/**CFile**************************************************************** FileName [abcRec2.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Network and node package.] Synopsis [Record of semi-canonical AIG subgraphs.] Author [Allan Yang, Alan Mishchenko] Affiliation [Fudan University in Shanghai, UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: abcRec.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "base/abc/abc.h" #include "map/if/if.h" #include "bool/kit/kit.h" #include "aig/gia/giaAig.h" #include "misc/vec/vecMem.h" #include "bool/lucky/lucky.h" ABC_NAMESPACE_IMPL_START //#define LibOut //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define REC_EMPTY_ID -1 typedef struct Abc_ManRec_t_2 Abc_ManRec_t2; typedef struct Rec_Obj_t_2 Rec_Obj_t2; typedef enum { REC_ERROR, //0: error REC_SMALL, //1: smaller than REC_EQUAL, //2: equal with REC_BIG, //3: bigger than REC_DOMINANCE, //4: dominance REC_BEDOMINANCED //5: be dominated } Abc_LookUpStatus_t2; struct Rec_Obj_t_2 { int pNext; // link to the next structure of the same functional class int pCopy; // link to the next functional class in the same bucket int truthID; // structure's Truth ID int nFrequency; // appear times of this functional class among benchmarks unsigned char cost; // structure's cost char pinToPinDelay[0]; // structure's pin-to-pin delay }; struct Abc_ManRec_t_2 { Gia_Man_t * pGia; // the record Vec_Str_t * vInputs; // the input number of nodes Vec_Ptr_t * vTtElems; // the elementary truth tables // Vec_Ptr_t * vTtNodes; // the node truth tables // Mem_Fixed_t * pMmTruth; // memory manager for truth tables Vec_Mem_t * vTtMem; // memory for truth tables of primary outputs int * pBins; // hash table mapping truth tables into nodes int nBins; // the number of allocated bins int nVars; // the number of variables int nVarsInit; // the number of variables requested initially int nWords; // the number of TT words int nCuts; // the max number of cuts to use //Mem_Fixed_t * pMemObj; // memory manager for Rec objects int recObjSize; // size for one Rec object int fTrim; // filter the library or not. char * pRecObjs; int nRecObjs; int nRecObjsAlloc; // temporaries int * pBytes; // temporary storage for minterms int * pMints; // temporary storage for minterm counters unsigned * pTemp1; // temporary truth table unsigned * pTemp2; // temporary truth table Vec_Ptr_t * vNodes; // the temporary nodes Vec_Ptr_t * vTtTemps; // the truth tables for the internal nodes of the cut Vec_Ptr_t * vLabels; // temporary storage for AIG node labels Vec_Int_t * vLabelsInt; // temporary storage for AIG node labels Vec_Int_t * vUselessPos; // statistics int nTried; // the number of cuts tried int nFilterSize; // the number of same structures int nFilterRedund; // the number of same structures int nFilterVolume; // the number of same structures int nFilterTruth; // the number of same structures int nFilterError; // the number of same structures int nFilterSame; // the number of same structures int nAdded; // the number of subgraphs added int nAddedFuncs; // the number of functions added int nIfMapError; int nTrimed; // the number of structures filtered // rewriting int nFunsFound; // the found functions int nFunsNotFound; // the missing functions int nFunsTried; int nFunsFilteredBysupport; // the function filtered when rewriting because not all supports are in use. int nFunsDelayComput; // the times delay computed, just for statistics int nNoBetter; // the number of functions found but no better than the current structures. // rewriting runtime int timeIfTotal; // time used on the whole process of rewriting a structure. int