/**CFile**************************************************************** FileName [giaOf.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Scalable AIG package.] Synopsis [LUT structure mapper.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: giaOf.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "gia.h" #include "misc/st/st.h" #include "map/mio/mio.h" #include "misc/util/utilTruth.h" #include "misc/extra/extra.h" #include "base/main/main.h" #include "misc/vec/vecMem.h" #include "misc/vec/vecWec.h" #include "opt/dau/dau.h" #include "sat/bsat/satStore.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define OF_LEAF_MAX 6 #define OF_CUT_MAX 32 #define OF_NO_LEAF 31 #define OF_NO_FUNC 0x7FFFFFF #define OF_CUT_EXTRA 4 // size; delay1, delay2; area typedef struct Of_Cut_t_ Of_Cut_t; struct Of_Cut_t_ { word Sign; // signature int Delay; // delay int Flow; // flow unsigned iFunc : 27; // function (OF_NO_FUNC) unsigned nLeaves : 5; // leaf number (OF_NO_LEAF) int pLeaves[OF_LEAF_MAX+1]; // leaves }; typedef struct Of_Obj_t_ Of_Obj_t; struct Of_Obj_t_ { int iCutH; // best cut int iCutH2; // best cut int Delay1; // arrival time int Delay2; // arrival time int Required; // required int nRefs; // references int Flow; // area flow int Temp; // unused }; typedef struct Of_Man_t_ Of_Man_t; struct Of_Man_t_ { // user data Gia_Man_t * pGia; // derived manager Jf_Par_t * pPars; // parameters // cut data Vec_Mem_t * vTtMem; // truth tables Vec_Ptr_t vPages; // cut memory Vec_Int_t vCutSets; // cut offsets Vec_Int_t vCutFlows; // temporary cut area Vec_Int_t vCutDelays; // temporary cut delay Vec_Int_t vCutRefs; // temporary cut referebces int iCur; // current position int Iter; // mapping iterations // object data Of_Obj_t * pObjs; // statistics abctime clkStart; // starting time double CutCount[6]; // cut counts }; #define OF_NUM 10 #define OF_NUMINV 0.1 static inline int Of_Flt2Int( float f ) { return (int)(OF_NUM*f); } static inline float Of_Int2Flt( int i ) { return OF_NUMINV*i; } static inline int * Of_ManCutSet( Of_Man_t * p, int i ) { return (int *)Vec_PtrEntry(&p->vPages, i >> 16) + (i & 0xFFFF); } static inline int Of_ObjCutSetId( Of_Man_t * p, int i ) { return Vec_IntEntry( &p->vCutSets, i ); } static inline int * Of_ObjCutSet( Of_Man_t * p, int i ) { return Of_ManCutSet(p, Of_ObjCutSetId(p, i)); } static inline int Of_ObjHasCuts( Of_Man_t * p, int i ) { return (int)(Vec_IntEntry(&p->vCutSets, i) > 0); } static inline int Of_ObjCutFlow( Of_Man_t * p, int i ) { return Vec_IntEntry(&p->vCutFlows, i); } static inline int Of_ObjCutDelay( Of_Man_t * p, int i ) { return Vec_IntEntry(&p->vCutDelays, i); } static inline void Of_ObjSetCutFlow( Of_Man_t * p, int i, int a ) { Vec_IntWriteEntry(&p->vCutFlows, i, a); } static inline void Of_ObjSetCutDelay( Of_Man_t * p, int i, int d ) { Vec_IntWriteEntry(&p->vCutDelays, i, d); } static inline int Of_CutSize( int * pCut ) { return pCut[0] & OF_NO_LEAF; } static inline int Of_CutFunc( int * pCut ) { return ((unsigned)pCut[0] >> 5); } static inline int * Of_CutLeaves( int * pCut ) { return pCut + 1; } static inline int Of_CutSetBoth( int n, int f ) { return n | (f << 5); } static inline int Of_CutHandle( int * pCutSet, int * pCut ) { assert( pCut > pCutSet ); return pCut - pCutSet; } static inline int * Of_CutFromHandle( int * pCutSet, int h ) { assert( h > 0 ); return pCutSet + h; } static inline int Of_CutDelay1( int * pCut ) { return pCut[1 + Of_CutSize(pCut)]; } static inline int Of_CutDelay2( int * pCut ) { return pCut[2 + Of_CutSize(pCut)]; } static inline int Of_CutAreaFlow( int * pCut ) { return pCut[3 + Of_CutSize(pCut)]; } static inline void Of_CutSetDelay1( int * pCut, int d ) { pCut[1 + Of_CutSize(pCut)] = d; } static inline void Of_CutSetDelay2( int * pCut, int d ) { pCut[2 + Of_CutSize(pCut)] = d; } static inline void Of_CutSetAreaFlow( int * pCut, int d ) { pCut[3 + Of_CutSize(pCut)] = d; } static inline int Of_CutVar( int * pCut, int v ) { return Abc_Lit2Var(Of_CutLeaves(pCut)[v]); } static inline int Of_CutFlag( int * pCut, int v ) { return Abc_LitIsCompl(Of_CutLeaves(pCut)[v]); } static inline void Of_CutCleanFlag( int * pCut, int v ) { Of_CutLeaves(pCut)[v] = Abc_LitRegular(Of_CutLeaves(pCut)[v]); } static inline void Of_CutSetFlag( int * pCut, int v, int x ) { Of_CutLeaves(pCut)[v] = Abc_Var2Lit(Of_CutVar(pCut, v), x); } static inline Of_Obj_t * Of_ObjData( Of_Man_t * p, int i ) { return p->pObjs + i; } static inline int Of_ObjCutBest( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->iCutH; } static inline int Of_ObjCutBest2( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->iCutH2; } static inline int Of_ObjDelay1( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->Delay1; } static inline int Of_ObjDelay2( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->Delay2; } static inline int Of_ObjRequired( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->Required; } static inline int Of_ObjRefNum( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->nRefs; } static inline int Of_ObjFlow( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->Flow; } static inline void Of_ObjSetCutBest( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->iCutH = x; } static inline void Of_ObjSetCutBest2( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->iCutH2 = x; } static inline void Of_ObjSetDelay1( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->Delay1 = x; } static inline void Of_ObjSetDelay2( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->Delay2 = x; } static inline void Of_ObjSetRequired( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->Required = x; } static inline void Of_ObjSetRefNum( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->nRefs = x; } static inline void Of_ObjSetFlow( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->Flow = x; } static inline void Of_ObjUpdateRequired( Of_Man_t * p,int i, int x ) { if ( Of_ObjRequired(p, i) > x ) Of_ObjSetRequired(p, i, x); } static inline int Of_ObjRefInc( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->nRefs++; } static inline int Of_ObjRefDec( Of_Man_t * p, int i ) { return --Of_ObjData(p, i)->nRefs; } static inline int * Of_ObjCutBestP( Of_Man_t * p, int iObj ) { assert(iObj>0 && iObjpGia));return Of_ManCutSet( p, Of_ObjCutBest(p, iObj) ); } static inline void Of_ObjSetCutBestP( Of_Man_t * p, int * pCutSet, int iObj, int * pCut ) { Of_ObjSetCutBest( p, iObj, Of_ObjCutSetId(p, iObj) + Of_CutHandle(pCutSet, pCut) ); } static inline int * Of_ObjCutBestP2( Of_Man_t * p, int iObj ) { assert(iObj>0 && iObjpGia));return Of_ManCutSet( p, Of_ObjCutBest2(p, iObj) ); } static inline void Of_ObjSetCutBestP2( Of_Man_t * p, int * pCutSet, int iObj, int * pCut ) { Of_ObjSetCutBest2( p, iObj, Of_ObjCutSetId(p, iObj) + Of_CutHandle(pCutSet, pCut) ); } #define Of_SetForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += Of_CutSize(pCut) + OF_CUT_EXTRA ) #define Of_ObjForEachCut( pCuts, i, nCuts ) for ( i = 0, i < nCuts; i++ ) #define Of_CutForEachVar( pCut, iVar, i ) for ( i = 0; i < Of_CutSize(pCut) && (iVar = Of_CutVar(pCut,i)); i++ ) #define Of_CutForEachVarFlag( pCut, iVar, Flag, i ) for ( i = 0; i < Of_CutSize(pCut) && (iVar = Of_CutVar(pCut,i)) && ((Flag = Of_CutFlag(pCut,i)), 1); i++ ) //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Area flow.