From 519b03e8e89c1fd07343d6883ea2c77d259a79e1 Mon Sep 17 00:00:00 2001 From: Alan Mishchenko Date: Tue, 27 Sep 2011 15:10:53 +0700 Subject: Changes to the matching procedure and new abstraction code. --- src/map/if/ifDec16.c | 708 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 708 insertions(+) create mode 100644 src/map/if/ifDec16.c (limited to 'src/map/if/ifDec16.c') diff --git a/src/map/if/ifDec16.c b/src/map/if/ifDec16.c new file mode 100644 index 00000000..5e988ae5 --- /dev/null +++ b/src/map/if/ifDec16.c @@ -0,0 +1,708 @@ +/**CFile**************************************************************** + + FileName [ifDec10f.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [FPGA mapping based on priority cuts.] + + Synopsis [Fast checking procedures.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - November 21, 2006.] + + Revision [$Id: ifDec10f.c,v 1.00 2006/11/21 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "if.h" + +ABC_NAMESPACE_IMPL_START + + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +#define CLU_VAR_MAX 16 +#define CLU_WRD_MAX (1 << ((CLU_VAR_MAX)-6)) + +// decomposition +typedef struct If_Grp_t_ If_Grp_t; +struct If_Grp_t_ +{ + char nVars; + char nMyu; + char pVars[6]; +}; + +// the bit count for the first 256 integer numbers +static int BitCount8[256] = { + 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, + 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, + 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, + 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, + 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, + 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, + 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, + 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8 +}; +// variable swapping code +static word PMasks[5][3] = { + { 0x9999999999999999, 0x2222222222222222, 0x4444444444444444 }, + { 0xC3C3C3C3C3C3C3C3, 0x0C0C0C0C0C0C0C0C, 0x3030303030303030 }, + { 0xF00FF00FF00FF00F, 0x00F000F000F000F0, 0x0F000F000F000F00 }, + { 0xFF0000FFFF0000FF, 0x0000FF000000FF00, 0x00FF000000FF0000 }, + { 0xFFFF00000000FFFF, 0x00000000FFFF0000, 0x0000FFFF00000000 } +}; +// elementary truth tables +static word Truth6[6] = { + 0xAAAAAAAAAAAAAAAA, + 0xCCCCCCCCCCCCCCCC, + 0xF0F0F0F0F0F0F0F0, + 0xFF00FF00FF00FF00, + 0xFFFF0000FFFF0000, + 0xFFFFFFFF00000000 +}; +static word TruthAll[CLU_VAR_MAX][CLU_WRD_MAX]; + +extern void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars ); +extern void Extra_PrintBinary( FILE * pFile, unsigned Sign[], int nBits ); + +// group representation (MSB <-> LSB) +// nVars | nMyu | v5 | v4 | v3 | v2 | v1 | v0 +// if nCofs > 2, v0 is the shared variable + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +void If_CluInitTruthTables() +{ + int i, k; + assert( CLU_VAR_MAX <= 16 ); + for ( i = 0; i < 6; i++ ) + for ( k = 0; k < CLU_WRD_MAX; k++ ) + TruthAll[i][k] = Truth6[i]; + for ( i = 6; i < CLU_VAR_MAX; i++ ) + for ( k = 0; k < CLU_WRD_MAX; k++ ) + TruthAll[i][k] = ((k >> i) & 1) ? ~0 : 0; +} + +// variable permutation for large functions +static inline int If_CluWordNum( int nVars ) +{ + return nVars <= 6 ? 