ PackageName [MVSIS 1.3: Multi-valued logic synthesis system.]
+
+ Synopsis [Adds the additive and distributive choices to the AIG.]
+
+ Author [MVSIS Group]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - February 1, 2003.]
+
+ Revision [$Id: fraigTrans.c,v 1.1 2005/02/28 05:34:34 alanmi Exp $]
+
+***********************************************************************/
+
+#include "fraigInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Adds choice nodes based on associativity.]
+
+ Description [Make nLimit big AND gates and add all decompositions
+ to the Fraig.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ManAddChoices( Fraig_Man_t * pMan, int fVerbose, int nLimit )
+{
+// ProgressBar * pProgress;
+ char Buffer[100];
+ int clkTotal = clock();
+ int i, nNodesBefore, nNodesAfter, nInputs, nMaxNodes;
+ int /*nMaxLevel,*/ nDistributive;
+ Fraig_Node_t *pNode, *pRepr;
+ Fraig_Node_t *pX, *pA, *pB, *pC, /* *pD,*/ *pN, /* *pQ, *pR,*/ *pT;
+ int fShortCut = 0;
+
+ nDistributive = 0;
+
+// Fraig_ManSetApprox( pMan, 1 );
+
+ // NO functional reduction
+ if (fShortCut) Fraig_ManSetFuncRed( pMan, 0 );
+
+ // First we mark critical functions i.e. compute those
+ // nodes which lie on the critical path. Note that this
+ // doesn't update the required times on any choice nodes
+ // which are not the representatives
+/*
+ nMaxLevel = Fraig_GetMaxLevel( pMan );
+ for ( i = 0; i < pMan->nOutputs; i++ )
+ {
+ Fraig_SetNodeRequired( pMan, pMan->pOutputs[i], nMaxLevel );
+ }
+*/
+ nNodesBefore = Fraig_ManReadNodeNum( pMan );
+ nInputs = Fraig_ManReadInputNum( pMan );
+ nMaxNodes = nInputs + nLimit * ( nNodesBefore - nInputs );
+
+ printf ("Limit = %d, Before = %d\n", nMaxNodes, nNodesBefore );
+
+ if (0)
+ {
+ char buffer[128];
+ sprintf (buffer, "test" );
+// Fraig_MappingShow( pMan, buffer );
+ }
+
+// pProgress = Extra_ProgressBarStart( stdout, nMaxNodes );
+Fraig_ManCheckConsistency( pMan );
+
+ for ( i = nInputs+1; (i < Fraig_ManReadNodeNum( pMan ))
+ && (nMaxNodes > Fraig_ManReadNodeNum( pMan )); ++i )
+ {
+// if ( i == nNodesBefore )
+// break;
+
+ pNode = Fraig_ManReadIthNode( pMan, i );
+ assert ( pNode );
+
+ pRepr = pNode->pRepr ? pNode->pRepr : pNode;
+ //printf ("Slack: %d\n", Fraig_NodeReadSlack( pRepr ));
+
+ // All the new associative choices we add will have huge slack
+ // since we do not redo timing, and timing doesnt handle choices
+ // well anyway. However every newly added node is a choice of an
+ // existing critical node, so they are considered critical.
+// if ( (Fraig_NodeReadSlack( pRepr ) > 3) && (i < nNodesBefore) )
+// continue;
+
+// if ( pNode->pRepr )
+// continue;
+
+ // Try ((ab)c), x = ab -> (a(bc)) and (b(ac))
+ pX = Fraig_NodeReadOne(pNode);
+ pC = Fraig_NodeReadTwo(pNode);
+ if (Fraig_NodeIsAnd(pX) && !Fraig_IsComplement(pX))
+ {
+ pA = Fraig_NodeReadOne(Fraig_Regular(pX));
+ pB = Fraig_NodeReadTwo(Fraig_Regular(pX));
+
+// pA = Fraig_NodeGetRepr( pA );
+// pB = Fraig_NodeGetRepr( pB );
+// pC = Fraig_NodeGetRepr( pC );
+
+ if (fShortCut)
+ {
+ pT = Fraig_NodeAnd(pMan, pB, pC);
+ if ( !pT->pRepr )
+ {
+ pN = Fraig_NodeAnd(pMan, pA, pT);
+// Fraig_NodeAddChoice( pMan, pNode, pN );
+ }
+ }
+ else
+ pN = Fraig_NodeAnd(pMan, pA, Fraig_NodeAnd(pMan, pB, pC));
+ // assert ( Fraig_NodesEqual(pN, pNode) );
+
+
+ if (fShortCut)
+ {
+ pT = Fraig_NodeAnd(pMan, pA, pC);
+ if ( !pT->pRepr )
+ {
+ pN = Fraig_NodeAnd(pMan, pB, pT);
+// Fraig_NodeAddChoice( pMan, pNode, pN );
+ }
+ }
+ else
+ pN = Fraig_NodeAnd(pMan, pB, Fraig_NodeAnd(pMan, pA, pC));
+ // assert ( Fraig_NodesEqual(pN, pNode) );
+ }
+
+
+ // Try (a(bc)), x = bc -> ((ab)c) and ((ac)b)
+ pA = Fraig_NodeReadOne(pNode);
+ pX = Fraig_NodeReadTwo(pNode);
+ if (Fraig_NodeIsAnd(pX) && !Fraig_IsComplement(pX))
+ {
+ pB = Fraig_NodeReadOne(Fraig_Regular(pX));
+ pC = Fraig_NodeReadTwo(Fraig_Regular(pX));
+
+// pA = Fraig_NodeGetRepr( pA );
+// pB = Fraig_NodeGetRepr( pB );
+// pC = Fraig_NodeGetRepr( pC );
+
+ if (fShortCut)
+ {
+ pT = Fraig_NodeAnd(pMan, pA, pB);
+ if ( !pT->pRepr )
+ {
+ pN = Fraig_NodeAnd(pMan, pC, pT);
+// Fraig_NodeAddChoice( pMan, pNode, pN );
+ }
+ }
+ else
+ pN = Fraig_NodeAnd(pMan, Fraig_NodeAnd(pMan, pA, pB), pC);
+ // assert ( Fraig_NodesEqual(pN, pNode) );
+
+ if (fShortCut)
+ {
+ pT = Fraig_NodeAnd(pMan, pA, pC);
+ if ( !pT->pRepr )
+ {
+ pN = Fraig_NodeAnd(pMan, pB, pT);
+// Fraig_NodeAddChoice( pMan, pNode, pN );
+ }
+ }
+ else
+ pN = Fraig_NodeAnd(pMan, Fraig_NodeAnd(pMan, pA, pC), pB);
+ // assert ( Fraig_NodesEqual(pN, pNode) );
+ }
+
+
+/*
+ // Try distributive transform
+ pQ = Fraig_NodeReadOne(pNode);
+ pR = Fraig_NodeReadTwo(pNode);
+ if ( (Fraig_IsComplement(pQ) && Fraig_NodeIsAnd(pQ))
+ && (Fraig_IsComplement(pR) && Fraig_NodeIsAnd(pR)) )
+ {
+ pA = Fraig_NodeReadOne(Fraig_Regular(pQ));
+ pB = Fraig_NodeReadTwo(Fraig_Regular(pQ));
+ pC = Fraig_NodeReadOne(Fraig_Regular(pR));
+ pD = Fraig_NodeReadTwo(Fraig_Regular(pR));
+
+ // Now detect the !(xy + xz) pattern, store
+ // x in pA, y in pB and z in pC and set pD = 0 to indicate
+ // pattern was found
+ assert (pD != 0);
+ if (pA == pC) { pC = pD; pD = 0; }
+ if (pA == pD) { pD = 0; }
+ if (pB == pC) { pB = pA; pA = pC; pC = pD; pD = 0; }
+ if (pB == pD) { pB = pA; pA = pD; pD = 0; }
+ if (pD == 0)
+ {
+ nDistributive++;
+ pN = Fraig_Not(Fraig_NodeAnd(pMan, pA,
+ Fraig_NodeOr(pMan, pB, pC)));
+ if (fShortCut) Fraig_NodeAddChoice( pMan, pNode, pN );
+ // assert ( Fraig_NodesEqual(pN, pNode) );
+ }
+ }
+*/
+ if ( i % 1000 == 0 )
+ {
+ sprintf( Buffer, "Adding choice %6d...", i - nNodesBefore );
+// Extra_ProgressBarUpdate( pProgress, i, Buffer );
+ }
+ }
+
+// Extra_ProgressBarStop( pProgress );
+
+Fraig_ManCheckConsistency( pMan );
+
+ nNodesAfter = Fraig_ManReadNodeNum( pMan );
+ printf ( "Nodes before = %6d. Nodes with associative choices = %6d. Increase = %4.2f %%.\n",
+ nNodesBefore, nNodesAfter, ((float)(nNodesAfter - nNodesBefore)) * 100.0/(nNodesBefore - nInputs) );
+ printf ( "Distributive = %d\n", nDistributive );
+
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/sat/fraig/fraigFanout.c b/src/sat/fraig/fraigFanout.c
new file mode 100644
index 00000000..789bffca
--- /dev/null
+++ b/src/sat/fraig/fraigFanout.c
@@ -0,0 +1,175 @@
+/**CFile****************************************************************
+
+ FileName [fraigFanout.c]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [Procedures to manipulate fanouts of the FRAIG nodes.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraigFanout.c,v 1.5 2005/07/08 01:01:31 alanmi Exp $]
+
+***********************************************************************/
+
+#include "fraigInt.h"
+
+#ifdef FRAIG_ENABLE_FANOUTS
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Add the fanout to the node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeAddFaninFanout( Fraig_Node_t * pFanin, Fraig_Node_t * pFanout )
+{
+ Fraig_Node_t * pPivot;
+
+ // pFanins is a fanin of pFanout
+ assert( !Fraig_IsComplement(pFanin) );
+ assert( !Fraig_IsComplement(pFanout) );
+ assert( Fraig_Regular(pFanout->p1) == pFanin || Fraig_Regular(pFanout->p2) == pFanin );
+
+ pPivot = pFanin->pFanPivot;
+ if ( pPivot == NULL )
+ {
+ pFanin->pFanPivot = pFanout;
+ return;
+ }
+
+ if ( Fraig_Regular(pPivot->p1) == pFanin )
+ {
+ if ( Fraig_Regular(pFanout->p1) == pFanin )
+ {
+ pFanout->pFanFanin1 = pPivot->pFanFanin1;
+ pPivot->pFanFanin1 = pFanout;
+ }
+ else // if ( Fraig_Regular(pFanout->p2) == pFanin )
+ {
+ pFanout->pFanFanin2 = pPivot->pFanFanin1;
+ pPivot->pFanFanin1 = pFanout;
+ }
+ }
+ else // if ( Fraig_Regular(pPivot->p2) == pFanin )
+ {
+ assert( Fraig_Regular(pPivot->p2) == pFanin );
+ if ( Fraig_Regular(pFanout->p1) == pFanin )
+ {
+ pFanout->pFanFanin1 = pPivot->pFanFanin2;
+ pPivot->pFanFanin2 = pFanout;
+ }
+ else // if ( Fraig_Regular(pFanout->p2) == pFanin )
+ {
+ pFanout->pFanFanin2 = pPivot->pFanFanin2;
+ pPivot->pFanFanin2 = pFanout;
+ }
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Add the fanout to the node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeRemoveFaninFanout( Fraig_Node_t * pFanin, Fraig_Node_t * pFanoutToRemove )
+{
+ Fraig_Node_t * pFanout, * pFanout2, ** ppFanList;
+ // start the linked list of fanouts
+ ppFanList = &pFanin->pFanPivot;
+ // go through the fanouts
+ Fraig_NodeForEachFanoutSafe( pFanin, pFanout, pFanout2 )
+ {
+ // skip the fanout-to-remove
+ if ( pFanout == pFanoutToRemove )
+ continue;
+ // add useful fanouts to the list
+ *ppFanList = pFanout;
+ ppFanList = Fraig_NodeReadNextFanoutPlace( pFanin, pFanout );
+ }
+ *ppFanList = NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Transfers fanout to a different node.]
+
+ Description [Assumes that the other node currently has no fanouts.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeTransferFanout( Fraig_Node_t * pNodeFrom, Fraig_Node_t * pNodeTo )
+{
+ Fraig_Node_t * pFanout;
+ assert( pNodeTo->pFanPivot == NULL );
+ assert( pNodeTo->pFanFanin1 == NULL );
+ assert( pNodeTo->pFanFanin2 == NULL );
+ // go through the fanouts and update their fanins
+ Fraig_NodeForEachFanout( pNodeFrom, pFanout )
+ {
+ if ( Fraig_Regular(pFanout->p1) == pNodeFrom )
+ pFanout->p1 = Fraig_NotCond( pNodeTo, Fraig_IsComplement(pFanout->p1) );
+ else if ( Fraig_Regular(pFanout->p2) == pNodeFrom )
+ pFanout->p2 = Fraig_NotCond( pNodeTo, Fraig_IsComplement(pFanout->p2) );
+ }
+ // move the pointers
+ pNodeTo->pFanPivot = pNodeFrom->pFanPivot;
+ pNodeTo->pFanFanin1 = pNodeFrom->pFanFanin1;
+ pNodeTo->pFanFanin2 = pNodeFrom->pFanFanin2;
+ pNodeFrom->pFanPivot = NULL;
+ pNodeFrom->pFanFanin1 = NULL;
+ pNodeFrom->pFanFanin2 = NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the number of fanouts of a node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeGetFanoutNum( Fraig_Node_t * pNode )
+{
+ Fraig_Node_t * pFanout;
+ int Counter = 0;
+ Fraig_NodeForEachFanout( pNode, pFanout )
+ Counter++;
+ return Counter;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+#endif
+
diff --git a/src/sat/fraig/fraigFeed.c b/src/sat/fraig/fraigFeed.c
new file mode 100644
index 00000000..8a3cc6c7
--- /dev/null
+++ b/src/sat/fraig/fraigFeed.c
@@ -0,0 +1,909 @@
+/**CFile****************************************************************
+
+ FileName [fraigFeed.c]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [Procedures to support the solver feedback.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraigFeed.c,v 1.8 2005/07/08 01:01:31 alanmi Exp $]
+
+***********************************************************************/
+
+#include "fraigInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+static int Fraig_FeedBackPrepare( Fraig_Man_t * p, int * pModel, Msat_IntVec_t * vVars );
+static int Fraig_FeedBackInsert( Fraig_Man_t * p, int nVarsPi );
+static void Fraig_FeedBackVerify( Fraig_Man_t * p, Fraig_Node_t * pOld, Fraig_Node_t * pNew );
+
+static void Fraig_FeedBackCovering( Fraig_Man_t * p, Msat_IntVec_t * vPats );
+static Fraig_NodeVec_t * Fraig_FeedBackCoveringStart( Fraig_Man_t * pMan );
+static int Fraig_GetSmallestColumn( int * pHits, int nHits );
+static int Fraig_GetHittingPattern( unsigned * pSims, int nWords );
+static void Fraig_CancelCoveredColumns( Fraig_NodeVec_t * vColumns, int * pHits, int iPat );
+static void Fraig_FeedBackCheckTable( Fraig_Man_t * p );
+static void Fraig_FeedBackCheckTableF0( Fraig_Man_t * p );
+static void Fraig_ReallocateSimulationInfo( Fraig_Man_t * p );
+
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Initializes the feedback information.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_FeedBackInit( Fraig_Man_t * p )
+{
+ p->vCones = Fraig_NodeVecAlloc( 500 );
+ p->vPatsReal = Msat_IntVecAlloc( 1000 );
+ p->pSimsReal = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
+ memset( p->pSimsReal, 0, sizeof(unsigned) * p->nWordsDyna );
+ p->pSimsTemp = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
+ p->pSimsDiff = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Processes the feedback from teh solver.]
+
+ Description [Array pModel gives the value of each variable in the SAT
+ solver. Array vVars is the array of integer numbers of variables
+ involves in this conflict.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_FeedBack( Fraig_Man_t * p, int * pModel, Msat_IntVec_t * vVars, Fraig_Node_t * pOld, Fraig_Node_t * pNew )
+{
+ int nVarsPi, nWords;
+ int i, clk = clock();
+
+ // get the number of PI vars in the feedback (also sets the PI values)
+ nVarsPi = Fraig_FeedBackPrepare( p, pModel, vVars );
+
+ // set the PI values
+ nWords = Fraig_FeedBackInsert( p, nVarsPi );
+ assert( p->iWordStart + nWords <= p->nWordsDyna );
+
+ // resimulates the words from p->iWordStart to iWordStop
+ for ( i = 1; i < p->vNodes->nSize; i++ )
+ if ( Fraig_NodeIsAnd(p->vNodes->pArray[i]) )
+ Fraig_NodeSimulate( p->vNodes->pArray[i], p->iWordStart, p->iWordStart + nWords, 0 );
+
+ if ( p->fDoSparse )
+ Fraig_TableRehashF0( p, 0 );
+
+ if ( !p->fChoicing )
+ Fraig_FeedBackVerify( p, pOld, pNew );
+
+ // if there is no room left, compress the patterns
+ if ( p->iWordStart + nWords == p->nWordsDyna )
+ p->iWordStart = Fraig_FeedBackCompress( p );
+ else // otherwise, update the starting word
+ p->iWordStart += nWords;
+
+p->timeFeed += clock() - clk;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Get the number and values of the PI variables.]
+
+ Description [Returns the number of PI variables involved in this feedback.
+ Fills in the internal presence and value data for the primary inputs.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_FeedBackPrepare( Fraig_Man_t * p, int * pModel, Msat_IntVec_t * vVars )
+{
+ Fraig_Node_t * pNode;
+ int i, nVars, nVarsPis, * pVars;
+
+ // clean the presence flag for all PIs
+ for ( i = 0; i < p->vInputs->nSize; i++ )
+ {
+ pNode = p->vInputs->pArray[i];
+ pNode->fFeedUse = 0;
+ }
+
+ // get the variables involved in the feedback
+ nVars = Msat_IntVecReadSize(vVars);
+ pVars = Msat_IntVecReadArray(vVars);
+
+ // set the values for the present variables
+ nVarsPis = 0;
+ for ( i = 0; i < nVars; i++ )
+ {
+ pNode = p->vNodes->pArray[ pVars[i] ];
+ if ( !Fraig_NodeIsVar(pNode) )
+ continue;
+ // set its value
+ pNode->fFeedUse = 1;
+ pNode->fFeedVal = !MSAT_LITSIGN(pModel[pVars[i]]);
+ nVarsPis++;
+ }
+ return nVarsPis;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Inserts the new simulation patterns.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_FeedBackInsert( Fraig_Man_t * p, int nVarsPi )
+{
+ Fraig_Node_t * pNode;
+ int nWords, iPatFlip, nPatFlipLimit, i, w;
+ int fUseNoPats = 0;
+ int fUse2Pats = 0;
+
+ // get the number of words
+ if ( fUse2Pats )
+ nWords = FRAIG_NUM_WORDS( 2 * nVarsPi + 1 );
+ else if ( fUseNoPats )
+ nWords = 1;
+ else
+ nWords = FRAIG_NUM_WORDS( nVarsPi + 1 );
+ // update the number of words if they do not fit into the simulation info
+ if ( nWords > p->nWordsDyna - p->iWordStart )
+ nWords = p->nWordsDyna - p->iWordStart;
+ // determine the bound on the flipping bit
+ nPatFlipLimit = nWords * 32 - 2;
+
+ // mark the real pattern
+ Msat_IntVecPush( p->vPatsReal, p->iWordStart * 32 );
+ // record the real pattern
+ Fraig_BitStringSetBit( p->pSimsReal, p->iWordStart * 32 );
+
+ // set the values at the PIs
+ iPatFlip = 1;
+ for ( i = 0; i < p->vInputs->nSize; i++ )
+ {
+ pNode = p->vInputs->pArray[i];
+ for ( w = p->iWordStart; w < p->iWordStart + nWords; w++ )
+ if ( !pNode->fFeedUse )
+ pNode->puSimD[w] = FRAIG_RANDOM_UNSIGNED;
+ else if ( pNode->fFeedVal )
+ pNode->puSimD[w] = FRAIG_FULL;
+ else // if ( !pNode->fFeedVal )
+ pNode->puSimD[w] = 0;
+
+ if ( fUse2Pats )
+ {
+ // flip two patterns
+ if ( pNode->fFeedUse && 2 * iPatFlip < nPatFlipLimit )
+ {
+ Fraig_BitStringXorBit( pNode->puSimD + p->iWordStart, 2 * iPatFlip - 1 );
+ Fraig_BitStringXorBit( pNode->puSimD + p->iWordStart, 2 * iPatFlip );
+ Fraig_BitStringXorBit( pNode->puSimD + p->iWordStart, 2 * iPatFlip + 1 );
+ iPatFlip++;
+ }
+ }
+ else if ( fUseNoPats )
+ {
+ }
+ else
+ {
+ // flip the diagonal
+ if ( pNode->fFeedUse && iPatFlip < nPatFlipLimit )
+ {
+ Fraig_BitStringXorBit( pNode->puSimD + p->iWordStart, iPatFlip );
+ iPatFlip++;
+ // Extra_PrintBinary( stdout, &pNode->puSimD, 45 ); printf( "\n" );
+ }
+ }
+ // clean the use mask
+ pNode->fFeedUse = 0;
+
+ // add the info to the D hash value of the PIs
+ for ( w = p->iWordStart; w < p->iWordStart + nWords; w++ )
+ pNode->uHashD ^= pNode->puSimD[w] * s_FraigPrimes[w];
+
+ }
+ return nWords;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Checks that the SAT solver pattern indeed distinquishes the nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_FeedBackVerify( Fraig_Man_t * p, Fraig_Node_t * pOld, Fraig_Node_t * pNew )
+{
+ int fValue1, fValue2, iPat;
+ iPat = Msat_IntVecReadEntry( p->vPatsReal, Msat_IntVecReadSize(p->vPatsReal)-1 );
+ fValue1 = (Fraig_BitStringHasBit( pOld->puSimD, iPat ));
+ fValue2 = (Fraig_BitStringHasBit( pNew->puSimD, iPat ));
+/*
+Fraig_PrintNode( p, pOld );
+printf( "\n" );
+Fraig_PrintNode( p, pNew );
+printf( "\n" );
+*/
+// assert( fValue1 != fValue2 );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Compress the simulation patterns.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_FeedBackCompress( Fraig_Man_t * p )
+{
+ unsigned * pSims;
+ unsigned uHash;
+ int i, w, t, nPats, * pPats;
+ int fPerformChecks = (p->nBTLimit == -1);
+
+ // solve the covering problem
+ if ( fPerformChecks )
+ {
+ Fraig_FeedBackCheckTable( p );
+ if ( p->fDoSparse )
+ Fraig_FeedBackCheckTableF0( p );
+ }
+
+ // solve the covering problem
+ Fraig_FeedBackCovering( p, p->vPatsReal );
+
+
+ // get the number of additional patterns
+ nPats = Msat_IntVecReadSize( p->vPatsReal );
+ pPats = Msat_IntVecReadArray( p->vPatsReal );
+ // get the new starting word
+ p->iWordStart = FRAIG_NUM_WORDS( p->iPatsPerm + nPats );
+
+ // set the simulation info for the PIs
+ for ( i = 0; i < p->vInputs->nSize; i++ )
+ {
+ // get hold of the simulation info for this PI
+ pSims = p->vInputs->pArray[i]->puSimD;
+ // clean the storage for the new patterns
+ for ( w = p->iWordPerm; w < p->iWordStart; w++ )
+ p->pSimsTemp[w] = 0;
+ // set the patterns
+ for ( t = 0; t < nPats; t++ )
+ if ( Fraig_BitStringHasBit( pSims, pPats[t] ) )
+ {
+ // check if this pattern falls into temporary storage
+ if ( p->iPatsPerm + t < p->iWordPerm * 32 )
+ Fraig_BitStringSetBit( pSims, p->iPatsPerm + t );
+ else
+ Fraig_BitStringSetBit( p->pSimsTemp, p->iPatsPerm + t );
+ }
+ // copy the pattern
+ for ( w = p->iWordPerm; w < p->iWordStart; w++ )
+ pSims[w] = p->pSimsTemp[w];
+ // recompute the hashing info
+ uHash = 0;
+ for ( w = 0; w < p->iWordStart; w++ )
+ uHash ^= pSims[w] * s_FraigPrimes[w];
+ p->vInputs->pArray[i]->uHashD = uHash;
+ }
+
+ // update info about the permanently stored patterns
+ p->iWordPerm = p->iWordStart;
+ p->iPatsPerm += nPats;
+ assert( p->iWordPerm == FRAIG_NUM_WORDS( p->iPatsPerm ) );
+
+ // resimulate and recompute the hash values
+ for ( i = 1; i < p->vNodes->nSize; i++ )
+ if ( Fraig_NodeIsAnd(p->vNodes->pArray[i]) )
+ {
+ p->vNodes->pArray[i]->uHashD = 0;
+ Fraig_NodeSimulate( p->vNodes->pArray[i], 0, p->iWordPerm, 0 );
+ }
+
+ // double-check that the nodes are still distinguished
+ if ( fPerformChecks )
+ Fraig_FeedBackCheckTable( p );
+
+ // rehash the values in the F0 table
+ if ( p->fDoSparse )
+ {
+ Fraig_TableRehashF0( p, 0 );
+ if ( fPerformChecks )
+ Fraig_FeedBackCheckTableF0( p );
+ }
+
+ // check if we need to resize the simulation info
+ // if less than FRAIG_WORDS_STORE words are left, reallocate simulation info
+ if ( p->iWordPerm + FRAIG_WORDS_STORE > p->nWordsDyna )
+ Fraig_ReallocateSimulationInfo( p );
+
+ // set the real patterns
+ Msat_IntVecClear( p->vPatsReal );
+ memset( p->pSimsReal, 0, sizeof(unsigned)*p->nWordsDyna );
+ for ( w = 0; w < p->iWordPerm; w++ )
+ p->pSimsReal[w] = FRAIG_FULL;
+ if ( p->iPatsPerm % 32 > 0 )
+ p->pSimsReal[p->iWordPerm-1] = FRAIG_MASK( p->iPatsPerm % 32 );
+// printf( "The number of permanent words = %d.\n", p->iWordPerm );
+ return p->iWordStart;
+}
+
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Checks the correctness of the functional simulation table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_FeedBackCovering( Fraig_Man_t * p, Msat_IntVec_t * vPats )