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Of_ManAreaFlow( Of_Man_t * p ) { int AreaUnit = 1000; int i, Id, Total = 0; Gia_Obj_t * pObj; assert( p->pGia->pRefs == NULL ); Gia_ManCreateRefs( p->pGia ); Of_ObjSetFlow( p, 0, 0 ); Gia_ManForEachCiId( p->pGia, Id, i ) Of_ObjSetFlow( p, Id, 0 ); Gia_ManForEachAnd( p->pGia, pObj, Id ) Of_ObjSetFlow( p, Id, (Gia_ObjFanin0(pObj)->Value + Gia_ObjFanin1(pObj)->Value + AreaUnit) / Gia_ObjRefNum(p->pGia, pObj) ); Gia_ManForEachCo( p->pGia, pObj, i ) Total += Gia_ObjFanin0(pObj)->Value; ABC_FREE( p->pGia->pRefs ); if ( 1 ) return; printf( "CI = %5d. ", Gia_ManCiNum(p->pGia) ); printf( "CO = %5d. ", Gia_ManCoNum(p->pGia) ); printf( "And = %8d. ", Gia_ManAndNum(p->pGia) ); printf( "Area = %8d. ", Total/AreaUnit ); printf( "\n" ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Of_Man_t * Of_StoCreate( Gia_Man_t * pGia, Jf_Par_t * pPars ) { extern void Mf_ManSetFlowRefs( Gia_Man_t * p, Vec_Int_t * vRefs ); Of_Man_t * p; Vec_Int_t * vFlowRefs; int * pRefs = NULL; assert( pPars->nCutNum > 1 && pPars->nCutNum <= OF_CUT_MAX ); assert( pPars->nLutSize > 1 && pPars->nLutSize <= OF_LEAF_MAX ); ABC_FREE( pGia->pRefs ); Vec_IntFreeP( &pGia->vCellMapping ); if ( Gia_ManHasChoices(pGia) ) Gia_ManSetPhase(pGia); // create references ABC_FREE( pGia->pRefs ); vFlowRefs = Vec_IntAlloc(0); Mf_ManSetFlowRefs( pGia, vFlowRefs ); pGia->pRefs= Vec_IntReleaseArray(vFlowRefs); Vec_IntFree(vFlowRefs); // create p = ABC_CALLOC( Of_Man_t, 1 ); p->clkStart = Abc_Clock(); p->pGia = pGia; p->pPars = pPars; p->pObjs = ABC_CALLOC( Of_Obj_t, Gia_ManObjNum(pGia) ); p->iCur = 2; // other Vec_PtrGrow( &p->vPages, 256 ); // cut memory Vec_IntFill( &p->vCutSets, Gia_ManObjNum(pGia), 0 ); // cut offsets Vec_IntFill( &p->vCutFlows, Gia_ManObjNum(pGia), 0 ); // cut area Vec_IntFill( &p->vCutDelays,Gia_ManObjNum(pGia), 0 ); // cut delay Vec_IntGrow( &p->vCutRefs, 1000 ); // cut references if ( pPars->fCutMin ) p->vTtMem = Vec_MemAllocForTT( 6, 0 ); // compute area flow pRefs = pGia->pRefs; pGia->pRefs = NULL; Of_ManAreaFlow( p ); pGia->pRefs = pRefs; return p; } void Of_StoDelete( Of_Man_t * p ) { Vec_PtrFreeData( &p->vPages ); Vec_PtrErase( &p->vPages ); Vec_IntErase( &p->vCutSets ); Vec_IntErase( &p->vCutFlows ); Vec_IntErase( &p->vCutDelays ); Vec_IntErase( &p->vCutRefs ); ABC_FREE( p->pObjs ); // matching if ( p->pPars->fCutMin ) Vec_MemHashFree( p->vTtMem ); if ( p->pPars->fCutMin ) Vec_MemFree( p->vTtMem ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Of_CutComputeTruth6( Of_Man_t * p, Of_Cut_t * pCut0, Of_Cut_t * pCut1, int fCompl0, int fCompl1, Of_Cut_t * pCutR, int fIsXor ) { // extern int Of_ManTruthCanonicize( word * t, int nVars ); int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t; word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc)); word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc)); if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0; if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1; t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t = fIsXor ? t0 ^ t1 : t0 & t1; if ( (fCompl = (int)(t & 1)) ) t = ~t; pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves ); assert( (int)(t & 1) == 0 ); truthId = Vec_MemHashInsert(p->vTtMem, &t); pCutR->iFunc = Abc_Var2Lit( truthId, fCompl ); assert( (int)pCutR->nLeaves <= nOldSupp ); return (int)pCutR->nLeaves < nOldSupp; } static inline int Of_CutComputeTruthMux6( Of_Man_t * p, Of_Cut_t * pCut0, Of_Cut_t * pCut1, Of_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Of_Cut_t * pCutR ) { int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t; word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc)); word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc)); word tC = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCutC->iFunc)); if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0; if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1; if ( Abc_LitIsCompl(pCutC->iFunc) ^ fComplC ) tC = ~tC; t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); tC = Abc_Tt6Expand( tC, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t = (tC & t1) | (~tC & t0); if ( (fCompl = (int)(t & 1)) ) t = ~t; pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves ); assert( (int)(t & 1) == 0 ); truthId = Vec_MemHashInsert(p->vTtMem, &t); pCutR->iFunc = Abc_Var2Lit( truthId, fCompl ); assert( (int)pCutR->nLeaves <= nOldSupp ); return (int)pCutR->nLeaves < nOldSupp; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Of_CutCountBits( word i ) { i = i - ((i >> 1) & 0x5555555555555555); i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333); i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F); return (i*(0x0101010101010101))>>56; } static inline word Of_CutGetSign( int * pLeaves, int nLeaves ) { word Sign = 0; int i; for ( i = 0; i < nLeaves; i++ ) Sign |= ((word)1) << (pLeaves[i] & 0x3F); return Sign; } static inline int Of_CutCreateUnit( Of_Cut_t * p, int i ) { p->Delay = 0; p->Flow = 0; p->iFunc = 2; p->nLeaves = 1; p->pLeaves[0] = i; p->Sign = ((word)1) << (i & 0x3F); return 1; } static inline void Of_Cutprintf( Of_Man_t * p, Of_Cut_t * pCut ) { int i, nDigits = Abc_Base10Log(Gia_ManObjNum(p->pGia)); printf( "%d {", pCut->nLeaves ); for ( i = 0; i < (int)pCut->nLeaves; i++ ) printf( " %*d", nDigits, pCut->pLeaves[i] ); for ( ; i < (int)p->pPars->nLutSize; i++ ) printf( " %*s", nDigits, " " ); printf( " } D = %4d A = %9d F = %6d ", pCut->Delay, pCut->Flow, pCut->iFunc ); if ( p->vTtMem ) Dau_DsdPrintFromTruth( Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut->iFunc)), pCut->nLeaves ); else printf( "\n" ); } static inline int Of_ManPrepareCuts( Of_Cut_t * pCuts, Of_Man_t * p, int iObj, int fAddUnit ) { if ( Of_ObjHasCuts(p, iObj) ) { Of_Cut_t * pMfCut = pCuts; int i, * pCut, * pList = Of_ObjCutSet(p, iObj); Of_SetForEachCut( pList, pCut, i ) { pMfCut->Delay = 0; pMfCut->Flow = 0; pMfCut->iFunc = Of_CutFunc( pCut ); pMfCut->nLeaves = Of_CutSize( pCut ); pMfCut->Sign = Of_CutGetSign( pCut+1, Of_CutSize(pCut) ); memcpy( pMfCut->pLeaves, pCut+1, sizeof(int) * Of_CutSize(pCut) ); pMfCut++; } if ( fAddUnit && pCuts->nLeaves > 1 ) return pList[0] + Of_CutCreateUnit( pMfCut, iObj ); return pList[0]; } return Of_CutCreateUnit( pCuts, iObj ); } static inline int Of_ManSaveCuts( Of_Man_t * p, Of_Cut_t ** pCuts, int nCuts ) { int i, * pPlace, iCur, nInts = 1, nCutsNew = 0; for ( i = 0; i < nCuts; i++ ) nInts += pCuts[i]->nLeaves + OF_CUT_EXTRA, nCutsNew++; if ( (p->iCur & 0xFFFF) + nInts > 0xFFFF ) p->iCur = ((p->iCur >> 16) + 1) << 16; if ( Vec_PtrSize(&p->vPages) == (p->iCur >> 16) ) Vec_PtrPush( &p->vPages, ABC_CALLOC(int, (1<<16)) ); iCur = p->iCur; p->iCur += nInts; pPlace = Of_ManCutSet( p, iCur ); *pPlace++ = nCutsNew; for ( i = 0; i < nCuts; i++ ) { *pPlace++ = Of_CutSetBoth( pCuts[i]->nLeaves, pCuts[i]->iFunc ); memcpy( pPlace, pCuts[i]->pLeaves, sizeof(int) * pCuts[i]->nLeaves ); pPlace += pCuts[i]->nLeaves; memset( pPlace, 0xFF, sizeof(int) * (OF_CUT_EXTRA - 1) ); pPlace += OF_CUT_EXTRA - 1; } return iCur; } static inline void Of_ManLiftCuts( Of_Man_t * p, int iObj ) { int i, k, * pCut, * pList = Of_ObjCutSet(p, iObj); assert( Of_ObjHasCuts(p, iObj) ); Of_SetForEachCut( pList, pCut, i ) { for ( k = 1; k <= Of_CutSize(pCut); k++ ) pCut[k] = Abc_Var2Lit(pCut[k], 0); } } static inline void Of_CutPrint( int * pCut ) { int k, iVar; printf( "Cut with %d inputs and function %3d : { ", Of_CutSize(pCut), Of_CutFunc(pCut) == OF_NO_FUNC ? 0 : Of_CutFunc(pCut) ); Of_CutForEachVar( pCut, iVar, k ) printf( "%d ", iVar ); printf( "}\n" ); } /**Function************************************************************* Synopsis [Check correctness of cuts.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Of_CutCheck( Of_Cut_t * pBase, Of_Cut_t * pCut ) // check if pCut is contained in pBase { int nSizeB = pBase->nLeaves; int nSizeC = pCut->nLeaves; int i, * pB = pBase->pLeaves; int k, * pC = pCut->pLeaves; for ( i = 0; i < nSizeC; i++ ) { for ( k = 0; k < nSizeB; k++ ) if ( pC[i] == pB[k] ) break; if ( k == nSizeB ) return 0; } return 1; } static inline int Of_SetCheckArray( Of_Cut_t ** ppCuts, int nCuts ) { Of_Cut_t * pCut0, * pCut1; int i, k, m, n, Value; assert( nCuts > 0 ); for ( i = 0; i < nCuts; i++ ) { pCut0 = ppCuts[i]; assert( pCut0->nLeaves <= OF_LEAF_MAX ); assert( pCut0->Sign == Of_CutGetSign(pCut0->pLeaves, pCut0->nLeaves) ); // check duplicates for ( m = 0; m < (int)pCut0->nLeaves; m++ ) for ( n = m + 1; n < (int)pCut0->nLeaves; n++ ) assert( pCut0->pLeaves[m] < pCut0->pLeaves[n] ); // check pairs for ( k = 0; k < nCuts; k++ ) { pCut1 = ppCuts[k]; if ( pCut0 == pCut1 ) continue; // check containments Value = Of_CutCheck( pCut0, pCut1 ); assert( Value == 0 ); } } return 1; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Of_CutMergeOrder( Of_Cut_t * pCut0, Of_Cut_t * pCut1, Of_Cut_t * pCut, int nLutSize ) { int nSize0 = pCut0->nLeaves; int nSize1 = pCut1->nLeaves; int i, * pC0 = pCut0->pLeaves; int k, * pC1 = pCut1->pLeaves; int c, * pC = pCut->pLeaves; // the case of the largest cut sizes if ( nSize0 == nLutSize && nSize1 == nLutSize ) { for ( i = 0; i < nSize0; i++ ) { if ( pC0[i] != pC1[i] ) return 0; pC[i] = pC0[i]; } pCut->nLeaves = nLutSize; pCut->iFunc = OF_NO_FUNC; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; } // compare two cuts with different numbers i = k = c = 0; if ( nSize0 == 0 ) goto FlushCut1; if ( nSize1 == 0 ) goto FlushCut0; while ( 1 ) { if ( c == nLutSize ) return 0; if ( pC0[i] < pC1[k] ) { pC[c++] = pC0[i++]; if ( i >= nSize0 ) goto FlushCut1; } else if ( pC0[i] > pC1[k] ) { pC[c++] = pC1[k++]; if ( k >= nSize1 ) goto FlushCut0; } else { pC[c++] = pC0[i++]; k++; if ( i >= nSize0 ) goto FlushCut1; if ( k >= nSize1 ) goto FlushCut0; } } FlushCut0: if ( c + nSize0 > nLutSize + i ) return 0; while ( i < nSize0 ) pC[c++] = pC0[i++]; pCut->nLeaves = c; pCut->iFunc = OF_NO_FUNC; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; FlushCut1: if ( c + nSize1 > nLutSize + k ) return 0; while ( k < nSize1 ) pC[c++] = pC1[k++]; pCut->nLeaves = c; pCut->iFunc = OF_NO_FUNC; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; } static inline int Of_CutMergeOrderMux( Of_Cut_t * pCut0, Of_Cut_t * pCut1, Of_Cut_t * pCut2, Of_Cut_t * pCut, int nLutSize ) { int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves; int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves; int x2, i2 = 0, nSize2 = pCut2->nLeaves, * pC2 = pCut2->pLeaves; int xMin, c = 0, * pC = pCut->pLeaves; while ( 1 ) { x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0]; x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1]; x2 = (i2 == nSize2) ? ABC_INFINITY : pC2[i2]; xMin = Abc_MinInt( Abc_MinInt(x0, x1), x2 ); if ( xMin == ABC_INFINITY ) break; if ( c == nLutSize ) return 0; pC[c++] = xMin; if (x0 == xMin) i0++; if (x1 == xMin) i1++; if (x2 == xMin) i2++; } pCut->nLeaves = c; pCut->iFunc = OF_NO_FUNC; pCut->Sign = pCut0->Sign | pCut1->Sign | pCut2->Sign; return 1; } static inline int Of_SetCutIsContainedOrder( Of_Cut_t * pBase, Of_Cut_t * pCut ) // check if pCut is contained in pBase { int i, nSizeB = pBase->nLeaves; int k, nSizeC = pCut->nLeaves; if ( nSizeB == nSizeC ) { for ( i = 0; i < nSizeB; i++ ) if ( pBase->pLeaves[i] != pCut->pLeaves[i] ) return 0; return 1; } assert( nSizeB > nSizeC ); if ( nSizeC == 0 ) return 1; for ( i = k = 0; i < nSizeB; i++ ) { if ( pBase->pLeaves[i] > pCut->pLeaves[k] ) return 0; if ( pBase->pLeaves[i] == pCut->pLeaves[k] ) { if ( ++k == nSizeC ) return 1; } } return 0; } static inline int Of_SetLastCutIsContained( Of_Cut_t ** pCuts, int nCuts ) { int i; for ( i = 0; i < nCuts; i++ ) if ( pCuts[i]->nLeaves <= pCuts[nCuts]->nLeaves && (pCuts[i]->Sign & pCuts[nCuts]->Sign) == pCuts[i]->Sign && Of_SetCutIsContainedOrder(pCuts[nCuts], pCuts[i]) ) return 1; return 0; } static inline int Of_SetLastCutContainsArea( Of_Cut_t ** pCuts, int nCuts ) { int i, k, fChanges = 0; for ( i = 0; i < nCuts; i++ ) if ( pCuts[nCuts]->nLeaves < pCuts[i]->nLeaves && (pCuts[nCuts]->Sign & pCuts[i]->Sign) == pCuts[nCuts]->Sign && Of_SetCutIsContainedOrder(pCuts[i], pCuts[nCuts]) ) pCuts[i]->nLeaves = OF_NO_LEAF, fChanges = 1; if ( !fChanges ) return nCuts; for ( i = k = 0; i <= nCuts; i++ ) { if ( pCuts[i]->nLeaves == OF_NO_LEAF ) continue; if ( k < i ) ABC_SWAP( Of_Cut_t *, pCuts[k], pCuts[i] ); k++; } return k - 1; } static inline int Of_CutCompareArea( Of_Cut_t * pCut0, Of_Cut_t * pCut1 ) { if ( pCut0->Delay < pCut1->Delay ) return -1; if ( pCut0->Delay > pCut1->Delay ) return 1; if ( pCut0->Flow < pCut1->Flow ) return -1; if ( pCut0->Flow > pCut1->Flow ) return 1; if ( pCut0->nLeaves < pCut1->nLeaves ) return -1; if ( pCut0->nLeaves > pCut1->nLeaves ) return 1; return 0; } static inline void Of_SetSortByArea( Of_Cut_t ** pCuts, int nCuts ) { int i; for ( i = nCuts; i > 0; i-- ) { if ( Of_CutCompareArea(pCuts[i - 1], pCuts[i]) < 0 )//!