/**CFile**************************************************************** FileName [cnfWrite.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [AIG-to-CNF conversion.] Synopsis [] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - April 28, 2007.] Revision [$Id: cnfWrite.c,v 1.00 2007/04/28 00:00:00 alanmi Exp $] ***********************************************************************/ #include "cnf.h" //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Writes the cover into the array.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Cnf_SopConvertToVector( char * pSop, int nCubes, Vec_Int_t * vCover ) { int Lits[4], Cube, iCube, i, b; Vec_IntClear( vCover ); for ( i = 0; i < nCubes; i++ ) { Cube = pSop[i]; for ( b = 0; b < 4; b++ ) { if ( Cube % 3 == 0 ) Lits[b] = 1; else if ( Cube % 3 == 1 ) Lits[b] = 2; else Lits[b] = 0; Cube = Cube / 3; } iCube = 0; for ( b = 0; b < 4; b++ ) iCube = (iCube << 2) | Lits[b]; Vec_IntPush( vCover, iCube ); } } /**Function************************************************************* Synopsis [Returns the number of literals in the SOP.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Cnf_SopCountLiterals( char * pSop, int nCubes ) { int nLits = 0, Cube, i, b; for ( i = 0; i < nCubes; i++ ) { Cube = pSop[i]; for ( b = 0; b < 4; b++ ) { if ( Cube % 3 != 2 ) nLits++; Cube = Cube / 3; } } return nLits; } /**Function************************************************************* Synopsis [Returns the number of literals in the SOP.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Cnf_IsopCountLiterals( Vec_Int_t * vIsop, int nVars ) { int nLits = 0, Cube, i, b; Vec_IntForEachEntry( vIsop, Cube, i ) { for ( b = 0; b < nVars; b++ ) { if ( (Cube & 3) == 1 || (Cube & 3) == 2 ) nLits++; Cube >>= 2; } } return nLits; } /**Function************************************************************* Synopsis [Writes the cube and returns the number of literals in it.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Cnf_IsopWriteCube( int Cube, int nVars, int * pVars, int * pLiterals ) { int nLits = nVars, b; for ( b = 0; b < nVars; b++ ) { if ( (Cube & 3) == 1 ) // value 0 --> write positive literal *pLiterals++ = 2 * pVars[b]; else if ( (Cube & 3) == 2 ) // value 1 --> write negative literal *pLiterals++ = 2 * pVars[b] + 1; else nLits--; Cube >>= 2; } return nLits; } /**Function************************************************************* Synopsis [Derives CNF for the mapping.] Description [The last argument shows the number of last outputs of the manager, which will not be converted into clauses but the new variables for which will be introduced.] SideEffects [] SeeAlso [] ***********************************************************************/ Cnf_Dat_t * Cnf_ManWriteCnf( Cnf_Man_t * p, Vec_Ptr_t * vMapped, int nOutputs ) { Aig_Obj_t * pObj; Cnf_Dat_t * pCnf; Cnf_Cut_t * pCut; Vec_Int_t * vCover, * vSopTemp; int OutVar, PoVar, pVars[32], * pLits, ** pClas; unsigned uTruth; int i, k, nLiterals, nClauses, Cube, Number; // count the number of literals and clauses nLiterals = 1 + Aig_ManPoNum( p->pManAig ) + 3 * nOutputs; nClauses = 1 + Aig_ManPoNum( p->pManAig ) + nOutputs; Vec_PtrForEachEntry( vMapped, pObj, i ) { assert( Aig_ObjIsNode(pObj) ); pCut = Cnf_ObjBestCut( pObj ); // positive polarity of the cut if ( pCut->nFanins < 5 ) { uTruth = 0xFFFF & *Cnf_CutTruth(pCut); nLiterals += Cnf_SopCountLiterals( p->pSops[uTruth], p->pSopSizes[uTruth] ) + p->pSopSizes[uTruth]; assert( p->pSopSizes[uTruth] >= 0 ); nClauses += p->pSopSizes[uTruth]; } else { nLiterals += Cnf_IsopCountLiterals( pCut->vIsop[1], pCut->nFanins ) + Vec_IntSize(pCut->vIsop[1]); nClauses += Vec_IntSize(pCut->vIsop[1]); } // negative polarity of the cut if ( pCut->nFanins < 5 ) { uTruth = 0xFFFF & ~*Cnf_CutTruth(pCut); nLiterals += Cnf_SopCountLiterals( p->pSops[uTruth], p->pSopSizes[uTruth] ) + p->pSopSizes[uTruth]; assert( p->pSopSizes[uTruth] >= 0 ); nClauses += p->pSopSizes[uTruth]; } else { nLiterals += Cnf_IsopCountLiterals( pCut->vIsop[0], pCut->nFanins ) + Vec_IntSize(pCut->vIsop[0]); nClauses += Vec_IntSize(pCut->vIsop[0]); } //printf( "%d ", nClauses-(1 + Aig_ManPoNum( p->pManAig )) ); } //printf( "\n" ); // allocate CNF pCnf = ALLOC( Cnf_Dat_t, 1 ); memset( pCnf, 0, sizeof(Cnf_Dat_t) ); pCnf->pMan = p->pManAig; pCnf->nLiterals = nLiterals; pCnf->nClauses = nClauses; pCnf->pClauses = ALLOC( int *, nClauses + 1 ); pCnf->pClauses[0] = ALLOC( int, nLiterals ); pCnf->pClauses[nClauses] = pCnf->pClauses[0] + nLiterals; // create room for variable numbers pCnf->pVarNums = ALLOC( int, Aig_ManObjNumMax(p->pManAig) ); memset( pCnf->pVarNums, 0xff, sizeof(int) * Aig_ManObjNumMax(p->pManAig) ); // assign variables to the last (nOutputs) POs Number = 1; if ( nOutputs ) { assert( nOutputs == Aig_ManRegNum(p->pManAig) ); Aig_ManForEachLiSeq( p->pManAig, pObj, i ) pCnf->pVarNums[pObj->Id] = Number++; } // assign variables to the internal nodes Vec_PtrForEachEntry( vMapped, pObj, i ) pCnf->pVarNums[pObj->Id] = Number++; // assign variables to the PIs and constant node Aig_ManForEachPi( p->pManAig, pObj, i ) pCnf->pVarNums[pObj->Id] = Number++; pCnf->pVarNums[Aig_ManConst1(p->pManAig)->Id] = Number++; pCnf->nVars = Number; // assign the clauses vSopTemp = Vec_IntAlloc( 1 << 16 ); pLits = pCnf->pClauses[0]; pClas = pCnf->pClauses; Vec_PtrForEachEntry( vMapped, pObj, i ) { pCut = Cnf_ObjBestCut( pObj ); // save variables of this cut OutVar = pCnf->pVarNums[ pObj->Id ]; for ( k = 0; k < (int)pCut->nFanins; k++ ) { pVars[k] = pCnf->pVarNums[ pCut->pFanins[k] ]; assert( pVars[k] <= Aig_ManObjNumMax(p->pManAig) ); } // positive polarity of the cut if ( pCut->nFanins < 5 ) { uTruth = 0xFFFF & *Cnf_CutTruth(pCut); Cnf_SopConvertToVector( p->pSops[uTruth], p->pSopSizes[uTruth], vSopTemp ); vCover = vSopTemp; } else vCover = pCut->vIsop[1]; Vec_IntForEachEntry( vCover, Cube, k ) { *pClas++ = pLits; *pLits++ = 2 * OutVar; pLits += Cnf_IsopWriteCube( Cube, pCut->nFanins, pVars, pLits ); } // negative polarity of the cut if ( pCut->nFanins < 5 ) { uTruth = 0xFFFF & ~*Cnf_CutTruth(pCut); Cnf_SopConvertToVector( p->pSops[uTruth], p->pSopSizes[uTruth], vSopTemp ); vCover = vSopTemp; } else vCover = pCut->vIsop[0]; Vec_IntForEachEntry( vCover, Cube, k ) { *pClas++ = pLits; *pLits++ = 2 * OutVar + 1; pLits += Cnf_IsopWriteCube( Cube, pCut->nFanins, pVars, pLits ); } } Vec_IntFree( vSopTemp ); // write the constant literal OutVar = pCnf->pVarNums[ Aig_ManConst1(p->pManAig)->Id ]; assert( OutVar <= Aig_ManObjNumMax(p->pManAig) ); *pClas++ = pLits; *pLits++ = 2 * OutVar; // write the output literals Aig_ManForEachPo( p->pManAig, pObj, i ) { OutVar = pCnf->pVarNums[ Aig_ObjFanin0(pObj)->Id ]; if ( i < Aig_ManPoNum(p->pManAig) - nOutputs ) { *pClas++ = pLits; *pLits++ = 2 * OutVar + Aig_ObjFaninC0(pObj); } else { PoVar = pCnf->pVarNums[ pObj->Id ]; // first clause *pClas++ = pLits; *pLits++ = 2 * PoVar; *pLits++ = 2 * OutVar + !Aig_ObjFaninC0(pObj); // second clause *pClas++ = pLits; *pLits++ = 2 * PoVar + 1; *pLits++ = 2 * OutVar + Aig_ObjFaninC0(pObj); } } // verify that the correct number of literals and clauses was