+{
+ Fraig_NodeVec_t * vColumns;
+ unsigned * pSims;
+ int * pHits, iPat, iCol, i;
+ int nOnesTotal, nSolStarting;
+ int fVeryVerbose = 0;
+
+ // collect the pairs to be distinguished
+ vColumns = Fraig_FeedBackCoveringStart( p );
+ // collect the number of 1s in each simulation vector
+ nOnesTotal = 0;
+ pHits = ALLOC( int, vColumns->nSize );
+ for ( i = 0; i < vColumns->nSize; i++ )
+ {
+ pSims = (unsigned *)vColumns->pArray[i];
+ pHits[i] = Fraig_BitStringCountOnes( pSims, p->iWordStart );
+ nOnesTotal += pHits[i];
+// assert( pHits[i] > 0 );
+ }
+
+ // go through the patterns
+ nSolStarting = Msat_IntVecReadSize(vPats);
+ while ( (iCol = Fraig_GetSmallestColumn( pHits, vColumns->nSize )) != -1 )
+ {
+ // find the pattern, which hits this column
+ iPat = Fraig_GetHittingPattern( (unsigned *)vColumns->pArray[iCol], p->iWordStart );
+ // cancel the columns covered by this pattern
+ Fraig_CancelCoveredColumns( vColumns, pHits, iPat );
+ // save the pattern
+ Msat_IntVecPush( vPats, iPat );
+ }
+
+ // free the set of columns
+ for ( i = 0; i < vColumns->nSize; i++ )
+ Fraig_MemFixedEntryRecycle( p->mmSims, (char *)vColumns->pArray[i] );
+
+ // print stats related to the covering problem
+ if ( p->fVerbose && fVeryVerbose )
+ {
+ printf( "%3d\\%3d\\%3d ", p->nWordsRand, p->nWordsDyna, p->iWordPerm );
+ printf( "Col (pairs) = %5d. ", vColumns->nSize );
+ printf( "Row (pats) = %5d. ", p->iWordStart * 32 );
+ printf( "Dns = %6.2f %%. ", vColumns->nSize==0? 0.0 : 100.0 * nOnesTotal / vColumns->nSize / p->iWordStart / 32 );
+ printf( "Sol = %3d (%3d). ", Msat_IntVecReadSize(vPats), nSolStarting );
+ printf( "\n" );
+ }
+ Fraig_NodeVecFree( vColumns );
+ free( pHits );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Checks the correctness of the functional simulation table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_NodeVec_t * Fraig_FeedBackCoveringStart( Fraig_Man_t * p )
+{
+ Fraig_NodeVec_t * vColumns;
+ Fraig_HashTable_t * pT = p->pTableF;
+ Fraig_Node_t * pEntF, * pEntD;
+ unsigned * pSims;
+ unsigned * pUnsigned1, * pUnsigned2;
+ int i, k, m, w;//, nOnes;
+
+ // start the set of columns
+ vColumns = Fraig_NodeVecAlloc( 100 );
+
+ // go through the pairs of nodes to be distinguished
+ for ( i = 0; i < pT->nBins; i++ )
+ Fraig_TableBinForEachEntryF( pT->pBins[i], pEntF )
+ {
+ p->vCones->nSize = 0;
+ Fraig_TableBinForEachEntryD( pEntF, pEntD )
+ Fraig_NodeVecPush( p->vCones, pEntD );
+ if ( p->vCones->nSize == 1 )
+ continue;
+ //////////////////////////////// bug fix by alanmi, September 14, 2006
+ if ( p->vCones->nSize > 20 )
+ continue;
+ ////////////////////////////////
+
+ for ( k = 0; k < p->vCones->nSize; k++ )
+ for ( m = k+1; m < p->vCones->nSize; m++ )
+ {
+ if ( !Fraig_CompareSimInfoUnderMask( p->vCones->pArray[k], p->vCones->pArray[m], p->iWordStart, 0, p->pSimsReal ) )
+ continue;
+
+ // primary simulation patterns (counter-examples) cannot distinguish this pair
+ // get memory to store the feasible simulation patterns
+ pSims = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
+ // find the pattern that distinguish this column, exept the primary ones
+ pUnsigned1 = p->vCones->pArray[k]->puSimD;
+ pUnsigned2 = p->vCones->pArray[m]->puSimD;
+ for ( w = 0; w < p->iWordStart; w++ )
+ pSims[w] = (pUnsigned1[w] ^ pUnsigned2[w]) & ~p->pSimsReal[w];
+ // store the pattern
+ Fraig_NodeVecPush( vColumns, (Fraig_Node_t *)pSims );
+// nOnes = Fraig_BitStringCountOnes(pSims, p->iWordStart);
+// assert( nOnes > 0 );
+ }
+ }
+
+ // if the flag is not set, do not consider sparse nodes in p->pTableF0
+ if ( !p->fDoSparse )
+ return vColumns;
+
+ // recalculate their hash values based on p->pSimsReal
+ pT = p->pTableF0;
+ for ( i = 0; i < pT->nBins; i++ )
+ Fraig_TableBinForEachEntryF( pT->pBins[i], pEntF )
+ {
+ pSims = pEntF->puSimD;
+ pEntF->uHashD = 0;
+ for ( w = 0; w < p->iWordStart; w++ )
+ pEntF->uHashD ^= (pSims[w] & p->pSimsReal[w]) * s_FraigPrimes[w];
+ }
+
+ // rehash the table using these values
+ Fraig_TableRehashF0( p, 1 );
+
+ // collect the classes of equivalent node pairs
+ for ( i = 0; i < pT->nBins; i++ )
+ Fraig_TableBinForEachEntryF( pT->pBins[i], pEntF )
+ {
+ p->vCones->nSize = 0;
+ Fraig_TableBinForEachEntryD( pEntF, pEntD )
+ Fraig_NodeVecPush( p->vCones, pEntD );
+ if ( p->vCones->nSize == 1 )
+ continue;
+
+ // primary simulation patterns (counter-examples) cannot distinguish all these pairs
+ for ( k = 0; k < p->vCones->nSize; k++ )
+ for ( m = k+1; m < p->vCones->nSize; m++ )
+ {
+ // get memory to store the feasible simulation patterns
+ pSims = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
+ // find the patterns that are not distinquished
+ pUnsigned1 = p->vCones->pArray[k]->puSimD;
+ pUnsigned2 = p->vCones->pArray[m]->puSimD;
+ for ( w = 0; w < p->iWordStart; w++ )
+ pSims[w] = (pUnsigned1[w] ^ pUnsigned2[w]) & ~p->pSimsReal[w];
+ // store the pattern
+ Fraig_NodeVecPush( vColumns, (Fraig_Node_t *)pSims );
+// nOnes = Fraig_BitStringCountOnes(pSims, p->iWordStart);
+// assert( nOnes > 0 );
+ }
+ }
+ return vColumns;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Selects the column, which has the smallest number of hits.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_GetSmallestColumn( int * pHits, int nHits )
+{
+ int i, iColMin = -1, nHitsMin = 1000000;
+ for ( i = 0; i < nHits; i++ )
+ {
+ // skip covered columns
+ if ( pHits[i] == 0 )
+ continue;
+ // take the column if it can only be covered by one pattern
+ if ( pHits[i] == 1 )
+ return i;
+ // find the column, which requires the smallest number of patterns
+ if ( nHitsMin > pHits[i] )
+ {
+ nHitsMin = pHits[i];
+ iColMin = i;
+ }
+ }
+ return iColMin;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Select the pattern, which hits this column.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_GetHittingPattern( unsigned * pSims, int nWords )
+{
+ int i, b;
+ for ( i = 0; i < nWords; i++ )
+ {
+ if ( pSims[i] == 0 )
+ continue;
+ for ( b = 0; b < 32; b++ )
+ if ( pSims[i] & (1 << b) )
+ return i * 32 + b;
+ }
+ return -1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Cancel covered patterns.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_CancelCoveredColumns( Fraig_NodeVec_t * vColumns, int * pHits, int iPat )
+{
+ unsigned * pSims;
+ int i;
+ for ( i = 0; i < vColumns->nSize; i++ )
+ {
+ pSims = (unsigned *)vColumns->pArray[i];
+ if ( Fraig_BitStringHasBit( pSims, iPat ) )
+ pHits[i] = 0;
+ }
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Checks the correctness of the functional simulation table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_FeedBackCheckTable( Fraig_Man_t * p )
+{
+ Fraig_HashTable_t * pT = p->pTableF;
+ Fraig_Node_t * pEntF, * pEntD;
+ int i, k, m, nPairs;
+ int clk = clock();
+
+ nPairs = 0;
+ for ( i = 0; i < pT->nBins; i++ )
+ Fraig_TableBinForEachEntryF( pT->pBins[i], pEntF )
+ {
+ p->vCones->nSize = 0;
+ Fraig_TableBinForEachEntryD( pEntF, pEntD )
+ Fraig_NodeVecPush( p->vCones, pEntD );
+ if ( p->vCones->nSize == 1 )
+ continue;
+ for ( k = 0; k < p->vCones->nSize; k++ )
+ for ( m = k+1; m < p->vCones->nSize; m++ )
+ {
+ if ( Fraig_CompareSimInfo( p->vCones->pArray[k], p->vCones->pArray[m], p->iWordStart, 0 ) )
+ printf( "Nodes %d and %d have the same D simulation info.\n",
+ p->vCones->pArray[k]->Num, p->vCones->pArray[m]->Num );
+ nPairs++;
+ }
+ }
+// printf( "\nThe total of %d node pairs have been verified.\n", nPairs );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Checks the correctness of the functional simulation table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_FeedBackCheckTableF0( Fraig_Man_t * p )
+{
+ Fraig_HashTable_t * pT = p->pTableF0;
+ Fraig_Node_t * pEntF;
+ int i, k, m, nPairs;
+
+ nPairs = 0;
+ for ( i = 0; i < pT->nBins; i++ )
+ {
+ p->vCones->nSize = 0;
+ Fraig_TableBinForEachEntryF( pT->pBins[i], pEntF )
+ Fraig_NodeVecPush( p->vCones, pEntF );
+ if ( p->vCones->nSize == 1 )
+ continue;
+ for ( k = 0; k < p->vCones->nSize; k++ )
+ for ( m = k+1; m < p->vCones->nSize; m++ )
+ {
+ if ( Fraig_CompareSimInfo( p->vCones->pArray[k], p->vCones->pArray[m], p->iWordStart, 0 ) )
+ printf( "Nodes %d and %d have the same D simulation info.\n",
+ p->vCones->pArray[k]->Num, p->vCones->pArray[m]->Num );
+ nPairs++;
+ }
+ }
+// printf( "\nThe total of %d node pairs have been verified.\n", nPairs );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Doubles the size of simulation info.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ReallocateSimulationInfo( Fraig_Man_t * p )
+{
+ Fraig_MemFixed_t * mmSimsNew; // new memory manager for simulation info
+ Fraig_Node_t * pNode;
+ unsigned * pSimsNew;
+ unsigned uSignOld;
+ int i;
+
+ // allocate a new memory manager
+ p->nWordsDyna *= 2;
+ mmSimsNew = Fraig_MemFixedStart( sizeof(unsigned) * (p->nWordsRand + p->nWordsDyna) );
+
+ // set the new data for the constant node
+ pNode = p->pConst1;
+ pNode->puSimR = (unsigned *)Fraig_MemFixedEntryFetch( mmSimsNew );
+ pNode->puSimD = pNode->puSimR + p->nWordsRand;
+ memset( pNode->puSimR, 0, sizeof(unsigned) * p->nWordsRand );
+ memset( pNode->puSimD, 0, sizeof(unsigned) * p->nWordsDyna );
+
+ // copy the simulation info of the PIs
+ for ( i = 0; i < p->vInputs->nSize; i++ )
+ {
+ pNode = p->vInputs->pArray[i];
+ // copy the simulation info
+ pSimsNew = (unsigned *)Fraig_MemFixedEntryFetch( mmSimsNew );
+ memmove( pSimsNew, pNode->puSimR, sizeof(unsigned) * (p->nWordsRand + p->iWordStart) );
+ // attach the new info
+ pNode->puSimR = pSimsNew;
+ pNode->puSimD = pNode->puSimR + p->nWordsRand;
+ // signatures remain without changes
+ }
+
+ // replace the manager to free up some memory
+ Fraig_MemFixedStop( p->mmSims, 0 );
+ p->mmSims = mmSimsNew;
+
+ // resimulate the internal nodes (this should lead to the same signatures)
+ for ( i = 1; i < p->vNodes->nSize; i++ )
+ {
+ pNode = p->vNodes->pArray[i];
+ if ( !Fraig_NodeIsAnd(pNode) )
+ continue;
+ // allocate memory for the simulation info
+ pNode->puSimR = (unsigned *)Fraig_MemFixedEntryFetch( mmSimsNew );
+ pNode->puSimD = pNode->puSimR + p->nWordsRand;
+ // derive random simulation info
+ uSignOld = pNode->uHashR;
+ pNode->uHashR = 0;
+ Fraig_NodeSimulate( pNode, 0, p->nWordsRand, 1 );
+ assert( uSignOld == pNode->uHashR );
+ // derive dynamic simulation info
+ uSignOld = pNode->uHashD;
+ pNode->uHashD = 0;
+ Fraig_NodeSimulate( pNode, 0, p->iWordStart, 0 );
+ assert( uSignOld == pNode->uHashD );
+ }
+
+ // realloc temporary storage
+ p->pSimsReal = (unsigned *)Fraig_MemFixedEntryFetch( mmSimsNew );
+ memset( p->pSimsReal, 0, sizeof(unsigned) * p->nWordsDyna );
+ p->pSimsTemp = (unsigned *)Fraig_MemFixedEntryFetch( mmSimsNew );
+ p->pSimsDiff = (unsigned *)Fraig_MemFixedEntryFetch( mmSimsNew );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Generated trivial counter example.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int * Fraig_ManAllocCounterExample( Fraig_Man_t * p )
+{
+ int * pModel;
+ pModel = ALLOC( int, p->vInputs->nSize );
+ memset( pModel, 0, sizeof(int) * p->vInputs->nSize );
+ return pModel;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Saves the counter example.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_ManSimulateBitNode_rec( Fraig_Man_t * p, Fraig_Node_t * pNode )
+{
+ int Value0, Value1;
+ if ( Fraig_NodeIsTravIdCurrent( p, pNode ) )
+ return pNode->fMark3;
+ Fraig_NodeSetTravIdCurrent( p, pNode );
+ Value0 = Fraig_ManSimulateBitNode_rec( p, Fraig_Regular(pNode->p1) );
+ Value1 = Fraig_ManSimulateBitNode_rec( p, Fraig_Regular(pNode->p2) );
+ Value0 ^= Fraig_IsComplement(pNode->p1);
+ Value1 ^= Fraig_IsComplement(pNode->p2);
+ pNode->fMark3 = Value0 & Value1;
+ return pNode->fMark3;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Simulates one bit.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_ManSimulateBitNode( Fraig_Man_t * p, Fraig_Node_t * pNode, int * pModel )
+{
+ int fCompl, RetValue, i;
+ // set the PI values
+ Fraig_ManIncrementTravId( p );
+ for ( i = 0; i < p->vInputs->nSize; i++ )
+ {
+ Fraig_NodeSetTravIdCurrent( p, p->vInputs->pArray[i] );
+ p->vInputs->pArray[i]->fMark3 = pModel[i];
+ }
+ // perform the traversal
+ fCompl = Fraig_IsComplement(pNode);
+ RetValue = Fraig_ManSimulateBitNode_rec( p, Fraig_Regular(pNode) );
+ return fCompl ^ RetValue;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Saves the counter example.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int * Fraig_ManSaveCounterExample( Fraig_Man_t * p, Fraig_Node_t * pNode )
+{
+ int * pModel;
+ int iPattern;
+ int i, fCompl;
+
+ // the node can be complemented
+ fCompl = Fraig_IsComplement(pNode);
+ // because we compare with constant 0, p->pConst1 should also be complemented
+ fCompl = !fCompl;
+
+ // derive the model
+ pModel = Fraig_ManAllocCounterExample( p );
+ iPattern = Fraig_FindFirstDiff( p->pConst1, Fraig_Regular(pNode), fCompl, p->nWordsRand, 1 );
+ if ( iPattern >= 0 )
+ {
+ for ( i = 0; i < p->vInputs->nSize; i++ )
+ if ( Fraig_BitStringHasBit( p->vInputs->pArray[i]->puSimR, iPattern ) )
+ pModel[i] = 1;
+/*
+printf( "SAT solver's pattern:\n" );
+for ( i = 0; i < p->vInputs->nSize; i++ )
+ printf( "%d", pModel[i] );
+printf( "\n" );
+*/
+ assert( Fraig_ManSimulateBitNode( p, pNode, pModel ) );
+ return pModel;
+ }
+ iPattern = Fraig_FindFirstDiff( p->pConst1, Fraig_Regular(pNode), fCompl, p->iWordStart, 0 );
+ if ( iPattern >= 0 )
+ {
+ for ( i = 0; i < p->vInputs->nSize; i++ )
+ if ( Fraig_BitStringHasBit( p->vInputs->pArray[i]->puSimD, iPattern ) )
+ pModel[i] = 1;
+/*
+printf( "SAT solver's pattern:\n" );
+for ( i = 0; i < p->vInputs->nSize; i++ )
+ printf( "%d", pModel[i] );
+printf( "\n" );
+*/
+ assert( Fraig_ManSimulateBitNode( p, pNode, pModel ) );
+ return pModel;
+ }
+ FREE( pModel );
+ return NULL;
+}
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/sat/fraig/fraigInt.h b/src/sat/fraig/fraigInt.h
new file mode 100644
index 00000000..9c6e0d47
--- /dev/null
+++ b/src/sat/fraig/fraigInt.h
@@ -0,0 +1,451 @@
+/**CFile****************************************************************
+
+ FileName [fraigInt.h]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [Internal declarations of the FRAIG package.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraigInt.h,v 1.15 2005/07/08 01:01:31 alanmi Exp $]
+
+***********************************************************************/
+
+#ifndef __FRAIG_INT_H__
+#define __FRAIG_INT_H__
+
+////////////////////////////////////////////////////////////////////////
+/// INCLUDES ///
+////////////////////////////////////////////////////////////////////////
+
+//#include "leaks.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <time.h>
+
+#include "fraig.h"
+#include "msat.h"
+
+////////////////////////////////////////////////////////////////////////
+/// PARAMETERS ///
+////////////////////////////////////////////////////////////////////////
+
+/*
+ The AIG node policy:
+ - Each node has its main number (pNode->Num)
+ This is the number of this node in the array of all nodes and its SAT variable number
+ - The PI nodes are stored along with other nodes
+ Additionally, PI nodes have a PI number, by which they are stored in the PI node array
+ - The constant node is has number 0 and is also stored in the array
+*/
+
+////////////////////////////////////////////////////////////////////////
+/// MACRO DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+// enable this macro to support the fanouts
+#define FRAIG_ENABLE_FANOUTS
+#define FRAIG_PATTERNS_RANDOM 2048 // should not be less than 128 and more than 32768 (2^15)
+#define FRAIG_PATTERNS_DYNAMIC 2048 // should not be less than 256 and more than 32768 (2^15)
+#define FRAIG_MAX_PRIMES 1024 // the maximum number of primes used for hashing
+
+// this parameter determines when simulation info is extended
+// it will be extended when the free storage in the dynamic simulation
+// info is less or equal to this number of words (FRAIG_WORDS_STORE)
+// this is done because if the free storage for dynamic simulation info
+// is not sufficient, computation becomes inefficient
+#define FRAIG_WORDS_STORE 5
+
+// the bit masks
+#define FRAIG_MASK(n) ((~((unsigned)0)) >> (32-(n)))
+#define FRAIG_FULL (~((unsigned)0))
+#define FRAIG_NUM_WORDS(n) (((n)>>5) + (((n)&31) > 0))
+
+// maximum/minimum operators
+#define FRAIG_MIN(a,b) (((a) < (b))? (a) : (b))
+#define FRAIG_MAX(a,b) (((a) > (b))? (a) : (b))
+
+// generating random unsigned (#define RAND_MAX 0x7fff)
+#define FRAIG_RANDOM_UNSIGNED ((((unsigned)rand()) << 24) ^ (((unsigned)rand()) << 12) ^ ((unsigned)rand()))
+
+// macros to get hold of the bits in a bit string
+#define Fraig_BitStringSetBit(p,i) ((p)[(i)>>5] |= (1<<((i) & 31)))
+#define Fraig_BitStringXorBit(p,i) ((p)[(i)>>5] ^= (1<<((i) & 31)))
+#define Fraig_BitStringHasBit(p,i) (((p)[(i)>>5] & (1<<((i) & 31))) > 0)
+
+// macros to get hold of the bits in the support info
+//#define Fraig_NodeSetVarStr(p,i) (Fraig_Regular(p)->pSuppStr[((i)%FRAIG_SUPP_SIGN)>>5] |= (1<<(((i)%FRAIG_SUPP_SIGN) & 31)))
+//#define Fraig_NodeHasVarStr(p,i) ((Fraig_Regular(p)->pSuppStr[((i)%FRAIG_SUPP_SIGN)>>5] & (1<<(((i)%FRAIG_SUPP_SIGN) & 31))) > 0)
+#define Fraig_NodeSetVarStr(p,i) Fraig_BitStringSetBit(Fraig_Regular(p)->pSuppStr,i)
+#define Fraig_NodeHasVarStr(p,i) Fraig_BitStringHasBit(Fraig_Regular(p)->pSuppStr,i)
+
+// copied from "util.h" for standaloneness
+#ifndef ALLOC
+# define ALLOC(type, num) \
+ ((type *) malloc(sizeof(type) * (num)))
+#endif
+
+#ifndef REALLOC
+# define REALLOC(type, obj, num) \
+ (obj) ? ((type *) realloc((char *) obj, sizeof(type) * (num))) : \
+ ((type *) malloc(sizeof(type) * (num)))
+#endif
+
+#ifndef FREE
+# define FREE(obj) \
+ ((obj) ? (free((char *) (obj)), (obj) = 0) : 0)
+#endif
+
+// copied from "extra.h" for stand-aloneness
+#define Fraig_PrintTime(a,t) printf( "%s = ", (a) ); printf( "%6.2f sec\n", (float)(t)/(float)(CLOCKS_PER_SEC) )
+
+#define Fraig_HashKey2(a,b,TSIZE) (((unsigned)(a) + (unsigned)(b) * 12582917) % TSIZE)
+//#define Fraig_HashKey2(a,b,TSIZE) (( ((unsigned)(a)->Num * 19) ^ ((unsigned)(b)->Num * 1999) ) % TSIZE)
+//#define Fraig_HashKey2(a,b,TSIZE) ( ((unsigned)((a)->Num + (b)->Num) * ((a)->Num + (b)->Num + 1) / 2) % TSIZE)
+// the other two hash functions give bad distribution of hash chain lengths (not clear why)
+
+#ifndef PRT
+#define PRT(a,t) printf( "%s = ", (a) ); printf( "%6.2f sec\n", (float)(t)/(float)(CLOCKS_PER_SEC) )
+#endif
+
+////////////////////////////////////////////////////////////////////////
+/// STRUCTURE DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+typedef struct Fraig_MemFixed_t_ Fraig_MemFixed_t;
+
+// the mapping manager
+struct Fraig_ManStruct_t_
+{
+ // the AIG nodes
+ Fraig_NodeVec_t * vInputs; // the array of primary inputs
+ Fraig_NodeVec_t * vNodes; // the array of all nodes, including primary inputs
+ Fraig_NodeVec_t * vOutputs; // the array of primary outputs (some internal nodes)
+ Fraig_Node_t * pConst1; // the pointer to the constant node (vNodes->pArray[0])
+
+ // info about the original circuit
+ char ** ppInputNames; // the primary input names
+ char ** ppOutputNames; // the primary output names
+
+ // various hash-tables
+ Fraig_HashTable_t * pTableS; // hashing by structure
+ Fraig_HashTable_t * pTableF; // hashing by simulation info
+ Fraig_HashTable_t * pTableF0; // hashing by simulation info (sparse functions)
+
+ // parameters
+ int nWordsRand; // the number of words of random simulation info
+ int nWordsDyna; // the number of words of dynamic simulation info
+ int nBTLimit; // the max number of backtracks to perform
+ int nSeconds; // the runtime limit for the miter proof
+ int fFuncRed; // performs only one level hashing
+ int fFeedBack; // enables solver feedback
+ int fDist1Pats; // enables solver feedback
+ int fDoSparse; // performs equiv tests for sparse functions
+ int fChoicing; // enables recording structural choices
+ int fTryProve; // tries to solve the final miter
+ int fVerbose; // the verbosiness flag
+ int fVerboseP; // the verbosiness flag
+ sint64 nInspLimit; // the inspection limit
+
+ int nTravIds; // the traversal counter
+ int nTravIds2; // the traversal counter
+
+ // info related to the solver feedback