1 : 1 << (nVars-6); +} +static inline void If_CluCopy( word * pOut, word * pIn, int nVars ) +{ + int w, nWords = If_CluWordNum( nVars ); + for ( w = 0; w < nWords; w++ ) + pOut[w] = pIn[w]; +} +static inline int If_CluEqual( word * pOut, word * pIn, int nVars ) +{ + int w, nWords = If_CluWordNum( nVars ); + for ( w = 0; w < nWords; w++ ) + if ( pOut[w] != pIn[w] ) + return 0; + return 1; +} +static inline void If_CluSwapAdjacent( word * pOut, word * pIn, int iVar, int nVars ) +{ + int i, k, nWords = If_CluWordNum( nVars ); + assert( iVar < nVars - 1 ); + if ( iVar < 5 ) + { + int Shift = (1 << iVar); + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & PMasks[iVar][0]) | ((pIn[i] & PMasks[iVar][1]) << Shift) | ((pIn[i] & PMasks[iVar][2]) >> Shift); + } + else if ( iVar > 5 ) + { + int Step = (1 << (iVar - 6)); + for ( k = 0; k < nWords; k += 4*Step ) + { + for ( i = 0; i < Step; i++ ) + pOut[i] = pIn[i]; + for ( i = 0; i < Step; i++ ) + pOut[Step+i] = pIn[2*Step+i]; + for ( i = 0; i < Step; i++ ) + pOut[2*Step+i] = pIn[Step+i]; + for ( i = 0; i < Step; i++ ) + pOut[3*Step+i] = pIn[3*Step+i]; + pIn += 4*Step; + pOut += 4*Step; + } + } + else // if ( iVar == 5 ) + { + for ( i = 0; i < nWords; i += 2 ) + { + pOut[i] = (pIn[i] & 0x00000000FFFFFFFF) | ((pIn[i+1] & 0x00000000FFFFFFFF) << 32); + pOut[i+1] = (pIn[i+1] & 0xFFFFFFFF00000000) | ((pIn[i] & 0xFFFFFFFF00000000) >> 32); + } + } +} + +// moves one var (v) to the given position (p) +void If_CluMoveVar( word * pF, int nVars, int * Var2Pla, int * Pla2Var, int v, int p ) +{ + word pG[CLU_WRD_MAX], * pIn = pF, * pOut = pG, * pTemp; + int iPlace0, iPlace1, Count = 0; + assert( v >= 0 && v < nVars ); + if ( Var2Pla[v] <= p ) + { + while ( Var2Pla[v] < p ) + { + iPlace0 = Var2Pla[v]; + iPlace1 = Var2Pla[v]+1; + If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars ); + pTemp = pIn; pIn = pOut, pOut = pTemp; + Var2Pla[Pla2Var[iPlace0]]++; + Var2Pla[Pla2Var[iPlace1]]--; + Pla2Var[iPlace0] ^= Pla2Var[iPlace1]; + Pla2Var[iPlace1] ^= Pla2Var[iPlace0]; + Pla2Var[iPlace0] ^= Pla2Var[iPlace1]; + Count++; + } + } + else + { + while ( Var2Pla[v] > p ) + { + iPlace0 = Var2Pla[v]-1; + iPlace1 = Var2Pla[v]; + If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars ); + pTemp = pIn; pIn = pOut, pOut = pTemp; + Var2Pla[Pla2Var[iPlace0]]++; + Var2Pla[Pla2Var[iPlace1]]--; + Pla2Var[iPlace0] ^= Pla2Var[iPlace1]; + Pla2Var[iPlace1] ^= Pla2Var[iPlace0]; + Pla2Var[iPlace0] ^= Pla2Var[iPlace1]; + Count++; + } + } + if ( Count & 1 ) + If_CluCopy( pF, pIn, nVars ); + assert( Pla2Var[p] == v ); +} + +// moves vars to be the most signiticant ones (Group[0] is MSB) +void If_CluMoveGroupToMsb( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g ) +{ + int v; + for ( v = 0; v < g->nVars; v++ ) + If_CluMoveVar( pF, nVars, V2P, P2V, g->pVars[g->nVars - 1 - v], nVars - 1 - v ); +} + +// return the number of cofactors w.r.t. the topmost vars (nBSsize) +int If_CluCountCofs( word * pF, int nVars, int nBSsize, int iShift, word * pCofs[2] ) +{ + word iCofs[64], iCof; + int i, c, w, nMints = (1 << nBSsize), nCofs; + + assert( nBSsize < nVars ); + assert( nBSsize >= 3 && nBSsize <= 6 ); + + if ( nVars - nBSsize >= 6 ) + { + word * pCofA, * pCofB; + int nWords = (1 << (nVars - nBSsize - 6)); + assert( nWords * nMints == If_CluWordNum(nVars) ); + for ( nCofs = i = 0; i < nMints; i++ ) + { + for ( c = 0; c < nCofs; c++ ) + { + pCofA = pF + i * nWords; + pCofB = pF + iCofs[c] * nWords; + for ( w = 0; w < nWords; w++ ) + if ( pCofA[w] != pCofB[w] ) + break; + if ( w == nWords ) + break; + } + if ( c == nCofs ) + iCofs[nCofs++] = i; + if ( nCofs == 5 ) + break; + } + if ( nCofs == 2 && pCofs ) + { + for ( c = 0; c < nCofs; c++ ) + { + word * pCofA = pF + iCofs[c] * nWords; + for ( w = 0; w < nWords; w++ ) + pCofs[c][w] = pCofA[w]; + } + } + } + else + { + int nShift = (1 << (nVars - nBSsize)); + word Mask = ((((word)1) << nShift) - 1); + for ( nCofs = i = 0; i < nMints; i++ ) + { + iCof = (pF[(iShift + i * nShift) / 64] >> ((iShift + i * nShift) & 63)) & Mask; + for ( c = 0; c < nCofs; c++ ) + if ( iCof == iCofs[c] ) + break; + if ( c == nCofs ) + iCofs[nCofs++] = iCof; + if ( nCofs == 5 ) + break; + } + } + assert( nCofs >= 2 && nCofs <= 5 ); + return nCofs; +} + +void If_CluCofactors( word * pF, int nVars, int iVar, word * pCof0, word * pCof1 ) +{ + int nWords = If_CluWordNum( nVars ); + assert( iVar < nVars ); + if ( iVar < 6 ) + { + int i, Shift = (1 << iVar); + for ( i = 0; i < nWords; i++ ) + { + pCof0[i] = (pF[i] & ~Truth6[iVar]) | ((pF[i] & ~Truth6[iVar]) << Shift); + pCof1[i] = (pF[i] & Truth6[iVar]) | ((pF[i] & Truth6[iVar]) >> Shift); + } + return; + } + else + { + int i, k, Step = (1 << (iVar - 6)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + { + pCof0[i] = pCof0[Step+i] = pF[i]; + pCof1[i] = pCof1[Step+i] = pF[Step+i]; + } + pF += 2*Step; + pCof0 += 2*Step; + pCof1 += 2*Step; + } + return; + } +} + +// derives non-disjoint decomposition (assumes the shared var in pG->pVars[pG->nVars-1] +word If_CluDeriveNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g, If_Grp_t * pG ) +{ + /* + word Truth, Truth0, Truth1; + word Cof[2][CLU_WRD_MAX], Cof0[2][CLU_WRD_MAX], Cof1[2][CLU_WRD_MAX]; + int i, nFSvars, nFSHalfBits, nBSHalfBits; + assert( pG->nVars >= 3 && pG->nVar <= 6 ); + assert( pG->nMyu == 3 || pG->nMyu == 4 ); + + If_CluMoveGroupToMsb( pF, nVars, V2P, P2V, pG ); + + If_CluCofactors( pF, nVars, nVars - 1, Cof[0], Cof[1] ); + + assert( 2 >= If_Dec6CofCount2(c0) ); + assert( 2 >= If_Dec6CofCount2(c1) ); + + assert( 2 >= If_CluCountCofs( Cof[0], nVars - 1, pG->nVars - 1, 0 ) ); + assert( 2 >= If_CluCountCofs( Cof[1], nVars - 1, pG->nVars - 1, 0 ) ); + + Truth0 = If_CluExtract2Cofs( Cof[0], nVars - 1, pG->nVars - 1, &Cof0[0], &Cof0[1] ); + Truth1 = If_CluExtract2Cofs( Cof[1], nVars - 1, pG->nVars - 1, &Cof0[0], &Cof0[1] ); + + nFSHalfBits = (1 << (nVars - pG->nVars - 1)); + nBSHalfBits = (1 << (pG->nVars - 1)) + + Truth = ((Truth0 && ((1 << nBSHalfBits) - 1)) << nBSHalfBits) | (Truth0 && ((1 << nBSHalfBits) - 1)) + + + for ( i = 0; i < 4; i++ ) + z |= (((word)Pla2Var[i+2]) << (16 + 4*i)); + z |= ((word)((Cof0[1] << 4) | Cof0[0]) << 32); + z |= ((word)((Cof1[1] << 4) | Cof1[0]) << 40); + for ( i = 0; i < 2; i++ ) + z |= (((word)Pla2Var[i]) << (48 + 4*i)); + z |= (((word)7) << (48 + 4*i++)); + z |= (((word)Pla2Var[5]) << (48 + 4*i++)); + assert( i == 4 ); + return z; + */ + return 0; +} + + +// check non-disjoint decomposition +int