= 1 ) return; ABC_SWAP( Of_Cut_t *, pCuts[i - 1], pCuts[i] ); } } static inline int Of_SetAddCut( Of_Cut_t ** pCuts, int nCuts, int nCutNum ) { if ( nCuts == 0 ) return 1; nCuts = Of_SetLastCutContainsArea(pCuts, nCuts); Of_SetSortByArea( pCuts, nCuts ); return Abc_MinInt( nCuts + 1, nCutNum - 1 ); } static inline int Of_CutArea( Of_Man_t * p, int nLeaves ) { if ( nLeaves < 2 ) return 0; return nLeaves + p->pPars->nAreaTuner; } static inline void Of_CutParams( Of_Man_t * p, Of_Cut_t * pCut, int nGiaRefs ) { int i, nLeaves = pCut->nLeaves; assert( nLeaves <= p->pPars->nLutSize ); pCut->Delay = 0; pCut->Flow = 0; for ( i = 0; i < nLeaves; i++ ) { pCut->Delay = Abc_MaxInt( pCut->Delay, Of_ObjCutDelay(p, pCut->pLeaves[i]) ); pCut->Flow += Of_ObjCutFlow(p, pCut->pLeaves[i]); } pCut->Delay += (int)(nLeaves > 1); pCut->Flow = (pCut->Flow + 100 * Of_CutArea(p, nLeaves)) / (nGiaRefs ? nGiaRefs : 1); } void Of_ObjMergeOrder( Of_Man_t * p, int iObj ) { Of_Cut_t pCuts0[OF_CUT_MAX], pCuts1[OF_CUT_MAX], pCuts[OF_CUT_MAX], * pCutsR[OF_CUT_MAX]; Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj); int nGiaRefs = 2*Gia_ObjRefNumId(p->pGia, iObj); int nLutSize = p->pPars->nLutSize; int nCutNum = p->pPars->nCutNum; int nCuts0 = Of_ManPrepareCuts(pCuts0, p, Gia_ObjFaninId0(pObj, iObj), 1); int nCuts1 = Of_ManPrepareCuts(pCuts1, p, Gia_ObjFaninId1(pObj, iObj), 1); int fComp0 = Gia_ObjFaninC0(pObj); int fComp1 = Gia_ObjFaninC1(pObj); int iSibl = Gia_ObjSibl(p->pGia, iObj); Of_Cut_t * pCut0, * pCut1, * pCut0Lim = pCuts0 + nCuts0, * pCut1Lim = pCuts1 + nCuts1; int i, nCutsR = 0; assert( !Gia_ObjIsBuf(pObj) ); for ( i = 0; i < nCutNum; i++ ) pCutsR[i] = pCuts + i; if ( iSibl ) { Of_Cut_t pCuts2[OF_CUT_MAX]; Gia_Obj_t * pObjE = Gia_ObjSiblObj(p->pGia, iObj); int fCompE = Gia_ObjPhase(pObj) ^ Gia_ObjPhase(pObjE); int nCuts2 = Of_ManPrepareCuts(pCuts2, p, iSibl, 0); Of_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2; for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ ) { *pCutsR[nCutsR] = *pCut2; if ( p->pPars->fCutMin ) pCutsR[nCutsR]->iFunc = Abc_LitNotCond( pCutsR[nCutsR]->iFunc, fCompE ); Of_CutParams( p, pCutsR[nCutsR], nGiaRefs ); nCutsR = Of_SetAddCut( pCutsR, nCutsR, nCutNum ); } } if ( Gia_ObjIsMuxId(p->pGia, iObj) ) { Of_Cut_t pCuts2[OF_CUT_MAX]; int nCuts2 = Of_ManPrepareCuts(pCuts2, p, Gia_ObjFaninId2(p->pGia, iObj), 1); int fComp2 = Gia_ObjFaninC2(p->pGia, pObj); Of_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2; p->CutCount[0] += nCuts0 * nCuts1 * nCuts2; for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ ) for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ ) for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ ) { if ( Of_CutCountBits(pCut0->Sign | pCut1->Sign | pCut2->Sign) > nLutSize ) continue; p->CutCount[1]++; if ( !Of_CutMergeOrderMux(pCut0, pCut1, pCut2, pCutsR[nCutsR], nLutSize) ) continue; if ( Of_SetLastCutIsContained(pCutsR, nCutsR) ) continue; p->CutCount[2]++; if ( p->pPars->fCutMin && Of_CutComputeTruthMux6(p, pCut0, pCut1, pCut2, fComp0, fComp1, fComp2, pCutsR[nCutsR]) ) pCutsR[nCutsR]->Sign = Of_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves); Of_CutParams( p, pCutsR[nCutsR], nGiaRefs ); nCutsR = Of_SetAddCut( pCutsR, nCutsR, nCutNum ); } } else { int fIsXor = Gia_ObjIsXor(pObj); p->CutCount[0] += nCuts0 * nCuts1; for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ ) for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ ) { if ( (int)(pCut0->nLeaves + pCut1->nLeaves) > nLutSize && Of_CutCountBits(pCut0->Sign | pCut1->Sign) > nLutSize ) continue; p->CutCount[1]++; if ( !Of_CutMergeOrder(pCut0, pCut1, pCutsR[nCutsR], nLutSize) ) continue; if ( Of_SetLastCutIsContained(pCutsR, nCutsR) ) continue; p->CutCount[2]++; if ( p->pPars->fCutMin && Of_CutComputeTruth6(p, pCut0, pCut1, fComp0, fComp1, pCutsR[nCutsR], fIsXor) ) pCutsR[nCutsR]->Sign = Of_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves); Of_CutParams( p, pCutsR[nCutsR], nGiaRefs ); nCutsR = Of_SetAddCut( pCutsR, nCutsR, nCutNum ); } } // debug printout if ( 0 ) { printf( "*** Obj = %d\n", iObj ); for ( i = 0; i < nCutsR; i++ ) Of_Cutprintf( p, pCutsR[i] ); printf( "\n" ); } // verify assert( nCutsR > 0 && nCutsR < nCutNum ); //assert( Of_SetCheckArray(pCutsR, nCutsR) ); // store the cutset Of_ObjSetCutFlow( p, iObj, pCutsR[0]->Flow ); Of_ObjSetCutDelay( p, iObj, pCutsR[0]->Delay ); *Vec_IntEntryP(&p->vCutSets, iObj) = Of_ManSaveCuts(p, pCutsR, nCutsR); p->CutCount[3] += nCutsR; } void Of_ManComputeCuts( Of_Man_t * p ) { Gia_Obj_t * pObj; int i, iFanin; Gia_ManForEachAnd( p->pGia, pObj, i ) if ( Gia_ObjIsBuf(pObj) ) { iFanin = Gia_ObjFaninId0(pObj, i); Of_ObjSetCutFlow( p, i, Of_ObjCutFlow(p, iFanin) ); Of_ObjSetCutDelay( p, i, Of_ObjCutDelay(p, iFanin) ); } else Of_ObjMergeOrder( p, i ); Gia_ManForEachAnd( p->pGia, pObj, i ) if ( !Gia_ObjIsBuf(pObj) ) Of_ManLiftCuts( p, i ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Of_ManPrintStats( Of_Man_t * p, char * pTitle ) { if ( !p->pPars->fVerbose ) return; printf( "%s : ", pTitle ); printf( "Delay =%8.2f ", Of_Int2Flt((int)p->pPars->Delay) ); printf( "Area =%8d ", (int)p->pPars->Area ); printf( "Edge =%9d ", (int)p->pPars->Edge ); Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart ); fflush( stdout ); } void Of_ManPrintInit( Of_Man_t * p ) { int nChoices; if ( !p->pPars->fVerbose ) return; printf( "LutSize = %d ", p->pPars->nLutSize ); printf( "CutNum = %d ", p->pPars->nCutNum ); printf( "Iter = %d ", p->pPars->nRounds + p->pPars->nRoundsEla ); printf( "Coarse = %d ", p->pPars->fCoarsen ); if ( p->pPars->fCutMin ) printf( "Funcs = %d ", Vec_MemEntryNum(p->vTtMem) ); nChoices = Gia_ManChoiceNum( p->pGia ); if ( nChoices ) printf( "Choices = %d ", nChoices ); printf( "\n" ); printf( "Computing cuts...