+ int iWordStart; // the first word to use for simulation
+ int iWordPerm; // the number of words stored permanently
+ int iPatsPerm; // the number of patterns stored permanently
+ Fraig_NodeVec_t * vCones; // the temporary array of internal variables
+ Msat_IntVec_t * vPatsReal; // the array of real pattern numbers
+ unsigned * pSimsReal; // used for simulation patterns
+ unsigned * pSimsDiff; // used for simulation patterns
+ unsigned * pSimsTemp; // used for simulation patterns
+
+ // the support information
+ int nSuppWords;
+ unsigned ** pSuppS;
+ unsigned ** pSuppF;
+
+ // the memory managers
+ Fraig_MemFixed_t * mmNodes; // the memory manager for nodes
+ Fraig_MemFixed_t * mmSims; // the memory manager for simulation info
+
+ // solving the SAT problem
+ Msat_Solver_t * pSat; // the SAT solver
+ Msat_IntVec_t * vProj; // the temporary array of projection vars
+ int nSatNums; // the counter of SAT variables
+ int * pModel; // the assignment, which satisfies the miter
+ // these arrays belong to the solver
+ Msat_IntVec_t * vVarsInt; // the temporary array of variables
+ Msat_ClauseVec_t * vAdjacents; // the temporary storage for connectivity
+ Msat_IntVec_t * vVarsUsed; // the array marking vars appearing in the cone
+
+ // various statistic variables
+ int nSatCalls; // the number of times equivalence checking was called
+ int nSatProof; // the number of times a proof was found
+ int nSatCounter; // the number of times a counter example was found
+ int nSatFails; // the number of times the SAT solver failed to complete due to resource limit or prediction
+ int nSatFailsReal; // the number of times the SAT solver failed to complete due to resource limit
+
+ int nSatCallsImp; // the number of times equivalence checking was called
+ int nSatProofImp; // the number of times a proof was found
+ int nSatCounterImp;// the number of times a counter example was found
+ int nSatFailsImp; // the number of times the SAT solver failed to complete
+
+ int nSatZeros; // the number of times the simulation vector is zero
+ int nSatSupps; // the number of times the support info was useful
+ int nRefErrors; // the number of ref counting errors
+ int nImplies; // the number of implication cases
+ int nSatImpls; // the number of implication SAT calls
+ int nVarsClauses; // the number of variables with clauses
+ int nSimplifies0;
+ int nSimplifies1;
+ int nImplies0;
+ int nImplies1;
+
+ // runtime statistics
+ int timeToAig; // time to transfer to the mapping structure
+ int timeSims; // time to compute k-feasible cuts
+ int timeTrav; // time to traverse the network
+ int timeFeed; // time for solver feedback (recording and resimulating)
+ int timeImply; // time to analyze implications
+ int timeSat; // time to compute the truth table for each cut
+ int timeToNet; // time to transfer back to the network
+ int timeTotal; // the total mapping time
+ int time1; // time to perform one task
+ int time2; // time to perform another task
+ int time3; // time to perform another task
+ int time4; // time to perform another task
+};
+
+// the mapping node
+struct Fraig_NodeStruct_t_
+{
+ // various numbers associated with the node
+ int Num; // the unique number (SAT var number) of this node
+ int NumPi; // if the node is a PI, this is its variable number
+ int Level; // the level of the node
+ int nRefs; // the number of references of the node
+ int TravId; // the traversal ID (use to avoid cleaning marks)
+ int TravId2; // the traversal ID (use to avoid cleaning marks)
+
+ // general information about the node
+ unsigned fInv : 1; // the mark to show that simulation info is complemented
+ unsigned fNodePo : 1; // the mark used for primary outputs
+ unsigned fClauses : 1; // the clauses for this node are loaded
+ unsigned fMark0 : 1; // the mark used for traversals
+ unsigned fMark1 : 1; // the mark used for traversals
+ unsigned fMark2 : 1; // the mark used for traversals
+ unsigned fMark3 : 1; // the mark used for traversals
+ unsigned fFeedUse : 1; // the presence of the variable in the feedback
+ unsigned fFeedVal : 1; // the value of the variable in the feedback
+ unsigned fFailTfo : 1; // the node is in the TFO of the failed SAT run
+ unsigned nFanouts : 2; // the indicator of fanouts (none, one, or many)
+ unsigned nOnes : 20; // the number of 1's in the random sim info
+
+ // the children of the node
+ Fraig_Node_t * p1; // the first child
+ Fraig_Node_t * p2; // the second child
+ Fraig_NodeVec_t * vFanins; // the fanins of the supergate rooted at this node
+// Fraig_NodeVec_t * vFanouts; // the fanouts of the supergate rooted at this node
+
+ // various linked lists
+ Fraig_Node_t * pNextS; // the next node in the structural hash table
+ Fraig_Node_t * pNextF; // the next node in the functional (simulation) hash table
+ Fraig_Node_t * pNextD; // the next node in the list of nodes based on dynamic simulation
+ Fraig_Node_t * pNextE; // the next structural choice (functionally-equivalent node)
+ Fraig_Node_t * pRepr; // the canonical functional representative of the node
+
+ // simulation data
+ unsigned uHashR; // the hash value for random information
+ unsigned uHashD; // the hash value for dynamic information
+ unsigned * puSimR; // the simulation information (random)
+ unsigned * puSimD; // the simulation information (dynamic)
+
+ // misc information
+ Fraig_Node_t * pData0; // temporary storage for the corresponding network node
+ Fraig_Node_t * pData1; // temporary storage for the corresponding network node
+
+#ifdef FRAIG_ENABLE_FANOUTS
+ // representation of node's fanouts
+ Fraig_Node_t * pFanPivot; // the first fanout of this node
+ Fraig_Node_t * pFanFanin1; // the next fanout of p1
+ Fraig_Node_t * pFanFanin2; // the next fanout of p2
+#endif
+};
+
+// the vector of nodes
+struct Fraig_NodeVecStruct_t_
+{
+ int nCap; // the number of allocated entries
+ int nSize; // the number of entries in the array
+ Fraig_Node_t ** pArray; // the array of nodes
+};
+
+// the hash table
+struct Fraig_HashTableStruct_t_
+{
+ Fraig_Node_t ** pBins; // the table bins
+ int nBins; // the size of the table
+ int nEntries; // the total number of entries in the table
+};
+
+// getting hold of the next fanout of the node
+#define Fraig_NodeReadNextFanout( pNode, pFanout ) \
+ ( ( pFanout == NULL )? NULL : \
+ ((Fraig_Regular((pFanout)->p1) == (pNode))? \
+ (pFanout)->pFanFanin1 : (pFanout)->pFanFanin2) )
+// getting hold of the place where the next fanout will be attached
+#define Fraig_NodeReadNextFanoutPlace( pNode, pFanout ) \
+ ( (Fraig_Regular((pFanout)->p1) == (pNode))? \
+ &(pFanout)->pFanFanin1 : &(pFanout)->pFanFanin2 )
+// iterator through the fanouts of the node
+#define Fraig_NodeForEachFanout( pNode, pFanout ) \
+ for ( pFanout = (pNode)->pFanPivot; pFanout; \
+ pFanout = Fraig_NodeReadNextFanout(pNode, pFanout) )
+// safe iterator through the fanouts of the node
+#define Fraig_NodeForEachFanoutSafe( pNode, pFanout, pFanout2 ) \
+ for ( pFanout = (pNode)->pFanPivot, \
+ pFanout2 = Fraig_NodeReadNextFanout(pNode, pFanout); \
+ pFanout; \
+ pFanout = pFanout2, \
+ pFanout2 = Fraig_NodeReadNextFanout(pNode, pFanout) )
+
+// iterators through the entries in the linked lists of nodes
+// the list of nodes in the structural hash table
+#define Fraig_TableBinForEachEntryS( pBin, pEnt ) \
+ for ( pEnt = pBin; \
+ pEnt; \
+ pEnt = pEnt->pNextS )
+#define Fraig_TableBinForEachEntrySafeS( pBin, pEnt, pEnt2 ) \
+ for ( pEnt = pBin, \
+ pEnt2 = pEnt? pEnt->pNextS: NULL; \
+ pEnt; \
+ pEnt = pEnt2, \
+ pEnt2 = pEnt? pEnt->pNextS: NULL )
+// the list of nodes in the functional (simulation) hash table
+#define Fraig_TableBinForEachEntryF( pBin, pEnt ) \
+ for ( pEnt = pBin; \
+ pEnt; \
+ pEnt = pEnt->pNextF )
+#define Fraig_TableBinForEachEntrySafeF( pBin, pEnt, pEnt2 ) \
+ for ( pEnt = pBin, \
+ pEnt2 = pEnt? pEnt->pNextF: NULL; \
+ pEnt; \
+ pEnt = pEnt2, \
+ pEnt2 = pEnt? pEnt->pNextF: NULL )
+// the list of nodes with the same simulation and different functionality
+#define Fraig_TableBinForEachEntryD( pBin, pEnt ) \
+ for ( pEnt = pBin; \
+ pEnt; \
+ pEnt = pEnt->pNextD )
+#define Fraig_TableBinForEachEntrySafeD( pBin, pEnt, pEnt2 ) \
+ for ( pEnt = pBin, \
+ pEnt2 = pEnt? pEnt->pNextD: NULL; \
+ pEnt; \
+ pEnt = pEnt2, \
+ pEnt2 = pEnt? pEnt->pNextD: NULL )
+// the list of nodes with the same functionality
+#define Fraig_TableBinForEachEntryE( pBin, pEnt ) \
+ for ( pEnt = pBin; \
+ pEnt; \
+ pEnt = pEnt->pNextE )
+#define Fraig_TableBinForEachEntrySafeE( pBin, pEnt, pEnt2 ) \
+ for ( pEnt = pBin, \
+ pEnt2 = pEnt? pEnt->pNextE: NULL; \
+ pEnt; \
+ pEnt = pEnt2, \
+ pEnt2 = pEnt? pEnt->pNextE: NULL )
+
+////////////////////////////////////////////////////////////////////////
+/// GLOBAL VARIABLES ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/*=== fraigCanon.c =============================================================*/
+extern Fraig_Node_t * Fraig_NodeAndCanon( Fraig_Man_t * pMan, Fraig_Node_t * p1, Fraig_Node_t * p2 );
+/*=== fraigFanout.c =============================================================*/
+extern void Fraig_NodeAddFaninFanout( Fraig_Node_t * pFanin, Fraig_Node_t * pFanout );
+extern void Fraig_NodeRemoveFaninFanout( Fraig_Node_t * pFanin, Fraig_Node_t * pFanoutToRemove );
+extern int Fraig_NodeGetFanoutNum( Fraig_Node_t * pNode );
+/*=== fraigFeed.c =============================================================*/
+extern void Fraig_FeedBackInit( Fraig_Man_t * p );
+extern void Fraig_FeedBack( Fraig_Man_t * p, int * pModel, Msat_IntVec_t * vVars, Fraig_Node_t * pOld, Fraig_Node_t * pNew );
+extern void Fraig_FeedBackTest( Fraig_Man_t * p );
+extern int Fraig_FeedBackCompress( Fraig_Man_t * p );
+extern int * Fraig_ManAllocCounterExample( Fraig_Man_t * p );
+extern int * Fraig_ManSaveCounterExample( Fraig_Man_t * p, Fraig_Node_t * pNode );
+/*=== fraigMan.c =============================================================*/
+extern void Fraig_ManCreateSolver( Fraig_Man_t * p );
+/*=== fraigMem.c =============================================================*/
+extern Fraig_MemFixed_t * Fraig_MemFixedStart( int nEntrySize );
+extern void Fraig_MemFixedStop( Fraig_MemFixed_t * p, int fVerbose );
+extern char * Fraig_MemFixedEntryFetch( Fraig_MemFixed_t * p );
+extern void Fraig_MemFixedEntryRecycle( Fraig_MemFixed_t * p, char * pEntry );
+extern void Fraig_MemFixedRestart( Fraig_MemFixed_t * p );
+extern int Fraig_MemFixedReadMemUsage( Fraig_MemFixed_t * p );
+/*=== fraigNode.c =============================================================*/
+extern Fraig_Node_t * Fraig_NodeCreateConst( Fraig_Man_t * p );
+extern Fraig_Node_t * Fraig_NodeCreatePi( Fraig_Man_t * p );
+extern Fraig_Node_t * Fraig_NodeCreate( Fraig_Man_t * p, Fraig_Node_t * p1, Fraig_Node_t * p2 );
+extern void Fraig_NodeSimulate( Fraig_Node_t * pNode, int iWordStart, int iWordStop, int fUseRand );
+/*=== fraigPrime.c =============================================================*/
+extern int s_FraigPrimes[FRAIG_MAX_PRIMES];
+extern unsigned int Cudd_PrimeFraig( unsigned int p );
+/*=== fraigSat.c ===============================================================*/
+extern int Fraig_NodeIsImplication( Fraig_Man_t * p, Fraig_Node_t * pOld, Fraig_Node_t * pNew, int nBTLimit );
+/*=== fraigTable.c =============================================================*/
+extern Fraig_HashTable_t * Fraig_HashTableCreate( int nSize );
+extern void Fraig_HashTableFree( Fraig_HashTable_t * p );
+extern int Fraig_HashTableLookupS( Fraig_Man_t * pMan, Fraig_Node_t * p1, Fraig_Node_t * p2, Fraig_Node_t ** ppNodeRes );
+extern Fraig_Node_t * Fraig_HashTableLookupF( Fraig_Man_t * pMan, Fraig_Node_t * pNode );
+extern Fraig_Node_t * Fraig_HashTableLookupF0( Fraig_Man_t * pMan, Fraig_Node_t * pNode );
+extern void Fraig_HashTableInsertF0( Fraig_Man_t * pMan, Fraig_Node_t * pNode );
+extern int Fraig_CompareSimInfo( Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int iWordLast, int fUseRand );
+extern int Fraig_CompareSimInfoUnderMask( Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int iWordLast, int fUseRand, unsigned * puMask );
+extern int Fraig_FindFirstDiff( Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int fCompl, int iWordLast, int fUseRand );
+extern void Fraig_CollectXors( Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int iWordLast, int fUseRand, unsigned * puMask );
+extern void Fraig_TablePrintStatsS( Fraig_Man_t * pMan );
+extern void Fraig_TablePrintStatsF( Fraig_Man_t * pMan );
+extern void Fraig_TablePrintStatsF0( Fraig_Man_t * pMan );
+extern int Fraig_TableRehashF0( Fraig_Man_t * pMan, int fLinkEquiv );
+/*=== fraigUtil.c ===============================================================*/
+extern int Fraig_NodeCountPis( Msat_IntVec_t * vVars, int nVarsPi );
+extern int Fraig_NodeCountSuppVars( Fraig_Man_t * p, Fraig_Node_t * pNode, int fSuppStr );
+extern int Fraig_NodesCompareSupps( Fraig_Man_t * p, Fraig_Node_t * pOld, Fraig_Node_t * pNew );
+extern int Fraig_NodeAndSimpleCase_rec( Fraig_Node_t * pOld, Fraig_Node_t * pNew );
+extern int Fraig_NodeIsExorType( Fraig_Node_t * pNode );
+extern void Fraig_ManSelectBestChoice( Fraig_Man_t * p );
+extern int Fraig_BitStringCountOnes( unsigned * pString, int nWords );
+extern void Fraig_PrintBinary( FILE * pFile, unsigned * pSign, int nBits );
+extern int Fraig_NodeIsExorType( Fraig_Node_t * pNode );
+extern int Fraig_NodeIsExor( Fraig_Node_t * pNode );
+extern int Fraig_NodeIsMuxType( Fraig_Node_t * pNode );
+extern Fraig_Node_t * Fraig_NodeRecognizeMux( Fraig_Node_t * pNode, Fraig_Node_t ** ppNodeT, Fraig_Node_t ** ppNodeE );
+extern int Fraig_ManCountExors( Fraig_Man_t * pMan );
+extern int Fraig_ManCountMuxes( Fraig_Man_t * pMan );
+extern int Fraig_NodeSimsContained( Fraig_Man_t * pMan, Fraig_Node_t * pNode1, Fraig_Node_t * pNode2 );
+extern int Fraig_NodeIsInSupergate( Fraig_Node_t * pOld, Fraig_Node_t * pNew );
+extern Fraig_NodeVec_t * Fraig_CollectSupergate( Fraig_Node_t * pNode, int fStopAtMux );
+extern int Fraig_CountPis( Fraig_Man_t * p, Msat_IntVec_t * vVarNums );
+extern void Fraig_ManIncrementTravId( Fraig_Man_t * pMan );
+extern void Fraig_NodeSetTravIdCurrent( Fraig_Man_t * pMan, Fraig_Node_t * pNode );
+extern int Fraig_NodeIsTravIdCurrent( Fraig_Man_t * pMan, Fraig_Node_t * pNode );
+extern int Fraig_NodeIsTravIdPrevious( Fraig_Man_t * pMan, Fraig_Node_t * pNode );
+/*=== fraigVec.c ===============================================================*/
+extern void Fraig_NodeVecSortByRefCount( Fraig_NodeVec_t * p );
+
+#endif
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
diff --git a/src/sat/fraig/fraigMan.c b/src/sat/fraig/fraigMan.c
new file mode 100644
index 00000000..7fd937d5
--- /dev/null
+++ b/src/sat/fraig/fraigMan.c
@@ -0,0 +1,540 @@
+/**CFile****************************************************************
+
+ FileName [fraigMan.c]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [Implementation of the FRAIG manager.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraigMan.c,v 1.11 2005/07/08 01:01:31 alanmi Exp $]
+
+***********************************************************************/
+
+#include "fraigInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+int timeSelect;
+int timeAssign;
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Sets the default parameters of the package.]
+
+ Description [This set of parameters is tuned for equivalence checking.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Prove_ParamsSetDefault( Prove_Params_t * pParams )
+{
+ // clean the parameter structure
+ memset( pParams, 0, sizeof(Prove_Params_t) );
+ // general parameters
+ pParams->fUseFraiging = 1; // enables fraiging
+ pParams->fUseRewriting = 1; // enables rewriting
+ pParams->fUseBdds = 0; // enables BDD construction when other methods fail
+ pParams->fVerbose = 0; // prints verbose stats
+ // iterations
+ pParams->nItersMax = 6; // the number of iterations
+ // mitering
+ pParams->nMiteringLimitStart = 300; // starting mitering limit
+ pParams->nMiteringLimitMulti = 2.0; // multiplicative coefficient to increase the limit in each iteration
+ // rewriting (currently not used)
+ pParams->nRewritingLimitStart = 3; // the number of rewriting iterations
+ pParams->nRewritingLimitMulti = 1.0; // multiplicative coefficient to increase the limit in each iteration
+ // fraiging
+ pParams->nFraigingLimitStart = 2; // starting backtrack(conflict) limit
+ pParams->nFraigingLimitMulti = 8.0; // multiplicative coefficient to increase the limit in each iteration
+ // last-gasp BDD construction
+ pParams->nBddSizeLimit = 1000000; // the number of BDD nodes when construction is aborted
+ pParams->fBddReorder = 1; // enables dynamic BDD variable reordering
+ // last-gasp mitering
+// pParams->nMiteringLimitLast = 1000000; // final mitering limit
+ pParams->nMiteringLimitLast = 0; // final mitering limit
+ // global SAT solver limits
+ pParams->nTotalBacktrackLimit = 0; // global limit on the number of backtracks
+ pParams->nTotalInspectLimit = 0; // global limit on the number of clause inspects
+// pParams->nTotalInspectLimit = 100000000; // global limit on the number of clause inspects
+}
+
+/**Function*************************************************************
+
+ Synopsis [Prints out the current values of CEC engine parameters.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Prove_ParamsPrint( Prove_Params_t * pParams )
+{
+ printf( "CEC enging parameters:\n" );
+ printf( "Fraiging enabled: %s\n", pParams->fUseFraiging? "yes":"no" );
+ printf( "Rewriting enabled: %s\n", pParams->fUseRewriting? "yes":"no" );
+ printf( "BDD construction enabled: %s\n", pParams->fUseBdds? "yes":"no" );
+ printf( "Verbose output enabled: %s\n", pParams->fVerbose? "yes":"no" );
+ printf( "Solver iterations: %d\n", pParams->nItersMax );
+ printf( "Starting mitering limit: %d\n", pParams->nMiteringLimitStart );
+ printf( "Multiplicative coeficient for mitering: %.2f\n", pParams->nMiteringLimitMulti );
+ printf( "Starting number of rewriting iterations: %d\n", pParams->nRewritingLimitStart );
+ printf( "Multiplicative coeficient for rewriting: %.2f\n", pParams->nRewritingLimitMulti );
+ printf( "Starting number of conflicts in fraiging: %d\n", pParams->nFraigingLimitMulti );
+ printf( "Multiplicative coeficient for fraiging: %.2f\n", pParams->nRewritingLimitMulti );
+ printf( "BDD size limit for bailing out: %.2f\n", pParams->nBddSizeLimit );
+ printf( "BDD reordering enabled: %s\n", pParams->fBddReorder? "yes":"no" );
+ printf( "Last-gasp mitering limit: %d\n", pParams->nMiteringLimitLast );
+ printf( "Total conflict limit: %d\n", pParams->nTotalBacktrackLimit );
+ printf( "Total inspection limit: %d\n", pParams->nTotalInspectLimit );
+ printf( "Parameter dump complete.\n" );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Sets the default parameters of the package.]
+
+ Description [This set of parameters is tuned for equivalence checking.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ParamsSetDefault( Fraig_Params_t * pParams )
+{
+ memset( pParams, 0, sizeof(Fraig_Params_t) );
+ pParams->nPatsRand = FRAIG_PATTERNS_RANDOM; // the number of words of random simulation info
+ pParams->nPatsDyna = FRAIG_PATTERNS_DYNAMIC; // the number of words of dynamic simulation info
+ pParams->nBTLimit = 99; // the max number of backtracks to perform
+ pParams->nSeconds = 20; // the max number of seconds to solve the miter
+ pParams->fFuncRed = 1; // performs only one level hashing
+ pParams->fFeedBack = 1; // enables solver feedback
+ pParams->fDist1Pats = 1; // enables distance-1 patterns
+ pParams->fDoSparse = 0; // performs equiv tests for sparse functions
+ pParams->fChoicing = 0; // enables recording structural choices
+ pParams->fTryProve = 1; // tries to solve the final miter
+ pParams->fVerbose = 0; // the verbosiness flag
+ pParams->fVerboseP = 0; // the verbose flag for reporting the proof
+ pParams->fInternal = 0; // the flag indicates the internal run
+ pParams->nConfLimit = 0; // the limit on the number of conflicts
+ pParams->nInspLimit = 0; // the limit on the number of inspections
+}
+
+/**Function*************************************************************
+
+ Synopsis [Sets the default parameters of the package.]
