/**CFile**************************************************************** FileName [ndr.h] SystemName [ABC: Logic synthesis and verification system.] PackageName [Format for word-level design representation.] Synopsis [External declarations.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - August 22, 2014.] Revision [$Id: ndr.h,v 1.00 2014/09/12 00:00:00 alanmi Exp $] ***********************************************************************/ #ifndef ABC__base__ndr__ndr_h #define ABC__base__ndr__ndr_h //////////////////////////////////////////////////////////////////////// /// INCLUDES /// //////////////////////////////////////////////////////////////////////// #include #include #include #include //ABC_NAMESPACE_HEADER_START #ifdef _WIN32 #define inline __inline #endif /* For the lack of a better name, this format is called New Data Representation (NDR). NDR is based on the following principles: - complex data is composed of individual records - a record has one of several known types (module, name, range, fanins, etc) - a record can be atomic, for example, a name or an operator type - a record can be composed of other records (for example, a module is composed of objects, etc) - the stored data should be easy to write into and read from a file, or pass around as a memory buffer - the format should be simple, easy to use, low-memory, and extensible - new record types can be added by the user as needed The implementation is based on the following ideas: - a record is composed of two parts (the header followed by the body) - the header contains two items (the record type and the body size, measured in terms of 4-byte integers) - the body contains as many entries as stated in the record size - if a record is composed of other records, its body contains these records As an example, consider a name. It can be a module name, an object name, or a net name. A record storing one name has a header {NDR_NAME, 1} containing record type (NDR_NAME) and size (1), The body of the record is composed of one unsigned integer representing the name (say, 357). So the complete record looks as follows: {
, } = { {NDR_NAME, 1}, {357} }. As another example, consider a two-input AND-gate. In this case, the recent is composed of a header {NDR_OBJECT, 4} containing record type (NDR_OBJECT) and the body size (4), followed by an array of records creating the AND-gate: (a) name, (b) operation type, (c) fanins. The complete record looks as follows: { {NDR_OBJECT, 5}, {{{NDR_NAME, 1}, 357}, {{NDR_OPERTYPE, 1}, WLC_OBJ_LOGIC_AND}, {{NDR_INPUT, 2}, {, }}} }. Please note that only body entries are counted towards size. In the case of one name, there is only one body entry. In the case of the AND-gate, there are 4 body entries (name ID, gate type, first fanin, second fanin). Headers and bodies of all objects are stored differently. Headers are stored in an array of unsigned chars, while bodies are stored in the array of 4-byte unsigned integers. This is important for memory efficiency. However, the user does not see these details. To estimate memory usage, we can assume that each header takes 1 byte and each body entry contains 4 bytes. A name takes 5 bytes, and an AND-gate takes 1 * NumHeaders + 4 * NumBodyEntries = 1 * 4 + 4 * 4 = 20 bytes. Not bad. The same as memory usage in a well-designed AIG package with structural hashing. Comments: - it is assumed that all port names, net names, and instance names are