\r" ); fflush( stdout ); } void Of_ManPrintQuit( Of_Man_t * p ) { float MemGia = Gia_ManMemory(p->pGia) / (1<<20); float MemMan = 1.0 * sizeof(Of_Obj_t) * Gia_ManObjNum(p->pGia) / (1<<20); float MemCuts = 1.0 * sizeof(int) * (1 << 16) * Vec_PtrSize(&p->vPages) / (1<<20); float MemTt = p->vTtMem ? Vec_MemMemory(p->vTtMem) / (1<<20) : 0; if ( p->CutCount[0] == 0 ) p->CutCount[0] = 1; if ( !p->pPars->fVerbose ) return; printf( "CutPair = %.0f ", p->CutCount[0] ); printf( "Merge = %.0f (%.1f) ", p->CutCount[1], 1.0*p->CutCount[1]/Gia_ManAndNum(p->pGia) ); printf( "Eval = %.0f (%.1f) ", p->CutCount[2], 1.0*p->CutCount[2]/Gia_ManAndNum(p->pGia) ); printf( "Cut = %.0f (%.1f) ", p->CutCount[3], 1.0*p->CutCount[3]/Gia_ManAndNum(p->pGia) ); // printf( "Use = %.0f (%.1f) ", p->CutCount[4], 1.0*p->CutCount[4]/Gia_ManAndNum(p->pGia) ); // printf( "Mat = %.0f (%.1f) ", p->CutCount[5], 1.0*p->CutCount[5]/Gia_ManAndNum(p->pGia) ); // printf( "Equ = %d (%.2f %%) ", p->nCutUseAll, 100.0*p->nCutUseAll /p->CutCount[0] ); printf( "\n" ); printf( "Gia = %.2f MB ", MemGia ); printf( "Man = %.2f MB ", MemMan ); printf( "Cut = %.2f MB ", MemCuts ); if ( p->pPars->fCutMin ) printf( "TT = %.2f MB ", MemTt ); printf( "Total = %.2f MB ", MemGia + MemMan + MemCuts + MemTt ); // printf( "\n" ); Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart ); fflush( stdout ); } /**Function************************************************************* Synopsis [Technology mappping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ /* static inline int Of_ManComputeForwardCut( Of_Man_t * p, int iObj, int * pCut ) { int k, iVar, Delay = 0, Area = Of_CutArea(p, Of_CutSize(pCut)); int DelayLut1 = p->pPars->nDelayLut1; Of_CutForEachVar( pCut, iVar, k ) { Delay = Abc_MaxInt( Delay, Of_ObjDelay1(p, iVar) + DelayLut1 ); if ( p->Iter ) Area += Of_ObjRefNum(p, iVar) ? 0 : Of_ObjFlow(p, iVar); } Of_CutSetDelay1( pCut, Delay ); if ( p->Iter ) Of_CutSetAreaFlow( pCut, Area ); return Delay; } static inline void Of_ManComputeForwardObj( Of_Man_t * p, int iObj ) { int Delay1 = ABC_INFINITY, Area1 = ABC_INFINITY; int * pList = Of_ObjCutSet(p, iObj); int i, * pCut, * pCutMin = NULL, * pCutMin2 = NULL; // compute cut arrivals Of_SetForEachCut( pList, pCut, i ) { int Delay1This = Of_ManComputeForwardCut(p, iObj, pCut); if ( Delay1 > Delay1This ) { Delay1 = Delay1This; pCutMin = pCut; } if ( p->Iter && Area1 > Of_CutAreaFlow(pCut) ) { Area1 = Of_CutAreaFlow(pCut); pCutMin2 = pCut; } } // if mapping is present, set object arrival equal to cut arrival if ( Of_ObjRefNum(p, iObj) ) { pCutMin = Of_ObjCutBestP(p, iObj); Delay1 = Of_CutDelay1( pCutMin ); Of_ObjSetDelay1( p, iObj, Delay1 ); if ( p->Iter ) Of_ObjSetFlow( p, iObj, Of_CutAreaFlow(pCutMin) ); } else { if ( p->Iter == 0 ) { Of_ObjSetCutBestP( p, pList, iObj, pCutMin ); Of_ObjSetDelay1( p, iObj, Delay1 ); } else { Of_ObjSetCutBestP( p, pList, iObj, pCutMin2 ); Of_ObjSetDelay1( p, iObj, Of_CutDelay1(pCutMin2) ); Of_ObjSetFlow( p, iObj, Of_CutAreaFlow(pCutMin2) ); } } } */ /* int * Of_CutReferChooseCut( Of_Man_t * p, int Var, int Required, int fSetBest ) { int i, CostMin = ABC_INFINITY; int * pCutMin = NULL, * pList = Of_ObjCutSet(p, Var); int * pCut = Of_ObjCutBestP(p, Var); assert( Of_CutDelay1(pCut) <= Required ); // return pCut; // choose cut with smaller area Of_SetForEachCut( pList, pCut, i ) { if ( Of_CutDelay1(pCut) > Required ) continue; if ( CostMin > Of_CutAreaFlow(pCut) ) { CostMin = Of_CutAreaFlow(pCut); pCutMin = pCut; } } assert( pCutMin != NULL ); assert( Of_CutDelay1(pCutMin) <= Required ); if ( fSetBest ) Of_ObjSetCutBestP( p, pList, Var, pCutMin ); return pCutMin; } int Of_CutRef2_rec( Of_Man_t * p, int * pCut, int Required, int fSetBest ) { int i, Var, Count = Of_CutArea(p, Of_CutSize(pCut)); assert( Of_CutDelay1(pCut) <= Required ); Required -= p->pPars->nDelayLut1; Of_CutForEachVar( pCut, Var, i ) { if ( !Of_ObjCutBest(p, Var) ) continue; if ( !fSetBest ) Vec_IntPush( &p->vCutRefs, Var ); if ( Of_ObjRefInc(p, Var) ) continue; Count += Of_CutRef2_rec( p, Of_CutReferChooseCut(p, Var, Required, fSetBest), Required, fSetBest ); } return Count; } static inline int Of_CutAreaDerefed2( Of_Man_t * p, int * pCut, int Required ) { int Ela1, i, iObj; assert( Vec_IntSize(&p->vCutRefs) == 0 ); Ela1 = Of_CutRef2_rec( p, pCut, Required, 0 ); Vec_IntForEachEntry( &p->vCutRefs, iObj, i ) Of_ObjRefDec(p, iObj); Vec_IntClear( &p->vCutRefs ); return Ela1; } */ static inline int Of_ManComputeForwardCut( Of_Man_t * p, int iObj, int * pCut ) { int k, iVar, Delay = 0; int DelayLut1 = p->pPars->nDelayLut1; Of_CutForEachVar( pCut, iVar, k ) Delay = Abc_MaxInt( Delay, Of_ObjDelay1(p, iVar) + DelayLut1 ); Of_CutSetDelay1( pCut, Delay ); return Delay; } static inline int Of_ManComputeForwardCutArea( Of_Man_t * p, int iObj, int * pCut ) { int k, iVar, Area = 100 * Of_CutArea(p, Of_CutSize(pCut)); Of_CutForEachVar( pCut, iVar, k ) Area += Of_ObjFlow(p, iVar); return Area / Abc_MaxInt(1, Of_ObjRefNum(p, iObj)); } static inline void Of_ManComputeForwardObj( Of_Man_t * p, int iObj ) { int Delay1 = ABC_INFINITY; int i, * pCut, * pCutMin = NULL, * pList = Of_ObjCutSet(p, iObj); // compute cut arrivals Of_SetForEachCut( pList, pCut, i ) { int Delay1This = Of_ManComputeForwardCut(p, iObj, pCut); if ( Delay1 > Delay1This ) { Delay1 = Delay1This; pCutMin = pCut; } } // if mapping is present, set object arrival equal to cut arrival if ( Of_ObjRefNum(p, iObj) ) pCutMin = Of_ObjCutBestP(p, iObj); Of_ObjSetCutBestP( p, pList, iObj, pCutMin ); Of_ObjSetDelay1( p, iObj, Of_CutDelay1(pCutMin) ); if ( p->Iter ) Of_ObjSetFlow( p, iObj, Of_ManComputeForwardCutArea(p, iObj, pCutMin) ); } void Of_ManComputeForward1( Of_Man_t * p ) { Gia_Obj_t * pObj; int i; Gia_ManForEachAnd( p->pGia, pObj, i ) if ( Gia_ObjIsBuf(pObj) ) Of_ObjSetDelay1( p, i, Of_ObjDelay1(p, Gia_ObjFaninId0(pObj, i)) ); else Of_ManComputeForwardObj( p, i ); } int Of_CutRef_rec( Of_Man_t * p, int * pCut ) { int i, Var, Count = (p->Iter & 1) ? 1 : Of_CutArea(p, Of_CutSize(pCut)); Of_CutForEachVar( pCut, Var, i ) if ( Of_ObjCutBest(p, Var) && !Of_ObjRefInc(p, Var) ) Count += Of_CutRef_rec( p, Of_ObjCutBestP(p, Var) ); return Count; } int Of_CutDeref_rec( Of_Man_t * p, int * pCut ) { int i, Var, Count = (p->Iter & 1) ? 1 : Of_CutArea(p, Of_CutSize(pCut)); Of_CutForEachVar( pCut, Var, i ) if ( Of_ObjCutBest(p, Var) && !Of_ObjRefDec(p, Var) ) Count += Of_CutDeref_rec( p, Of_ObjCutBestP(p, Var) ); return Count; } static inline int Of_CutAreaDerefed( Of_Man_t * p, int * pCut ) { int Ela1 = Of_CutRef_rec( p, pCut ); int Ela2 = Of_CutDeref_rec( p, pCut ); assert( Ela1 == Ela2 ); return Ela1; } int Of_CutRef2_rec( Of_Man_t * p, int * pCut ) { int i, Var, Count = (p->Iter & 1) ? 