+
+ Description [This set of parameters is tuned for complete FRAIGing.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ParamsSetDefaultFull( Fraig_Params_t * pParams )
+{
+ memset( pParams, 0, sizeof(Fraig_Params_t) );
+ pParams->nPatsRand = FRAIG_PATTERNS_RANDOM; // the number of words of random simulation info
+ pParams->nPatsDyna = FRAIG_PATTERNS_DYNAMIC; // the number of words of dynamic simulation info
+ pParams->nBTLimit = -1; // the max number of backtracks to perform
+ pParams->nSeconds = 20; // the max number of seconds to solve the miter
+ pParams->fFuncRed = 1; // performs only one level hashing
+ pParams->fFeedBack = 1; // enables solver feedback
+ pParams->fDist1Pats = 1; // enables distance-1 patterns
+ pParams->fDoSparse = 1; // performs equiv tests for sparse functions
+ pParams->fChoicing = 0; // enables recording structural choices
+ pParams->fTryProve = 0; // tries to solve the final miter
+ pParams->fVerbose = 0; // the verbosiness flag
+ pParams->fVerboseP = 0; // the verbose flag for reporting the proof
+ pParams->fInternal = 0; // the flag indicates the internal run
+ pParams->nConfLimit = 0; // the limit on the number of conflicts
+ pParams->nInspLimit = 0; // the limit on the number of inspections
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates the new FRAIG manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Man_t * Fraig_ManCreate( Fraig_Params_t * pParams )
+{
+ Fraig_Params_t Params;
+ Fraig_Man_t * p;
+
+ // set the random seed for simulation
+// srand( 0xFEEDDEAF );
+ srand( 0xDEADCAFE );
+
+ // set parameters for equivalence checking
+ if ( pParams == NULL )
+ Fraig_ParamsSetDefault( pParams = &Params );
+ // adjust the amount of simulation info
+ if ( pParams->nPatsRand < 128 )
+ pParams->nPatsRand = 128;
+ if ( pParams->nPatsRand > 32768 )
+ pParams->nPatsRand = 32768;
+ if ( pParams->nPatsDyna < 128 )
+ pParams->nPatsDyna = 128;
+ if ( pParams->nPatsDyna > 32768 )
+ pParams->nPatsDyna = 32768;
+ // if reduction is not performed, allocate minimum simulation info
+ if ( !pParams->fFuncRed )
+ pParams->nPatsRand = pParams->nPatsDyna = 128;
+
+ // start the manager
+ p = ALLOC( Fraig_Man_t, 1 );
+ memset( p, 0, sizeof(Fraig_Man_t) );
+
+ // set the default parameters
+ p->nWordsRand = FRAIG_NUM_WORDS( pParams->nPatsRand ); // the number of words of random simulation info
+ p->nWordsDyna = FRAIG_NUM_WORDS( pParams->nPatsDyna ); // the number of patterns for dynamic simulation info
+ p->nBTLimit = pParams->nBTLimit; // -1 means infinite backtrack limit
+ p->nSeconds = pParams->nSeconds; // the timeout for the final miter
+ p->fFuncRed = pParams->fFuncRed; // enables functional reduction (otherwise, only one-level hashing is performed)
+ p->fFeedBack = pParams->fFeedBack; // enables solver feedback (the use of counter-examples in simulation)
+ p->fDist1Pats = pParams->fDist1Pats; // enables solver feedback (the use of counter-examples in simulation)
+ p->fDoSparse = pParams->fDoSparse; // performs equivalence checking for sparse functions (whose sim-info is 0)
+ p->fChoicing = pParams->fChoicing; // disable accumulation of structural choices (keeps only the first choice)
+ p->fTryProve = pParams->fTryProve; // disable accumulation of structural choices (keeps only the first choice)
+ p->fVerbose = pParams->fVerbose; // disable verbose output
+ p->fVerboseP = pParams->fVerboseP; // disable verbose output
+ p->nInspLimit = pParams->nInspLimit; // the limit on the number of inspections
+
+ // start memory managers
+ p->mmNodes = Fraig_MemFixedStart( sizeof(Fraig_Node_t) );
+ p->mmSims = Fraig_MemFixedStart( sizeof(unsigned) * (p->nWordsRand + p->nWordsDyna) );
+ // allocate node arrays
+ p->vInputs = Fraig_NodeVecAlloc( 1000 ); // the array of primary inputs
+ p->vOutputs = Fraig_NodeVecAlloc( 1000 ); // the array of primary outputs
+ p->vNodes = Fraig_NodeVecAlloc( 1000 ); // the array of internal nodes
+ // start the tables
+ p->pTableS = Fraig_HashTableCreate( 1000 ); // hashing by structure
+ p->pTableF = Fraig_HashTableCreate( 1000 ); // hashing by function
+ p->pTableF0 = Fraig_HashTableCreate( 1000 ); // hashing by function (for sparse functions)
+ // create the constant node
+ p->pConst1 = Fraig_NodeCreateConst( p );
+ // initialize SAT solver feedback data structures
+ Fraig_FeedBackInit( p );
+ // initialize other variables
+ p->vProj = Msat_IntVecAlloc( 10 );
+ p->nTravIds = 1;
+ p->nTravIds2 = 1;
+ return p;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Deallocates the mapping manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ManFree( Fraig_Man_t * p )
+{
+ int i;
+ if ( p->fVerbose )
+ {
+ if ( p->fChoicing ) Fraig_ManReportChoices( p );
+ Fraig_ManPrintStats( p );
+// Fraig_TablePrintStatsS( p );
+// Fraig_TablePrintStatsF( p );
+// Fraig_TablePrintStatsF0( p );
+ }
+
+ for ( i = 0; i < p->vNodes->nSize; i++ )
+ if ( p->vNodes->pArray[i]->vFanins )
+ {
+ Fraig_NodeVecFree( p->vNodes->pArray[i]->vFanins );
+ p->vNodes->pArray[i]->vFanins = NULL;
+ }
+
+ if ( p->vInputs ) Fraig_NodeVecFree( p->vInputs );
+ if ( p->vNodes ) Fraig_NodeVecFree( p->vNodes );
+ if ( p->vOutputs ) Fraig_NodeVecFree( p->vOutputs );
+
+ if ( p->pTableS ) Fraig_HashTableFree( p->pTableS );
+ if ( p->pTableF ) Fraig_HashTableFree( p->pTableF );
+ if ( p->pTableF0 ) Fraig_HashTableFree( p->pTableF0 );
+
+ if ( p->pSat ) Msat_SolverFree( p->pSat );
+ if ( p->vProj ) Msat_IntVecFree( p->vProj );
+ if ( p->vCones ) Fraig_NodeVecFree( p->vCones );
+ if ( p->vPatsReal ) Msat_IntVecFree( p->vPatsReal );
+ if ( p->pModel ) free( p->pModel );
+
+ Fraig_MemFixedStop( p->mmNodes, 0 );
+ Fraig_MemFixedStop( p->mmSims, 0 );
+
+ if ( p->pSuppS )
+ {
+ FREE( p->pSuppS[0] );
+ FREE( p->pSuppS );
+ }
+ if ( p->pSuppF )
+ {
+ FREE( p->pSuppF[0] );
+ FREE( p->pSuppF );
+ }
+
+ FREE( p->ppOutputNames );
+ FREE( p->ppInputNames );
+ FREE( p );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Prepares the SAT solver to run on the two nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ManCreateSolver( Fraig_Man_t * p )
+{
+ extern int timeSelect;
+ extern int timeAssign;
+ assert( p->pSat == NULL );
+ // allocate data for SAT solving
+ p->pSat = Msat_SolverAlloc( 500, 1, 1, 1, 1, 0 );
+ p->vVarsInt = Msat_SolverReadConeVars( p->pSat );
+ p->vAdjacents = Msat_SolverReadAdjacents( p->pSat );
+ p->vVarsUsed = Msat_SolverReadVarsUsed( p->pSat );
+ timeSelect = 0;
+ timeAssign = 0;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Deallocates the mapping manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ManPrintStats( Fraig_Man_t * p )
+{
+ double nMemory;
+ int clk = clock();
+ nMemory = ((double)(p->vInputs->nSize + p->vNodes->nSize) *
+ (sizeof(Fraig_Node_t) + sizeof(unsigned)*(p->nWordsRand + p->nWordsDyna) /*+ p->nSuppWords*sizeof(unsigned)*/))/(1<<20);
+ printf( "Words: Random = %d. Dynamic = %d. Used = %d. Memory = %0.2f Mb.\n",
+ p->nWordsRand, p->nWordsDyna, p->iWordPerm, nMemory );
+ printf( "Proof = %d. Counter-example = %d. Fail = %d. FailReal = %d. Zero = %d.\n",
+ p->nSatProof, p->nSatCounter, p->nSatFails, p->nSatFailsReal, p->nSatZeros );
+ printf( "Nodes: Final = %d. Total = %d. Mux = %d. (Exor = %d.) ClaVars = %d.\n",
+ Fraig_CountNodes(p,0), p->vNodes->nSize, Fraig_ManCountMuxes(p), Fraig_ManCountExors(p), p->nVarsClauses );
+ if ( p->pSat ) Msat_SolverPrintStats( p->pSat );
+ Fraig_PrintTime( "AIG simulation ", p->timeSims );
+ Fraig_PrintTime( "AIG traversal ", p->timeTrav );
+ Fraig_PrintTime( "Solver feedback ", p->timeFeed );
+ Fraig_PrintTime( "SAT solving ", p->timeSat );
+ Fraig_PrintTime( "Network update ", p->timeToNet );
+ Fraig_PrintTime( "TOTAL RUNTIME ", p->timeTotal );
+ if ( p->time1 > 0 ) { Fraig_PrintTime( "time1", p->time1 ); }
+ if ( p->time2 > 0 ) { Fraig_PrintTime( "time2", p->time2 ); }
+ if ( p->time3 > 0 ) { Fraig_PrintTime( "time3", p->time3 ); }
+ if ( p->time4 > 0 ) { Fraig_PrintTime( "time4", p->time4 ); }
+// PRT( "Selection ", timeSelect );
+// PRT( "Assignment", timeAssign );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Allocates simulation information for all nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_NodeVec_t * Fraig_UtilInfoAlloc( int nSize, int nWords, bool fClean )
+{
+ Fraig_NodeVec_t * vInfo;
+ unsigned * pUnsigned;
+ int i;
+ assert( nSize > 0 && nWords > 0 );
+ vInfo = Fraig_NodeVecAlloc( nSize );
+ pUnsigned = ALLOC( unsigned, nSize * nWords );
+ vInfo->pArray[0] = (Fraig_Node_t *)pUnsigned;
+ if ( fClean )
+ memset( pUnsigned, 0, sizeof(unsigned) * nSize * nWords );
+ for ( i = 1; i < nSize; i++ )
+ vInfo->pArray[i] = (Fraig_Node_t *)(((unsigned *)vInfo->pArray[i-1]) + nWords);
+ vInfo->nSize = nSize;
+ return vInfo;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns simulation info of all nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_NodeVec_t * Fraig_ManGetSimInfo( Fraig_Man_t * p )
+{
+ Fraig_NodeVec_t * vInfo;
+ Fraig_Node_t * pNode;
+ unsigned * pUnsigned;
+ int nRandom, nDynamic;
+ int i, k, nWords;
+
+ nRandom = Fraig_ManReadPatternNumRandom( p );
+ nDynamic = Fraig_ManReadPatternNumDynamic( p );
+ nWords = nRandom / 32 + nDynamic / 32;
+
+ vInfo = Fraig_UtilInfoAlloc( p->vNodes->nSize, nWords, 0 );
+ for ( i = 0; i < p->vNodes->nSize; i++ )
+ {
+ pNode = p->vNodes->pArray[i];
+ assert( i == pNode->Num );
+ pUnsigned = (unsigned *)vInfo->pArray[i];
+ for ( k = 0; k < nRandom / 32; k++ )
+ pUnsigned[k] = pNode->puSimR[k];
+ for ( k = 0; k < nDynamic / 32; k++ )
+ pUnsigned[nRandom / 32 + k] = pNode->puSimD[k];
+ }
+ return vInfo;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if A v B is always true based on the siminfo.]
+
+ Description [A v B is always true iff A' * B' is always false.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_ManCheckClauseUsingSimInfo( Fraig_Man_t * p, Fraig_Node_t * pNode1, Fraig_Node_t * pNode2 )
+{
+ int fCompl1, fCompl2, i;
+
+ fCompl1 = 1 ^ Fraig_IsComplement(pNode1) ^ Fraig_Regular(pNode1)->fInv;
+ fCompl2 = 1 ^ Fraig_IsComplement(pNode2) ^ Fraig_Regular(pNode2)->fInv;
+
+ pNode1 = Fraig_Regular(pNode1);
+ pNode2 = Fraig_Regular(pNode2);
+ assert( pNode1 != pNode2 );
+
+ // check the simulation info
+ if ( fCompl1 && fCompl2 )
+ {
+ for ( i = 0; i < p->nWordsRand; i++ )
+ if ( ~pNode1->puSimR[i] & ~pNode2->puSimR[i] )
+ return 0;
+ for ( i = 0; i < p->iWordStart; i++ )
+ if ( ~pNode1->puSimD[i] & ~pNode2->puSimD[i] )
+ return 0;
+ return 1;
+ }
+ if ( !fCompl1 && fCompl2 )
+ {
+ for ( i = 0; i < p->nWordsRand; i++ )
+ if ( pNode1->puSimR[i] & ~pNode2->puSimR[i] )
+ return 0;
+ for ( i = 0; i < p->iWordStart; i++ )
+ if ( pNode1->puSimD[i] & ~pNode2->puSimD[i] )
+ return 0;
+ return 1;
+ }
+ if ( fCompl1 && !fCompl2 )
+ {
+ for ( i = 0; i < p->nWordsRand; i++ )
+ if ( ~pNode1->puSimR[i] & pNode2->puSimR[i] )
+ return 0;
+ for ( i = 0; i < p->iWordStart; i++ )
+ if ( ~pNode1->puSimD[i] & pNode2->puSimD[i] )
+ return 0;
+ return 1;
+ }
+// if ( fCompl1 && fCompl2 )
+ {
+ for ( i = 0; i < p->nWordsRand; i++ )
+ if ( pNode1->puSimR[i] & pNode2->puSimR[i] )
+ return 0;
+ for ( i = 0; i < p->iWordStart; i++ )
+ if ( pNode1->puSimD[i] & pNode2->puSimD[i] )
+ return 0;
+ return 1;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Adds clauses to the solver.]
+
+ Description [This procedure is used to add external clauses to the solver.
+ The clauses are given by sets of nodes. Each node stands for one literal.
+ If the node is complemented, the literal is negated.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ManAddClause( Fraig_Man_t * p, Fraig_Node_t ** ppNodes, int nNodes )
+{
+ Fraig_Node_t * pNode;
+ int i, fComp, RetValue;
+ if ( p->pSat == NULL )
+ Fraig_ManCreateSolver( p );
+ // create four clauses
+ Msat_IntVecClear( p->vProj );
+ for ( i = 0; i < nNodes; i++ )
+ {
+ pNode = Fraig_Regular(ppNodes[i]);
+ fComp = Fraig_IsComplement(ppNodes[i]);
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode->Num, fComp) );
+// printf( "%d(%d) ", pNode->Num, fComp );
+ }
+// printf( "\n" );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
diff --git a/src/sat/fraig/fraigMem.c b/src/sat/fraig/fraigMem.c
new file mode 100644
index 00000000..500431c6
--- /dev/null
+++ b/src/sat/fraig/fraigMem.c
@@ -0,0 +1,246 @@
+/**CFile****************************************************************
+
+ FileName [fraigMem.c]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [Fixed-size-entry memory manager for the FRAIG package.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraigMem.c,v 1.4 2005/07/08 01:01:31 alanmi Exp $]
+
+***********************************************************************/
+
+#include "fraigInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+struct Fraig_MemFixed_t_
+{
+ // information about individual entries
+ int nEntrySize; // the size of one entry
+ int nEntriesAlloc; // the total number of entries allocated
+ int nEntriesUsed; // the number of entries in use
+ int nEntriesMax; // the max number of entries in use
+ char * pEntriesFree; // the linked list of free entries
+
+ // this is where the memory is stored
+ int nChunkSize; // the size of one chunk
+ int nChunksAlloc; // the maximum number of memory chunks
+ int nChunks; // the current number of memory chunks
+ char ** pChunks; // the allocated memory
+
+ // statistics
+ int nMemoryUsed; // memory used in the allocated entries
+ int nMemoryAlloc; // memory allocated
+};
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Starts the internal memory manager.]
+
+ Description [Can only work with entry size at least 4 byte long.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_MemFixed_t * Fraig_MemFixedStart( int nEntrySize )
+{
+ Fraig_MemFixed_t * p;
+
+ p = ALLOC( Fraig_MemFixed_t, 1 );
+ memset( p, 0, sizeof(Fraig_MemFixed_t) );
+
+ p->nEntrySize = nEntrySize;
+ p->nEntriesAlloc = 0;
+ p->nEntriesUsed = 0;
+ p->pEntriesFree = NULL;
+
+ if ( nEntrySize * (1 << 10) < (1<<16) )
+ p->nChunkSize = (1 << 10);
+ else
+ p->nChunkSize = (1<<16) / nEntrySize;
+ if ( p->nChunkSize < 8 )
+ p->nChunkSize = 8;
+
+ p->nChunksAlloc = 64;
+ p->nChunks = 0;
+ p->pChunks = ALLOC( char *, p->nChunksAlloc );
+
+ p->nMemoryUsed = 0;
+ p->nMemoryAlloc = 0;
+ return p;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Stops the internal memory manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_MemFixedStop( Fraig_MemFixed_t * p, int fVerbose )
+{
+ int i;
+ if ( p == NULL )
+ return;
+ if ( fVerbose )
+ {
+ printf( "Fixed memory manager: Entry = %5d. Chunk = %5d. Chunks used = %5d.\n",
+ p->nEntrySize, p->nChunkSize, p->nChunks );
+ printf( " Entries used = %8d. Entries peak = %8d. Memory used = %8d. Memory alloc = %8d.\n",
+ p->nEntriesUsed, p->nEntriesMax, p->nEntrySize * p->nEntriesUsed, p->nMemoryAlloc );
+ }
+ for ( i = 0; i < p->nChunks; i++ )
+ free( p->pChunks[i] );
+ free( p->pChunks );
+ free( p );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Extracts one entry from the memory manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+char * Fraig_MemFixedEntryFetch( Fraig_MemFixed_t * p )
+{
+ char * pTemp;
+ int i;
+
+ // check if there are still free entries
+ if ( p->nEntriesUsed == p->nEntriesAlloc )
+ { // need to allocate more entries
+ assert( p->pEntriesFree == NULL );
+ if ( p->nChunks == p->nChunksAlloc )
+ {
+ p->nChunksAlloc *= 2;
+ p->pChunks = REALLOC( char *, p->pChunks, p->nChunksAlloc );
+ }
+ p->pEntriesFree = ALLOC( char, p->nEntrySize * p->nChunkSize );
+ p->nMemoryAlloc += p->nEntrySize * p->nChunkSize;
+ // transform these entries into a linked list
+ pTemp = p->pEntriesFree;
+ for ( i = 1; i < p->nChunkSize; i++ )
+ {
+ *((char **)pTemp) = pTemp + p->nEntrySize;
+ pTemp += p->nEntrySize;
+ }
+ // set the last link
+ *((char **)pTemp) = NULL;
+ // add the chunk to the chunk storage
+ p->pChunks[ p->nChunks++ ] = p->pEntriesFree;
+ // add to the number of entries allocated
+ p->nEntriesAlloc += p->nChunkSize;
+ }
+ // incrememt the counter of used entries
+ p->nEntriesUsed++;
+ if ( p->nEntriesMax < p->nEntriesUsed )
+ p->nEntriesMax = p->nEntriesUsed;
+ // return the first entry in the free entry list
+ pTemp = p->pEntriesFree;
+ p->pEntriesFree = *((char **)pTemp);
+ return pTemp;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns one entry into the memory manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_MemFixedEntryRecycle( Fraig_MemFixed_t * p, char * pEntry )
+{
+ // decrement the counter of used entries
+ p->nEntriesUsed--;
+ // add the entry to the linked list of free entries
+ *((char **)pEntry) = p->pEntriesFree;
+ p->pEntriesFree = pEntry;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Frees all associated memory and resets the manager.]
+
+ Description [Relocates all the memory except the first chunk.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_MemFixedRestart( Fraig_MemFixed_t * p )
+{
+ int i;
+ char * pTemp;
+
+ // deallocate all chunks except the first one
+ for ( i = 1; i < p->nChunks; i++ )
+ free( p->pChunks[i] );
+ p->nChunks = 1;
+ // transform these entries into a linked list
+ pTemp = p->pChunks[0];
+ for ( i = 1; i < p->nChunkSize; i++ )
+ {
+ *((char **)pTemp) = pTemp + p->nEntrySize;
+ pTemp += p->nEntrySize;
+ }
+ // set the last link
+ *((char **)pTemp) = NULL;
+ // set the free entry list
+ p->pEntriesFree = p->pChunks[0];
+ // set the correct statistics
+ p->nMemoryAlloc = p->nEntrySize * p->nChunkSize;
+ p->nMemoryUsed = 0;
+ p->nEntriesAlloc = p->nChunkSize;
+ p->nEntriesUsed = 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Reports the memory usage.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_MemFixedReadMemUsage( Fraig_MemFixed_t * p )
+{
+ return p->nMemoryAlloc;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/sat/fraig/fraigNode.c b/src/sat/fraig/fraigNode.c
new file mode 100644
index 00000000..6e3d3c7d
--- /dev/null
+++ b/src/sat/fraig/fraigNode.c
@@ -0,0 +1,313 @@
+/**CFile****************************************************************
+
+ FileName [fraigNode.c]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [Implementation of the FRAIG node.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraigNode.c,v 1.3 2005/07/08 01:01:32 alanmi Exp $]
+
+***********************************************************************/
+
+#include "fraigInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+// returns the complemented attribute of the node
+#define Fraig_NodeIsSimComplement(p) (Fraig_IsComplement(p)? !(Fraig_Regular(p)->fInv) : (p)->fInv)
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Creates the constant 1 node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_NodeCreateConst( Fraig_Man_t * p )
+{
+ Fraig_Node_t * pNode;
+
+ // create the node
+ pNode = (Fraig_Node_t *)Fraig_MemFixedEntryFetch( p->mmNodes );
+ memset( pNode, 0, sizeof(Fraig_Node_t) );
+
+ // assign the number and add to the array of nodes
+ pNode->Num = p->vNodes->nSize;
+ Fraig_NodeVecPush( p->vNodes, pNode );
+ pNode->NumPi = -1; // this is not a PI, so its number is -1
+ pNode->Level = 0; // just like a PI, it has 0 level
+ pNode->nRefs = 1; // it is a persistent node, which comes referenced
+ pNode->fInv = 1; // the simulation info is complemented
+
+ // create the simulation info
+ pNode->puSimR = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
+ pNode->puSimD = pNode->puSimR + p->nWordsRand;
+ memset( pNode->puSimR, 0, sizeof(unsigned) * p->nWordsRand );
+ memset( pNode->puSimD, 0, sizeof(unsigned) * p->nWordsDyna );
+
+ // count the number of ones in the simulation vector
+ pNode->nOnes = p->nWordsRand * sizeof(unsigned) * 8;
+
+ // insert it into the hash table
+ Fraig_HashTableLookupF0( p, pNode );
+ return pNode;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates a primary input node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_NodeCreatePi( Fraig_Man_t * p )
+{
+ Fraig_Node_t * pNode, * pNodeRes;
+ int i, clk;
+
+ // create the node
+ pNode = (Fraig_Node_t *)Fraig_MemFixedEntryFetch( p->mmNodes );
+ memset( pNode, 0, sizeof(Fraig_Node_t) );
+ pNode->puSimR = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
+ pNode->puSimD = pNode->puSimR + p->nWordsRand;
+ memset( pNode->puSimD, 0, sizeof(unsigned) * p->nWordsDyna );
+
+ // assign the number and add to the array of nodes
+ pNode->Num = p->vNodes->nSize;
+ Fraig_NodeVecPush( p->vNodes, pNode );
+
+ // assign the PI number and add to the array of primary inputs
+ pNode->NumPi = p->vInputs->nSize;
+ Fraig_NodeVecPush( p->vInputs, pNode );
+
+ pNode->Level = 0; // PI has 0 level
+ pNode->nRefs = 1; // it is a persistent node, which comes referenced
+ pNode->fInv = 0; // the simulation info of the PI is not complemented
+
+ // derive the simulation info for the new node
+clk = clock();
+ // set the random simulation info for the primary input
+ pNode->uHashR = 0;
+ for ( i = 0; i < p->nWordsRand; i++ )
+ {
+ // generate the simulation info
+ pNode->puSimR[i] = FRAIG_RANDOM_UNSIGNED;
+ // for reasons that take very long to explain, it makes sense to have (0000000...)
+ // pattern in the set (this helps if we need to return the counter-examples)
+ if ( i == 0 )
+ pNode->puSimR[i] <<= 1;
+ // compute the hash key
+ pNode->uHashR ^= pNode->puSimR[i] * s_FraigPrimes[i];
+ }
+ // count the number of ones in the simulation vector
+ pNode->nOnes = Fraig_BitStringCountOnes( pNode->puSimR, p->nWordsRand );
+
+ // set the systematic simulation info for the primary input
+ pNode->uHashD = 0;
+ for ( i = 0; i < p->iWordStart; i++ )
+ {
+ // generate the simulation info
+ pNode->puSimD[i] = FRAIG_RANDOM_UNSIGNED;
+ // compute the hash key
+ pNode->uHashD ^= pNode->puSimD[i] * s_FraigPrimes[i];
+ }
+p->timeSims += clock() - clk;
+
+ // insert it into the hash table
+ pNodeRes = Fraig_HashTableLookupF( p, pNode );
+ assert( pNodeRes == NULL );
+ // add to the runtime of simulation
+ return pNode;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates a new node.]
+
+ Description [This procedure should be called to create the constant
+ node and the PI nodes first.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_NodeCreate( Fraig_Man_t * p, Fraig_Node_t * p1, Fraig_Node_t * p2 )
+{
+ Fraig_Node_t * pNode;
+ int clk;
+
+ // create the node
+ pNode = (Fraig_Node_t *)Fraig_MemFixedEntryFetch( p->mmNodes );
+ memset( pNode, 0, sizeof(Fraig_Node_t) );
+
+ // assign the children
+ pNode->p1 = p1; Fraig_Ref(p1); Fraig_Regular(p1)->nRefs++;
+ pNode->p2 = p2; Fraig_Ref(p2); Fraig_Regular(p2)->nRefs++;
+
+ // assign the number and add to the array of nodes
+ pNode->Num = p->vNodes->nSize;
+ Fraig_NodeVecPush( p->vNodes, pNode );
+
+ // assign the PI number
+ pNode->NumPi = -1;
+
+ // compute the level of this node
+ pNode->Level = 1 + FRAIG_MAX(Fraig_Regular(p1)->Level, Fraig_Regular(p2)->Level);
+ pNode->fInv = Fraig_NodeIsSimComplement(p1) & Fraig_NodeIsSimComplement(p2);
+ pNode->fFailTfo = Fraig_Regular(p1)->fFailTfo | Fraig_Regular(p2)->fFailTfo;
+
+ // derive the simulation info
+clk = clock();
+ // allocate memory for the simulation info
+ pNode->puSimR = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
+ pNode->puSimD = pNode->puSimR + p->nWordsRand;
+ // derive random simulation info
+ pNode->uHashR = 0;
+ Fraig_NodeSimulate( pNode, 0, p->nWordsRand, 1 );
+ // derive dynamic simulation info
+ pNode->uHashD = 0;
+ Fraig_NodeSimulate( pNode, 0, p->iWordStart, 0 );
+ // count the number of ones in the random simulation info
+ pNode->nOnes = Fraig_BitStringCountOnes( pNode->puSimR, p->nWordsRand );
+ if ( pNode->fInv )
+ pNode->nOnes = p->nWordsRand * 32 - pNode->nOnes;
+ // add to the runtime of simulation
+p->timeSims += clock() - clk;
+
+#ifdef FRAIG_ENABLE_FANOUTS
+ // create the fanout info
+ Fraig_NodeAddFaninFanout( Fraig_Regular(p1), pNode );
+ Fraig_NodeAddFaninFanout( Fraig_Regular(p2), pNode );
+#endif
+ return pNode;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Simulates the node.]
+
+ Description [Simulates the random or dynamic simulation info through
+ the node. Uses phases of the children to determine their real simulation
+ info. Uses phase of the node to determine the way its simulation info
+ is stored. The resulting info is guaranteed to be 0 for the first pattern.]
+
+ SideEffects [This procedure modified the hash value of the simulation info.]
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeSimulate( Fraig_Node_t * pNode, int iWordStart, int iWordStop, int fUseRand )
+{
+ unsigned * pSims, * pSims1, * pSims2;
+ unsigned uHash;
+ int fCompl, fCompl1, fCompl2, i;
+
+ assert( !Fraig_IsComplement(pNode) );
+
+ // get hold of the simulation information
+ pSims = fUseRand? pNode->puSimR : pNode->puSimD;
+ pSims1 = fUseRand? Fraig_Regular(pNode->p1)->puSimR : Fraig_Regular(pNode->p1)->puSimD;
+ pSims2 = fUseRand? Fraig_Regular(pNode->p2)->puSimR : Fraig_Regular(pNode->p2)->puSimD;
+
+ // get complemented attributes of the children using their random info
+ fCompl = pNode->fInv;
+ fCompl1 = Fraig_NodeIsSimComplement(pNode->p1);
+ fCompl2 = Fraig_NodeIsSimComplement(pNode->p2);
+
+ // simulate
+ uHash = 0;
+ if ( fCompl1 && fCompl2 )
+ {
+ if ( fCompl )
+ for ( i = iWordStart; i < iWordStop; i++ )
+ {
+ pSims[i] = (pSims1[i] | pSims2[i]);
+ uHash ^= pSims[i] * s_FraigPrimes[i];
+ }
+ else
+ for ( i = iWordStart; i < iWordStop; i++ )
+ {
+ pSims[i] = ~(pSims1[i] | pSims2[i]);
+ uHash ^= pSims[i] * s_FraigPrimes[i];
+ }
+ }
+ else if ( fCompl1 && !fCompl2 )
+ {
+ if ( fCompl )
+ for ( i = iWordStart; i < iWordStop; i++ )
+ {
+ pSims[i] = (pSims1[i] | ~pSims2[i]);
+ uHash ^= pSims[i] * s_FraigPrimes[i];
+ }
+ else
+ for ( i = iWordStart; i < iWordStop; i++ )
+ {
+ pSims[i] = (~pSims1[i] & pSims2[i]);
+ uHash ^= pSims[i] * s_FraigPrimes[i];
+ }
+ }
+ else if ( !fCompl1 && fCompl2 )
+ {
+ if ( fCompl )
+ for ( i = iWordStart; i < iWordStop; i++ )
+ {
+ pSims[i] = (~pSims1[i] | pSims2[i]);
+ uHash ^= pSims[i] * s_FraigPrimes[i];
+ }
+ else
+ for ( i = iWordStart; i < iWordStop; i++ )
+ {
+ pSims[i] = (pSims1[i] & ~pSims2[i]);
+ uHash ^= pSims[i] * s_FraigPrimes[i];
+ }
+ }
+ else // if ( !fCompl1 && !fCompl2 )
+ {
+ if ( fCompl )
+ for ( i = iWordStart; i < iWordStop; i++ )
+ {
+ pSims[i] = ~(pSims1[i] & pSims2[i]);
+ uHash ^= pSims[i] * s_FraigPrimes[i];
+ }
+ else
+ for ( i = iWordStart; i < iWordStop; i++ )
+ {
+ pSims[i] = (pSims1[i] & pSims2[i]);
+ uHash ^= pSims[i] * s_FraigPrimes[i];
+ }
+ }
+
+ if ( fUseRand )
+ pNode->uHashR ^= uHash;
+ else
+ pNode->uHashD ^= uHash;
+}
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
diff --git a/src/sat/fraig/fraigPrime.c b/src/sat/fraig/fraigPrime.c
new file mode 100644
index 00000000..127ad478
--- /dev/null
+++ b/src/sat/fraig/fraigPrime.c
@@ -0,0 +1,144 @@
+/**CFile****************************************************************
+
+ FileName [fraigPrime.c]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [The table of the first 1000 primes.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraigPrime.c,v 1.4 2005/07/08 01:01:32 alanmi Exp $]
+
+***********************************************************************/
+
+#include "fraigInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+// The 1,024 smallest prime numbers used to compute the hash value
+// http://www.math.utah.edu/~alfeld/math/primelist.html
+int s_FraigPrimes[FRAIG_MAX_PRIMES] = { 2, 3, 5,
+7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
+101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,
+193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,
+293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
+409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,
+521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
+641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751,
+757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877,
+881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,
+1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091,
+1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193,
+1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291,
+1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423,
+1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493,
+1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601,
+1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699,
+1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811,
+1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,
+1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029,
+2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137,
+2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267,
+2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,
+2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459,
+2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593,
+2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693,
+2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791,
+2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903,
+2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023,
+3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167,
+3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271,
+3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373,
+3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511,
+3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607,
+3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709,
+3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833,
+3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931,
+3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057,
+4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177,
+4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283,
+4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423,
+4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547,
+4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657,
+4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789,
+4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931,
+4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011,
+5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147,
+5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279,
+5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413,
+5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507,
+5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647,
+5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743,
+5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857,
+5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007,
+6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121,
+6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247,
+6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343,
+6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473,
+6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607,
+6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733,
+6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857,
+6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971,
+6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103,
+7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229,
+7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369,
+7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517,
+7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603,
+7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723,
+7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873,
+7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009,
+8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123,
+8147, 8161 };
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function********************************************************************
+
+ Synopsis [Returns the next prime &gt;= p.]