hashed into 1-based integer numbers called name IDs - nets are not explicitly represented but their name ID are used to establish connectivity between the objects - primary input and primary output objects have to be explicitly created (as shown in the example below) - object inputs are name IDs of the driving nets; object outputs are name IDs of the driven nets - objects can be added to a module in any order - if the ordering of inputs/outputs/flops of a module is not provided as a separate record, their ordering is determined by the order of their appearance of their records in the body of the module - if range limits and signedness are all 0, it is assumed that it is a Boolean object - if left limit and right limit of a range are equal, it is assumed that the range contains one bit - instances of known operators can have types defined by Wlc_ObjType_t below - instances of user modules have type equal to the name ID of the module plus 1000 - initial states of the flops are given as char-strings containing 0, 1, and 'x' (for example, "4'b10XX" is an init state of a 4-bit flop with bit-level init states const1, const0, unknown, unknown) - word-level constants are represented as char-strings given in the same way as they would appear in a Verilog file (for example, the 16-bit constant 10 is represented as a string "4'b1010". This string contains 8 bytes, including the char '\0' to denote the end of the string. It will take 2 unsigned ints, therefore its record will look as follows { {NDR_FUNCTION, 2}, {"4'b1010"} }, but the user does not see these details. The user only gives "4'b1010" as an argument (char * pFunction) to the above procedure Ndr_ModuleAddObject(). */ //////////////////////////////////////////////////////////////////////// /// PARAMETERS /// //////////////////////////////////////////////////////////////////////// // record types typedef enum { NDR_NONE = 0, // 0: unused NDR_DESIGN, // 1: design (or library of modules) NDR_MODULE, // 2: one module NDR_OBJECT, // 3: object NDR_INPUT, // 4: input NDR_OUTPUT, // 5: output NDR_OPERTYPE, // 6: operator type (buffer, shifter, adder, etc) NDR_NAME, // 7: name NDR_RANGE, // 8: bit range NDR_FUNCTION, // 9: specified for some operators (PLAs, etc) NDR_UNKNOWN // 10: unknown } Ndr_RecordType_t; // operator types typedef enum { WLC_OBJ_NONE = 0, // 00: unknown WLC_OBJ_PI, // 01: primary input WLC_OBJ_PO, // 02: primary output WLC_OBJ_FO, // 03: flop output (unused) WLC_OBJ_FI, // 04: flop input (unused) WLC_OBJ_FF, // 05: flop WLC_OBJ_CONST, // 06: constant WLC_OBJ_BUF, // 07: buffer WLC_OBJ_MUX, // 08: multiplexer WLC_OBJ_SHIFT_R, // 09: shift right WLC_OBJ_SHIFT_RA, // 10: shift right (arithmetic) WLC_OBJ_SHIFT_L, // 11: shift left WLC_OBJ_SHIFT_LA, // 12: shift left (arithmetic) WLC_OBJ_ROTATE_R, // 13: rotate right WLC_OBJ_ROTATE_L, // 14: rotate left WLC_OBJ_BIT_NOT, // 15: bitwise NOT WLC_OBJ_BIT_AND, // 16: bitwise AND WLC_OBJ_BIT_OR, // 17: bitwise OR WLC_OBJ_BIT_XOR, // 18: bitwise XOR WLC_OBJ_BIT_NAND, // 19: bitwise AND WLC_OBJ_BIT_NOR, // 20: bitwise OR WLC_OBJ_BIT_NXOR, // 21: bitwise NXOR WLC_OBJ_BIT_SELECT, // 22: bit selection WLC_OBJ_BIT_CONCAT, // 23: bit concatenation WLC_OBJ_BIT_ZEROPAD, // 24: zero padding WLC_OBJ_BIT_SIGNEXT, // 25: sign extension WLC_OBJ_LOGIC_NOT, // 26: logic NOT WLC_OBJ_LOGIC_IMPL, // 27: logic implication WLC_OBJ_LOGIC_AND, // 28: logic AND WLC_OBJ_LOGIC_OR, // 29: logic OR WLC_OBJ_LOGIC_XOR, // 