1 : Of_CutArea(p, Of_CutSize(pCut)); Of_CutForEachVar( pCut, Var, i ) { if ( !Of_ObjCutBest(p, Var) ) continue; Vec_IntPush( &p->vCutRefs, Var ); if ( Of_ObjRefInc(p, Var) ) continue; Count += Of_CutRef2_rec( p, Of_ObjCutBestP(p, Var) ); } return Count; } static inline int Of_CutAreaDerefed2( Of_Man_t * p, int * pCut ) { int Ela1, i, iObj; assert( Vec_IntSize(&p->vCutRefs) == 0 ); Ela1 = Of_CutRef2_rec( p, pCut ); Vec_IntForEachEntry( &p->vCutRefs, iObj, i ) Of_ObjRefDec(p, iObj); Vec_IntClear( &p->vCutRefs ); return Ela1; } static inline void Of_ManComputeForwardObj2( Of_Man_t * p, int iObj ) { int Delay, Required = Of_ObjRequired(p, iObj); int AreaBef = 0, AreaAft = 0, Area, AreaMin = ABC_INFINITY; int k, * pCut, * pCutMin = NULL, * pList = Of_ObjCutSet(p, iObj); if ( Of_ObjRefNum(p, iObj) ) AreaBef = Of_CutDeref_rec( p, Of_ObjCutBestP(p, iObj) ); Of_SetForEachCut( pList, pCut, k ) { Delay = Of_ManComputeForwardCut(p, iObj, pCut); if ( Delay > Required ) continue; Area = Of_CutAreaDerefed2( p, pCut ); if ( AreaMin > Area ) { AreaMin = Area; pCutMin = pCut; } } assert( pCutMin != NULL ); Of_ObjSetCutBestP( p, pList, iObj, pCutMin ); if ( Of_ObjRefNum(p, iObj) ) AreaAft = Of_CutRef_rec( p, pCutMin ); assert( AreaAft <= AreaBef ); Delay = Of_CutDelay1(pCutMin); assert( Delay <= Required ); Of_ObjSetDelay1( p, iObj, Delay ); } void Of_ManComputeForward2( Of_Man_t * p ) { Gia_Obj_t * pObj; int i; Gia_ManForEachAnd( p->pGia, pObj, i ) if ( Gia_ObjIsBuf(pObj) ) Of_ObjSetDelay1( p, i, Of_ObjDelay1(p, Gia_ObjFaninId0(pObj, i)) ); else Of_ManComputeForwardObj2( p, i ); } static inline int Of_ManComputeOutputRequired( Of_Man_t * p, int fCleanRefs ) { int i, Id, Delay = 0; for ( i = 0; i < Gia_ManObjNum(p->pGia); i++ ) { Of_ObjSetRequired( p, i, ABC_INFINITY ); if ( fCleanRefs ) Of_ObjSetRefNum( p, i, 0 ); } Gia_ManForEachCoDriverId( p->pGia, Id, i ) Delay = Abc_MaxInt( Delay, Of_ObjDelay1(p, Id) ); Gia_ManForEachCoDriverId( p->pGia, Id, i ) { Of_ObjUpdateRequired( p, Id, Delay ); if ( fCleanRefs ) Of_ObjRefInc( p, Id ); } if ( p->pPars->Delay && p->pPars->Delay < Delay ) printf( "Error: Delay violation.\n" ); p->pPars->Delay = Delay; return Delay; } static inline int Of_ManComputeBackwardCut( Of_Man_t * p, int * pCut ) { int k, iVar, Cost = 0; Of_CutForEachVar( pCut, iVar, k ) if ( !Of_ObjRefNum(p, iVar) ) Cost += Of_ObjFlow( p, iVar ); return Cost; } void Of_ManComputeBackward1( Of_Man_t * p ) { Gia_Obj_t * pObj; int DelayLut1 = p->pPars->nDelayLut1; int i, k, iVar, * pList, * pCut, * pCutMin; Of_ManComputeOutputRequired( p, 1 ); // compute area and edges p->pPars->Area = p->pPars->Edge = 0; Gia_ManForEachAndReverse( p->pGia, pObj, i ) { int CostMin, Cost, Required = Of_ObjRequired(p, i); if ( Gia_ObjIsBuf(pObj) ) { int FaninId = Gia_ObjFaninId0(pObj, i); Of_ObjUpdateRequired( p, FaninId, Required ); Of_ObjRefInc( p, FaninId ); continue; } if ( !Of_ObjRefNum(p, i) ) continue; // select the best cut pCutMin = NULL; CostMin = ABC_INFINITY; pList = Of_ObjCutSet( p, i ); Of_SetForEachCut( pList, pCut, k ) { if ( Of_CutDelay1(pCut) > Required ) continue; Cost = Of_ManComputeBackwardCut( p, pCut ); if ( CostMin > Cost ) { CostMin = Cost; pCutMin = pCut; } } // the cut is selected assert( pCutMin != NULL ); Of_ObjSetCutBestP( p, pList, i, pCutMin ); Of_CutForEachVar( pCutMin, iVar, k ) { Of_ObjUpdateRequired( p, iVar, Required - DelayLut1 ); Of_ObjRefInc( p, iVar ); } // update parameters p->pPars->Edge += Of_CutSize(pCutMin); p->pPars->Area++; } } void Of_ManComputeBackward2( Of_Man_t * p ) { Gia_Obj_t * pObj; int DelayLut1 = p->pPars->nDelayLut1; int i, k, iVar, * pCutMin; Of_ManComputeOutputRequired( p, 0 ); // compute area and edges p->pPars->Area = p->pPars->Edge = 0; Gia_ManForEachAndReverse( p->pGia, pObj, i ) { int Required = Of_ObjRequired(p, i); if ( Gia_ObjIsBuf(pObj) ) { int FaninId = Gia_ObjFaninId0(pObj, i); Of_ObjUpdateRequired( p, FaninId, Required ); continue; } if ( !Of_ObjRefNum(p, i) ) continue; // lookup for the cut pCutMin = Of_ObjCutBestP( p, i ); Of_CutForEachVar( pCutMin, iVar, k ) Of_ObjUpdateRequired( p, iVar, Required - DelayLut1 ); // update parameters p->pPars->Edge += Of_CutSize(pCutMin); p->pPars->Area++; } } void Of_ManComputeBackward3( Of_Man_t * p ) { Gia_Obj_t * pObj; int DelayLut1 = p->pPars->nDelayLut1; int i, k, iVar, * pList, * pCut, * pCutMin; int AreaBef = 0, AreaAft = 0; Of_ManComputeOutputRequired( p, 0 ); // compute area and edges p->pPars->Area = p->pPars->Edge = 0; Gia_ManForEachAndReverse( p->pGia, pObj, i ) { int CostMin, Cost, Required = Of_ObjRequired(p, i); if ( Gia_ObjIsBuf(pObj) ) { int FaninId = Gia_ObjFaninId0(pObj, i); Of_ObjUpdateRequired( p, FaninId, Required ); continue; } if ( !Of_ObjRefNum(p, i) ) continue; // deref best cut AreaBef = Of_CutDeref_rec( p, Of_ObjCutBestP(p, i) ); // select the best cut pCutMin = NULL; CostMin = ABC_INFINITY; pList = Of_ObjCutSet( p, i ); Of_SetForEachCut( pList, pCut, k ) { if ( Of_CutDelay1(pCut) > Required ) continue; Cost = Of_CutAreaDerefed2( p, pCut ); if ( CostMin > Cost ) { CostMin = Cost; pCutMin = pCut; } } // the cut is selected assert( pCutMin != NULL ); Of_ObjSetCutBestP( p, pList, i, pCutMin ); Of_CutForEachVar( pCutMin, iVar, k ) Of_ObjUpdateRequired( p, iVar, Required - DelayLut1 ); // ref best cut AreaAft = Of_CutRef_rec( p, pCutMin ); assert( AreaAft <= AreaBef ); // update parameters p->pPars->Edge += Of_CutSize(pCutMin); p->pPars->Area++; } } /**Function************************************************************* Synopsis [Technology mappping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Of_ManComputeForwardDirconCut( Of_Man_t * p, int iObj, int * pCut, int * pDelay1, int * pDelay2 ) { // Delay1 - main delay; Delay2 - precomputed LUT delay in terms of Delay1 for the fanins int Delays[6], Perm[6] = {0, 1, 2, 3, 4, 5}; int DelayLut1 = p->pPars->nDelayLut1; int DelayLut2 = p->pPars->nDelayLut2; int nSize = Of_CutSize(pCut); int k, iVar, Flag, SlowCon, Delay, DelayAfter, fDirConWorks; Of_CutForEachVar( pCut, iVar, k ) { Delays[k] = Of_ObjDelay1(p, iVar) + DelayLut1; // printf( "%3d%s ", iVar, Flag ? "*" : " " ); } for ( ; k < p->pPars->nLutSize; k++ ) { Delays[k] = -ABC_INFINITY; // printf( " " ); } Vec_IntSelectSortCost2Reverse( Perm, nSize, Delays ); assert( nSize < 2 || Delays[0] >= Delays[nSize-1] ); assert( Delays[0] >= 0 && Delays[nSize-1] >= 0 ); // consider speedup due to dircons fDirConWorks = 1; *pDelay1 = *pDelay2 = 0; SlowCon = p->pPars->nFastEdges < nSize ? Delays[p->pPars->nFastEdges] : 0; for ( k = 0; k < nSize; k++ ) { // use dircon if the following is true // - the input is eligible for dircon (does not exceed the limit) // - there is an expected gain in delay, compared the largest delay without dircon // - the dircon delay is indeed lower than the largest delay without dircon // - all previous dircons worked out well // - the node is an AND-gate iVar = Of_CutVar( pCut, Perm[k] ); assert( Delays[k] == Of_ObjDelay1(p, iVar) + DelayLut1 ); DelayAfter = Of_ObjDelay2(p, iVar) + DelayLut2; if ( k < p->pPars->nFastEdges && Delays[k] > SlowCon && DelayAfter < Delays[k] && fDirConWorks && Gia_ObjIsAndNotBuf(Gia_ManObj(p->pGia, iVar)) ) { Delay = DelayAfter; Of_CutSetFlag( pCut, Perm[k], 1 ); } else { Delay = Delays[k];// + DelayLut2; Of_CutSetFlag( pCut, Perm[k], 0 ); fDirConWorks = 0; } *pDelay1 = Abc_MaxInt( *pDelay1, Delay ); *pDelay2 = Abc_MaxInt( *pDelay2, Delays[k] ); } // printf( " %5.2f", Of_Int2Flt(*pDelay1) ); // printf( " %5.2f\n", Of_Int2Flt(*pDelay2) ); // do not use the structure if simple LUT is better if ( *pDelay1 > *pDelay2 ) { for ( k = 0; k < nSize; k++ ) Of_CutSetFlag( pCut, k, 0 ); *pDelay1 = *pDelay2; } assert( *pDelay1 <= *pDelay2 ); Of_CutSetDelay1( pCut, *pDelay1 ); Of_CutSetDelay2( pCut, *pDelay2 ); // verify Of_CutForEachVarFlag( pCut, iVar, Flag, k ) { if ( Flag ) assert( Of_ObjDelay2(p, iVar) + DelayLut2 <= *pDelay1 ); else assert( Of_ObjDelay1(p, iVar) + DelayLut1 <= *pDelay1 ); assert( Of_ObjDelay1(p, iVar) + DelayLut1 <= *pDelay2 ); } } int Of_ManComputeForwardDirconObj( Of_Man_t * p, int iObj ) { int Delay1 = ABC_INFINITY, Delay2 = ABC_INFINITY; int i, * pCut, * pCutMin = NULL, * pCutMin2 = NULL, * pList = Of_ObjCutSet(p, iObj); Of_SetForEachCut( pList, pCut, i ) { int Delay1This, Delay2This; Of_ManComputeForwardDirconCut( p, iObj, pCut, &Delay1This, &Delay2This ); if ( Delay1 > Delay1This ) pCutMin = pCut; if ( Delay2 > Delay2This ) pCutMin2 = pCut; Delay1 = Abc_MinInt( Delay1, Delay1This ); Delay2 = Abc_MinInt( Delay2, Delay2This ); } Of_ObjSetDelay1( p, iObj, Delay1 ); Of_ObjSetDelay2( p, iObj, Delay2 ); Of_ObjSetCutBestP( p, pList, iObj, pCutMin ); Of_ObjSetCutBestP2( p, pList, iObj, pCutMin2 ); return Delay1; } void Of_ManComputeForwardDircon1( Of_Man_t * p ) { Gia_Obj_t * pObj; int i; Gia_ManForEachAnd( p->pGia, pObj, i ) if ( Gia_ObjIsBuf(pObj) ) { Of_ObjSetDelay1( p, i, Of_ObjDelay1(p, Gia_ObjFaninId0(pObj, i)) ); Of_ObjSetDelay2( p, i, Of_ObjDelay2(p, Gia_ObjFaninId0(pObj, i)) ); } else Of_ManComputeForwardDirconObj( p, i ); } void Of_ManComputeBackwardDircon1( Of_Man_t * p ) { Gia_Obj_t * pObj; Vec_Bit_t * vPointed; int DelayLut1 = p->pPars->nDelayLut1; int DelayLut2 = p->pPars->nDelayLut2; int i, k, iVar, Flag, * pList, * pCutMin; int CountNodes = 0, CountEdges = 0; Of_ManComputeOutputRequired( p, 1 ); printf( "Global delay =%8.2f\n", Of_Int2Flt((int)p->pPars->Delay) ); //return; // compute area and edges vPointed = Vec_BitStart( Gia_ManObjNum(p->pGia) ); p->pPars->Area = p->pPars->Edge = 0; Gia_ManForEachAndReverse( p->pGia, pObj, i ) { int CostMin, fPointed, Required = Of_ObjRequired(p, i); if ( Gia_ObjIsBuf(pObj) ) { int FaninId = Gia_ObjFaninId0(pObj, i); Of_ObjUpdateRequired( p, FaninId, Required ); Of_ObjRefInc( p, FaninId ); continue; } if ( !Of_ObjRefNum(p, i) ) continue; // check if the LUT is has an outgoing dircon edge fPointed = Vec_BitEntry(vPointed, i); CountNodes += fPointed; /* // select the best cut { int * pCut; pCutMin = NULL; CostMin = ABC_INFINITY; pList = Of_ObjCutSet( p, i ); Of_SetForEachCut( pList, pCut, k ) { int Cost; if ( (fPointed ? Of_CutDelay2(pCut) : Of_CutDelay1(pCut)) > Required ) continue; Cost = Of_ManComputeBackwardCut( p, pCut ); if ( CostMin > Cost ) { CostMin = Cost; pCutMin = pCut; } } } */ if ( fPointed ) { pCutMin = Of_ObjCutBestP2( p, i ); CostMin = Of_CutDelay2(pCutMin); //assert( Of_CutDelay2(pCutMin) <= Required ); } else { pCutMin = Of_ObjCutBestP( p, i ); CostMin = Of_CutDelay1(pCutMin); //assert( Of_CutDelay1(pCutMin) <= Required ); } // remove dircon markers //if ( fPointed ) // Of_CutForEachVarFlag( pCutMin, iVar, Flag, k ) // Of_CutSetFlag( pCutMin, k, 0 ); // the cut is selected assert( pCutMin != NULL ); pList = Of_ObjCutSet( p, i ); Of_ObjSetCutBestP( p, pList, i, pCutMin ); ///// SET THE BEST CUT Of_CutForEachVarFlag( pCutMin, iVar, Flag, k ) { Of_ObjUpdateRequired( p, iVar, Required - ((Flag && !fPointed) ? DelayLut2 : DelayLut1) ); Of_ObjRefInc( p, iVar ); if ( Flag && !fPointed ) { Vec_BitWriteEntry( vPointed, iVar, 1 ); CountEdges++; } } // update parameters p->pPars->Edge += Of_CutSize(pCutMin); p->pPars->Area++; } Vec_BitFree( vPointed ); //printf( "Dircon nodes = %d. Dircon edges = %d.\n", CountNodes, CountEdges ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Of_ManCreateSat( Of_Man_t * p, int nCutsAll, Vec_Int_t * vFirst, Vec_Int_t * vCutNum, Vec_Int_t * vBestNode, Vec_Int_t * vBestCut ) { extern void Cnf_AddCardinConstrPairWise( sat_solver * p, Vec_Int_t * vVars, int K, int fStrict ); Gia_Obj_t * pObj, * pVar; int * pCutSet, * pCut; int i, k, v, c, Var, Lit, pLits[2], status, RetValue, nCutCount, nClauses; Vec_Int_t * vLits = Vec_IntAlloc( 100 ); abctime clk = Abc_Clock(); // start solver sat_solver * pSat = sat_solver_new(); sat_solver_setnvars( pSat, Gia_ManAndNum(p->pGia) + nCutsAll ); // set polarity Vec_IntAppend( vBestNode, vBestCut ); //Vec_IntPrint( vBestNode ); sat_solver_set_polarity( pSat, Vec_IntArray(vBestNode), Vec_IntSize(vBestNode) ); Vec_IntShrink( vBestNode, Vec_IntSize(vBestNode) - Vec_IntSize(vBestCut) ); // add clauses for nodes Gia_ManForEachAnd( p->pGia, pObj, i ) { int iFirst = Vec_IntEntry(vFirst, i); int nCuts = Vec_IntEntry(vCutNum, i); Vec_IntClear( vLits ); Vec_IntPush( vLits, Abc_Var2Lit(pObj->Value, 1) ); for ( c = 0; c < nCuts; c++ ) Vec_IntPush( vLits, Abc_Var2Lit(iFirst + c, 0) ); RetValue = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits) ); assert( RetValue ); } // add clauses for cuts nCutCount = 0; Gia_ManForEachAnd( p->pGia, pObj, i ) { pCutSet = Of_ObjCutSet(p, i); Of_SetForEachCut( pCutSet, pCut, k ) { pLits[0] = Abc_Var2Lit( Gia_ManAndNum(p->pGia) + nCutCount, 1 ); pLits[1] = Abc_Var2Lit( pObj->Value, 0 ); RetValue = sat_solver_addclause( pSat, pLits, pLits+2 ); assert( RetValue ); Of_CutForEachVar( pCut, Var, v ) { pVar = Gia_ManObj(p->pGia, Var); if ( !Gia_ObjIsAnd(pVar) ) continue; pLits[1] = Abc_Var2Lit( pVar->Value, 0 ); RetValue = sat_solver_addclause( pSat, pLits, pLits+2 ); assert( RetValue ); } nCutCount++; } } assert( nCutCount == nCutsAll ); // mark CO drivers Gia_ManForEachCo( p->pGia, pObj, i ) Gia_ObjFanin0(pObj)->fMark0 = 1; // set used nodes to 1 Gia_ManForEachAnd( p->pGia, pObj, i ) if ( pObj->fMark0 ) { Lit = Abc_Var2Lit( pObj->Value, 0 ); RetValue = sat_solver_addclause( pSat, &Lit, &Lit + 1 ); assert( RetValue ); } // unmark CO drivers Gia_ManForEachCo( p->pGia, pObj, i ) Gia_ObjFanin0(pObj)->fMark0 = 0; // Sat_SolverWriteDimacs( pSat, "temp.cnf", NULL, NULL, 0 ); // add cardinality constraint nClauses = pSat->stats.clauses; Vec_IntClear( vLits ); Vec_IntFillNatural( vLits, Gia_ManAndNum(p->pGia) ); Cnf_AddCardinConstrPairWise( pSat, vLits, Vec_IntSize(vBestNode)-2, 0 ); printf( "Problem clauses = %d. Cardinality clauses = %d.