+
+ Description [Copied from CUDD, for stand-aloneness.]
+
+ SideEffects [None]
+
+ SeeAlso []
+
+******************************************************************************/
+unsigned int Cudd_PrimeFraig( unsigned int p)
+{
+ int i,pn;
+
+ p--;
+ do {
+ p++;
+ if (p&1) {
+ pn = 1;
+ i = 3;
+ while ((unsigned) (i * i) <= p) {
+ if (p % i == 0) {
+ pn = 0;
+ break;
+ }
+ i += 2;
+ }
+ } else {
+ pn = 0;
+ }
+ } while (!pn);
+ return(p);
+
+} /* end of Cudd_Prime */
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/sat/fraig/fraigSat.c b/src/sat/fraig/fraigSat.c
new file mode 100644
index 00000000..53057fc3
--- /dev/null
+++ b/src/sat/fraig/fraigSat.c
@@ -0,0 +1,1455 @@
+/**CFile****************************************************************
+
+ FileName [fraigSat.c]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [Proving functional equivalence using SAT.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraigSat.c,v 1.10 2005/07/08 01:01:32 alanmi Exp $]
+
+***********************************************************************/
+
+#include "fraigInt.h"
+#include "math.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+static void Fraig_OrderVariables( Fraig_Man_t * pMan, Fraig_Node_t * pOld, Fraig_Node_t * pNew );
+static void Fraig_SetupAdjacent( Fraig_Man_t * pMan, Msat_IntVec_t * vConeVars );
+static void Fraig_SetupAdjacentMark( Fraig_Man_t * pMan, Msat_IntVec_t * vConeVars );
+static void Fraig_PrepareCones( Fraig_Man_t * pMan, Fraig_Node_t * pOld, Fraig_Node_t * pNew );
+static void Fraig_PrepareCones_rec( Fraig_Man_t * pMan, Fraig_Node_t * pNode );
+
+static void Fraig_SupergateAddClauses( Fraig_Man_t * pMan, Fraig_Node_t * pNode, Fraig_NodeVec_t * vSuper );
+static void Fraig_SupergateAddClausesExor( Fraig_Man_t * pMan, Fraig_Node_t * pNode );
+static void Fraig_SupergateAddClausesMux( Fraig_Man_t * pMan, Fraig_Node_t * pNode );
+//static void Fraig_DetectFanoutFreeCone( Fraig_Man_t * pMan, Fraig_Node_t * pNode );
+static void Fraig_DetectFanoutFreeConeMux( Fraig_Man_t * pMan, Fraig_Node_t * pNode );
+static void Fraig_SetActivity( Fraig_Man_t * pMan, Fraig_Node_t * pOld, Fraig_Node_t * pNew );
+
+extern void * Msat_ClauseVecReadEntry( void * p, int i );
+
+// The lesson learned seems to be that variable should be in reverse topological order
+// from the output of the miter. The ordering of adjacency lists is very important.
+// The best way seems to be fanins followed by fanouts. Slight changes to this order
+// leads to big degradation in quality.
+
+static int nMuxes;
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Checks equivalence of two nodes.]
+
+ Description [Returns 1 iff the nodes are equivalent.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodesAreEqual( Fraig_Man_t * p, Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int nBTLimit, int nTimeLimit )
+{
+ if ( pNode1 == pNode2 )
+ return 1;
+ if ( pNode1 == Fraig_Not(pNode2) )
+ return 0;
+ return Fraig_NodeIsEquivalent( p, Fraig_Regular(pNode1), Fraig_Regular(pNode2), nBTLimit, nTimeLimit );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Tries to prove the final miter.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ManProveMiter( Fraig_Man_t * p )
+{
+ Fraig_Node_t * pNode;
+ int i, clk;
+
+ if ( !p->fTryProve )
+ return;
+
+ clk = clock();
+ // consider all outputs of the multi-output miter
+ for ( i = 0; i < p->vOutputs->nSize; i++ )
+ {
+ pNode = Fraig_Regular(p->vOutputs->pArray[i]);
+ // skip already constant nodes
+ if ( pNode == p->pConst1 )
+ continue;
+ // skip nodes that are different according to simulation
+ if ( !Fraig_CompareSimInfo( pNode, p->pConst1, p->nWordsRand, 1 ) )
+ continue;
+ if ( Fraig_NodeIsEquivalent( p, p->pConst1, pNode, -1, p->nSeconds ) )
+ {
+ if ( Fraig_IsComplement(p->vOutputs->pArray[i]) ^ Fraig_NodeComparePhase(p->pConst1, pNode) )
+ p->vOutputs->pArray[i] = Fraig_Not(p->pConst1);
+ else
+ p->vOutputs->pArray[i] = p->pConst1;
+ }
+ }
+ if ( p->fVerboseP )
+ {
+// PRT( "Final miter proof time", clock() - clk );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if the miter is unsat; 0 if sat; -1 if undecided.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_ManCheckMiter( Fraig_Man_t * p )
+{
+ Fraig_Node_t * pNode;
+ int i;
+ FREE( p->pModel );
+ for ( i = 0; i < p->vOutputs->nSize; i++ )
+ {
+ // get the output node (it can be complemented!)
+ pNode = p->vOutputs->pArray[i];
+ // if the miter is constant 0, the problem is UNSAT
+ if ( pNode == Fraig_Not(p->pConst1) )
+ continue;
+ // consider the special case when the miter is constant 1
+ if ( pNode == p->pConst1 )
+ {
+ // in this case, any counter example will do to distinquish it from constant 0
+ // here we pick the counter example composed of all zeros
+ p->pModel = Fraig_ManAllocCounterExample( p );
+ return 0;
+ }
+ // save the counter example
+ p->pModel = Fraig_ManSaveCounterExample( p, pNode );
+ // if the model is not found, return undecided
+ if ( p->pModel == NULL )
+ return -1;
+ else
+ return 0;
+ }
+ return 1;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if pOld is in the TFI of pNew.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_MarkTfi_rec( Fraig_Man_t * pMan, Fraig_Node_t * pNode )
+{
+ // skip the visited node
+ if ( pNode->TravId == pMan->nTravIds )
+ return 0;
+ pNode->TravId = pMan->nTravIds;
+ // skip the PI node
+ if ( pNode->NumPi >= 0 )
+ return 1;
+ // check the children
+ return Fraig_MarkTfi_rec( pMan, Fraig_Regular(pNode->p1) ) +
+ Fraig_MarkTfi_rec( pMan, Fraig_Regular(pNode->p2) );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if pOld is in the TFI of pNew.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_MarkTfi2_rec( Fraig_Man_t * pMan, Fraig_Node_t * pNode )
+{
+ // skip the visited node
+ if ( pNode->TravId == pMan->nTravIds )
+ return 0;
+ // skip the boundary node
+ if ( pNode->TravId == pMan->nTravIds-1 )
+ {
+ pNode->TravId = pMan->nTravIds;
+ return 1;
+ }
+ pNode->TravId = pMan->nTravIds;
+ // skip the PI node
+ if ( pNode->NumPi >= 0 )
+ return 1;
+ // check the children
+ return Fraig_MarkTfi2_rec( pMan, Fraig_Regular(pNode->p1) ) +
+ Fraig_MarkTfi2_rec( pMan, Fraig_Regular(pNode->p2) );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if pOld is in the TFI of pNew.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_MarkTfi3_rec( Fraig_Man_t * pMan, Fraig_Node_t * pNode )
+{
+ // skip the visited node
+ if ( pNode->TravId == pMan->nTravIds )
+ return 1;
+ // skip the boundary node
+ if ( pNode->TravId == pMan->nTravIds-1 )
+ {
+ pNode->TravId = pMan->nTravIds;
+ return 1;
+ }
+ pNode->TravId = pMan->nTravIds;
+ // skip the PI node
+ if ( pNode->NumPi >= 0 )
+ return 0;
+ // check the children
+ return Fraig_MarkTfi3_rec( pMan, Fraig_Regular(pNode->p1) ) *
+ Fraig_MarkTfi3_rec( pMan, Fraig_Regular(pNode->p2) );
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_VarsStudy( Fraig_Man_t * p, Fraig_Node_t * pOld, Fraig_Node_t * pNew )
+{
+ int NumPis, NumCut, fContain;
+
+ // mark the TFI of pNew
+ p->nTravIds++;
+ NumPis = Fraig_MarkTfi_rec( p, pNew );
+ printf( "(%d)(%d,%d):", NumPis, pOld->Level, pNew->Level );
+
+ // check if the old is in the TFI
+ if ( pOld->TravId == p->nTravIds )
+ {
+ printf( "* " );
+ return;
+ }
+
+ // count the boundary of nodes in pOld
+ p->nTravIds++;
+ NumCut = Fraig_MarkTfi2_rec( p, pOld );
+ printf( "%d", NumCut );
+
+ // check if the new is contained in the old's support
+ p->nTravIds++;
+ fContain = Fraig_MarkTfi3_rec( p, pNew );
+ printf( "%c ", fContain? '+':'-' );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Checks whether two nodes are functinally equivalent.]
+
+ Description [The flag (fComp) tells whether the nodes to be checked
+ are in the opposite polarity. The second flag (fSkipZeros) tells whether
+ the checking should be performed if the simulation vectors are zeros.
+ Returns 1 if the nodes are equivalent; 0 othewise.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeIsEquivalent( Fraig_Man_t * p, Fraig_Node_t * pOld, Fraig_Node_t * pNew, int nBTLimit, int nTimeLimit )
+{
+ int RetValue, RetValue1, i, fComp, clk;
+ int fVerbose = 0;
+ int fSwitch = 0;
+
+ // make sure the nodes are not complemented
+ assert( !Fraig_IsComplement(pNew) );
+ assert( !Fraig_IsComplement(pOld) );
+ assert( pNew != pOld );
+
+ // if at least one of the nodes is a failed node, perform adjustments:
+ // if the backtrack limit is small, simply skip this node
+ // if the backtrack limit is > 10, take the quare root of the limit
+ if ( nBTLimit > 0 && (pOld->fFailTfo || pNew->fFailTfo) )
+ {
+ p->nSatFails++;
+// return 0;
+// if ( nBTLimit > 10 )
+// nBTLimit /= 10;
+ if ( nBTLimit <= 10 )
+ return 0;
+ nBTLimit = (int)sqrt(nBTLimit);
+// fSwitch = 1;
+ }
+
+ p->nSatCalls++;
+
+ // make sure the solver is allocated and has enough variables
+ if ( p->pSat == NULL )
+ Fraig_ManCreateSolver( p );
+ // make sure the SAT solver has enough variables
+ for ( i = Msat_SolverReadVarNum(p->pSat); i < p->vNodes->nSize; i++ )
+ Msat_SolverAddVar( p->pSat, p->vNodes->pArray[i]->Level );
+
+
+
+/*
+ {
+ Fraig_Node_t * ppNodes[2] = { pOld, pNew };
+ extern void Fraig_MappingShowNodes( Fraig_Man_t * pMan, Fraig_Node_t ** ppRoots, int nRoots, char * pFileName );
+ Fraig_MappingShowNodes( p, ppNodes, 2, "temp_aig" );
+ }
+*/
+
+ nMuxes = 0;
+
+
+ // get the logic cone
+clk = clock();
+// Fraig_VarsStudy( p, pOld, pNew );
+ Fraig_OrderVariables( p, pOld, pNew );
+// Fraig_PrepareCones( p, pOld, pNew );
+p->timeTrav += clock() - clk;
+
+// printf( "The number of MUXes detected = %d (%5.2f %% of logic). ", nMuxes, 300.0*nMuxes/(p->vNodes->nSize - p->vInputs->nSize) );
+// PRT( "Time", clock() - clk );
+
+if ( fVerbose )
+ printf( "%d(%d) - ", Fraig_CountPis(p,p->vVarsInt), Msat_IntVecReadSize(p->vVarsInt) );
+
+
+ // prepare variable activity
+ Fraig_SetActivity( p, pOld, pNew );
+
+ // get the complemented attribute
+ fComp = Fraig_NodeComparePhase( pOld, pNew );
+//Msat_SolverPrintClauses( p->pSat );
+
+ ////////////////////////////////////////////
+ // prepare the solver to run incrementally on these variables
+//clk = clock();
+ Msat_SolverPrepare( p->pSat, p->vVarsInt );
+//p->time3 += clock() - clk;
+
+
+ // solve under assumptions
+ // A = 1; B = 0 OR A = 1; B = 1
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pOld->Num, 0) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNew->Num, !fComp) );
+
+//Msat_SolverWriteDimacs( p->pSat, "temp_fraig.cnf" );
+
+ // run the solver
+clk = clock();
+ RetValue1 = Msat_SolverSolve( p->pSat, p->vProj, nBTLimit, nTimeLimit );
+p->timeSat += clock() - clk;
+
+ if ( RetValue1 == MSAT_FALSE )
+ {
+//p->time1 += clock() - clk;
+
+if ( fVerbose )
+{
+ printf( "unsat %d ", Msat_SolverReadBackTracks(p->pSat) );
+PRT( "time", clock() - clk );
+}
+
+ // add the clause
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pOld->Num, 1) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNew->Num, fComp) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+ // continue solving the other implication
+ }
+ else if ( RetValue1 == MSAT_TRUE )
+ {
+//p->time2 += clock() - clk;
+
+if ( fVerbose )
+{
+ printf( "sat %d ", Msat_SolverReadBackTracks(p->pSat) );
+PRT( "time", clock() - clk );
+}
+
+ // record the counter example
+ Fraig_FeedBack( p, Msat_SolverReadModelArray(p->pSat), p->vVarsInt, pOld, pNew );
+
+// if ( pOld->fFailTfo || pNew->fFailTfo )
+// printf( "*" );
+// printf( "s(%d)", pNew->Level );
+ if ( fSwitch )
+ printf( "s(%d)", pNew->Level );
+ p->nSatCounter++;
+ return 0;
+ }
+ else // if ( RetValue1 == MSAT_UNKNOWN )
+ {
+p->time3 += clock() - clk;
+
+// if ( pOld->fFailTfo || pNew->fFailTfo )
+// printf( "*" );
+// printf( "T(%d)", pNew->Level );
+
+ // mark the node as the failed node
+ if ( pOld != p->pConst1 )
+ pOld->fFailTfo = 1;
+ pNew->fFailTfo = 1;
+// p->nSatFails++;
+ if ( fSwitch )
+ printf( "T(%d)", pNew->Level );
+ p->nSatFailsReal++;
+ return 0;
+ }
+
+ // if the old node was constant 0, we already know the answer
+ if ( pOld == p->pConst1 )
+ return 1;
+
+ ////////////////////////////////////////////
+ // prepare the solver to run incrementally
+//clk = clock();
+ Msat_SolverPrepare( p->pSat, p->vVarsInt );
+//p->time3 += clock() - clk;
+ // solve under assumptions
+ // A = 0; B = 1 OR A = 0; B = 0
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pOld->Num, 1) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNew->Num, fComp) );
+ // run the solver
+clk = clock();
+ RetValue1 = Msat_SolverSolve( p->pSat, p->vProj, nBTLimit, nTimeLimit );
+p->timeSat += clock() - clk;
+
+ if ( RetValue1 == MSAT_FALSE )
+ {
+//p->time1 += clock() - clk;
+
+if ( fVerbose )
+{
+ printf( "unsat %d ", Msat_SolverReadBackTracks(p->pSat) );
+PRT( "time", clock() - clk );
+}
+
+ // add the clause
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pOld->Num, 0) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNew->Num, !fComp) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+ // continue solving the other implication
+ }
+ else if ( RetValue1 == MSAT_TRUE )
+ {
+//p->time2 += clock() - clk;
+
+if ( fVerbose )
+{
+ printf( "sat %d ", Msat_SolverReadBackTracks(p->pSat) );
+PRT( "time", clock() - clk );
+}
+
+ // record the counter example
+ Fraig_FeedBack( p, Msat_SolverReadModelArray(p->pSat), p->vVarsInt, pOld, pNew );
+ p->nSatCounter++;
+
+// if ( pOld->fFailTfo || pNew->fFailTfo )
+// printf( "*" );
+// printf( "s(%d)", pNew->Level );
+ if ( fSwitch )
+ printf( "s(%d)", pNew->Level );
+ return 0;
+ }
+ else // if ( RetValue1 == MSAT_UNKNOWN )
+ {
+p->time3 += clock() - clk;
+
+// if ( pOld->fFailTfo || pNew->fFailTfo )
+// printf( "*" );
+// printf( "T(%d)", pNew->Level );
+ if ( fSwitch )
+ printf( "T(%d)", pNew->Level );
+
+ // mark the node as the failed node
+ pOld->fFailTfo = 1;
+ pNew->fFailTfo = 1;
+// p->nSatFails++;
+ p->nSatFailsReal++;
+ return 0;
+ }
+
+ // return SAT proof
+ p->nSatProof++;
+
+// if ( pOld->fFailTfo || pNew->fFailTfo )
+// printf( "*" );
+// printf( "u(%d)", pNew->Level );
+
+ if ( fSwitch )
+ printf( "u(%d)", pNew->Level );
+
+ return 1;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Checks whether pOld => pNew.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeIsImplication( Fraig_Man_t * p, Fraig_Node_t * pOld, Fraig_Node_t * pNew, int nBTLimit )
+{
+ int RetValue, RetValue1, i, fComp, clk;
+ int fVerbose = 0;
+
+ // make sure the nodes are not complemented
+ assert( !Fraig_IsComplement(pNew) );
+ assert( !Fraig_IsComplement(pOld) );
+ assert( pNew != pOld );
+
+ p->nSatCallsImp++;
+
+ // make sure the solver is allocated and has enough variables
+ if ( p->pSat == NULL )
+ Fraig_ManCreateSolver( p );
+ // make sure the SAT solver has enough variables
+ for ( i = Msat_SolverReadVarNum(p->pSat); i < p->vNodes->nSize; i++ )
+ Msat_SolverAddVar( p->pSat, p->vNodes->pArray[i]->Level );
+
+ // get the logic cone
+clk = clock();
+ Fraig_OrderVariables( p, pOld, pNew );
+// Fraig_PrepareCones( p, pOld, pNew );
+p->timeTrav += clock() - clk;
+
+if ( fVerbose )
+ printf( "%d(%d) - ", Fraig_CountPis(p,p->vVarsInt), Msat_IntVecReadSize(p->vVarsInt) );
+
+
+ // get the complemented attribute
+ fComp = Fraig_NodeComparePhase( pOld, pNew );
+//Msat_SolverPrintClauses( p->pSat );
+
+ ////////////////////////////////////////////
+ // prepare the solver to run incrementally on these variables
+//clk = clock();
+ Msat_SolverPrepare( p->pSat, p->vVarsInt );
+//p->time3 += clock() - clk;
+
+ // solve under assumptions
+ // A = 1; B = 0 OR A = 1; B = 1
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pOld->Num, 0) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNew->Num, !fComp) );
+ // run the solver
+clk = clock();
+ RetValue1 = Msat_SolverSolve( p->pSat, p->vProj, nBTLimit, 1000000 );
+p->timeSat += clock() - clk;
+
+ if ( RetValue1 == MSAT_FALSE )
+ {
+//p->time1 += clock() - clk;
+
+if ( fVerbose )
+{
+ printf( "unsat %d ", Msat_SolverReadBackTracks(p->pSat) );
+PRT( "time", clock() - clk );
+}
+
+ // add the clause
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pOld->Num, 1) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNew->Num, fComp) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+// p->nSatProofImp++;
+ return 1;
+ }
+ else if ( RetValue1 == MSAT_TRUE )
+ {
+//p->time2 += clock() - clk;
+
+if ( fVerbose )
+{
+ printf( "sat %d ", Msat_SolverReadBackTracks(p->pSat) );
+PRT( "time", clock() - clk );
+}
+ // record the counter example
+ Fraig_FeedBack( p, Msat_SolverReadModelArray(p->pSat), p->vVarsInt, pOld, pNew );
+ p->nSatCounterImp++;
+ return 0;
+ }
+ else // if ( RetValue1 == MSAT_UNKNOWN )
+ {
+p->time3 += clock() - clk;
+ p->nSatFailsImp++;
+ return 0;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Prepares the SAT solver to run on the two nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_ManCheckClauseUsingSat( Fraig_Man_t * p, Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int nBTLimit )
+{
+ Fraig_Node_t * pNode1R, * pNode2R;
+ int RetValue, RetValue1, i, clk;
+ int fVerbose = 0;
+
+ pNode1R = Fraig_Regular(pNode1);
+ pNode2R = Fraig_Regular(pNode2);
+ assert( pNode1R != pNode2R );
+
+ // make sure the solver is allocated and has enough variables
+ if ( p->pSat == NULL )
+ Fraig_ManCreateSolver( p );
+ // make sure the SAT solver has enough variables
+ for ( i = Msat_SolverReadVarNum(p->pSat); i < p->vNodes->nSize; i++ )
+ Msat_SolverAddVar( p->pSat, p->vNodes->pArray[i]->Level );
+
+ // get the logic cone
+clk = clock();
+ Fraig_OrderVariables( p, pNode1R, pNode2R );
+// Fraig_PrepareCones( p, pNode1R, pNode2R );
+p->timeTrav += clock() - clk;
+
+ ////////////////////////////////////////////
+ // prepare the solver to run incrementally on these variables
+//clk = clock();
+ Msat_SolverPrepare( p->pSat, p->vVarsInt );
+//p->time3 += clock() - clk;
+
+ // solve under assumptions
+ // A = 1; B = 0 OR A = 1; B = 1
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode1R->Num, !Fraig_IsComplement(pNode1)) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode2R->Num, !Fraig_IsComplement(pNode2)) );
+ // run the solver
+clk = clock();
+ RetValue1 = Msat_SolverSolve( p->pSat, p->vProj, nBTLimit, 1000000 );
+p->timeSat += clock() - clk;
+
+ if ( RetValue1 == MSAT_FALSE )
+ {
+//p->time1 += clock() - clk;
+
+if ( fVerbose )
+{
+ printf( "unsat %d ", Msat_SolverReadBackTracks(p->pSat) );
+PRT( "time", clock() - clk );
+}
+
+ // add the clause
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode1R->Num, Fraig_IsComplement(pNode1)) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode2R->Num, Fraig_IsComplement(pNode2)) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+// p->nSatProofImp++;
+ return 1;
+ }
+ else if ( RetValue1 == MSAT_TRUE )
+ {
+//p->time2 += clock() - clk;
+
+if ( fVerbose )
+{
+ printf( "sat %d ", Msat_SolverReadBackTracks(p->pSat) );
+PRT( "time", clock() - clk );
+}
+ // record the counter example
+// Fraig_FeedBack( p, Msat_SolverReadModelArray(p->pSat), p->vVarsInt, pNode1R, pNode2R );
+ p->nSatCounterImp++;
+ return 0;
+ }
+ else // if ( RetValue1 == MSAT_UNKNOWN )
+ {
+p->time3 += clock() - clk;
+ p->nSatFailsImp++;
+ return 0;
+ }
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Prepares the SAT solver to run on the two nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_PrepareCones( Fraig_Man_t * pMan, Fraig_Node_t * pOld, Fraig_Node_t * pNew )
+{
+// Msat_IntVec_t * vAdjs;
+// int * pVars, nVars, i, k;
+ int nVarsAlloc;
+
+ assert( pOld != pNew );
+ assert( !Fraig_IsComplement(pOld) );
+ assert( !Fraig_IsComplement(pNew) );
+ // clean the variables
+ nVarsAlloc = Msat_IntVecReadSize(pMan->vVarsUsed);
+ Msat_IntVecFill( pMan->vVarsUsed, nVarsAlloc, 0 );
+ Msat_IntVecClear( pMan->vVarsInt );
+
+ pMan->nTravIds++;
+ Fraig_PrepareCones_rec( pMan, pNew );
+ Fraig_PrepareCones_rec( pMan, pOld );
+
+
+/*
+ nVars = Msat_IntVecReadSize( pMan->vVarsInt );
+ pVars = Msat_IntVecReadArray( pMan->vVarsInt );
+ for ( i = 0; i < nVars; i++ )
+ {
+ // process its connections
+ vAdjs = (Msat_IntVec_t *)Msat_ClauseVecReadEntry( pMan->vAdjacents, pVars[i] );
+ printf( "%d=%d { ", pVars[i], Msat_IntVecReadSize(vAdjs) );
+ for ( k = 0; k < Msat_IntVecReadSize(vAdjs); k++ )
+ printf( "%d ", Msat_IntVecReadEntry(vAdjs,k) );
+ printf( "}\n" );
+
+ }
+ i = 0;
+*/
+}
+
+/**Function*************************************************************
+
+ Synopsis [Traverses the cone, collects the numbers and adds the clauses.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_PrepareCones_rec( Fraig_Man_t * pMan, Fraig_Node_t * pNode )
+{
+ Fraig_Node_t * pFanin;
+ Msat_IntVec_t * vAdjs;
+ int fUseMuxes = 1, i;
+ int fItIsTime;
+
+ // skip if the node is aleady visited
+ assert( !Fraig_IsComplement(pNode) );
+ if ( pNode->TravId == pMan->nTravIds )
+ return;
+ pNode->TravId = pMan->nTravIds;
+
+ // collect the node's number (closer to reverse topological order)
+ Msat_IntVecPush( pMan->vVarsInt, pNode->Num );
+ Msat_IntVecWriteEntry( pMan->vVarsUsed, pNode->Num, 1 );
+ if ( !Fraig_NodeIsAnd( pNode ) )
+ return;
+
+ // if the node does not have fanins, create them
+ fItIsTime = 0;
+ if ( pNode->vFanins == NULL )
+ {
+ fItIsTime = 1;
+ // create the fanins of the supergate
+ assert( pNode->fClauses == 0 );
+ if ( fUseMuxes && Fraig_NodeIsMuxType(pNode) )
+ {
+ pNode->vFanins = Fraig_NodeVecAlloc( 4 );
+ Fraig_NodeVecPushUnique( pNode->vFanins, Fraig_Regular(Fraig_Regular(pNode->p1)->p1) );
+ Fraig_NodeVecPushUnique( pNode->vFanins, Fraig_Regular(Fraig_Regular(pNode->p1)->p2) );
+ Fraig_NodeVecPushUnique( pNode->vFanins, Fraig_Regular(Fraig_Regular(pNode->p2)->p1) );
+ Fraig_NodeVecPushUnique( pNode->vFanins, Fraig_Regular(Fraig_Regular(pNode->p2)->p2) );
+ Fraig_SupergateAddClausesMux( pMan, pNode );
+ }
+ else
+ {
+ pNode->vFanins = Fraig_CollectSupergate( pNode, fUseMuxes );
+ Fraig_SupergateAddClauses( pMan, pNode, pNode->vFanins );
+ }
+ assert( pNode->vFanins->nSize > 1 );
+ pNode->fClauses = 1;
+ pMan->nVarsClauses++;
+
+ // add fanins
+ vAdjs = (Msat_IntVec_t *)Msat_ClauseVecReadEntry( pMan->vAdjacents, pNode->Num );
+ assert( Msat_IntVecReadSize( vAdjs ) == 0 );
+ for ( i = 0; i < pNode->vFanins->nSize; i++ )
+ {
+ pFanin = Fraig_Regular(pNode->vFanins->pArray[i]);
+ Msat_IntVecPush( vAdjs, pFanin->Num );
+ }
+ }
+
+ // recursively visit the fanins
+ for ( i = 0; i < pNode->vFanins->nSize; i++ )
+ Fraig_PrepareCones_rec( pMan, Fraig_Regular(pNode->vFanins->pArray[i]) );
+
+ if ( fItIsTime )
+ {
+ // recursively visit the fanins
+ for ( i = 0; i < pNode->vFanins->nSize; i++ )
+ {
+ pFanin = Fraig_Regular(pNode->vFanins->pArray[i]);
+ vAdjs = (Msat_IntVec_t *)Msat_ClauseVecReadEntry( pMan->vAdjacents, pFanin->Num );
+ Msat_IntVecPush( vAdjs, pNode->Num );
+ }
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Collect variables using their proximity from the nodes.]
