/**CFile**************************************************************** FileName [giaSatMap.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Scalable AIG package.] Synopsis [] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: giaSatMap.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "gia.h" #include "sat/bsat/satStore.h" #include "misc/vec/vecWec.h" #include "misc/util/utilNam.h" #include "map/scl/sclCon.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// // operation manager typedef struct Sbm_Man_t_ Sbm_Man_t; struct Sbm_Man_t_ { sat_solver * pSat; // SAT solver Vec_Int_t * vCardVars; // candinality variables int LogN; // max vars int FirstVar; // first variable to be used int LitShift; // shift in terms of literals (2*Gia_ManCiNum(pGia)+2) int nInputs; // the number of inputs // window Vec_Int_t * vRoots; // output drivers to be mapped (root -> lit) Vec_Wec_t * vCuts; // cuts (cut -> node lit + fanin lits) Vec_Wec_t * vObjCuts; // cuts (obj -> node lit + cut lits) Vec_Int_t * vSolCuts; // current solution (index -> cut) Vec_Int_t * vCutGates; // gates (cut -> gate) Vec_Wrd_t * vCutAreas; // area of each cut // solver Vec_Int_t * vAssump; // assumptions (root nodes) Vec_Int_t * vPolar; // polarity of nodes and cuts // timing Vec_Int_t * vArrs; // arrivals for the inputs (input -> time) Vec_Int_t * vReqs; // required for the outputs (root -> time) // internal Vec_Int_t * vLit2Used; // current solution (lit -> used) Vec_Int_t * vDelays; // node arrivals (lit -> time) Vec_Int_t * vReason; // timing reasons (lit -> cut) }; /* Cuts in p->vCuts have 0-based numbers and are expressed in terms of object literals. Cuts in p->vObjCuts are expressed in terms of the obj-lit + cut-lits (i + p->FirstVar) Unit cuts for each polarity are ordered in the end. */ //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Verify solution. Create polarity and assumptions.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Sbm_ManCheckSol( Sbm_Man_t * p, Vec_Int_t * vSol ) { //int K = Vec_IntSize(vSol) - 1; int i, j, Lit, Cut; int RetValue = 1; Vec_Int_t * vCut; // clear polarity and assumptions Vec_IntClear( p->vPolar ); // mark used literals Vec_IntFill( p->vLit2Used, Vec_WecSize(p->vObjCuts) + p->nInputs, 0 ); Vec_IntForEachEntry( p->vSolCuts, Cut, i ) { if ( Cut < 0 ) // input inverter variable { Vec_IntWriteEntry( p->vLit2Used, -Cut, 1 ); Vec_IntPush( p->vPolar, -Cut ); continue; } Vec_IntPush( p->vPolar, p->FirstVar + Cut ); vCut = Vec_WecEntry( p->vCuts, Cut ); Lit = Vec_IntEntry( vCut, 0 ) - p->LitShift; // obj literal if ( Vec_IntEntry(p->vLit2Used, Lit) ) continue; Vec_IntWriteEntry( p->vLit2Used, Lit, 1 ); Vec_IntPush( p->vPolar, Lit ); // literal variable } // check that the output literals are used Vec_IntForEachEntry( p->vRoots, Lit, i ) { if ( Vec_IntEntry(p->vLit2Used, Lit) == 0 ) printf( "Output literal %d has no cut.