If_CluCheckNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g ) +{ + int v, i, nCofsBest2; + if ( (g->nMyu == 3 || g->nMyu == 4) ) + { + word pCof0[CLU_WRD_MAX]; + word pCof1[CLU_WRD_MAX]; + // try cofactoring w.r.t. each variable + for ( v = 0; v < g->nVars; v++ ) + { + If_CluCofactors( pF, nVars, V2P[g->pVars[v]], pCof0, pCof1 ); + nCofsBest2 = If_CluCountCofs( pCof0, nVars, g->nVars, 0, NULL ); + if ( nCofsBest2 > 2 ) + continue; + nCofsBest2 = If_CluCountCofs( pCof1, nVars, g->nVars, 0, NULL ); + if ( nCofsBest2 > 2 ) + continue; + // found good shared variable - move to the end + If_CluMoveVar( pF, nVars, V2P, P2V, g->pVars[v], nVars-1 ); + for ( i = 0; i < g->nVars; i++ ) + g->pVars[i] = P2V[nVars-g->nVars+i]; + return 1; + } + } + return 0; +} + +void If_CluPrintGroup( If_Grp_t * g ) +{ + int i; + for ( i = 0; i < g->nVars; i++ ) + printf( "%d ", g->pVars[i] ); + printf( "\n" ); + printf( "Cofs = %d", g->nMyu ); + printf( "\n" ); + printf( "Vars = %d", g->nVars ); + printf( "\n" ); +} + + +// finds a good var group (cof count < 6; vars are MSBs) +If_Grp_t If_CluFindGroup( word * pF, int nVars, int iVarStart, int * V2P, int * P2V, int nBSsize, int fDisjoint ) +{ + If_Grp_t G = {0}, * g = &G; + int i, r, v, nCofs, VarBest, nCofsBest2; + assert( nVars >= nBSsize + iVarStart && nVars <= CLU_VAR_MAX ); + assert( nBSsize >= 3 && nBSsize <= 6 ); + // start with the default group + g->nVars = nBSsize; + g->nMyu = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL ); + for ( i = 0; i < nBSsize; i++ ) + g->pVars[i] = P2V[nVars-nBSsize+i]; + // check if good enough + if ( g->nMyu == 2 ) + return G; + if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, g ) ) + return G; + + printf( "Iter %d ", -1 ); + If_CluPrintGroup( g ); + + // try to find better group + for ( r = 0; r < nBSsize; r++ ) + { + // find the best var to add + VarBest = P2V[nVars-1-nBSsize]; + nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL ); + for ( v = nVars-2-nBSsize; v >= iVarStart; v-- ) + { + If_CluMoveVar( pF, nVars, V2P, P2V, P2V[v], nVars-1-nBSsize ); + nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL ); + if ( nCofsBest2 >= nCofs ) + { + nCofsBest2 = nCofs; + VarBest = P2V[nVars-1-nBSsize]; + } + } + // go back + If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize ); + // update best bound set + nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL ); + assert( nCofs == nCofsBest2 ); + + // find the best var to remove + VarBest = P2V[nVars-1-nBSsize]; + nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL ); + for ( v = nVars-nBSsize; v < nVars; v++ ) + { + If_CluMoveVar( pF, nVars, V2P, P2V, P2V[v], nVars-1-nBSsize ); + nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL ); + if ( nCofsBest2 >= nCofs ) + { + nCofsBest2 = nCofs; + VarBest = P2V[nVars-1-nBSsize]; + } + } + + // go back + If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize ); + // update best bound set + nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL ); + assert( nCofs == nCofsBest2 ); + if ( g->nMyu >= nCofs ) + { + g->nVars = nBSsize; + g->nMyu = nCofs; + for ( i = 0; i < nBSsize; i++ ) + g->pVars[i] = P2V[nVars-nBSsize+i]; + } + + printf( "Iter %d ", r ); + If_CluPrintGroup( g ); + + // check