+
+ Description [This procedure creates a variable order based on collecting
+ first the nodes that are the closest to the given two target nodes.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_OrderVariables( Fraig_Man_t * pMan, Fraig_Node_t * pOld, Fraig_Node_t * pNew )
+{
+ Fraig_Node_t * pNode, * pFanin;
+ int i, k, Number, fUseMuxes = 1;
+ int nVarsAlloc;
+
+ assert( pOld != pNew );
+ assert( !Fraig_IsComplement(pOld) );
+ assert( !Fraig_IsComplement(pNew) );
+
+ pMan->nTravIds++;
+
+ // clean the variables
+ nVarsAlloc = Msat_IntVecReadSize(pMan->vVarsUsed);
+ Msat_IntVecFill( pMan->vVarsUsed, nVarsAlloc, 0 );
+ Msat_IntVecClear( pMan->vVarsInt );
+
+ // add the first node
+ Msat_IntVecPush( pMan->vVarsInt, pOld->Num );
+ Msat_IntVecWriteEntry( pMan->vVarsUsed, pOld->Num, 1 );
+ pOld->TravId = pMan->nTravIds;
+
+ // add the second node
+ Msat_IntVecPush( pMan->vVarsInt, pNew->Num );
+ Msat_IntVecWriteEntry( pMan->vVarsUsed, pNew->Num, 1 );
+ pNew->TravId = pMan->nTravIds;
+
+ // create the variable order
+ for ( i = 0; i < Msat_IntVecReadSize(pMan->vVarsInt); i++ )
+ {
+ // get the new node on the frontier
+ Number = Msat_IntVecReadEntry(pMan->vVarsInt, i);
+ pNode = pMan->vNodes->pArray[Number];
+ if ( !Fraig_NodeIsAnd(pNode) )
+ continue;
+
+ // if the node does not have fanins, create them
+ if ( pNode->vFanins == NULL )
+ {
+ // create the fanins of the supergate
+ assert( pNode->fClauses == 0 );
+ // detecting a fanout-free cone (experiment only)
+// Fraig_DetectFanoutFreeCone( pMan, pNode );
+
+ if ( fUseMuxes && Fraig_NodeIsMuxType(pNode) )
+ {
+ pNode->vFanins = Fraig_NodeVecAlloc( 4 );
+ Fraig_NodeVecPushUnique( pNode->vFanins, Fraig_Regular(Fraig_Regular(pNode->p1)->p1) );
+ Fraig_NodeVecPushUnique( pNode->vFanins, Fraig_Regular(Fraig_Regular(pNode->p1)->p2) );
+ Fraig_NodeVecPushUnique( pNode->vFanins, Fraig_Regular(Fraig_Regular(pNode->p2)->p1) );
+ Fraig_NodeVecPushUnique( pNode->vFanins, Fraig_Regular(Fraig_Regular(pNode->p2)->p2) );
+ Fraig_SupergateAddClausesMux( pMan, pNode );
+// Fraig_DetectFanoutFreeConeMux( pMan, pNode );
+
+ nMuxes++;
+ }
+ else
+ {
+ pNode->vFanins = Fraig_CollectSupergate( pNode, fUseMuxes );
+ Fraig_SupergateAddClauses( pMan, pNode, pNode->vFanins );
+ }
+ assert( pNode->vFanins->nSize > 1 );
+ pNode->fClauses = 1;
+ pMan->nVarsClauses++;
+
+ pNode->fMark2 = 1; // goes together with Fraig_SetupAdjacentMark()
+ }
+
+ // explore the implication fanins of pNode
+ for ( k = 0; k < pNode->vFanins->nSize; k++ )
+ {
+ pFanin = Fraig_Regular(pNode->vFanins->pArray[k]);
+ if ( pFanin->TravId == pMan->nTravIds ) // already collected
+ continue;
+ // collect and mark
+ Msat_IntVecPush( pMan->vVarsInt, pFanin->Num );
+ Msat_IntVecWriteEntry( pMan->vVarsUsed, pFanin->Num, 1 );
+ pFanin->TravId = pMan->nTravIds;
+ }
+ }
+
+ // set up the adjacent variable information
+// Fraig_SetupAdjacent( pMan, pMan->vVarsInt );
+ Fraig_SetupAdjacentMark( pMan, pMan->vVarsInt );
+}
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Set up the adjacent variable information.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_SetupAdjacent( Fraig_Man_t * pMan, Msat_IntVec_t * vConeVars )
+{
+ Fraig_Node_t * pNode, * pFanin;
+ Msat_IntVec_t * vAdjs;
+ int * pVars, nVars, i, k;
+
+ // clean the adjacents for the variables
+ nVars = Msat_IntVecReadSize( vConeVars );
+ pVars = Msat_IntVecReadArray( vConeVars );
+ for ( i = 0; i < nVars; i++ )
+ {
+ // process its connections
+ vAdjs = (Msat_IntVec_t *)Msat_ClauseVecReadEntry( pMan->vAdjacents, pVars[i] );
+ Msat_IntVecClear( vAdjs );
+
+ pNode = pMan->vNodes->pArray[pVars[i]];
+ if ( !Fraig_NodeIsAnd(pNode) )
+ continue;
+
+ // add fanins
+ vAdjs = (Msat_IntVec_t *)Msat_ClauseVecReadEntry( pMan->vAdjacents, pVars[i] );
+ for ( k = 0; k < pNode->vFanins->nSize; k++ )
+// for ( k = pNode->vFanins->nSize - 1; k >= 0; k-- )
+ {
+ pFanin = Fraig_Regular(pNode->vFanins->pArray[k]);
+ Msat_IntVecPush( vAdjs, pFanin->Num );
+// Msat_IntVecPushUniqueOrder( vAdjs, pFanin->Num );
+ }
+ }
+ // add the fanouts
+ for ( i = 0; i < nVars; i++ )
+ {
+ pNode = pMan->vNodes->pArray[pVars[i]];
+ if ( !Fraig_NodeIsAnd(pNode) )
+ continue;
+
+ // add the edges
+ for ( k = 0; k < pNode->vFanins->nSize; k++ )
+// for ( k = pNode->vFanins->nSize - 1; k >= 0; k-- )
+ {
+ pFanin = Fraig_Regular(pNode->vFanins->pArray[k]);
+ vAdjs = (Msat_IntVec_t *)Msat_ClauseVecReadEntry( pMan->vAdjacents, pFanin->Num );
+ Msat_IntVecPush( vAdjs, pNode->Num );
+// Msat_IntVecPushUniqueOrder( vAdjs, pFanin->Num );
+ }
+ }
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Set up the adjacent variable information.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_SetupAdjacentMark( Fraig_Man_t * pMan, Msat_IntVec_t * vConeVars )
+{
+ Fraig_Node_t * pNode, * pFanin;
+ Msat_IntVec_t * vAdjs;
+ int * pVars, nVars, i, k;
+
+ // clean the adjacents for the variables
+ nVars = Msat_IntVecReadSize( vConeVars );
+ pVars = Msat_IntVecReadArray( vConeVars );
+ for ( i = 0; i < nVars; i++ )
+ {
+ pNode = pMan->vNodes->pArray[pVars[i]];
+ if ( pNode->fMark2 == 0 )
+ continue;
+// pNode->fMark2 = 0;
+
+ // process its connections
+// vAdjs = (Msat_IntVec_t *)Msat_ClauseVecReadEntry( pMan->vAdjacents, pVars[i] );
+// Msat_IntVecClear( vAdjs );
+
+ if ( !Fraig_NodeIsAnd(pNode) )
+ continue;
+
+ // add fanins
+ vAdjs = (Msat_IntVec_t *)Msat_ClauseVecReadEntry( pMan->vAdjacents, pVars[i] );
+ for ( k = 0; k < pNode->vFanins->nSize; k++ )
+// for ( k = pNode->vFanins->nSize - 1; k >= 0; k-- )
+ {
+ pFanin = Fraig_Regular(pNode->vFanins->pArray[k]);
+ Msat_IntVecPush( vAdjs, pFanin->Num );
+// Msat_IntVecPushUniqueOrder( vAdjs, pFanin->Num );
+ }
+ }
+ // add the fanouts
+ for ( i = 0; i < nVars; i++ )
+ {
+ pNode = pMan->vNodes->pArray[pVars[i]];
+ if ( pNode->fMark2 == 0 )
+ continue;
+ pNode->fMark2 = 0;
+
+ if ( !Fraig_NodeIsAnd(pNode) )
+ continue;
+
+ // add the edges
+ for ( k = 0; k < pNode->vFanins->nSize; k++ )
+// for ( k = pNode->vFanins->nSize - 1; k >= 0; k-- )
+ {
+ pFanin = Fraig_Regular(pNode->vFanins->pArray[k]);
+ vAdjs = (Msat_IntVec_t *)Msat_ClauseVecReadEntry( pMan->vAdjacents, pFanin->Num );
+ Msat_IntVecPush( vAdjs, pNode->Num );
+// Msat_IntVecPushUniqueOrder( vAdjs, pFanin->Num );
+ }
+ }
+}
+
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Adds clauses to the solver.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_SupergateAddClauses( Fraig_Man_t * p, Fraig_Node_t * pNode, Fraig_NodeVec_t * vSuper )
+{
+ int fComp1, RetValue, nVars, Var, Var1, i;
+
+ assert( Fraig_NodeIsAnd( pNode ) );
+ nVars = Msat_SolverReadVarNum(p->pSat);
+
+ Var = pNode->Num;
+ assert( Var < nVars );
+ for ( i = 0; i < vSuper->nSize; i++ )
+ {
+ // get the predecessor nodes
+ // get the complemented attributes of the nodes
+ fComp1 = Fraig_IsComplement(vSuper->pArray[i]);
+ // determine the variable numbers
+ Var1 = Fraig_Regular(vSuper->pArray[i])->Num;
+ // check that the variables are in the SAT manager
+ assert( Var1 < nVars );
+
+ // suppose the AND-gate is A * B = C
+ // add !A => !C or A + !C
+ // fprintf( pFile, "%d %d 0%c", Var1, -Var, 10 );
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(Var1, fComp1) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(Var, 1) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+ }
+
+ // add A & B => C or !A + !B + C
+// fprintf( pFile, "%d %d %d 0%c", -Var1, -Var2, Var, 10 );
+ Msat_IntVecClear( p->vProj );
+ for ( i = 0; i < vSuper->nSize; i++ )
+ {
+ // get the predecessor nodes
+ // get the complemented attributes of the nodes
+ fComp1 = Fraig_IsComplement(vSuper->pArray[i]);
+ // determine the variable numbers
+ Var1 = Fraig_Regular(vSuper->pArray[i])->Num;
+
+ // add this variable to the array
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(Var1, !fComp1) );
+ }
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(Var, 0) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Adds clauses to the solver.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_SupergateAddClausesExor( Fraig_Man_t * p, Fraig_Node_t * pNode )
+{
+ Fraig_Node_t * pNode1, * pNode2;
+ int fComp, RetValue;
+
+ assert( !Fraig_IsComplement( pNode ) );
+ assert( Fraig_NodeIsExorType( pNode ) );
+ // get nodes
+ pNode1 = Fraig_Regular(Fraig_Regular(pNode->p1)->p1);
+ pNode2 = Fraig_Regular(Fraig_Regular(pNode->p1)->p2);
+ // get the complemented attribute of the EXOR/NEXOR gate
+ fComp = Fraig_NodeIsExor( pNode ); // 1 if EXOR, 0 if NEXOR
+
+ // create four clauses
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode->Num, fComp) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode1->Num, fComp) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode2->Num, fComp) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode->Num, fComp) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode1->Num, !fComp) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode2->Num, !fComp) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode->Num, !fComp) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode1->Num, fComp) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode2->Num, !fComp) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode->Num, !fComp) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode1->Num, !fComp) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode2->Num, fComp) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Adds clauses to the solver.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_SupergateAddClausesMux( Fraig_Man_t * p, Fraig_Node_t * pNode )
+{
+ Fraig_Node_t * pNodeI, * pNodeT, * pNodeE;
+ int RetValue, VarF, VarI, VarT, VarE, fCompT, fCompE;
+
+ assert( !Fraig_IsComplement( pNode ) );
+ assert( Fraig_NodeIsMuxType( pNode ) );
+ // get nodes (I = if, T = then, E = else)
+ pNodeI = Fraig_NodeRecognizeMux( pNode, &pNodeT, &pNodeE );
+ // get the variable numbers
+ VarF = pNode->Num;
+ VarI = pNodeI->Num;
+ VarT = Fraig_Regular(pNodeT)->Num;
+ VarE = Fraig_Regular(pNodeE)->Num;
+ // get the complementation flags
+ fCompT = Fraig_IsComplement(pNodeT);
+ fCompE = Fraig_IsComplement(pNodeE);
+
+ // f = ITE(i, t, e)
+
+ // i' + t' + f
+ // i' + t + f'
+ // i + e' + f
+ // i + e + f'
+
+ // create four clauses
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarI, 1) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarT, 1^fCompT) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarF, 0) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarI, 1) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarT, 0^fCompT) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarF, 1) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarI, 0) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarE, 1^fCompE) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarF, 0) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarI, 0) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarE, 0^fCompE) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarF, 1) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+
+ // two additional clauses
+ // t' & e' -> f'
+ // t & e -> f
+
+ // t + e + f'
+ // t' + e' + f
+
+ if ( VarT == VarE )
+ {
+// assert( fCompT == !fCompE );
+ return;
+ }
+
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarT, 0^fCompT) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarE, 0^fCompE) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarF, 1) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+ Msat_IntVecClear( p->vProj );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarT, 1^fCompT) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarE, 1^fCompE) );
+ Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(VarF, 0) );
+ RetValue = Msat_SolverAddClause( p->pSat, p->vProj );
+ assert( RetValue );
+
+}
+
+
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Returns the array of nodes to be combined into one multi-input AND-gate.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_DetectFanoutFreeCone_rec( Fraig_Node_t * pNode, Fraig_NodeVec_t * vSuper, Fraig_NodeVec_t * vInside, int fFirst )
+{
+ // make the pointer regular
+ pNode = Fraig_Regular(pNode);
+ // if the new node is complemented or a PI, another gate begins
+ if ( (!fFirst && pNode->nRefs > 1) || Fraig_NodeIsVar(pNode) )
+ {
+ Fraig_NodeVecPushUnique( vSuper, pNode );
+ return;
+ }
+ // go through the branches
+ Fraig_DetectFanoutFreeCone_rec( pNode->p1, vSuper, vInside, 0 );
+ Fraig_DetectFanoutFreeCone_rec( pNode->p2, vSuper, vInside, 0 );
+ // add the node
+ Fraig_NodeVecPushUnique( vInside, pNode );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the array of nodes to be combined into one multi-input AND-gate.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+/*
+void Fraig_DetectFanoutFreeCone( Fraig_Man_t * pMan, Fraig_Node_t * pNode )
+{
+ Fraig_NodeVec_t * vFanins;
+ Fraig_NodeVec_t * vInside;
+ int nCubes;
+ extern int Fraig_CutSopCountCubes( Fraig_Man_t * pMan, Fraig_NodeVec_t * vFanins, Fraig_NodeVec_t * vInside );
+
+ vFanins = Fraig_NodeVecAlloc( 8 );
+ vInside = Fraig_NodeVecAlloc( 8 );
+
+ Fraig_DetectFanoutFreeCone_rec( pNode, vFanins, vInside, 1 );
+ assert( vInside->pArray[vInside->nSize-1] == pNode );
+
+ nCubes = Fraig_CutSopCountCubes( pMan, vFanins, vInside );
+
+printf( "%d(%d)", vFanins->nSize, nCubes );
+ Fraig_NodeVecFree( vFanins );
+ Fraig_NodeVecFree( vInside );
+}
+*/
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Returns the array of nodes to be combined into one multi-input AND-gate.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_DetectFanoutFreeConeMux_rec( Fraig_Node_t * pNode, Fraig_NodeVec_t * vSuper, Fraig_NodeVec_t * vInside, int fFirst )
+{
+ // make the pointer regular
+ pNode = Fraig_Regular(pNode);
+ // if the new node is complemented or a PI, another gate begins
+ if ( (!fFirst && pNode->nRefs > 1) || Fraig_NodeIsVar(pNode) || !Fraig_NodeIsMuxType(pNode) )
+ {
+ Fraig_NodeVecPushUnique( vSuper, pNode );
+ return;
+ }
+ // go through the branches
+ Fraig_DetectFanoutFreeConeMux_rec( Fraig_Regular(pNode->p1)->p1, vSuper, vInside, 0 );
+ Fraig_DetectFanoutFreeConeMux_rec( Fraig_Regular(pNode->p1)->p2, vSuper, vInside, 0 );
+ Fraig_DetectFanoutFreeConeMux_rec( Fraig_Regular(pNode->p2)->p1, vSuper, vInside, 0 );
+ Fraig_DetectFanoutFreeConeMux_rec( Fraig_Regular(pNode->p2)->p2, vSuper, vInside, 0 );
+ // add the node
+ Fraig_NodeVecPushUnique( vInside, pNode );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the array of nodes to be combined into one multi-input AND-gate.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_DetectFanoutFreeConeMux( Fraig_Man_t * pMan, Fraig_Node_t * pNode )
+{
+ Fraig_NodeVec_t * vFanins;
+ Fraig_NodeVec_t * vInside;
+ int nCubes;
+ extern int Fraig_CutSopCountCubes( Fraig_Man_t * pMan, Fraig_NodeVec_t * vFanins, Fraig_NodeVec_t * vInside );
+
+ vFanins = Fraig_NodeVecAlloc( 8 );
+ vInside = Fraig_NodeVecAlloc( 8 );
+
+ Fraig_DetectFanoutFreeConeMux_rec( pNode, vFanins, vInside, 1 );
+ assert( vInside->pArray[vInside->nSize-1] == pNode );
+
+// nCubes = Fraig_CutSopCountCubes( pMan, vFanins, vInside );
+ nCubes = 0;
+
+printf( "%d(%d)", vFanins->nSize, nCubes );
+ Fraig_NodeVecFree( vFanins );
+ Fraig_NodeVecFree( vInside );
+}
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Collect variables using their proximity from the nodes.]
+
+ Description [This procedure creates a variable order based on collecting
+ first the nodes that are the closest to the given two target nodes.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_SetActivity( Fraig_Man_t * pMan, Fraig_Node_t * pOld, Fraig_Node_t * pNew )
+{
+ Fraig_Node_t * pNode;
+ int i, Number, MaxLevel;
+ float * pFactors = Msat_SolverReadFactors(pMan->pSat);
+ if ( pFactors == NULL )
+ return;
+ MaxLevel = FRAIG_MAX( pOld->Level, pNew->Level );
+ // create the variable order
+ for ( i = 0; i < Msat_IntVecReadSize(pMan->vVarsInt); i++ )
+ {
+ // get the new node on the frontier
+ Number = Msat_IntVecReadEntry(pMan->vVarsInt, i);
+ pNode = pMan->vNodes->pArray[Number];
+ pFactors[pNode->Num] = (float)pow( 0.97, MaxLevel - pNode->Level );
+// if ( pNode->Num % 50 == 0 )
+// printf( "(%d) %.2f ", MaxLevel - pNode->Level, pFactors[pNode->Num] );
+ }
+// printf( "\n" );
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/sat/fraig/fraigTable.c b/src/sat/fraig/fraigTable.c
new file mode 100644
index 00000000..b68bbe0e
--- /dev/null
+++ b/src/sat/fraig/fraigTable.c
@@ -0,0 +1,657 @@
+/**CFile****************************************************************
+
+ FileName [fraigTable.c]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [Structural and functional hash tables.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraigTable.c,v 1.7 2005/07/08 01:01:34 alanmi Exp $]
+
+***********************************************************************/
+
+#include "fraigInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+static void Fraig_TableResizeS( Fraig_HashTable_t * p );
+static void Fraig_TableResizeF( Fraig_HashTable_t * p, int fUseSimR );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Allocates the hash table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_HashTable_t * Fraig_HashTableCreate( int nSize )
+{
+ Fraig_HashTable_t * p;
+ // allocate the table
+ p = ALLOC( Fraig_HashTable_t, 1 );
+ memset( p, 0, sizeof(Fraig_HashTable_t) );
+ // allocate and clean the bins
+ p->nBins = Cudd_PrimeFraig(nSize);
+ p->pBins = ALLOC( Fraig_Node_t *, p->nBins );
+ memset( p->pBins, 0, sizeof(Fraig_Node_t *) * p->nBins );
+ return p;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Deallocates the supergate hash table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_HashTableFree( Fraig_HashTable_t * p )
+{
+ FREE( p->pBins );
+ FREE( p );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Looks up an entry in the structural hash table.]
+
+ Description [If the entry with the same children does not exists,
+ creates it, inserts it into the table, and returns 0. If the entry
+ with the same children exists, finds it, and return 1. In both cases,
+ the new/old entry is returned in ppNodeRes.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_HashTableLookupS( Fraig_Man_t * pMan, Fraig_Node_t * p1, Fraig_Node_t * p2, Fraig_Node_t ** ppNodeRes )
+{
+ Fraig_HashTable_t * p = pMan->pTableS;
+ Fraig_Node_t * pEnt;
+ unsigned Key;
+
+ // order the arguments
+ if ( Fraig_Regular(p1)->Num > Fraig_Regular(p2)->Num )
+ pEnt = p1, p1 = p2, p2 = pEnt;
+
+ Key = Fraig_HashKey2( p1, p2, p->nBins );
+ Fraig_TableBinForEachEntryS( p->pBins[Key], pEnt )
+ if ( pEnt->p1 == p1 && pEnt->p2 == p2 )
+ {
+ *ppNodeRes = pEnt;
+ return 1;
+ }
+ // check if it is a good time for table resizing
+ if ( p->nEntries >= 2 * p->nBins )
+ {
+ Fraig_TableResizeS( p );
+ Key = Fraig_HashKey2( p1, p2, p->nBins );
+ }
+ // create the new node
+ pEnt = Fraig_NodeCreate( pMan, p1, p2 );
+ // add the node to the corresponding linked list in the table
+ pEnt->pNextS = p->pBins[Key];
+ p->pBins[Key] = pEnt;
+ *ppNodeRes = pEnt;
+ p->nEntries++;
+ return 0;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Insert the entry in the functional hash table.]
+
+ Description [If the entry with the same key exists, return it right away.
+ If the entry with the same key does not exists, inserts it and returns NULL. ]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_HashTableLookupF( Fraig_Man_t * pMan, Fraig_Node_t * pNode )
+{
+ Fraig_HashTable_t * p = pMan->pTableF;
+ Fraig_Node_t * pEnt, * pEntD;
+ unsigned Key;
+
+ // go through the hash table entries
+ Key = pNode->uHashR % p->nBins;
+ Fraig_TableBinForEachEntryF( p->pBins[Key], pEnt )
+ {
+ // if their simulation info differs, skip
+ if ( !Fraig_CompareSimInfo( pNode, pEnt, pMan->nWordsRand, 1 ) )
+ continue;
+ // equivalent up to the complement
+ Fraig_TableBinForEachEntryD( pEnt, pEntD )
+ {
+ // if their simulation info differs, skip
+ if ( !Fraig_CompareSimInfo( pNode, pEntD, pMan->iWordStart, 0 ) )
+ continue;
+ // found a simulation-equivalent node
+ return pEntD;
+ }
+ // did not find a simulation equivalent node
+ // add the node to the corresponding linked list
+ pNode->pNextD = pEnt->pNextD;
+ pEnt->pNextD = pNode;
+ // return NULL, because there is no functional equivalence in this case
+ return NULL;
+ }
+
+ // check if it is a good time for table resizing
+ if ( p->nEntries >= 2 * p->nBins )
+ {
+ Fraig_TableResizeF( p, 1 );
+ Key = pNode->uHashR % p->nBins;
+ }
+
+ // add the node to the corresponding linked list in the table
+ pNode->pNextF = p->pBins[Key];
+ p->pBins[Key] = pNode;
+ p->nEntries++;
+ // return NULL, because there is no functional equivalence in this case
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Insert the entry in the functional hash table.]