\n", Lit ), RetValue = 0; } // check internal nodes Vec_IntForEachEntry( p->vSolCuts, Cut, i ) { if ( Cut < 0 ) continue; vCut = Vec_WecEntry( p->vCuts, Cut ); Vec_IntForEachEntryStart( vCut, Lit, j, 1 ) if ( Lit - p->LitShift < 0 ) { assert( Abc_LitIsCompl(Lit) ); if ( Vec_IntEntry(p->vLit2Used, Vec_WecSize(p->vObjCuts) + Abc_Lit2Var(Lit)-1) == 0 ) printf( "Inverter of input %d of cut %d is not mapped.\n", Abc_Lit2Var(Lit)-1, Cut ), RetValue = 0; } else if ( Vec_IntEntry(p->vLit2Used, Lit - p->LitShift) == 0 ) printf( "Internal literal %d of cut %d is not mapped.\n", Lit - p->LitShift, Cut ), RetValue = 0; // create polarity Vec_IntPush( p->vPolar, p->FirstVar + Cut ); // cut variable } return RetValue; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Sbm_ManCreateCnf( Sbm_Man_t * p ) { int i, k, Lit, Lits[2], value; Vec_Int_t * vLits, * vCutOne, * vLitsPrev; // sat_solver_rollback( p->Sat ); if ( !Sbm_ManCheckSol(p, p->vSolCuts) ) return 0; // increase var count assert( p->FirstVar == sat_solver_nvars(p->pSat) ); sat_solver_setnvars( p->pSat, sat_solver_nvars(p->pSat) + Vec_WecSize(p->vCuts) ); // iterate over arrays containing obj-lit cuts (neg-obj-lit cut-lits followed by pos-obj-lit cut-lits) vLitsPrev = NULL; Vec_WecForEachLevel( p->vObjCuts, vLits, i ) { assert( Vec_IntSize(vLits) >= 2 ); value = sat_solver_addclause( p->pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits) ); assert( value ); /* // for each cut, add implied nodes Lits[0] = Abc_LitNot( Vec_IntEntry(vLits, 0) ); assert( Lits[0] < 2*p->FirstVar ); Vec_IntForEachEntryStart( vLits, Lit, k, 1 ) { assert( Lit >= 2*p->FirstVar ); Lits[1] = Abc_LitNot( Lit ); value = sat_solver_addclause( p->pSat, Lits, Lits + 2 ); assert( value ); //printf( "Adding clause %d + %d.\n", Lits[0], Lits[1]-2*p->FirstVar ); } */ //printf( "\n" ); // create invertor exclusivity clause if ( i & 1 ) { Lits[0] = Abc_LitNot( Vec_IntEntryLast(vLits) ); Lits[1] = Abc_LitNot( Vec_IntEntryLast(vLitsPrev) ); value = sat_solver_addclause( p->pSat, Lits, Lits + 2 ); assert( value ); //printf( "Adding exclusivity clause %d + %d.\n", Lits[0]-2*p->FirstVar, Lits[1]-2*p->FirstVar ); } vLitsPrev = vLits; } // add inverters Vec_WecForEachLevel( p->vCuts, vCutOne, i ) Vec_IntForEachEntry( vCutOne, Lit, k ) if ( Abc_Lit2Var(Lit)-1 < p->nInputs ) // input { assert( k > 0 ); Lits[0] = Abc_Var2Lit( Vec_WecSize(p->vObjCuts) + Abc_Lit2Var(Lit)-1, 0 ); Lits[1] = Abc_Var2Lit( p->FirstVar + i, 1 ); value = sat_solver_addclause( p->pSat, Lits, Lits + 2 ); assert( value ); } else // internal node { Lits[0] = Abc_Var2Lit( Lit-p->LitShift, 0 ); Lits[1] = Abc_Var2Lit( p->FirstVar + i, 1 ); value = sat_solver_addclause( p->pSat, Lits, Lits + 2 ); assert( value ); } sat_solver_set_polarity( p->pSat, Vec_IntArray(p->vPolar), Vec_IntSize(p->vPolar) ); return 1; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int sat_solver_add_and1( sat_solver * pSat, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1, int fCompl ) { lit Lits[3]; int Cid; Lits[0] = toLitCond( iVar, !fCompl ); Lits[1] = toLitCond( iVar0, fCompl0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 2 ); assert( Cid ); Lits[0] = toLitCond( iVar, !fCompl ); Lits[1] = toLitCond( iVar1, fCompl1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 2 ); assert( Cid ); /* Lits[0] = toLitCond( iVar, fCompl ); Lits[1] = toLitCond( iVar0, !fCompl0 ); Lits[2] = toLitCond( iVar1, !fCompl1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); */ return 3; } static inline int sat_solver_add_and2( sat_solver * pSat, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1, int fCompl ) { lit Lits[3]; int Cid; /* Lits[0] = toLitCond( iVar, !fCompl ); Lits[1] = toLitCond( iVar0, fCompl0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 2 ); assert( Cid ); Lits[0] = toLitCond( iVar, !fCompl ); Lits[1] = toLitCond( iVar1, fCompl1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 2 ); assert( Cid ); */ Lits[0] = toLitCond( iVar, fCompl ); Lits[1] = toLitCond( iVar0, !fCompl0 ); Lits[2] = toLitCond( iVar1, !fCompl1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); return 3; } /**Function************************************************************* Synopsis [Adds a general cardinality constraint in terms of vVars.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Sbm_AddSorter( sat_solver * p, int * pVars, int i, int k, int * pnVars ) { int iVar1 = (*pnVars)++; int iVar2 = (*pnVars)++; int fVerbose = 0; if ( fVerbose ) { int v; for ( v = 0; v < i; v++ ) printf( " " ); printf( "<" ); for ( v = i+1; v < k; v++ ) printf( "-" ); printf( ">" ); for ( v = k+1; v < 8; v++ ) printf( " " ); printf( " " ); printf( "[%3d :%3d ] -> [%3d :%3d ]\n", pVars[i], pVars[k], iVar1, iVar2 ); } // sat_solver_add_and1( p, iVar1, pVars[i], pVars[k], 1, 1, 1 ); // sat_solver_add_and2( p, iVar2, pVars[i], pVars[k], 0, 0, 0 ); sat_solver_add_half_sorter( p, iVar1, iVar2, pVars[i], pVars[k] ); pVars[i] = iVar1; pVars[k] = iVar2; } static inline void Sbm_AddCardinConstrMerge( sat_solver * p, int * pVars, int lo, int hi, int r, int * pnVars ) { int i, step = r * 2; if ( step < hi - lo ) { Sbm_AddCardinConstrMerge( p, pVars, lo, hi-r, step, pnVars ); Sbm_AddCardinConstrMerge( p, pVars, lo+r, hi, step, pnVars ); for ( i = lo+r; i < hi-r; i += step ) Sbm_AddSorter( p, pVars, i, i+r, pnVars ); for ( i = lo+r; i < hi-r-1; i += r ) { lit Lits[2] = { Abc_Var2Lit(pVars[i], 0), Abc_Var2Lit(pVars[i+r], 1) }; int Cid = sat_solver_addclause( p, Lits, Lits + 2 ); assert( Cid ); } } } static inline void Sbm_AddCardinConstrRange( sat_solver * p, int * pVars, int lo, int hi, int * pnVars ) { if ( hi - lo >= 1 ) { int i, mid = lo + (hi - lo) / 2; for ( i = lo; i <= mid; i++ ) Sbm_AddSorter( p, pVars, i, i + (hi - lo + 1) / 2, pnVars ); Sbm_AddCardinConstrRange( p, pVars, lo, mid, pnVars ); Sbm_AddCardinConstrRange( p, pVars, mid+1, hi, pnVars ); Sbm_AddCardinConstrMerge( p, pVars, lo, hi, 1, pnVars ); } } int Sbm_AddCardinConstrPairWise( sat_solver * p, Vec_Int_t * vVars, int K ) { int nVars = Vec_IntSize(vVars); Sbm_AddCardinConstrRange( p, Vec_IntArray(vVars), 0, nVars - 1, &nVars ); sat_solver_bookmark( p ); return nVars; } sat_solver * Sbm_AddCardinSolver( int LogN, Vec_Int_t ** pvVars ) { int nVars = 1 << LogN; int nVarsAlloc = nVars + 2 * (nVars * LogN * (LogN-1) / 4 + nVars - 1), nVarsReal; Vec_Int_t * vVars = Vec_IntStartNatural( nVars ); sat_solver * pSat = sat_solver_new(); sat_solver_setnvars( pSat, nVarsAlloc ); nVarsReal = Sbm_AddCardinConstrPairWise( pSat, vVars, 2 ); assert( nVarsReal == nVarsAlloc ); *pvVars = vVars; return pSat; } void Sbm_AddCardinConstrTest() { int LogN = 3, nVars = 1 << LogN, K = 2, Count = 1; Vec_Int_t * vVars, * vLits = Vec_IntAlloc( nVars ); sat_solver * pSat = Sbm_AddCardinSolver( LogN, &vVars ); int nVarsReal = sat_solver_nvars( pSat ); int Lit = Abc_Var2Lit( Vec_IntEntry(vVars, K), 1 ); printf( "LogN = %d. N = %3d. Vars = %5d. Clauses = %6d. Comb = %d.\n", LogN, nVars, nVarsReal, sat_solver_nclauses(pSat), nVars * (nVars-1)/2 + nVars + 1 ); while ( 1 ) { int i, status = sat_solver_solve( pSat, &Lit, &Lit+1, 0, 0, 0, 0 ); if ( status != l_True ) break; Vec_IntClear( vLits ); printf( "%3d : ", Count++ ); for ( i = 0; i < nVars; i++ ) { Vec_IntPush( vLits, Abc_Var2Lit(i, sat_solver_var_value(pSat, i)) ); printf( "%d", sat_solver_var_value(pSat, i) ); } printf( "\n" ); status = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + nVars ); if ( status == 0 ) break; } sat_solver_delete( pSat ); Vec_IntFree( vVars ); Vec_IntFree( vLits ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Sbm_Man_t * Sbm_ManAlloc( int LogN ) { Sbm_Man_t * p = ABC_CALLOC( Sbm_Man_t, 1 ); p->pSat = Sbm_AddCardinSolver( LogN, &p->vCardVars ); p->LogN = LogN; p->FirstVar = sat_solver_nvars( p->pSat ); // window p->vRoots = Vec_IntAlloc( 100 ); p->vCuts = Vec_WecAlloc( 1000 ); p->vObjCuts = Vec_WecAlloc( 1000 ); p->vSolCuts = Vec_IntAlloc( 100 ); p->vCutGates = Vec_IntAlloc( 100 ); p->vCutAreas = Vec_WrdAlloc( 100 ); // solver p->vAssump = Vec_IntAlloc( 100 ); p->vPolar = Vec_IntAlloc( 100 ); // timing p->vArrs = Vec_IntAlloc( 100 ); p->vReqs = Vec_IntAlloc( 100 ); // internal p->vLit2Used = Vec_IntAlloc( 100 ); p->vDelays = Vec_IntAlloc( 100 ); p->vReason = Vec_IntAlloc( 100 ); return p; } void Sbm_ManStop( Sbm_Man_t * p ) { sat_solver_delete( p->pSat ); Vec_IntFree( p->vCardVars ); // internal Vec_IntFree( p->vRoots ); Vec_WecFree( p->vCuts ); Vec_WecFree( p->vObjCuts ); Vec_IntFree( p->vSolCuts ); Vec_IntFree( p->vCutGates ); Vec_WrdFree( p->vCutAreas ); // internal Vec_IntFree( p->vAssump ); Vec_IntFree( p->vPolar ); // internal Vec_IntFree( p->vArrs ); Vec_IntFree( p->vReqs ); // internal Vec_IntFree( p->vLit2Used ); Vec_IntFree( p->vDelays ); Vec_IntFree( p->vReason ); ABC_FREE( p ); } int Sbm_ManTestSat( void * pMan ) { abctime clk = Abc_Clock(), clk2; int i, k, Lit, LogN = 7, nVars = 1 << LogN, status, Root; Sbm_Man_t * p = Sbm_ManAlloc( LogN ); word InvArea = 0; int fKeepTrying = 1; int StartSol; // derive window extern int Nf_ManExtractWindow( void * pMan, Vec_Int_t * vRoots, Vec_Wec_t * vCuts, Vec_Wec_t * vObjCuts, Vec_Int_t * vSolCuts, Vec_Int_t * vCutGates, Vec_Wrd_t * vCutAreas, word * pInvArea, int StartVar, int nVars ); p->nInputs = Nf_ManExtractWindow( pMan, p->vRoots, p->vCuts, p->vObjCuts, p->vSolCuts, p->vCutGates, p->vCutAreas, &InvArea, p->FirstVar, nVars ); p->LitShift = 2*p->nInputs+2; assert( Vec_WecSize(p->vObjCuts) + p->nInputs <= nVars ); // print-out // Vec_WecPrint( p->vCuts, 0 ); // printf( "\n" ); // Vec_WecPrint( p->vObjCuts, 0 ); // printf( "\n" ); Vec_IntPrint( p->vSolCuts ); printf( "All clauses = %d. Multi clauses = %d. Binary clauses = %d. Other clauses = %d.