30: logic XOR WLC_OBJ_COMP_EQU, // 31: compare equal WLC_OBJ_COMP_NOTEQU, // 32: compare not equal WLC_OBJ_COMP_LESS, // 33: compare less WLC_OBJ_COMP_MORE, // 34: compare more WLC_OBJ_COMP_LESSEQU, // 35: compare less or equal WLC_OBJ_COMP_MOREEQU, // 36: compare more or equal WLC_OBJ_REDUCT_AND, // 37: reduction AND WLC_OBJ_REDUCT_OR, // 38: reduction OR WLC_OBJ_REDUCT_XOR, // 39: reduction XOR WLC_OBJ_REDUCT_NAND, // 40: reduction NAND WLC_OBJ_REDUCT_NOR, // 41: reduction NOR WLC_OBJ_REDUCT_NXOR, // 42: reduction NXOR WLC_OBJ_ARI_ADD, // 43: arithmetic addition WLC_OBJ_ARI_SUB, // 44: arithmetic subtraction WLC_OBJ_ARI_MULTI, // 45: arithmetic multiplier WLC_OBJ_ARI_DIVIDE, // 46: arithmetic division WLC_OBJ_ARI_REM, // 47: arithmetic remainder WLC_OBJ_ARI_MODULUS, // 48: arithmetic modulus WLC_OBJ_ARI_POWER, // 49: arithmetic power WLC_OBJ_ARI_MINUS, // 50: arithmetic minus WLC_OBJ_ARI_SQRT, // 51: integer square root WLC_OBJ_ARI_SQUARE, // 52: integer square WLC_OBJ_TABLE, // 53: bit table WLC_OBJ_NUMBER // 54: unused } Wlc_ObjType_t; // printing operator types static inline char * Ndr_OperName( int Type ) { if ( Type == WLC_OBJ_NONE ) return NULL; if ( Type == WLC_OBJ_PI ) return "pi"; // 01: primary input if ( Type == WLC_OBJ_PO ) return "po"; // 02: primary output (unused) if ( Type == WLC_OBJ_FO ) return "ff"; // 03: flop output if ( Type == WLC_OBJ_FI ) return "bi"; // 04: flop input (unused) if ( Type == WLC_OBJ_FF ) return "ff"; // 05: flop (unused) if ( Type == WLC_OBJ_CONST ) return "const"; // 06: constant if ( Type == WLC_OBJ_BUF ) return "buf"; // 07: buffer if ( Type == WLC_OBJ_MUX ) return "mux"; // 08: multiplexer if ( Type == WLC_OBJ_SHIFT_R ) return ">>"; // 09: shift right if ( Type == WLC_OBJ_SHIFT_RA ) return ">>>"; // 10: shift right (arithmetic) if ( Type == WLC_OBJ_SHIFT_L ) return "<<"; // 11: shift left if ( Type == WLC_OBJ_SHIFT_LA ) return "<<<"; // 12: shift left (arithmetic) if ( Type == WLC_OBJ_ROTATE_R ) return "rotR"; // 13: rotate right if ( Type == WLC_OBJ_ROTATE_L ) return "rotL"; // 14: rotate left if ( Type == WLC_OBJ_BIT_NOT ) return "~"; // 15: bitwise NOT if ( Type == WLC_OBJ_BIT_AND ) return "&"; // 16: bitwise AND if ( Type == WLC_OBJ_BIT_OR ) return "|"; // 17: bitwise OR if ( Type == WLC_OBJ_BIT_XOR ) return "^"; // 18: bitwise XOR if ( Type == WLC_OBJ_BIT_NAND ) return "~&"; // 19: bitwise NAND if ( Type == WLC_OBJ_BIT_NOR ) return "~|"; // 20: bitwise NOR if ( Type == WLC_OBJ_BIT_NXOR ) return "~^"; // 21: bitwise NXOR if ( Type == WLC_OBJ_BIT_SELECT ) return "[:]"; // 22: bit selection if ( Type == WLC_OBJ_BIT_CONCAT ) return "{}"; // 23: bit concatenation if ( Type == WLC_OBJ_BIT_ZEROPAD ) return "zPad"; // 24: zero padding if ( Type == WLC_OBJ_BIT_SIGNEXT ) return "sExt"; // 25: sign extension if ( Type == WLC_OBJ_LOGIC_NOT ) return "!"; // 26: logic NOT if ( Type == WLC_OBJ_LOGIC_IMPL ) return "=>"; // 27: logic implication if ( Type == WLC_OBJ_LOGIC_AND ) return "&&"; // 28: logic AND if ( Type == WLC_OBJ_LOGIC_OR ) return "||"; // 29: logic OR if ( Type == WLC_OBJ_LOGIC_XOR ) return "^^"; // 30: logic XOR if ( Type == WLC_OBJ_COMP_EQU ) return "=="; // 31: compare equal if ( Type == WLC_OBJ_COMP_NOTEQU ) return "!