+
+ Description [If the entry with the same key exists, return it right away.
+ If the entry with the same key does not exists, inserts it and returns NULL. ]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_HashTableLookupF0( Fraig_Man_t * pMan, Fraig_Node_t * pNode )
+{
+ Fraig_HashTable_t * p = pMan->pTableF0;
+ Fraig_Node_t * pEnt;
+ unsigned Key;
+
+ // go through the hash table entries
+ Key = pNode->uHashD % p->nBins;
+ Fraig_TableBinForEachEntryF( p->pBins[Key], pEnt )
+ {
+ // if their simulation info differs, skip
+ if ( !Fraig_CompareSimInfo( pNode, pEnt, pMan->iWordStart, 0 ) )
+ continue;
+ // found a simulation-equivalent node
+ return pEnt;
+ }
+
+ // check if it is a good time for table resizing
+ if ( p->nEntries >= 2 * p->nBins )
+ {
+ Fraig_TableResizeF( p, 0 );
+ Key = pNode->uHashD % p->nBins;
+ }
+
+ // add the node to the corresponding linked list in the table
+ pNode->pNextF = p->pBins[Key];
+ p->pBins[Key] = pNode;
+ p->nEntries++;
+ // return NULL, because there is no functional equivalence in this case
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Insert the entry in the functional hash table.]
+
+ Description [Unconditionally add the node to the corresponding
+ linked list in the table.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_HashTableInsertF0( Fraig_Man_t * pMan, Fraig_Node_t * pNode )
+{
+ Fraig_HashTable_t * p = pMan->pTableF0;
+ unsigned Key = pNode->uHashD % p->nBins;
+
+ pNode->pNextF = p->pBins[Key];
+ p->pBins[Key] = pNode;
+ p->nEntries++;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Resizes the table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_TableResizeS( Fraig_HashTable_t * p )
+{
+ Fraig_Node_t ** pBinsNew;
+ Fraig_Node_t * pEnt, * pEnt2;
+ int nBinsNew, Counter, i, clk;
+ unsigned Key;
+
+clk = clock();
+ // get the new table size
+ nBinsNew = Cudd_PrimeFraig(2 * p->nBins);
+ // allocate a new array
+ pBinsNew = ALLOC( Fraig_Node_t *, nBinsNew );
+ memset( pBinsNew, 0, sizeof(Fraig_Node_t *) * nBinsNew );
+ // rehash the entries from the old table
+ Counter = 0;
+ for ( i = 0; i < p->nBins; i++ )
+ Fraig_TableBinForEachEntrySafeS( p->pBins[i], pEnt, pEnt2 )
+ {
+ Key = Fraig_HashKey2( pEnt->p1, pEnt->p2, nBinsNew );
+ pEnt->pNextS = pBinsNew[Key];
+ pBinsNew[Key] = pEnt;
+ Counter++;
+ }
+ assert( Counter == p->nEntries );
+// printf( "Increasing the structural table size from %6d to %6d. ", p->nBins, nBinsNew );
+// PRT( "Time", clock() - clk );
+ // replace the table and the parameters
+ free( p->pBins );
+ p->pBins = pBinsNew;
+ p->nBins = nBinsNew;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Resizes the table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_TableResizeF( Fraig_HashTable_t * p, int fUseSimR )
+{
+ Fraig_Node_t ** pBinsNew;
+ Fraig_Node_t * pEnt, * pEnt2;
+ int nBinsNew, Counter, i, clk;
+ unsigned Key;
+
+clk = clock();
+ // get the new table size
+ nBinsNew = Cudd_PrimeFraig(2 * p->nBins);
+ // allocate a new array
+ pBinsNew = ALLOC( Fraig_Node_t *, nBinsNew );
+ memset( pBinsNew, 0, sizeof(Fraig_Node_t *) * nBinsNew );
+ // rehash the entries from the old table
+ Counter = 0;
+ for ( i = 0; i < p->nBins; i++ )
+ Fraig_TableBinForEachEntrySafeF( p->pBins[i], pEnt, pEnt2 )
+ {
+ if ( fUseSimR )
+ Key = pEnt->uHashR % nBinsNew;
+ else
+ Key = pEnt->uHashD % nBinsNew;
+ pEnt->pNextF = pBinsNew[Key];
+ pBinsNew[Key] = pEnt;
+ Counter++;
+ }
+ assert( Counter == p->nEntries );
+// printf( "Increasing the functional table size from %6d to %6d. ", p->nBins, nBinsNew );
+// PRT( "Time", clock() - clk );
+ // replace the table and the parameters
+ free( p->pBins );
+ p->pBins = pBinsNew;
+ p->nBins = nBinsNew;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Compares two pieces of simulation info.]
+
+ Description [Returns 1 if they are equal.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_CompareSimInfo( Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int iWordLast, int fUseRand )
+{
+ int i;
+ assert( !Fraig_IsComplement(pNode1) );
+ assert( !Fraig_IsComplement(pNode2) );
+ if ( fUseRand )
+ {
+ // if their signatures differ, skip
+ if ( pNode1->uHashR != pNode2->uHashR )
+ return 0;
+ // check the simulation info
+ for ( i = 0; i < iWordLast; i++ )
+ if ( pNode1->puSimR[i] != pNode2->puSimR[i] )
+ return 0;
+ }
+ else
+ {
+ // if their signatures differ, skip
+ if ( pNode1->uHashD != pNode2->uHashD )
+ return 0;
+ // check the simulation info
+ for ( i = 0; i < iWordLast; i++ )
+ if ( pNode1->puSimD[i] != pNode2->puSimD[i] )
+ return 0;
+ }
+ return 1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Find the number of the different pattern.]
+
+ Description [Returns -1 if there is no such pattern]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_FindFirstDiff( Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int fCompl, int iWordLast, int fUseRand )
+{
+ int i, v;
+ assert( !Fraig_IsComplement(pNode1) );
+ assert( !Fraig_IsComplement(pNode2) );
+ // take into account possible internal complementation
+ fCompl ^= pNode1->fInv;
+ fCompl ^= pNode2->fInv;
+ // find the pattern
+ if ( fCompl )
+ {
+ if ( fUseRand )
+ {
+ for ( i = 0; i < iWordLast; i++ )
+ if ( pNode1->puSimR[i] != ~pNode2->puSimR[i] )
+ for ( v = 0; v < 32; v++ )
+ if ( (pNode1->puSimR[i] ^ ~pNode2->puSimR[i]) & (1 << v) )
+ return i * 32 + v;
+ }
+ else
+ {
+ for ( i = 0; i < iWordLast; i++ )
+ if ( pNode1->puSimD[i] != ~pNode2->puSimD[i] )
+ for ( v = 0; v < 32; v++ )
+ if ( (pNode1->puSimD[i] ^ ~pNode2->puSimD[i]) & (1 << v) )
+ return i * 32 + v;
+ }
+ }
+ else
+ {
+ if ( fUseRand )
+ {
+ for ( i = 0; i < iWordLast; i++ )
+ if ( pNode1->puSimR[i] != pNode2->puSimR[i] )
+ for ( v = 0; v < 32; v++ )
+ if ( (pNode1->puSimR[i] ^ pNode2->puSimR[i]) & (1 << v) )
+ return i * 32 + v;
+ }
+ else
+ {
+ for ( i = 0; i < iWordLast; i++ )
+ if ( pNode1->puSimD[i] != pNode2->puSimD[i] )
+ for ( v = 0; v < 32; v++ )
+ if ( (pNode1->puSimD[i] ^ pNode2->puSimD[i]) & (1 << v) )
+ return i * 32 + v;
+ }
+ }
+ return -1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Compares two pieces of simulation info.]
+
+ Description [Returns 1 if they are equal.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_CompareSimInfoUnderMask( Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int iWordLast, int fUseRand, unsigned * puMask )
+{
+ unsigned * pSims1, * pSims2;
+ int i;
+ assert( !Fraig_IsComplement(pNode1) );
+ assert( !Fraig_IsComplement(pNode2) );
+ // get hold of simulation info
+ pSims1 = fUseRand? pNode1->puSimR : pNode1->puSimD;
+ pSims2 = fUseRand? pNode2->puSimR : pNode2->puSimD;
+ // check the simulation info
+ for ( i = 0; i < iWordLast; i++ )
+ if ( (pSims1[i] & puMask[i]) != (pSims2[i] & puMask[i]) )
+ return 0;
+ return 1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Compares two pieces of simulation info.]
+
+ Description [Returns 1 if they are equal.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_CollectXors( Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int iWordLast, int fUseRand, unsigned * puMask )
+{
+ unsigned * pSims1, * pSims2;
+ int i;
+ assert( !Fraig_IsComplement(pNode1) );
+ assert( !Fraig_IsComplement(pNode2) );
+ // get hold of simulation info
+ pSims1 = fUseRand? pNode1->puSimR : pNode1->puSimD;
+ pSims2 = fUseRand? pNode2->puSimR : pNode2->puSimD;
+ // check the simulation info
+ for ( i = 0; i < iWordLast; i++ )
+ puMask[i] = ( pSims1[i] ^ pSims2[i] );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Prints stats of the structural table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_TablePrintStatsS( Fraig_Man_t * pMan )
+{
+ Fraig_HashTable_t * pT = pMan->pTableS;
+ Fraig_Node_t * pNode;
+ int i, Counter;
+
+ printf( "Structural table. Table size = %d. Number of entries = %d.\n", pT->nBins, pT->nEntries );
+ for ( i = 0; i < pT->nBins; i++ )
+ {
+ Counter = 0;
+ Fraig_TableBinForEachEntryS( pT->pBins[i], pNode )
+ Counter++;
+ if ( Counter > 1 )
+ {
+ printf( "%d ", Counter );
+ if ( Counter > 50 )
+ printf( "{%d} ", i );
+ }
+ }
+ printf( "\n" );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Prints stats of the structural table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_TablePrintStatsF( Fraig_Man_t * pMan )
+{
+ Fraig_HashTable_t * pT = pMan->pTableF;
+ Fraig_Node_t * pNode;
+ int i, Counter;
+
+ printf( "Functional table. Table size = %d. Number of entries = %d.\n", pT->nBins, pT->nEntries );
+ for ( i = 0; i < pT->nBins; i++ )
+ {
+ Counter = 0;
+ Fraig_TableBinForEachEntryF( pT->pBins[i], pNode )
+ Counter++;
+ if ( Counter > 1 )
+ printf( "{%d} ", Counter );
+ }
+ printf( "\n" );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Prints stats of the structural table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_TablePrintStatsF0( Fraig_Man_t * pMan )
+{
+ Fraig_HashTable_t * pT = pMan->pTableF0;
+ Fraig_Node_t * pNode;
+ int i, Counter;
+
+ printf( "Zero-node table. Table size = %d. Number of entries = %d.\n", pT->nBins, pT->nEntries );
+ for ( i = 0; i < pT->nBins; i++ )
+ {
+ Counter = 0;
+ Fraig_TableBinForEachEntryF( pT->pBins[i], pNode )
+ Counter++;
+ if ( Counter == 0 )
+ continue;
+/*
+ printf( "\nBin = %4d : Number of entries = %4d\n", i, Counter );
+ Fraig_TableBinForEachEntryF( pT->pBins[i], pNode )
+ printf( "Node %5d. Hash = %10d.\n", pNode->Num, pNode->uHashD );
+*/
+ }
+ printf( "\n" );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Rehashes the table after the simulation info has changed.]
+
+ Description [Assumes that the hash values have been updated after performing
+ additional simulation. Rehashes the table using the new hash values.
+ Uses pNextF to link the entries in the bins. Uses pNextD to link the entries
+ with identical hash values. Returns 1 if the identical entries have been found.
+ Note that identical hash values may mean that the simulation data is different.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_TableRehashF0( Fraig_Man_t * pMan, int fLinkEquiv )
+{
+ Fraig_HashTable_t * pT = pMan->pTableF0;
+ Fraig_Node_t ** pBinsNew;
+ Fraig_Node_t * pEntF, * pEntF2, * pEnt, * pEntD2, * pEntN;
+ int ReturnValue, Counter, i;
+ unsigned Key;
+
+ // allocate a new array of bins
+ pBinsNew = ALLOC( Fraig_Node_t *, pT->nBins );
+ memset( pBinsNew, 0, sizeof(Fraig_Node_t *) * pT->nBins );
+
+ // rehash the entries in the table
+ // go through all the nodes in the F-lists (and possible in D-lists, if used)
+ Counter = 0;
+ ReturnValue = 0;
+ for ( i = 0; i < pT->nBins; i++ )
+ Fraig_TableBinForEachEntrySafeF( pT->pBins[i], pEntF, pEntF2 )
+ Fraig_TableBinForEachEntrySafeD( pEntF, pEnt, pEntD2 )
+ {
+ // decide where to put entry pEnt
+ Key = pEnt->uHashD % pT->nBins;
+ if ( fLinkEquiv )
+ {
+ // go through the entries in the new bin
+ Fraig_TableBinForEachEntryF( pBinsNew[Key], pEntN )
+ {
+ // if they have different values skip
+ if ( pEnt->uHashD != pEntN->uHashD )
+ continue;
+ // they have the same hash value, add pEnt to the D-list pEnt3
+ pEnt->pNextD = pEntN->pNextD;
+ pEntN->pNextD = pEnt;
+ ReturnValue = 1;
+ Counter++;
+ break;
+ }
+ if ( pEntN != NULL ) // already linked
+ continue;
+ // we did not find equal entry
+ }
+ // link the new entry
+ pEnt->pNextF = pBinsNew[Key];
+ pBinsNew[Key] = pEnt;
+ pEnt->pNextD = NULL;
+ Counter++;
+ }
+ assert( Counter == pT->nEntries );
+ // replace the table and the parameters
+ free( pT->pBins );
+ pT->pBins = pBinsNew;
+ return ReturnValue;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/sat/fraig/fraigUtil.c b/src/sat/fraig/fraigUtil.c
new file mode 100644
index 00000000..342a7111
--- /dev/null
+++ b/src/sat/fraig/fraigUtil.c
@@ -0,0 +1,1034 @@
+/**CFile****************************************************************
+
+ FileName [fraigUtil.c]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [Various utilities.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraigUtil.c,v 1.15 2005/07/08 01:01:34 alanmi Exp $]
+
+***********************************************************************/
+
+#include "fraigInt.h"
+#include <limits.h>
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+static int bit_count[256] = {
+ 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
+ 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
+ 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
+ 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
+ 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
+ 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
+ 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
+ 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
+};
+
+static void Fraig_Dfs_rec( Fraig_Man_t * pMan, Fraig_Node_t * pNode, Fraig_NodeVec_t * vNodes, int fEquiv );
+static int Fraig_CheckTfi_rec( Fraig_Man_t * pMan, Fraig_Node_t * pNode, Fraig_Node_t * pOld );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Computes the DFS ordering of the nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_NodeVec_t * Fraig_Dfs( Fraig_Man_t * pMan, int fEquiv )
+{
+ Fraig_NodeVec_t * vNodes;
+ int i;
+ pMan->nTravIds++;
+ vNodes = Fraig_NodeVecAlloc( 100 );
+ for ( i = 0; i < pMan->vOutputs->nSize; i++ )
+ Fraig_Dfs_rec( pMan, Fraig_Regular(pMan->vOutputs->pArray[i]), vNodes, fEquiv );
+ return vNodes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the DFS ordering of the nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_NodeVec_t * Fraig_DfsOne( Fraig_Man_t * pMan, Fraig_Node_t * pNode, int fEquiv )
+{
+ Fraig_NodeVec_t * vNodes;
+ pMan->nTravIds++;
+ vNodes = Fraig_NodeVecAlloc( 100 );
+ Fraig_Dfs_rec( pMan, Fraig_Regular(pNode), vNodes, fEquiv );
+ return vNodes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the DFS ordering of the nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_NodeVec_t * Fraig_DfsNodes( Fraig_Man_t * pMan, Fraig_Node_t ** ppNodes, int nNodes, int fEquiv )
+{
+ Fraig_NodeVec_t * vNodes;
+ int i;
+ pMan->nTravIds++;
+ vNodes = Fraig_NodeVecAlloc( 100 );
+ for ( i = 0; i < nNodes; i++ )
+ Fraig_Dfs_rec( pMan, Fraig_Regular(ppNodes[i]), vNodes, fEquiv );
+ return vNodes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Recursively computes the DFS ordering of the nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_Dfs_rec( Fraig_Man_t * pMan, Fraig_Node_t * pNode, Fraig_NodeVec_t * vNodes, int fEquiv )
+{
+ assert( !Fraig_IsComplement(pNode) );
+ // skip the visited node
+ if ( pNode->TravId == pMan->nTravIds )
+ return;
+ pNode->TravId = pMan->nTravIds;
+ // visit the transitive fanin
+ if ( Fraig_NodeIsAnd(pNode) )
+ {
+ Fraig_Dfs_rec( pMan, Fraig_Regular(pNode->p1), vNodes, fEquiv );
+ Fraig_Dfs_rec( pMan, Fraig_Regular(pNode->p2), vNodes, fEquiv );
+ }
+ if ( fEquiv && pNode->pNextE )
+ Fraig_Dfs_rec( pMan, pNode->pNextE, vNodes, fEquiv );
+ // save the node
+ Fraig_NodeVecPush( vNodes, pNode );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the DFS ordering of the nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_CountNodes( Fraig_Man_t * pMan, int fEquiv )
+{
+ Fraig_NodeVec_t * vNodes;
+ int RetValue;
+ vNodes = Fraig_Dfs( pMan, fEquiv );
+ RetValue = vNodes->nSize;
+ Fraig_NodeVecFree( vNodes );
+ return RetValue;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if pOld is in the TFI of pNew.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_CheckTfi( Fraig_Man_t * pMan, Fraig_Node_t * pOld, Fraig_Node_t * pNew )
+{
+ assert( !Fraig_IsComplement(pOld) );
+ assert( !Fraig_IsComplement(pNew) );
+ pMan->nTravIds++;
+ return Fraig_CheckTfi_rec( pMan, pNew, pOld );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if pOld is in the TFI of pNew.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_CheckTfi_rec( Fraig_Man_t * pMan, Fraig_Node_t * pNode, Fraig_Node_t * pOld )
+{
+ // check the trivial cases
+ if ( pNode == NULL )
+ return 0;
+ if ( pNode->Num < pOld->Num && !pMan->fChoicing )
+ return 0;
+ if ( pNode == pOld )
+ return 1;
+ // skip the visited node
+ if ( pNode->TravId == pMan->nTravIds )
+ return 0;
+ pNode->TravId = pMan->nTravIds;
+ // check the children
+ if ( Fraig_CheckTfi_rec( pMan, Fraig_Regular(pNode->p1), pOld ) )
+ return 1;
+ if ( Fraig_CheckTfi_rec( pMan, Fraig_Regular(pNode->p2), pOld ) )
+ return 1;
+ // check equivalent nodes
+ return Fraig_CheckTfi_rec( pMan, pNode->pNextE, pOld );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if pOld is in the TFI of pNew.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_CheckTfi2( Fraig_Man_t * pMan, Fraig_Node_t * pOld, Fraig_Node_t * pNew )
+{
+ Fraig_NodeVec_t * vNodes;
+ int RetValue;
+ vNodes = Fraig_DfsOne( pMan, pNew, 1 );
+ RetValue = (pOld->TravId == pMan->nTravIds);
+ Fraig_NodeVecFree( vNodes );
+ return RetValue;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Sets the number of fanouts (none, one, or many).]
+
+ Description [This procedure collects the nodes reachable from
+ the POs of the AIG and sets the type of fanout counter (none, one,
+ or many) for each node. This procedure is useful to determine
+ fanout-free cones of AND-nodes, which is helpful for rebalancing
+ the AIG (see procedure Fraig_ManRebalance, or something like that).]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ManMarkRealFanouts( Fraig_Man_t * p )
+{
+ Fraig_NodeVec_t * vNodes;
+ Fraig_Node_t * pNodeR;
+ int i;
+ // collect the nodes reachable
+ vNodes = Fraig_Dfs( p, 0 );
+ // clean the fanouts field
+ for ( i = 0; i < vNodes->nSize; i++ )
+ {
+ vNodes->pArray[i]->nFanouts = 0;
+ vNodes->pArray[i]->pData0 = NULL;
+ }
+ // mark reachable nodes by setting the two-bit counter pNode->nFans
+ for ( i = 0; i < vNodes->nSize; i++ )
+ {
+ pNodeR = Fraig_Regular(vNodes->pArray[i]->p1);
+ if ( pNodeR && ++pNodeR->nFanouts == 3 )
+ pNodeR->nFanouts = 2;
+ pNodeR = Fraig_Regular(vNodes->pArray[i]->p2);
+ if ( pNodeR && ++pNodeR->nFanouts == 3 )
+ pNodeR->nFanouts = 2;
+ }
+ Fraig_NodeVecFree( vNodes );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Creates the constant 1 node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_BitStringCountOnes( unsigned * pString, int nWords )
+{
+ unsigned char * pSuppBytes = (unsigned char *)pString;
+ int i, nOnes, nBytes = sizeof(unsigned) * nWords;
+ // count the number of ones in the simulation vector
+ for ( i = nOnes = 0; i < nBytes; i++ )
+ nOnes += bit_count[pSuppBytes[i]];
+ return nOnes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Verify one useful property.]
+
+ Description [This procedure verifies one useful property. After
+ the FRAIG construction with choice nodes is over, each primary node
+ should have fanins that are primary nodes. The primary nodes is the
+ one that does not have pNode->pRepr set to point to another node.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_ManCheckConsistency( Fraig_Man_t * p )
+{
+ Fraig_Node_t * pNode;
+ Fraig_NodeVec_t * pVec;
+ int i;
+ pVec = Fraig_Dfs( p, 0 );
+ for ( i = 0; i < pVec->nSize; i++ )
+ {
+ pNode = pVec->pArray[i];
+ if ( Fraig_NodeIsVar(pNode) )
+ {
+ if ( pNode->pRepr )
+ printf( "Primary input %d is a secondary node.\n", pNode->Num );
+ }
+ else if ( Fraig_NodeIsConst(pNode) )
+ {
+ if ( pNode->pRepr )
+ printf( "Constant 1 %d is a secondary node.\n", pNode->Num );
+ }
+ else
+ {
+ if ( pNode->pRepr )
+ printf( "Internal node %d is a secondary node.\n", pNode->Num );
+ if ( Fraig_Regular(pNode->p1)->pRepr )
+ printf( "Internal node %d has first fanin %d that is a secondary node.\n",
+ pNode->Num, Fraig_Regular(pNode->p1)->Num );
+ if ( Fraig_Regular(pNode->p2)->pRepr )
+ printf( "Internal node %d has second fanin %d that is a secondary node.\n",
+ pNode->Num, Fraig_Regular(pNode->p2)->Num );
+ }
+ }
+ Fraig_NodeVecFree( pVec );
+ return 1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Prints the node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_PrintNode( Fraig_Man_t * p, Fraig_Node_t * pNode )
+{
+ Fraig_NodeVec_t * vNodes;
+ Fraig_Node_t * pTemp;
+ int fCompl1, fCompl2, i;
+
+ vNodes = Fraig_DfsOne( p, pNode, 0 );
+ for ( i = 0; i < vNodes->nSize; i++ )
+ {
+ pTemp = vNodes->pArray[i];
+ if ( Fraig_NodeIsVar(pTemp) )
+ {
+ printf( "%3d : PI ", pTemp->Num );
+ Fraig_PrintBinary( stdout, (unsigned *)&pTemp->puSimR, 20 );
+ printf( " " );
+ Fraig_PrintBinary( stdout, (unsigned *)&pTemp->puSimD, 20 );
+ printf( " %d\n", pTemp->fInv );
+ continue;
+ }
+
+ fCompl1 = Fraig_IsComplement(pTemp->p1);
+ fCompl2 = Fraig_IsComplement(pTemp->p2);
+ printf( "%3d : %c%3d %c%3d ", pTemp->Num,
+ (fCompl1? '-':'+'), Fraig_Regular(pTemp->p1)->Num,
+ (fCompl2? '-':'+'), Fraig_Regular(pTemp->p2)->Num );
+ Fraig_PrintBinary( stdout, (unsigned *)&pTemp->puSimR, 20 );
+ printf( " " );
+ Fraig_PrintBinary( stdout, (unsigned *)&pTemp->puSimD, 20 );
+ printf( " %d\n", pTemp->fInv );
+ }
+ Fraig_NodeVecFree( vNodes );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Prints the bit string.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_PrintBinary( FILE * pFile, unsigned * pSign, int nBits )
+{
+ int Remainder, nWords;
+ int w, i;
+
+ Remainder = (nBits%(sizeof(unsigned)*8));
+ nWords = (nBits/(sizeof(unsigned)*8)) + (Remainder>0);
+
+ for ( w = nWords-1; w >= 0; w-- )
+ for ( i = ((w == nWords-1 && Remainder)? Remainder-1: 31); i >= 0; i-- )
+ fprintf( pFile, "%c", '0' + (int)((pSign[w] & (1<<i)) > 0) );
+
+// fprintf( pFile, "\n" );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Sets up the mask.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_GetMaxLevel( Fraig_Man_t * pMan )
+{
+ int nLevelMax, i;
+ nLevelMax = 0;
+ for ( i = 0; i < pMan->vOutputs->nSize; i++ )
+ nLevelMax = nLevelMax > Fraig_Regular(pMan->vOutputs->pArray[i])->Level?
+ nLevelMax : Fraig_Regular(pMan->vOutputs->pArray[i])->Level;
+ return nLevelMax;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Analyses choice nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_MappingUpdateLevel_rec( Fraig_Man_t * pMan, Fraig_Node_t * pNode, int fMaximum )
+{
+ Fraig_Node_t * pTemp;
+ int Level1, Level2, LevelE;
+ assert( !Fraig_IsComplement(pNode) );
+ if ( !Fraig_NodeIsAnd(pNode) )
+ return pNode->Level;
+ // skip the visited node
+ if ( pNode->TravId == pMan->nTravIds )
+ return pNode->Level;
+ pNode->TravId = pMan->nTravIds;
+ // compute levels of the children nodes
+ Level1 = Fraig_MappingUpdateLevel_rec( pMan, Fraig_Regular(pNode->p1), fMaximum );
+ Level2 = Fraig_MappingUpdateLevel_rec( pMan, Fraig_Regular(pNode->p2), fMaximum );
+ pNode->Level = 1 + FRAIG_MAX( Level1, Level2 );
+ if ( pNode->pNextE )
+ {
+ LevelE = Fraig_MappingUpdateLevel_rec( pMan, pNode->pNextE, fMaximum );
+ if ( fMaximum )
+ {
+ if ( pNode->Level < LevelE )
+ pNode->Level = LevelE;
+ }
+ else
+ {
+ if ( pNode->Level > LevelE )
+ pNode->Level = LevelE;
+ }
+ // set the level of all equivalent nodes to be the same minimum
+ if ( pNode->pRepr == NULL ) // the primary node
+ for ( pTemp = pNode->pNextE; pTemp; pTemp = pTemp->pNextE )
+ pTemp->Level = pNode->Level;
+ }
+ return pNode->Level;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Resets the levels of the nodes in the choice graph.]