\n", nClauses, pSat->stats.clauses - nClauses ); // solve the problem status = sat_solver_solve( pSat, NULL, NULL, 1000000, 0, 0, 0 ); if ( status == l_Undef ) printf( "Undecided. " ); if ( status == l_True ) printf( "Satisfiable. " ); if ( status == l_False ) printf( "Unsatisfiable. " ); Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); Sat_SolverPrintStats( stdout, pSat ); if ( status == l_True ) { int nOnes = 0; for ( v = 0; v < Gia_ManAndNum(p->pGia); v++ ) { printf( "%d", sat_solver_var_value(pSat, v) ); nOnes += sat_solver_var_value(pSat, v); } printf( " Nodes = %d\n", nOnes ); nOnes = 0; for ( ; v < Gia_ManAndNum(p->pGia) + nCutsAll; v++ ) { printf( "%d", sat_solver_var_value(pSat, v) ); nOnes += sat_solver_var_value(pSat, v); } printf( " LUTs = %d\n", nOnes ); } // cleanup sat_solver_delete( pSat ); Vec_IntFree( vLits ); } void Of_ManPrintCuts( Of_Man_t * p ) { int fVerbose = 0; Gia_Obj_t * pObj; int * pCutSet, * pCut, * pCutBest; int i, k, v, Var, nCuts; Vec_Int_t * vFirst = Vec_IntStartFull( Gia_ManObjNum(p->pGia) ); Vec_Int_t * vCutNum = Vec_IntStartFull( Gia_ManObjNum(p->pGia) ); Vec_Int_t * vBestNode = Vec_IntAlloc( 100 ); Vec_Int_t * vBestCut = Vec_IntAlloc( 100 ); int nAndsAll = 0, nCutsAll = 0, Shift = Gia_ManAndNum(p->pGia); Gia_ManFillValue( p->pGia ); Gia_ManForEachAnd( p->pGia, pObj, i ) { // get the best cut pCutBest = NULL; if ( Of_ObjRefNum(p, i) ) { Vec_IntPush( vBestNode, nAndsAll ); pCutBest = Of_ObjCutBestP( p, i ); } pObj->Value = nAndsAll++; // get the cutset pCutSet = Of_ObjCutSet(p, i); // count cuts nCuts = 0; Of_SetForEachCut( pCutSet, pCut, k ) nCuts++; // save Vec_IntWriteEntry( vFirst, i, Shift + nCutsAll ); Vec_IntWriteEntry( vCutNum, i, nCuts ); // print cuts if ( fVerbose ) printf( "Node %d. Cuts %d.\n", i, nCuts ); Of_SetForEachCut( pCutSet, pCut, k ) { if ( fVerbose ) { printf( "{ " ); Of_CutForEachVar( pCut, Var, v ) printf( "%d ", Var ); printf( "} %s\n", pCutBest == pCut ? "best" :"" ); } if ( pCutBest == pCut ) Vec_IntPush( vBestCut, Shift + nCutsAll ); nCutsAll++; } } assert( nAndsAll == Shift ); printf( "Total: Ands = %d. Luts = %d. Cuts = %d.\n", nAndsAll, Vec_IntSize(vBestNode), nCutsAll ); // create SAT problem Of_ManCreateSat( p, nCutsAll, vFirst, vCutNum, vBestNode, vBestCut ); Vec_IntFree( vFirst ); Vec_IntFree( vCutNum ); Vec_IntFree( vBestNode ); Vec_IntFree( vBestCut ); } /**Function************************************************************* Synopsis [Technology mappping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Of_ManSetDefaultPars( Jf_Par_t * pPars ) { memset( pPars, 0, sizeof(Jf_Par_t) ); pPars->nLutSize = 4; pPars->nCutNum = 16; pPars->nProcNum = 0; pPars->nRounds = 3; pPars->nRoundsEla = 4; pPars->nRelaxRatio = 0; pPars->nCoarseLimit = 3; pPars->nAreaTuner = 10; pPars->DelayTarget = -1; pPars->nDelayLut1 = 10; pPars->nDelayLut2 = 2; pPars->nFastEdges = 0; // pPars->fAreaOnly = 0; pPars->fOptEdge = 1; pPars->fCoarsen = 0; pPars->fCutMin = 0; pPars->fGenCnf = 0; pPars->fPureAig = 0; pPars->fVerbose = 0; pPars->fVeryVerbose = 0; pPars->nLutSizeMax = OF_LEAF_MAX; pPars->nCutNumMax = OF_CUT_MAX; pPars->MapDelayTarget = -1; } Gia_Man_t * Of_ManDeriveMapping( Of_Man_t * p ) { Vec_Int_t * vMapping, * vPacking = NULL; Vec_Bit_t * vPointed; int i, k, iVar, * pCut, Place, Flag; assert( !p->pPars->fCutMin && p->pGia->vMapping == NULL ); vMapping = Vec_IntAlloc( Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 ); Vec_IntFill( vMapping, Gia_ManObjNum(p->pGia), 0 ); if ( p->pPars->nFastEdges ) { vPacking = Vec_IntAlloc( 1000 ); Vec_IntPush( vPacking, 0 ); } vPointed = Vec_BitStart( Gia_ManObjNum(p->pGia) ); Gia_ManForEachAndId( p->pGia, i ) { if ( !Of_ObjRefNum(p, i) ) continue; assert( !Gia_ObjIsBuf(Gia_ManObj(p->pGia,i)) ); pCut = Of_ObjCutBestP( p, i ); Vec_IntWriteEntry( vMapping, i, Vec_IntSize(vMapping) ); Vec_IntPush( vMapping, Of_CutSize(pCut) ); Of_CutForEachVar( pCut, iVar, k ) Vec_IntPush( vMapping, iVar ); Vec_IntPush( vMapping, i ); if ( vPacking == NULL || Vec_BitEntry(vPointed, i) ) continue; Place = Vec_IntSize( vPacking ); Vec_IntPush( vPacking, 0 ); Vec_IntPush( vPacking, i ); Of_CutForEachVarFlag( pCut, iVar, Flag, k ) if ( Flag ) { Vec_IntPush( vPacking, iVar ); Vec_BitWriteEntry( vPointed, iVar, 1 ); } Vec_IntAddToEntry( vPacking, Place, Vec_IntSize(vPacking)-Place-1 ); Vec_IntAddToEntry( vPacking, 0, 1 ); } assert( Vec_IntCap(vMapping) == 16 || Vec_IntSize(vMapping) == Vec_IntCap(vMapping) ); p->pGia->vMapping = vMapping; p->pGia->vPacking = vPacking; Vec_BitFree( vPointed ); return p->pGia; } Gia_Man_t * Of_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars ) { Gia_Man_t * pNew = NULL, * pCls; Of_Man_t * p; int i, Id; if ( Gia_ManHasChoices(pGia) ) pPars->fCoarsen = 0, pPars->fCutMin = 1; pCls = pPars->fCoarsen ? Gia_ManDupMuxes(pGia, pPars->nCoarseLimit) : pGia; p = Of_StoCreate( pCls, pPars ); if ( pPars->fVerbose && pPars->fCoarsen ) { printf( "Initial " ); Gia_ManPrintMuxStats( pGia ); printf( "\n" ); printf( "Derived " ); Gia_ManPrintMuxStats( pCls ); printf( "\n" ); } Of_ManPrintInit( p ); Of_ManComputeCuts( p ); Of_ManPrintQuit( p ); Gia_ManForEachCiId( p->pGia, Id, i ) { int Time = Of_Flt2Int(p->pGia->vInArrs ? Abc_MaxFloat(0.0, Vec_FltEntry(p->pGia->vInArrs, i)) : 0.0); Of_ObjSetDelay1( p, Id, Time ); Of_ObjSetDelay2( p, Id, Time ); } if ( p->pPars->nFastEdges ) { p->pPars->nRounds = 1; for ( p->Iter = 0; p->Iter < p->pPars->nRounds; p->Iter++ ) { if ( p->Iter == 0 ) { Of_ManComputeForwardDircon1( p ); Of_ManComputeBackwardDircon1( p ); Of_ManPrintStats( p, "Delay" ); } else { Of_ManComputeForwardDircon1( p ); Of_ManComputeBackwardDircon1( p ); Of_ManPrintStats( p, "Flow " ); } } } else { for ( p->Iter = 0; p->Iter < p->pPars->nRounds; p->Iter++ ) { if ( p->Iter == 0 ) { Of_ManComputeForward1( p ); Of_ManComputeBackward1( p ); Of_ManPrintStats( p, "Delay" ); } else { Of_ManComputeForward1( p ); Of_ManComputeBackward1( p ); Of_ManPrintStats( p, "Flow " ); } } for ( ; p->Iter < p->pPars->nRounds + p->pPars->nRoundsEla; p->Iter++ ) { if ( p->Iter < p->pPars->nRounds + p->pPars->nRoundsEla - 1 ) { Of_ManComputeForward2( p ); Of_ManComputeBackward3( p ); Of_ManPrintStats( p, "Area " ); } else { Of_ManComputeForward1( p ); Of_ManComputeBackward3( p ); Of_ManPrintStats( p, "Area " ); } } } pNew = Of_ManDeriveMapping( p ); Gia_ManMappingVerify( pNew ); if ( pNew->vPacking ) Gia_ManConvertPackingToEdges( pNew ); //Of_ManPrintCuts( p ); Of_StoDelete( p ); if ( pCls != pGia ) Gia_ManStop( pCls ); if ( pNew == NULL ) return Gia_ManDup( pGia ); return pNew; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END