="; // 32: compare not equal if ( Type == WLC_OBJ_COMP_LESS ) return "<"; // 33: compare less if ( Type == WLC_OBJ_COMP_MORE ) return ">"; // 34: compare more if ( Type == WLC_OBJ_COMP_LESSEQU ) return "<="; // 35: compare less or equal if ( Type == WLC_OBJ_COMP_MOREEQU ) return ">="; // 36: compare more or equal if ( Type == WLC_OBJ_REDUCT_AND ) return "&"; // 37: reduction AND if ( Type == WLC_OBJ_REDUCT_OR ) return "|"; // 38: reduction OR if ( Type == WLC_OBJ_REDUCT_XOR ) return "^"; // 39: reduction XOR if ( Type == WLC_OBJ_REDUCT_NAND ) return "~&"; // 40: reduction NAND if ( Type == WLC_OBJ_REDUCT_NOR ) return "~|"; // 41: reduction NOR if ( Type == WLC_OBJ_REDUCT_NXOR ) return "~^"; // 42: reduction NXOR if ( Type == WLC_OBJ_ARI_ADD ) return "+"; // 43: arithmetic addition if ( Type == WLC_OBJ_ARI_SUB ) return "-"; // 44: arithmetic subtraction if ( Type == WLC_OBJ_ARI_MULTI ) return "*"; // 45: arithmetic multiplier if ( Type == WLC_OBJ_ARI_DIVIDE ) return "/"; // 46: arithmetic division if ( Type == WLC_OBJ_ARI_REM ) return "%"; // 47: arithmetic reminder if ( Type == WLC_OBJ_ARI_MODULUS ) return "mod"; // 48: arithmetic modulus if ( Type == WLC_OBJ_ARI_POWER ) return "**"; // 49: arithmetic power if ( Type == WLC_OBJ_ARI_MINUS ) return "-"; // 50: arithmetic minus if ( Type == WLC_OBJ_ARI_SQRT ) return "sqrt"; // 51: integer square root if ( Type == WLC_OBJ_ARI_SQUARE ) return "squar"; // 52: integer square if ( Type == WLC_OBJ_TABLE ) return "table"; // 53: bit table if ( Type == WLC_OBJ_NUMBER ) return NULL; // 54: unused return NULL; } //////////////////////////////////////////////////////////////////////// /// BASIC TYPES /// //////////////////////////////////////////////////////////////////////// // this is an internal procedure, which is not seen by the user typedef struct Ndr_Data_t_ Ndr_Data_t; struct Ndr_Data_t_ { int nSize; int nCap; unsigned char * pHead; unsigned int * pBody; }; static inline int Ndr_DataType( Ndr_Data_t * p, int i ) { assert( p->pHead[i] ); return (int)p->pHead[i]; } static inline int Ndr_DataSize( Ndr_Data_t * p, int i ) { return Ndr_DataType(p, i) > NDR_OBJECT ? 1 : p->pBody[i]; } static inline int Ndr_DataEntry( Ndr_Data_t * p, int i ) { return (int)p->pBody[i]; } static inline int * Ndr_DataEntryP( Ndr_Data_t * p, int i ) { return (int *)p->pBody + i; } static inline int Ndr_DataEnd( Ndr_Data_t * p, int i ) { return i + p->pBody[i]; } static inline void Ndr_DataAddTo( Ndr_Data_t * p, int i, int Add ) { assert(Ndr_DataType(p, i) <= NDR_OBJECT); p->pBody[i] += Add; } static inline void Ndr_DataPush( Ndr_Data_t * p, int Type, int Entry ) { p->pHead[p->nSize] = Type; p->pBody[p->nSize++] = Entry; } //////////////////////////////////////////////////////////////////////// /// ITERATORS /// //////////////////////////////////////////////////////////////////////// // iterates over modules in the design #define Ndr_DesForEachMod( p, Mod ) \ for ( Mod = 1; Mod < Ndr_DataEntry(p, 0); Mod += Ndr_DataSize(p, Mod) ) if (Ndr_DataType(p, Mod) != NDR_MODULE) {} else // iterates over objects in a module #define Ndr_ModForEachObj( p, Mod, Obj ) \ for ( Obj = Mod + 1; Obj < Ndr_DataEnd(p, Mod); Obj += Ndr_DataSize(p, Obj) ) if (Ndr_DataType(p, Obj) != NDR_OBJECT) {} else // iterates over records in an object #define Ndr_ObjForEachEntry( p, Obj, Ent ) \ for ( Ent = Obj + 1; Ent < Ndr_DataEnd(p, Obj); Ent += Ndr_DataSize(p, Ent) ) // iterates over primary inputs of a module #define Ndr_ModForEachPi( p, Mod, Obj ) \ Ndr_ModForEachObj( p, 0, Obj ) if ( !Ndr_ObjIsType(p, Obj, WLC_OBJ_PI) ) {} else // iteraots over primary outputs of a module #define