if good enough + if ( g->nMyu == 2 ) + return G; + if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, g ) ) + return G; + } + assert( r == nBSsize ); + g->nVars = 0; + return G; +} + + +// double check that the given group has a decomposition +void If_CluCheckGroup( word * pTruth, int nVars, If_Grp_t * g ) +{ + word pF[CLU_WRD_MAX]; + int v, nCofs, V2P[CLU_VAR_MAX], P2V[CLU_VAR_MAX]; + assert( g->nVars >= 3 && g->nVars <= 6 ); // vars + assert( g->nMyu >= 2 && g->nMyu <= 4 ); // cofs + // create permutation + for ( v = 0; v < nVars; v++ ) + V2P[v] = P2V[v] = v; + // create truth table + If_CluCopy( pF, pTruth, nVars ); + // move group up + If_CluMoveGroupToMsb( pF, nVars, V2P, P2V, g ); + // check the number of cofactors + nCofs = If_CluCountCofs( pF, nVars, g->nVars, 0, NULL ); + if ( nCofs != g->nMyu ) + printf( "Group check 0 has failed.\n" ); + // check compatible + if ( nCofs > 2 ) + { + nCofs = If_CluCountCofs( pF, nVars-1, g->nVars-1, 0, NULL ); + if ( nCofs > 2 ) + printf( "Group check 1 has failed.\n" ); + nCofs = If_CluCountCofs( pF, nVars-1, g->nVars-1, (1 << (nVars-1)), NULL ); + if ( nCofs > 2 ) + printf( "Group check 2 has failed.\n" ); + } +} + + +// double check that the permutation derived is correct +void If_CluCheckPerm( word * pTruth, word * pF, int nVars, int * V2P, int * P2V ) +{ + int i; + for ( i = 0; i < nVars; i++ ) + If_CluMoveVar( pF, nVars, V2P, P2V, i, i ); + + if ( If_CluEqual( pTruth, pF, nVars ) ) + printf( "Permutation successful\n" ); + else + printf( "Permutation FAILED.\n" ); +} + + + + +static inline int If_CluSuppIsMinBase( int Supp ) +{ + return (Supp & (Supp+1)) == 0; +} +static inline int If_CluHasVar( word * t, int nVars, int iVar ) +{ + int nWords = If_CluWordNum( nVars ); + assert( iVar < nVars ); + if ( iVar < 6 ) + { + int i, Shift = (1 << iVar); + for ( i = 0; i < nWords; i++ ) + if ( (t[i] & ~Truth6[iVar]) != ((t[i] & Truth6[iVar]) >> Shift) ) + return 1; + return 0; + } + else + { + int i, k, Step = (1 << (iVar - 6)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + if ( t[i] != t[Step+i] ) + return 1; + t += 2*Step; + } + return 0; + } +} +static inline int If_CluSupport( word * t, int nVars ) +{ + int v, Supp = 0; + for ( v = 0; v < nVars; v++ ) + if ( If_CluHasVar( t, nVars, v ) ) + Supp |= (1 << v); + return Supp; +} + +// returns the best group found +If_Grp_t If_CluCheck( word * pTruth, int nVars, int nLutLeaf, int nLutRoot ) +{ + int V2P[CLU_VAR_MAX], P2V[CLU_VAR_MAX]; + word pF[CLU_WRD_MAX]; + If_Grp_t G1 = {0}; + int i, nSupp; + assert( nVars <= CLU_VAR_MAX ); + assert( nVars <= nLutLeaf + nLutRoot - 1 ); + + // check minnimum base + If_CluCopy( pF, pTruth, nVars ); + nSupp = If_CluSupport( pF, nVars ); + if ( !nSupp || !If_CluSuppIsMinBase(nSupp) ) + return G1; + + // perform testing + for ( i = 0; i < nVars; i++ ) + V2P[i] = P2V[i] = i; + G1 = If_CluFindGroup( pF, nVars, 0, V2P, P2V, nLutLeaf, nLutLeaf + nLutRoot == nVars + 1 ); + + // check permutation + If_CluCheckPerm( pTruth, pF, nVars, V2P, P2V ); + + if ( G1.nVars == 0 ) + return G1; + + // perform checking + If_CluCheckGroup( pTruth, nVars, &G1 ); + return G1; +} + + +// computes delay of the decomposition +float If_CluDelayMax( If_Grp_t * g, float * pDelays ) +{ + float Delay = 0.0; + int i; + for ( i = 0; i < g->nVars; i++ ) + Delay = Abc_MaxFloat( Delay, pDelays[g->pVars[i]] ); + return Delay; +} + +// returns delay of the decomposition; sets area of the cut as its cost +float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float WireDelay ) +{ + float Delays[CLU_VAR_MAX+2]; + int fUsed[CLU_VAR_MAX+2] = {0}; + If_Obj_t * pLeaf; + If_Grp_t G1 = {0}, G2 = {0}, G3 = {0}; + int nLeaves = If_CutLeaveNum(pCut); + int i, nLutLeaf, nLutRoot; + // mark the cut as user cut + pCut->fUser = 1; + // quit if parameters are wrong + if ( strlen(pStr) != 2 ) + { + printf( "Wrong LUT struct (%s)\n", pStr ); + return ABC_INFINITY; + } + nLutLeaf = pStr[0] - '0'; + if ( nLutLeaf < 3 || nLutLeaf > 6 ) + { + printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutLeaf ); + return ABC_INFINITY; + } + nLutRoot = pStr[1] - '0'; + if ( nLutRoot < 3 || nLutRoot > 6 ) + { + printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutRoot ); + return ABC_INFINITY; + } + if ( nLeaves > nLutLeaf + nLutRoot - 1 ) + { + printf( "The cut size (%d) is too large for the LUT structure %d%d.\n", If_CutLeaveNum(pCut), nLutLeaf, nLutRoot ); + return ABC_INFINITY; + } + + // remember the delays + If_CutForEachLeaf( p, pCut, pLeaf, i ) + Delays[nLeaves-1-i] = If_ObjCutBest(pLeaf)->Delay; + + // consider easy case + if ( nLeaves <= Abc_MaxInt( nLutLeaf, nLutRoot ) ) + { + assert( nLeaves <= 6 ); + for ( i = 0; i < nLeaves; i++ ) + { + pCut->pPerm[i] = 1; + G1.pVars[i] = i; + } + G1.nVars = nLeaves; + pCut->Cost = 1; + return 1.0 + If_CluDelayMax( &G1, Delays ); + } + + // derive the first group + G1 = If_CluCheck( (word *)If_CutTruth(pCut), nLeaves, nLutLeaf, nLutRoot ); + if ( G1.nVars == 0 ) + return ABC_INFINITY; + // compute the delay + Delays[nLeaves] = If_CluDelayMax( &G1, Delays ) + (WireDelay == 0.0)?1.0:WireDelay; + if ( G2.nVars ) + Delays[nLeaves+1] = If_CluDelayMax( &G2, Delays ) + (WireDelay == 0.0)?1.0:WireDelay; + + // mark used groups + for ( i = 0; i < G1.nVars; i++ ) + fUsed[G1.pVars[i]] = 1; + for ( i = 0; i < G2.nVars; i++ ) + fUsed[G2.pVars[i]] = 1; + // mark unused groups + assert( G1.nMyu >= 2 && G1.nMyu <= 4 ); + if ( G1.nMyu > 2 ) + fUsed[G1.pVars[G1.nVars-1]] = 0; + assert( G2.nMyu >= 2 && G2.nMyu <= 4 ); + if ( G2.nMyu > 2 ) + fUsed[G2.pVars[G2.nVars-1]] = 0; + + // create remaining group + assert( G3.nVars == 0 ); + for ( i = 0; i < nLeaves; i++ ) + if ( !fUsed[i] ) + G3.pVars[G3.nVars++] = i; + G3.pVars[G3.nVars++] = nLeaves; + if ( G2.nVars ) + G3.pVars[G3.nVars++] = nLeaves+1; + assert( G1.nVars + G2.nVars + G3.nVars == nLeaves + + (G1.nVars > 0) + (G2.nVars > 0) + (G1.nMyu > 2) + (G2.nMyu > 2) ); + // what if both non-disjoint vars are the same??? + + pCut->Cost = 2 + (G2.nVars > 0); + return 1.0 + If_CluDelayMax( &G3, Delays ); +} + +// testing procedure +void If_CluTest() +{ +// word t = 0xff00f0f0ccccaaaa; + word t = 0xfedcba9876543210; + int nLeaves = 6; + int nLutLeaf = 4; + int nLutRoot = 4; + If_Grp_t G; + + G = If_CluCheck( &t, nLeaves, nLutLeaf, nLutRoot ); + + If_CluPrintGroup( &G ); +} + + + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + +ABC_NAMESPACE_IMPL_END + -- cgit v1.2.3