\n", sat_solver_nclauses(p->pSat), Vec_WecSize(p->vObjCuts), Vec_WecSizeSize(p->vCuts), sat_solver_nclauses(p->pSat) - Vec_WecSize(p->vObjCuts) - Vec_WecSizeSize(p->vCuts) ); // creating CNF if ( !Sbm_ManCreateCnf(p) ) return 0; // create assumptions // cardinality Vec_IntClear( p->vAssump ); Vec_IntPush( p->vAssump, -1 ); // unused variables for ( i = Vec_WecSize(p->vObjCuts) + p->nInputs; i < nVars; i++ ) Vec_IntPush( p->vAssump, Abc_Var2Lit(i, 1) ); // root variables Vec_IntForEachEntry( p->vRoots, Root, i ) Vec_IntPush( p->vAssump, Abc_Var2Lit(Root, 0) ); // Vec_IntPrint( p->vAssump ); StartSol = Vec_IntSize(p->vSolCuts); // StartSol = 30; while ( fKeepTrying && StartSol-fKeepTrying > 0 ) { printf( "Trying to find mapping with %d gates.\n", StartSol-fKeepTrying ); // for ( i = Vec_IntSize(p->vSolCuts)-5; i < nVars; i++ ) // Vec_IntPush( p->vAssump, Abc_Var2Lit(Vec_IntEntry(p->vCardVars, i), 1) ); Vec_IntWriteEntry( p->vAssump, 0, Abc_Var2Lit(Vec_IntEntry(p->vCardVars, StartSol-fKeepTrying), 1) ); // solve the problem clk2 = Abc_Clock(); status = sat_solver_solve( p->pSat, Vec_IntArray(p->vAssump), Vec_IntLimit(p->vAssump), 0, 0, 0, 0 ); if ( status == l_True ) { word AreaNew = 0; int Count = 0; printf( "AND Lits = %d. Inputs = %d. Vars = %d. All vars = %d.\n", Vec_WecSize(p->vObjCuts), p->nInputs, Vec_WecSize(p->vObjCuts) + p->nInputs, nVars ); // for ( i = 0; i < nVars; i++ ) // printf( "%d", sat_solver_var_value(p->pSat, i) ); // printf( "\n" ); for ( i = 0; i < nVars; i++ ) if ( sat_solver_var_value(p->pSat, i) ) { printf( "%d=%d ", i, sat_solver_var_value(p->pSat, i) ); Count++; if ( i >= Vec_WecSize(p->vObjCuts) ) AreaNew += InvArea; } printf( "Count = %d\n", Count ); // for ( i = p->FirstVar; i < sat_solver_nvars(p->pSat); i++ ) // printf( "%d", sat_solver_var_value(p->pSat, i) ); // printf( "\n" ); Count = 1; for ( i = p->FirstVar; i < sat_solver_nvars(p->pSat); i++ ) if ( sat_solver_var_value(p->pSat, i) ) { Vec_Int_t * vCutOne = Vec_WecEntry(p->vCuts, i-p->FirstVar); printf( "%2d : Cut %3d (Gate %2d) ", Count, i-p->FirstVar, Vec_IntEntry(p->vCutGates, i-p->FirstVar) ); Vec_IntForEachEntry( vCutOne, Lit, k ) printf( "%d(%d) ", Lit - 2*(p->nInputs+1), Abc_Lit2Var(Lit) ); printf( "\n" ); Count++; AreaNew += Vec_WrdEntry(p->vCutAreas, i-p->FirstVar); } printf( "Area = %7.2f\n", Scl_Int2Flt((int)AreaNew) ); } if ( status == l_False ) printf( "UNSAT " ), fKeepTrying = 0; else if ( status == l_True ) printf( "SAT " ), fKeepTrying++; Abc_PrintTime( 1, "Time", Abc_Clock() - clk2 ); Abc_PrintTime( 1, "Total time", Abc_Clock() - clk ); printf( "\n" ); } Sbm_ManStop( p ); return 1; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END