written assert( pLits - pCnf->pClauses[0] == nLiterals ); assert( pClas - pCnf->pClauses == nClauses ); return pCnf; } /**Function************************************************************* Synopsis [Derives a simple CNF for the AIG.] Description [The last argument shows the number of last outputs of the manager, which will not be converted into clauses. New variables will be introduced for these outputs.] SideEffects [] SeeAlso [] ***********************************************************************/ Cnf_Dat_t * Cnf_DeriveSimple( Aig_Man_t * p, int nOutputs ) { Aig_Obj_t * pObj; Cnf_Dat_t * pCnf; int OutVar, PoVar, pVars[32], * pLits, ** pClas; int i, nLiterals, nClauses, Number; // count the number of literals and clauses nLiterals = 1 + 7 * Aig_ManNodeNum(p) + Aig_ManPoNum( p ) + 3 * nOutputs; nClauses = 1 + 3 * Aig_ManNodeNum(p) + Aig_ManPoNum( p ) + nOutputs; // allocate CNF pCnf = ALLOC( Cnf_Dat_t, 1 ); memset( pCnf, 0, sizeof(Cnf_Dat_t) ); pCnf->pMan = p; pCnf->nLiterals = nLiterals; pCnf->nClauses = nClauses; pCnf->pClauses = ALLOC( int *, nClauses + 1 ); pCnf->pClauses[0] = ALLOC( int, nLiterals ); pCnf->pClauses[nClauses] = pCnf->pClauses[0] + nLiterals; // create room for variable numbers pCnf->pVarNums = ALLOC( int, Aig_ManObjNumMax(p) ); memset( pCnf->pVarNums, 0xff, sizeof(int) * Aig_ManObjNumMax(p) ); // assign variables to the last (nOutputs) POs Number = 1; if ( nOutputs ) { assert( nOutputs == Aig_ManRegNum(p) ); Aig_ManForEachLiSeq( p, pObj, i ) pCnf->pVarNums[pObj->Id] = Number++; } // assign variables to the internal nodes Aig_ManForEachNode( p, pObj, i ) pCnf->pVarNums[pObj->Id] = Number++; // assign variables to the PIs and constant node Aig_ManForEachPi( p, pObj, i ) pCnf->pVarNums[pObj->Id] = Number++; pCnf->pVarNums[Aig_ManConst1(p)->Id] = Number++; pCnf->nVars = Number; /* // print CNF numbers printf( "SAT numbers of each node:\n" ); Aig_ManForEachObj( p, pObj, i ) printf( "%d=%d ", pObj->Id, pCnf->pVarNums[pObj->Id] ); printf( "\n" ); */ // assign the clauses pLits = pCnf->pClauses[0]; pClas = pCnf->pClauses; Aig_ManForEachNode( p, pObj, i ) { OutVar = pCnf->pVarNums[ pObj->Id ]; pVars[0] = pCnf->pVarNums[ Aig_ObjFanin0(pObj)->Id ]; pVars[1] = pCnf->pVarNums[ Aig_ObjFanin1(pObj)->Id ]; // positive phase *pClas++ = pLits; *pLits++ = 2 * OutVar; *pLits++ = 2 * pVars[0] + !Aig_ObjFaninC0(pObj); *pLits++ = 2 * pVars[1] + !Aig_ObjFaninC1(pObj); // negative phase *pClas++ = pLits; *pLits++ = 2 * OutVar + 1; *pLits++ = 2 * pVars[0] + Aig_ObjFaninC0(pObj); *pClas++ = pLits; *pLits++ = 2 * OutVar + 1; *pLits++ = 2 * pVars[1] + Aig_ObjFaninC1(pObj); } // write the constant literal OutVar = pCnf->pVarNums[ Aig_ManConst1(p)->Id ]; assert( OutVar <= Aig_ManObjNumMax(p) ); *pClas++ = pLits; *pLits++ = 2 * OutVar; // write the output literals Aig_ManForEachPo( p, pObj, i ) { OutVar = pCnf->pVarNums[ Aig_ObjFanin0(pObj)->Id ]; if ( i < Aig_ManPoNum(p) - nOutputs ) { *pClas++ = pLits; *pLits++ = 2 * OutVar + Aig_ObjFaninC0(pObj); } else { PoVar = pCnf->pVarNums[ pObj->Id ]; // first clause *pClas++ = pLits; *pLits++ = 2 * PoVar; *pLits++ = 2 * OutVar + !Aig_ObjFaninC0(pObj); // second clause *pClas++ = pLits; *pLits++ = 2 * PoVar + 1; *pLits++ = 2 * OutVar + Aig_ObjFaninC0(pObj); } } // verify that the correct number of literals and clauses was written assert( pLits - pCnf->pClauses[0] == nLiterals ); assert( pClas - pCnf->pClauses == nClauses ); return pCnf; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// ////////////////////////////////////////////////////////////////////////