/**CFile**************************************************************** FileName [cnfWrite.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [AIG-to-CNF conversion.] Synopsis [] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - April 28, 2007.] Revision [$Id: cnfWrite.c,v 1.00 2007/04/28 00:00:00 alanmi Exp $] ***********************************************************************/ #include "cnf.h" //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Writes the cover into the array.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Cnf_SopConvertToVector( char * pSop, int nCubes, Vec_Int_t * vCover ) { int Lits[4], Cube, iCube, i, b; Vec_IntClear( vCover ); for ( i = 0; i < nCubes; i++ ) { Cube = pSop[i]; for ( b = 0; b < 4; b++ ) { if ( Cube % 3 == 0 ) Lits[b] = 1; else if ( Cube % 3 == 1 ) Lits[b] = 2; else Lits[b] = 0; Cube = Cube / 3; } iCube = 0; for ( b = 0; b < 4; b++ ) iCube = (iCube << 2) | Lits[b]; Vec_IntPush( vCover, iCube ); } } /**Function************************************************************* Synopsis [Returns the number of literals in the SOP.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Cnf_SopCountLiterals( char * pSop, int nCubes ) { int nLits = 0, Cube, i, b; for ( i = 0; i < nCubes; i++ ) { Cube = pSop[i]; for ( b = 0; b < 4; b++ ) { if ( Cube % 3 != 2 ) nLits++; Cube = Cube / 3; } } return nLits; } /**Function************************************************************* Synopsis [Returns the number of literals in the SOP.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Cnf_IsopCountLiterals( Vec_Int_t * vIsop, int nVars ) { int nLits = 0, Cube, i, b; Vec_IntForEachEntry( vIsop, Cube, i ) { for ( b = 0; b < nVars; b++ ) { if ( (Cube & 3) == 1 || (Cube & 3) == 2 ) nLits++; Cube >>= 2; } } return nLits; } /**Function************************************************************* Synopsis [Writes the cube and returns the number of literals in it.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Cnf_SopWriteCube( char Cube, int * pVars, int fCompl, int * pLiterals ) { int nLits = 4, b; for ( b = 0; b < 4; b++ ) { if ( Cube % 3 == 0 ) *pLiterals++ = 2 * pVars[b] + !fCompl; else if ( Cube % 3 == 1 ) *pLiterals++ = 2 * pVars[b] + fCompl; else nLits--; Cube = Cube / 3; } return nLits; } /**Function************************************************************* Synopsis [Writes the cube and returns the number of literals in it.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Cnf_IsopWriteCube( int Cube, int nVars, int * pVars, int fCompl, int * pLiterals ) { int nLits = nVars, b; for ( b = 0; b < nVars; b++ ) { if ( (Cube & 3) == 1 ) *pLiterals++ = 2 * pVars[b] + !fCompl; else if ( (Cube & 3) == 2 ) *pLiterals++ = 2 * pVars[b] + fCompl; else nLits--; Cube >>= 2; } return nLits; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Cnf_Dat_t * Cnf_ManWriteCnf( Cnf_Man_t * p, Vec_Ptr_t * vMapped ) { Aig_Obj_t * pObj; Cnf_Dat_t * pCnf; Cnf_Cut_t * pCut; int OutVar, pVars[32], * pLits, ** pClas; unsigned uTruth; int i, k, nLiterals, nClauses, nCubes, Cube, Number; // count the number of literals and clauses nLiterals = 1 + Aig_ManPoNum( p->pManAig ); nClauses = 1 + Aig_ManPoNum( p->pManAig ); Vec_PtrForEachEntry( vMapped, pObj, i ) { assert( Aig_ObjIsNode(pObj) ); pCut = Cnf_ObjBestCut( pObj ); // positive polarity of the cut if ( pCut->nFanins < 5 ) { uTruth = 0xFFFF & *Cnf_CutTruth(pCut); nLiterals += Cnf_SopCountLiterals( p->pSops[uTruth], p->pSopSizes[uTruth] ) + p->pSopSizes[uTruth]; assert( p->pSopSizes[uTruth] >= 0 ); nClauses += p->pSopSizes[uTruth]; } else { nLiterals += Cnf_IsopCountLiterals( pCut->vIsop[1], pCut->nFanins ) + Vec_IntSize(pCut->vIsop[1]); nClauses += Vec_IntSize(pCut->vIsop[1]); } // negative polarity of the cut if ( pCut->nFanins < 5 ) { uTruth = 0xFFFF & ~*Cnf_CutTruth(pCut); nLiterals += Cnf_SopCountLiterals( p->pSops[uTruth], p->pSopSizes[uTruth] ) + p->pSopSizes[uTruth]; assert( p->pSopSizes[uTruth] >= 0 ); nClauses += p->pSopSizes[uTruth]; } else { nLiterals += Cnf_IsopCountLiterals( pCut->vIsop[0], pCut->nFanins ) + Vec_IntSize(pCut->vIsop[0]); nClauses += Vec_IntSize(pCut->vIsop[0]); } //printf( "%d ", nClauses-(1 + Aig_ManPoNum( p->pManAig )) ); } //printf( "\n" ); // allocate CNF pCnf = ALLOC( Cnf_Dat_t, 1 ); memset( pCnf, 0, sizeof(Cnf_Dat_t) ); pCnf->nLiterals = nLiterals; pCnf->nClauses = nClauses; pCnf->pClauses = ALLOC( int *, nClauses + 1 ); pCnf->pClauses[0] = ALLOC( int, nLiterals ); pCnf->pClauses[nClauses] = pCnf->pClauses[0] + nLiterals; // set variable numbers Number = 0; pCnf->pVarNums = ALLOC( int, 1+Aig_ManObjIdMax(p->pManAig) ); memset( pCnf->pVarNums, 0xff, sizeof(int) * (1+Aig_ManObjIdMax(p->pManAig)) ); Vec_PtrForEachEntry( vMapped, pObj, i ) pCnf->pVarNums[pObj->Id] = Number++; Aig_ManForEachPi( p->pManAig, pObj, i ) pCnf->pVarNums[pObj->Id] = Number++; pCnf->pVarNums[Aig_ManConst1(p->pManAig)->Id] = Number++; pCnf->nVars = Number; // assign the clauses pLits = pCnf->pClauses[0]; pClas = pCnf->pClauses; Vec_PtrForEachEntry( vMapped, pObj, i ) { pCut = Cnf_ObjBestCut( pObj ); // save variables of this cut OutVar = pCnf->pVarNums[ pObj->Id ]; for ( k = 0; k < (int)pCut->nFanins; k++ ) { pVars[k] = pCnf->pVarNums[ pCut->pFanins[k] ]; assert( pVars[k] <= Aig_ManObjIdMax(p->pManAig) ); } // positive polarity of the cut if ( pCut->nFanins < 5 ) { uTruth = 0xFFFF & *Cnf_CutTruth(pCut); nCubes = p->pSopSizes[uTruth]; for ( k = 0; k < nCubes; k++ ) { *pClas++ = pLits; *pLits++ = 2 * OutVar + 1; pLits += Cnf_SopWriteCube( p->pSops[uTruth][k], pVars, 0, pLits ); } } else { Vec_IntForEachEntry( pCut->vIsop[1], Cube, k ) { *pClas++ = pLits; *pLits++ = 2 * OutVar + 1; pLits += Cnf_IsopWriteCube( Cube, pCut->nFanins, pVars, 0, pLits ); } } // negative polarity of the cut if ( pCut->nFanins < 5 ) { uTruth = 0xFFFF & ~*Cnf_CutTruth(pCut); nCubes = p->pSopSizes[uTruth]; for ( k = 0; k < nCubes; k++ ) { *pClas++ = pLits; *pLits++ = 2 * OutVar; pLits += Cnf_SopWriteCube( p->pSops[uTruth][k], pVars, 1, pLits ); } } else { Vec_IntForEachEntry( pCut->vIsop[0], Cube, k ) { *pClas++ = pLits; *pLits++ = 2 * OutVar; pLits += Cnf_IsopWriteCube( Cube, pCut->nFanins, pVars, 1, pLits ); } } //printf( "%d ", pClas-pCnf->pClauses ); } // write the constant literal OutVar = pCnf->pVarNums[ Aig_ManConst1(p->pManAig)->Id ]; assert( OutVar <= Aig_ManObjIdMax(p->pManAig) ); *pClas++ = pLits; *pLits++ = 2 * OutVar; // write the output literals Aig_ManForEachPo( p->pManAig, pObj, i ) { OutVar = pCnf->pVarNums[ Aig_ObjFanin0(pObj)->Id ]; *pClas++ = pLits; *pLits++ = 2 * OutVar + Aig_ObjFaninC0(pObj); } // verify that the correct number of literals and clauses was written assert( pLits - pCnf->pClauses[0] == nLiterals ); assert( pClas - pCnf->pClauses == nClauses ); return pCnf; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// ////////////////////////////////////////////////////////////////////////