Ndr_ModForEachPo( p, Mod, Obj ) \ Ndr_ModForEachObj( p, 0, Obj ) if ( !Ndr_ObjIsType(p, Obj, WLC_OBJ_PO) ) {} else // iterates over internal nodes of a module #define Ndr_ModForEachNode( p, Mod, Obj ) \ Ndr_ModForEachObj( p, 0, Obj ) if ( Ndr_ObjIsType(p, Obj, WLC_OBJ_PI) || Ndr_ObjIsType(p, Obj, WLC_OBJ_PO) ) {} else //////////////////////////////////////////////////////////////////////// /// INTERNAL PROCEDURES /// //////////////////////////////////////////////////////////////////////// static inline void Ndr_DataResize( Ndr_Data_t * p, int Add ) { if ( p->nSize + Add <= p->nCap ) return; p->nCap *= 2; p->pHead = (unsigned char*)realloc( p->pHead, p->nCap ); p->pBody = (unsigned int *)realloc( p->pBody, 4*p->nCap ); } static inline void Ndr_DataPushRange( Ndr_Data_t * p, int RangeLeft, int RangeRight, int fSignedness ) { if ( fSignedness ) { Ndr_DataPush( p, NDR_RANGE, RangeLeft ); Ndr_DataPush( p, NDR_RANGE, RangeRight ); Ndr_DataPush( p, NDR_RANGE, fSignedness ); return; } if ( !RangeLeft && !RangeRight ) return; if ( RangeLeft == RangeRight ) Ndr_DataPush( p, NDR_RANGE, RangeLeft ); else { Ndr_DataPush( p, NDR_RANGE, RangeLeft ); Ndr_DataPush( p, NDR_RANGE, RangeRight ); } } static inline void Ndr_DataPushArray( Ndr_Data_t * p, int Type, int nArray, int * pArray ) { if ( !nArray ) return; assert( nArray > 0 ); Ndr_DataResize( p, nArray ); memset( p->pHead + p->nSize, Type, nArray ); memcpy( p->pBody + p->nSize, pArray, 4*nArray ); p->nSize += nArray; } static inline void Ndr_DataPushString( Ndr_Data_t * p, int Type, char * pFunc ) { if ( !pFunc ) return; Ndr_DataPushArray( p, Type, (strlen(pFunc) + 4) / 4, (int *)pFunc ); } //////////////////////////////////////////////////////////////////////// /// VERILOG WRITING /// //////////////////////////////////////////////////////////////////////// static inline int Ndr_ObjReadEntry( Ndr_Data_t * p, int Obj, int Type ) { int Ent; Ndr_ObjForEachEntry( p, Obj, Ent ) if ( Ndr_DataType(p, Ent) == Type ) return Ndr_DataEntry(p, Ent); return -1; } static inline int Ndr_ObjReadArray( Ndr_Data_t * p, int Obj, int Type, int ** ppStart ) { int Ent, Counter = 0; *ppStart = NULL; Ndr_ObjForEachEntry( p, Obj, Ent ) if ( Ndr_DataType(p, Ent) == Type ) { Counter++; if ( *ppStart == NULL ) *ppStart = (int *)p->pBody + Ent; } else if ( *ppStart ) return Counter; return Counter; } static inline int Ndr_ObjIsType( Ndr_Data_t * p, int Obj, int Type ) { int Ent; Ndr_ObjForEachEntry( p, Obj, Ent ) if ( Ndr_DataType(p, Ent) == NDR_OPERTYPE ) return (int)(Ndr_DataEntry(p, Ent) == Type); return -1; } static inline int Ndr_ObjReadBody( Ndr_Data_t * p, int Obj, int Type ) { int Ent; Ndr_ObjForEachEntry( p, Obj, Ent ) if ( Ndr_DataType(p, Ent) == Type ) return Ndr_DataEntry(p, Ent); return -1; } static inline int * Ndr_ObjReadBodyP( Ndr_Data_t * p, int Obj, int Type ) { int Ent; Ndr_ObjForEachEntry( p, Obj, Ent ) if ( Ndr_DataType(p, Ent) == Type ) return Ndr_DataEntryP(p, Ent); return NULL; } static inline void Ndr_ObjWriteRange( Ndr_Data_t * p, int Obj, FILE * pFile ) { int * pArray, nArray = Ndr_ObjReadArray( p, Obj, NDR_RANGE, &pArray ); if ( nArray == 0 ) return; if ( nArray == 3 ) fprintf( pFile, "signed " ); if ( nArray == 1 ) fprintf( pFile, "[%d] ", pArray[0] ); else fprintf( pFile, "[%d:%d] ", pArray[0], pArray[1] ); } static inline char * Ndr_ObjReadOutName( Ndr_Data_t * p, int Obj, char ** pNames ) { return pNames[Ndr_ObjReadBody(p, Obj, NDR_OUTPUT)]; } static