+
+ Description [Makes the level of the choice nodes to be equal to the
+ maximum of the level of the nodes in the equivalence class. This way
+ sorting by level leads to the reverse topological order, which is
+ needed for the required time computation.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_MappingSetChoiceLevels( Fraig_Man_t * pMan, int fMaximum )
+{
+ int i;
+ pMan->nTravIds++;
+ for ( i = 0; i < pMan->vOutputs->nSize; i++ )
+ Fraig_MappingUpdateLevel_rec( pMan, Fraig_Regular(pMan->vOutputs->pArray[i]), fMaximum );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Reports statistics on choice nodes.]
+
+ Description [The number of choice nodes is the number of primary nodes,
+ which has pNextE set to a pointer. The number of choices is the number
+ of entries in the equivalent-node lists of the primary nodes.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ManReportChoices( Fraig_Man_t * pMan )
+{
+ Fraig_Node_t * pNode, * pTemp;
+ int nChoiceNodes, nChoices;
+ int i, LevelMax1, LevelMax2;
+
+ // report the number of levels
+ LevelMax1 = Fraig_GetMaxLevel( pMan );
+ Fraig_MappingSetChoiceLevels( pMan, 0 );
+ LevelMax2 = Fraig_GetMaxLevel( pMan );
+
+ // report statistics about choices
+ nChoiceNodes = nChoices = 0;
+ for ( i = 0; i < pMan->vNodes->nSize; i++ )
+ {
+ pNode = pMan->vNodes->pArray[i];
+ if ( pNode->pRepr == NULL && pNode->pNextE != NULL )
+ { // this is a choice node = the primary node that has equivalent nodes
+ nChoiceNodes++;
+ for ( pTemp = pNode; pTemp; pTemp = pTemp->pNextE )
+ nChoices++;
+ }
+ }
+ printf( "Maximum level: Original = %d. Reduced due to choices = %d.\n", LevelMax1, LevelMax2 );
+ printf( "Choice stats: Choice nodes = %d. Total choices = %d.\n", nChoiceNodes, nChoices );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if the node is the root of EXOR/NEXOR gate.]
+
+ Description [The node can be complemented.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeIsExorType( Fraig_Node_t * pNode )
+{
+ Fraig_Node_t * pNode1, * pNode2;
+ // make the node regular (it does not matter for EXOR/NEXOR)
+ pNode = Fraig_Regular(pNode);
+ // if the node or its children are not ANDs or not compl, this cannot be EXOR type
+ if ( !Fraig_NodeIsAnd(pNode) )
+ return 0;
+ if ( !Fraig_NodeIsAnd(pNode->p1) || !Fraig_IsComplement(pNode->p1) )
+ return 0;
+ if ( !Fraig_NodeIsAnd(pNode->p2) || !Fraig_IsComplement(pNode->p2) )
+ return 0;
+
+ // get children
+ pNode1 = Fraig_Regular(pNode->p1);
+ pNode2 = Fraig_Regular(pNode->p2);
+ assert( pNode1->Num < pNode2->Num );
+
+ // compare grandchildren
+ return pNode1->p1 == Fraig_Not(pNode2->p1) && pNode1->p2 == Fraig_Not(pNode2->p2);
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if the node is the root of MUX or EXOR/NEXOR.]
+
+ Description [The node can be complemented.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeIsMuxType( Fraig_Node_t * pNode )
+{
+ Fraig_Node_t * pNode1, * pNode2;
+
+ // make the node regular (it does not matter for EXOR/NEXOR)
+ pNode = Fraig_Regular(pNode);
+ // if the node or its children are not ANDs or not compl, this cannot be EXOR type
+ if ( !Fraig_NodeIsAnd(pNode) )
+ return 0;
+ if ( !Fraig_NodeIsAnd(pNode->p1) || !Fraig_IsComplement(pNode->p1) )
+ return 0;
+ if ( !Fraig_NodeIsAnd(pNode->p2) || !Fraig_IsComplement(pNode->p2) )
+ return 0;
+
+ // get children
+ pNode1 = Fraig_Regular(pNode->p1);
+ pNode2 = Fraig_Regular(pNode->p2);
+ assert( pNode1->Num < pNode2->Num );
+
+ // compare grandchildren
+ // node is an EXOR/NEXOR
+ if ( pNode1->p1 == Fraig_Not(pNode2->p1) && pNode1->p2 == Fraig_Not(pNode2->p2) )
+ return 1;
+
+ // otherwise the node is MUX iff it has a pair of equal grandchildren
+ return pNode1->p1 == Fraig_Not(pNode2->p1) ||
+ pNode1->p1 == Fraig_Not(pNode2->p2) ||
+ pNode1->p2 == Fraig_Not(pNode2->p1) ||
+ pNode1->p2 == Fraig_Not(pNode2->p2);
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if the node is EXOR, 0 if it is NEXOR.]
+
+ Description [The node should be EXOR type and not complemented.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeIsExor( Fraig_Node_t * pNode )
+{
+ Fraig_Node_t * pNode1;
+ assert( !Fraig_IsComplement(pNode) );
+ assert( Fraig_NodeIsExorType(pNode) );
+ assert( Fraig_IsComplement(pNode->p1) );
+ // get children
+ pNode1 = Fraig_Regular(pNode->p1);
+ return Fraig_IsComplement(pNode1->p1) == Fraig_IsComplement(pNode1->p2);
+}
+
+/**Function*************************************************************
+
+ Synopsis [Recognizes what nodes are control and data inputs of a MUX.]
+
+ Description [If the node is a MUX, returns the control variable C.
+ Assigns nodes T and E to be the then and else variables of the MUX.
+ Node C is never complemented. Nodes T and E can be complemented.
+ This function also recognizes EXOR/NEXOR gates as MUXes.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_NodeRecognizeMux( Fraig_Node_t * pNode, Fraig_Node_t ** ppNodeT, Fraig_Node_t ** ppNodeE )
+{
+ Fraig_Node_t * pNode1, * pNode2;
+ assert( !Fraig_IsComplement(pNode) );
+ assert( Fraig_NodeIsMuxType(pNode) );
+ // get children
+ pNode1 = Fraig_Regular(pNode->p1);
+ pNode2 = Fraig_Regular(pNode->p2);
+ // find the control variable
+ if ( pNode1->p1 == Fraig_Not(pNode2->p1) )
+ {
+ if ( Fraig_IsComplement(pNode1->p1) )
+ { // pNode2->p1 is positive phase of C
+ *ppNodeT = Fraig_Not(pNode2->p2);
+ *ppNodeE = Fraig_Not(pNode1->p2);
+ return pNode2->p1;
+ }
+ else
+ { // pNode1->p1 is positive phase of C
+ *ppNodeT = Fraig_Not(pNode1->p2);
+ *ppNodeE = Fraig_Not(pNode2->p2);
+ return pNode1->p1;
+ }
+ }
+ else if ( pNode1->p1 == Fraig_Not(pNode2->p2) )
+ {
+ if ( Fraig_IsComplement(pNode1->p1) )
+ { // pNode2->p2 is positive phase of C
+ *ppNodeT = Fraig_Not(pNode2->p1);
+ *ppNodeE = Fraig_Not(pNode1->p2);
+ return pNode2->p2;
+ }
+ else
+ { // pNode1->p1 is positive phase of C
+ *ppNodeT = Fraig_Not(pNode1->p2);
+ *ppNodeE = Fraig_Not(pNode2->p1);
+ return pNode1->p1;
+ }
+ }
+ else if ( pNode1->p2 == Fraig_Not(pNode2->p1) )
+ {
+ if ( Fraig_IsComplement(pNode1->p2) )
+ { // pNode2->p1 is positive phase of C
+ *ppNodeT = Fraig_Not(pNode2->p2);
+ *ppNodeE = Fraig_Not(pNode1->p1);
+ return pNode2->p1;
+ }
+ else
+ { // pNode1->p2 is positive phase of C
+ *ppNodeT = Fraig_Not(pNode1->p1);
+ *ppNodeE = Fraig_Not(pNode2->p2);
+ return pNode1->p2;
+ }
+ }
+ else if ( pNode1->p2 == Fraig_Not(pNode2->p2) )
+ {
+ if ( Fraig_IsComplement(pNode1->p2) )
+ { // pNode2->p2 is positive phase of C
+ *ppNodeT = Fraig_Not(pNode2->p1);
+ *ppNodeE = Fraig_Not(pNode1->p1);
+ return pNode2->p2;
+ }
+ else
+ { // pNode1->p2 is positive phase of C
+ *ppNodeT = Fraig_Not(pNode1->p1);
+ *ppNodeE = Fraig_Not(pNode2->p1);
+ return pNode1->p2;
+ }
+ }
+ assert( 0 ); // this is not MUX
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of EXOR type nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_ManCountExors( Fraig_Man_t * pMan )
+{
+ int i, nExors;
+ nExors = 0;
+ for ( i = 0; i < pMan->vNodes->nSize; i++ )
+ nExors += Fraig_NodeIsExorType( pMan->vNodes->pArray[i] );
+ return nExors;
+
+}
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of EXOR type nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_ManCountMuxes( Fraig_Man_t * pMan )
+{
+ int i, nMuxes;
+ nMuxes = 0;
+ for ( i = 0; i < pMan->vNodes->nSize; i++ )
+ nMuxes += Fraig_NodeIsMuxType( pMan->vNodes->pArray[i] );
+ return nMuxes;
+
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if siminfo of Node1 is contained in siminfo of Node2.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeSimsContained( Fraig_Man_t * pMan, Fraig_Node_t * pNode1, Fraig_Node_t * pNode2 )
+{
+ unsigned * pUnsigned1, * pUnsigned2;
+ int i;
+
+ // compare random siminfo
+ pUnsigned1 = pNode1->puSimR;
+ pUnsigned2 = pNode2->puSimR;
+ for ( i = 0; i < pMan->nWordsRand; i++ )
+ if ( pUnsigned1[i] & ~pUnsigned2[i] )
+ return 0;
+
+ // compare systematic siminfo
+ pUnsigned1 = pNode1->puSimD;
+ pUnsigned2 = pNode2->puSimD;
+ for ( i = 0; i < pMan->iWordStart; i++ )
+ if ( pUnsigned1[i] & ~pUnsigned2[i] )
+ return 0;
+
+ return 1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Count the number of PI variables.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_CountPis( Fraig_Man_t * p, Msat_IntVec_t * vVarNums )
+{
+ int * pVars, nVars, i, Counter;
+
+ nVars = Msat_IntVecReadSize(vVarNums);
+ pVars = Msat_IntVecReadArray(vVarNums);
+ Counter = 0;
+ for ( i = 0; i < nVars; i++ )
+ Counter += Fraig_NodeIsVar( p->vNodes->pArray[pVars[i]] );
+ return Counter;
+}
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of EXOR type nodes.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_ManPrintRefs( Fraig_Man_t * pMan )
+{
+ Fraig_NodeVec_t * vPivots;
+ Fraig_Node_t * pNode, * pNode2;
+ int i, k, Counter, nProved;
+ int clk;
+
+ vPivots = Fraig_NodeVecAlloc( 1000 );
+ for ( i = 0; i < pMan->vNodes->nSize; i++ )
+ {
+ pNode = pMan->vNodes->pArray[i];
+
+ if ( pNode->nOnes == 0 || pNode->nOnes == (unsigned)pMan->nWordsRand * 32 )
+ continue;
+
+ if ( pNode->nRefs > 5 )
+ {
+ Fraig_NodeVecPush( vPivots, pNode );
+// printf( "Node %6d : nRefs = %2d Level = %3d.\n", pNode->Num, pNode->nRefs, pNode->Level );
+ }
+ }
+ printf( "Total nodes = %d. Referenced nodes = %d.\n", pMan->vNodes->nSize, vPivots->nSize );
+
+clk = clock();
+ // count implications
+ Counter = nProved = 0;
+ for ( i = 0; i < vPivots->nSize; i++ )
+ for ( k = i+1; k < vPivots->nSize; k++ )
+ {
+ pNode = vPivots->pArray[i];
+ pNode2 = vPivots->pArray[k];
+ if ( Fraig_NodeSimsContained( pMan, pNode, pNode2 ) )
+ {
+ if ( Fraig_NodeIsImplication( pMan, pNode, pNode2, -1 ) )
+ nProved++;
+ Counter++;
+ }
+ else if ( Fraig_NodeSimsContained( pMan, pNode2, pNode ) )
+ {
+ if ( Fraig_NodeIsImplication( pMan, pNode2, pNode, -1 ) )
+ nProved++;
+ Counter++;
+ }
+ }
+ printf( "Number of candidate pairs = %d. Proved = %d.\n", Counter, nProved );
+PRT( "Time", clock() - clk );
+ return 0;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Checks if pNew exists among the implication fanins of pOld.]
+
+ Description [If pNew is an implication fanin of pOld, returns 1.
+ If Fraig_Not(pNew) is an implication fanin of pOld, return -1.
+ Otherwise returns 0.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeIsInSupergate( Fraig_Node_t * pOld, Fraig_Node_t * pNew )
+{
+ int RetValue1, RetValue2;
+ if ( Fraig_Regular(pOld) == Fraig_Regular(pNew) )
+ return (pOld == pNew)? 1 : -1;
+ if ( Fraig_IsComplement(pOld) || Fraig_NodeIsVar(pOld) )
+ return 0;
+ RetValue1 = Fraig_NodeIsInSupergate( pOld->p1, pNew );
+ RetValue2 = Fraig_NodeIsInSupergate( pOld->p2, pNew );
+ if ( RetValue1 == -1 || RetValue2 == -1 )
+ return -1;
+ if ( RetValue1 == 1 || RetValue2 == 1 )
+ return 1;
+ return 0;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Returns the array of nodes to be combined into one multi-input AND-gate.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_CollectSupergate_rec( Fraig_Node_t * pNode, Fraig_NodeVec_t * vSuper, int fFirst, int fStopAtMux )
+{
+ // if the new node is complemented or a PI, another gate begins
+// if ( Fraig_IsComplement(pNode) || Fraig_NodeIsVar(pNode) || Fraig_NodeIsMuxType(pNode) )
+ if ( (!fFirst && Fraig_Regular(pNode)->nRefs > 1) ||
+ Fraig_IsComplement(pNode) || Fraig_NodeIsVar(pNode) ||
+ (fStopAtMux && Fraig_NodeIsMuxType(pNode)) )
+ {
+ Fraig_NodeVecPushUnique( vSuper, pNode );
+ return;
+ }
+ // go through the branches
+ Fraig_CollectSupergate_rec( pNode->p1, vSuper, 0, fStopAtMux );
+ Fraig_CollectSupergate_rec( pNode->p2, vSuper, 0, fStopAtMux );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the array of nodes to be combined into one multi-input AND-gate.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_NodeVec_t * Fraig_CollectSupergate( Fraig_Node_t * pNode, int fStopAtMux )
+{
+ Fraig_NodeVec_t * vSuper;
+ vSuper = Fraig_NodeVecAlloc( 8 );
+ Fraig_CollectSupergate_rec( pNode, vSuper, 1, fStopAtMux );
+ return vSuper;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_ManIncrementTravId( Fraig_Man_t * pMan )
+{
+ pMan->nTravIds2++;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeSetTravIdCurrent( Fraig_Man_t * pMan, Fraig_Node_t * pNode )
+{
+ pNode->TravId2 = pMan->nTravIds2;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeIsTravIdCurrent( Fraig_Man_t * pMan, Fraig_Node_t * pNode )
+{
+ return pNode->TravId2 == pMan->nTravIds2;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeIsTravIdPrevious( Fraig_Man_t * pMan, Fraig_Node_t * pNode )
+{
+ return pNode->TravId2 == pMan->nTravIds2 - 1;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/sat/fraig/fraigVec.c b/src/sat/fraig/fraigVec.c
new file mode 100644
index 00000000..ba3feecd
--- /dev/null
+++ b/src/sat/fraig/fraigVec.c
@@ -0,0 +1,545 @@
+/**CFile****************************************************************
+
+ FileName [fraigVec.c]
+
+ PackageName [FRAIG: Functionally reduced AND-INV graphs.]
+
+ Synopsis [Vector of FRAIG nodes.]
+
+ Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - October 1, 2004]
+
+ Revision [$Id: fraigVec.c,v 1.7 2005/07/08 01:01:34 alanmi Exp $]
+
+***********************************************************************/
+
+#include "fraigInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Allocates a vector with the given capacity.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_NodeVec_t * Fraig_NodeVecAlloc( int nCap )
+{
+ Fraig_NodeVec_t * p;
+ p = ALLOC( Fraig_NodeVec_t, 1 );
+ if ( nCap > 0 && nCap < 8 )
+ nCap = 8;
+ p->nSize = 0;
+ p->nCap = nCap;
+ p->pArray = p->nCap? ALLOC( Fraig_Node_t *, p->nCap ) : NULL;
+ return p;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeVecFree( Fraig_NodeVec_t * p )
+{
+ FREE( p->pArray );
+ FREE( p );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Duplicates the integer array.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_NodeVec_t * Fraig_NodeVecDup( Fraig_NodeVec_t * pVec )
+{
+ Fraig_NodeVec_t * p;
+ p = ALLOC( Fraig_NodeVec_t, 1 );
+ p->nSize = pVec->nSize;
+ p->nCap = pVec->nCap;
+ p->pArray = p->nCap? ALLOC( Fraig_Node_t *, p->nCap ) : NULL;
+ memcpy( p->pArray, pVec->pArray, sizeof(Fraig_Node_t *) * pVec->nSize );
+ return p;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t ** Fraig_NodeVecReadArray( Fraig_NodeVec_t * p )
+{
+ return p->pArray;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeVecReadSize( Fraig_NodeVec_t * p )
+{
+ return p->nSize;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Resizes the vector to the given capacity.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeVecGrow( Fraig_NodeVec_t * p, int nCapMin )
+{
+ if ( p->nCap >= nCapMin )
+ return;
+ p->pArray = REALLOC( Fraig_Node_t *, p->pArray, nCapMin );
+ p->nCap = nCapMin;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeVecShrink( Fraig_NodeVec_t * p, int nSizeNew )
+{
+ assert( p->nSize >= nSizeNew );
+ p->nSize = nSizeNew;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeVecClear( Fraig_NodeVec_t * p )
+{
+ p->nSize = 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeVecPush( Fraig_NodeVec_t * p, Fraig_Node_t * Entry )
+{
+ if ( p->nSize == p->nCap )
+ {
+ if ( p->nCap < 16 )
+ Fraig_NodeVecGrow( p, 16 );
+ else
+ Fraig_NodeVecGrow( p, 2 * p->nCap );
+ }
+ p->pArray[p->nSize++] = Entry;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Add the element while ensuring uniqueness.]
+
+ Description [Returns 1 if the element was found, and 0 if it was new. ]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeVecPushUnique( Fraig_NodeVec_t * p, Fraig_Node_t * Entry )
+{
+ int i;
+ for ( i = 0; i < p->nSize; i++ )
+ if ( p->pArray[i] == Entry )
+ return 1;
+ Fraig_NodeVecPush( p, Entry );
+ return 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Inserts a new node in the order by arrival times.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeVecPushOrder( Fraig_NodeVec_t * p, Fraig_Node_t * pNode )
+{
+ Fraig_Node_t * pNode1, * pNode2;
+ int i;
+ Fraig_NodeVecPush( p, pNode );
+ // find the p of the node
+ for ( i = p->nSize-1; i > 0; i-- )
+ {
+ pNode1 = p->pArray[i ];
+ pNode2 = p->pArray[i-1];
+ if ( pNode1 >= pNode2 )
+ break;
+ p->pArray[i ] = pNode2;
+ p->pArray[i-1] = pNode1;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Add the element while ensuring uniqueness in the order.]
+
+ Description [Returns 1 if the element was found, and 0 if it was new. ]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeVecPushUniqueOrder( Fraig_NodeVec_t * p, Fraig_Node_t * pNode )
+{
+ int i;
+ for ( i = 0; i < p->nSize; i++ )
+ if ( p->pArray[i] == pNode )
+ return 1;
+ Fraig_NodeVecPushOrder( p, pNode );
+ return 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Inserts a new node in the order by arrival times.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeVecPushOrderByLevel( Fraig_NodeVec_t * p, Fraig_Node_t * pNode )
+{
+ Fraig_Node_t * pNode1, * pNode2;
+ int i;
+ Fraig_NodeVecPush( p, pNode );
+ // find the p of the node
+ for ( i = p->nSize-1; i > 0; i-- )
+ {
+ pNode1 = p->pArray[i ];
+ pNode2 = p->pArray[i-1];
+ if ( Fraig_Regular(pNode1)->Level <= Fraig_Regular(pNode2)->Level )
+ break;
+ p->pArray[i ] = pNode2;
+ p->pArray[i-1] = pNode1;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Add the element while ensuring uniqueness in the order.]
+
+ Description [Returns 1 if the element was found, and 0 if it was new. ]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeVecPushUniqueOrderByLevel( Fraig_NodeVec_t * p, Fraig_Node_t * pNode )
+{
+ int i;
+ for ( i = 0; i < p->nSize; i++ )
+ if ( p->pArray[i] == pNode )
+ return 1;
+ Fraig_NodeVecPushOrderByLevel( p, pNode );
+ return 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_NodeVecPop( Fraig_NodeVec_t * p )
+{
+ return p->pArray[--p->nSize];
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeVecRemove( Fraig_NodeVec_t * p, Fraig_Node_t * Entry )
+{
+ int i;
+ for ( i = 0; i < p->nSize; i++ )
+ if ( p->pArray[i] == Entry )
+ break;
+ assert( i < p->nSize );
+ for ( i++; i < p->nSize; i++ )
+ p->pArray[i-1] = p->pArray[i];
+ p->nSize--;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeVecWriteEntry( Fraig_NodeVec_t * p, int i, Fraig_Node_t * Entry )
+{
+ assert( i >= 0 && i < p->nSize );
+ p->pArray[i] = Entry;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Fraig_Node_t * Fraig_NodeVecReadEntry( Fraig_NodeVec_t * p, int i )
+{
+ assert( i >= 0 && i < p->nSize );
+ return p->pArray[i];
+}
+
+/**Function*************************************************************
+
+ Synopsis [Comparison procedure for two clauses.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeVecCompareLevelsIncreasing( Fraig_Node_t ** pp1, Fraig_Node_t ** pp2 )
+{
+ int Level1 = Fraig_Regular(*pp1)->Level;
+ int Level2 = Fraig_Regular(*pp2)->Level;
+ if ( Level1 < Level2 )
+ return -1;
+ if ( Level1 > Level2 )
+ return 1;
+ return 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Comparison procedure for two clauses.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeVecCompareLevelsDecreasing( Fraig_Node_t ** pp1, Fraig_Node_t ** pp2 )
+{
+ int Level1 = Fraig_Regular(*pp1)->Level;
+ int Level2 = Fraig_Regular(*pp2)->Level;
+ if ( Level1 > Level2 )
+ return -1;
+ if ( Level1 < Level2 )
+ return 1;
+ return 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Comparison procedure for two clauses.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeVecCompareNumbers( Fraig_Node_t ** pp1, Fraig_Node_t ** pp2 )
+{
+ int Num1 = Fraig_Regular(*pp1)->Num;
+ int Num2 = Fraig_Regular(*pp2)->Num;
+ if ( Num1 < Num2 )
+ return -1;
+ if ( Num1 > Num2 )
+ return 1;
+ return 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Comparison procedure for two clauses.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Fraig_NodeVecCompareRefCounts( Fraig_Node_t ** pp1, Fraig_Node_t ** pp2 )
+{
+ int nRefs1 = Fraig_Regular(*pp1)->nRefs;
+ int nRefs2 = Fraig_Regular(*pp2)->nRefs;
+
+ if ( nRefs1 < nRefs2 )
+ return -1;
+ if ( nRefs1 > nRefs2 )
+ return 1;
+
+ nRefs1 = Fraig_Regular(*pp1)->Level;
+ nRefs2 = Fraig_Regular(*pp2)->Level;
+
+ if ( nRefs1 < nRefs2 )
+ return -1;
+ if ( nRefs1 > nRefs2 )
+ return 1;
+ return 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Sorting the entries by their integer value.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeVecSortByLevel( Fraig_NodeVec_t * p, int fIncreasing )
+{
+ if ( fIncreasing )
+ qsort( (void *)p->pArray, p->nSize, sizeof(Fraig_Node_t *),
+ (int (*)(const void *, const void *)) Fraig_NodeVecCompareLevelsIncreasing );
+ else
+ qsort( (void *)p->pArray, p->nSize, sizeof(Fraig_Node_t *),
+ (int (*)(const void *, const void *)) Fraig_NodeVecCompareLevelsDecreasing );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Sorting the entries by their integer value.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeVecSortByNumber( Fraig_NodeVec_t * p )
+{
+ qsort( (void *)p->pArray, p->nSize, sizeof(Fraig_Node_t *),
+ (int (*)(const void *, const void *)) Fraig_NodeVecCompareNumbers );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Sorting the entries by their integer value.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Fraig_NodeVecSortByRefCount( Fraig_NodeVec_t * p )
+{
+ qsort( (void *)p->pArray, p->nSize, sizeof(Fraig_Node_t *),
+ (int (*)(const void *, const void *)) Fraig_NodeVecCompareRefCounts );
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
diff --git a/src/sat/fraig/module.make b/src/sat/fraig/module.make
new file mode 100644
index 00000000..cc6eb9d3
--- /dev/null
+++ b/src/sat/fraig/module.make
@@ -0,0 +1,12 @@
+SRC += src/sat/fraig/fraigApi.c \
+ src/sat/fraig/fraigCanon.c \
+ src/sat/fraig/fraigFanout.c \
+ src/sat/fraig/fraigFeed.c \
+ src/sat/fraig/fraigMan.c \
+ src/sat/fraig/fraigMem.c \
+ src/sat/fraig/fraigNode.c \
+ src/sat/fraig/fraigPrime.c \
+ src/sat/fraig/fraigSat.c \
+ src/sat/fraig/fraigTable.c \
+ src/sat/fraig/fraigUtil.c \
+ src/sat/fraig/fraigVec.c