inline char * Ndr_ObjReadInName( Ndr_Data_t * p, int Obj, char ** pNames ) { return pNames[Ndr_ObjReadBody(p, Obj, NDR_INPUT)]; } // to write signal names, this procedure takes a mapping of name IDs into actual char-strings (pNames) static inline void Ndr_ModuleWriteVerilog( char * pFileName, void * pModule, char ** pNames ) { Ndr_Data_t * p = (Ndr_Data_t *)pModule; int Mod = 0, Obj, nArray, * pArray, fFirst = 1; FILE * pFile = pFileName ? fopen( pFileName, "wb" ) : stdout; if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for writing.\n", pFileName ); return; } fprintf( pFile, "\nmodule %s (\n ", pNames[Ndr_ObjReadEntry(p, 0, NDR_NAME)] ); Ndr_ModForEachPi( p, Mod, Obj ) fprintf( pFile, "%s, ", Ndr_ObjReadOutName(p, Obj, pNames) ); fprintf( pFile, "\n " ); Ndr_ModForEachPo( p, Mod, Obj ) fprintf( pFile, "%s%s", fFirst ? "":", ", Ndr_ObjReadInName(p, Obj, pNames) ), fFirst = 0; fprintf( pFile, "\n);\n\n" ); Ndr_ModForEachPi( p, Mod, Obj ) { fprintf( pFile, " input " ); Ndr_ObjWriteRange( p, Obj, pFile ); fprintf( pFile, "%s;\n", Ndr_ObjReadOutName(p, Obj, pNames) ); } Ndr_ModForEachPo( p, Mod, Obj ) { fprintf( pFile, " output " ); Ndr_ObjWriteRange( p, Obj, pFile ); fprintf( pFile, "%s;\n", Ndr_ObjReadInName(p, Obj, pNames) ); } Ndr_ModForEachNode( p, Mod, Obj ) { fprintf( pFile, " wire " ); Ndr_ObjWriteRange( p, Obj, pFile ); fprintf( pFile, "%s;\n", Ndr_ObjReadOutName(p, Obj, pNames) ); } fprintf( pFile, "\n" ); Ndr_ModForEachNode( p, Mod, Obj ) { fprintf( pFile, " assign %s = ", Ndr_ObjReadOutName(p, Obj, pNames) ); nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray ); if ( nArray == 0 ) fprintf( pFile, "%s;\n", (char *)Ndr_ObjReadBodyP(p, Obj, NDR_FUNCTION) ); else if ( nArray == 1 && Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE) == WLC_OBJ_BUF ) fprintf( pFile, "%s;\n", pNames[pArray[0]] ); else if ( nArray == 1 ) fprintf( pFile, "%s %s;\n", Ndr_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)), pNames[pArray[0]] ); else if ( nArray == 2 ) fprintf( pFile, "%s %s %s;\n", pNames[pArray[0]], Ndr_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)), pNames[pArray[1]] ); else if ( Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE) == WLC_OBJ_MUX ) fprintf( pFile, "%s ? %s : %s;\n", pNames[pArray[0]], pNames[pArray[1]], pNames[pArray[2]] ); else fprintf( pFile, ";\n", Ndr_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)) ); } fprintf( pFile, "\nendmodule\n\n" ); fclose( pFile ); } //////////////////////////////////////////////////////////////////////// /// EXTERNAL PROCEDURES /// //////////////////////////////////////////////////////////////////////// // creating a new module (returns pointer to the memory buffer storing the module info) static inline void * Ndr_ModuleCreate( int Name ) { Ndr_Data_t * p = malloc( sizeof(Ndr_Data_t) ); p->nSize = 0; p->nCap = 16; p->pHead = malloc( p->nCap ); p->pBody = malloc( p->nCap * 4 ); Ndr_DataPush( p, NDR_MODULE, 0 ); Ndr_DataPush( p, NDR_NAME, Name ); Ndr_DataAddTo( p, 0, p->nSize ); assert( p->nSize == 2 ); assert( Name ); return p; } // adding a new object (input/output/flop/intenal node) to an already module module static inline void Ndr_ModuleAddObject( void * pModule, int Type, int InstName, int RangeLeft, int RangeRight, int fSignedness, int nInputs, int * pInputs, int nOutputs, int * pOutputs, char * pFunction ) { Ndr_Data_t * p = (Ndr_Data_t *)pModule; int Obj = p->nSize; assert( Type != 0 ); Ndr_DataResize( p, 6 ); Ndr_DataPush( p, NDR_OBJECT, 0 ); Ndr_DataPush( p, NDR_OPERTYPE, Type ); Ndr_DataPushRange( p, RangeLeft, RangeRight, fSignedness ); if ( InstName ) Ndr_DataPush( p, NDR_NAME, InstName ); Ndr_DataPushArray( p, NDR_INPUT, nInputs, pInputs ); Ndr_DataPushArray( p, NDR_OUTPUT, nOutputs, pOutputs ); Ndr_DataPushString( p, NDR_FUNCTION, pFunction ); Ndr_DataAddTo( p, Obj, p->nSize - Obj ); Ndr_DataAddTo( p, 0, p->nSize - Obj ); assert( (int)p->pBody[0] == p->nSize ); } // deallocate the memory buffer static inline void Ndr_ModuleDelete( void * pModule ) { Ndr_Data_t * p = (Ndr_Data_t *)pModule; if ( !p ) return; free( p->pHead ); free( p->pBody ); free( p ); } //////////////////////////////////////////////////////////////////////// /// FILE READING AND WRITING /// //////////////////////////////////////////////////////////////////////// // file reading/writing static inline void * Ndr_ModuleRead( char * pFileName ) { Ndr_Data_t * p; int nFileSize, RetValue; FILE * pFile = fopen( pFileName, "rb" ); if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for reading.\n", pFileName ); return NULL; } // check file size fseek( pFile, 0, SEEK_END ); nFileSize = ftell( pFile ); assert( nFileSize % 5 == 0 ); rewind( pFile ); // create structure p = malloc( sizeof(Ndr_Data_t) ); p->nSize = p->nCap = nFileSize / 5; p->pHead = malloc( p->nCap ); p->pBody = malloc( p->nCap * 4 ); RetValue = fread( p->pBody, 4, p->nCap, pFile ); RetValue = fread( p->pHead, 1, p->nCap, pFile ); assert( p->nSize == (int)p->pBody[0] ); fclose( pFile ); return p; } static inline void Ndr_ModuleWrite( char * pFileName, void * pModule ) { Ndr_Data_t * p = (Ndr_Data_t *)pModule; int RetValue; FILE * pFile = fopen( pFileName, "wb" ); if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for writing.\n", pFileName ); return; } RetValue = fwrite( p->pBody, 4, p->pBody[0], pFile ); RetValue = fwrite( p->pHead, 1, p->pBody[0], pFile ); fclose( pFile ); } //////////////////////////////////////////////////////////////////////// /// TESTING PROCEDURE /// //////////////////////////////////////////////////////////////////////// // This testing procedure creates and writes into a Verilog file the following module // module add10 ( input [3:0] a, output [3:0] s ); // wire [3:0] const10 = 4'b1010; // assign s = a + const10; // endmodule static inline void Ndr_ModuleTest() { // name IDs int NameIdA = 2; int NameIdS = 3; int NameIdC = 4; // array of fanins of node s int Fanins[2] = { NameIdA, NameIdC }; // map name IDs into char strings char * ppNames[5] = { NULL, "add10", "a", "s", "const10" }; // create a new module void * pModule = Ndr_ModuleCreate( 1 ); // add objects to the modele Ndr_ModuleAddObject( pModule, WLC_OBJ_PI, 0, 3, 0, 0, 0, NULL, 1, &NameIdA, NULL ); // no fanins Ndr_ModuleAddObject( pModule, WLC_OBJ_CONST, 0, 3, 0, 0, 0, NULL, 1, &NameIdC, "4'b1010" ); // no fanins Ndr_ModuleAddObject( pModule, WLC_OBJ_ARI_ADD, 0, 3, 0, 0, 2, Fanins, 1, &NameIdS, NULL ); // fanins are a and const10 Ndr_ModuleAddObject( pModule, WLC_OBJ_PO, 0, 3, 0, 0, 1, &NameIdS, 0, NULL, NULL ); // fanin is a // write Verilog for verification Ndr_ModuleWriteVerilog( NULL, pModule, ppNames ); Ndr_ModuleDelete( pModule ); } //ABC_NAMESPACE_HEADER_END #endif //////////////////////////////////////////////////////////////////////// /// END OF FILE /// ////////////////////////////////////////////////////////////////////////