timeIfComputDelay; // time used on the structure's delay computation. int timeIfCanonicize; // time used on canonicize the function int timeIfDerive; // time used on derive the final network; int timeIfCopmutCur; // time used on compute the current structures info int timeIfOther; // time used on other things // record runtime int timeTrim; // the runtime to filter the library int timeCollect; // the runtime to collect the node of a structure. int timeTruth; // the runtime to compute truth table. int timeCanon; // the runtime to canonicize int timeInsert; // the runtime to insert a structure. int timeBuild; // the runtime to build a new structure in the library. int timeMerge; // the runtime to merge libraries; int timeReHash; // the runtime to resize the hash table. int timeOther; // the runtime of other int timeTotal; // the runtime to total. }; static Abc_ManRec_t2 * s_pMan = NULL; static inline void Abc_ObjSetMax2( Vec_Str_t * p, Gia_Man_t * pGia, Gia_Obj_t * pObj, char Value ) { Vec_StrWriteEntry(p, Gia_ObjId(pGia, pObj), Value); } //static inline void Abc_ObjClearMax( Gia_Obj_t * pObj ) { pObj->Value = (pObj->Value & 0xff); } static inline int Abc_ObjGetMax2( Vec_Str_t * p, Gia_Man_t * pGia, Gia_Obj_t * pObj ) { return Vec_StrEntry(p, Gia_ObjId(pGia, pObj)); } static inline int Rec_ObjID(Abc_ManRec_t2 *p, Rec_Obj_t2 * pRecObj) { char * pObj = (char *)pRecObj; assert(p->pRecObjs <= pObj && pObj < p->pRecObjs + p->nRecObjs * p->recObjSize); return (pObj - p->pRecObjs)/p->recObjSize; } static inline Rec_Obj_t2 * Rec_Obj(Abc_ManRec_t2 *p, int v) { assert( v < p->nRecObjs ); return (Rec_Obj_t2 *)(p->pRecObjs + v * p->recObjSize); } static inline unsigned * Rec_MemReadEntry( Abc_ManRec_t2 * p, int i ) { return (unsigned *)Vec_MemReadEntry( p->vTtMem, i ); } static inline void Rec_MemSetEntry( Abc_ManRec_t2 * p, int i, unsigned * pEntry ) { Vec_MemSetEntry( p->vTtMem, i, (word *)pEntry ); } /**Function************************************************************* Synopsis [Alloc the Rec object from its manger.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Rec_AppendObj( Abc_ManRec_t2 * p, Rec_Obj_t2 ** pObj ) { //Rec_Obj_t2 * pObj; int hasRealloced = 0; if ( p->nRecObjs == p->nRecObjsAlloc ) { assert( p->nRecObjs > 0 ); p->pRecObjs = ABC_REALLOC( char, p->pRecObjs, 2 * p->nRecObjsAlloc * p->recObjSize ); memset( p->pRecObjs + p->nRecObjsAlloc * p->recObjSize, 0, p->recObjSize * p->nRecObjsAlloc ); p->nRecObjsAlloc *= 2; hasRealloced = 1; } *pObj = Rec_Obj( p, p->nRecObjs++ ); (*pObj)->pCopy = REC_EMPTY_ID; (*pObj)->pNext = REC_EMPTY_ID; return hasRealloced; } /**Function************************************************************* Synopsis [set the property of a Rec object.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Rec_ObjSet2(Abc_ManRec_t2* p, Rec_Obj_t2* pRecObj, char* newDelay, unsigned char cost, int nVar) { int i; //pRecObj->obj = pObj; //pRecObj->Id = Gia_ObjId(p->pGia, pObj); pRecObj->cost = cost; for (i = 0; i < nVar; i++) pRecObj->pinToPinDelay[i] = newDelay[i]; return Rec_ObjID(p, pRecObj); } /**Function************************************************************* Synopsis [Set input number for every structure.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecMarkInputs(Abc_ManRec_t2 * p, Gia_Man_t * pGia) { Gia_Obj_t * pObj; int i; Vec_Str_t * pStr = p->vInputs; if (Vec_StrSize(pStr) < Gia_ManObjNum(pGia)) Vec_StrFillExtra( pStr, Gia_ManObjNum(pGia), 0 ); Gia_ManForEachPi( pGia, pObj, i ) Abc_ObjSetMax2(pStr, pGia, pObj, (char)(i+1) ); Gia_ManForEachAnd( pGia, pObj, i ) Abc_ObjSetMax2(pStr, pGia, pObj, (char)Abc_MaxInt( Abc_ObjGetMax2(pStr, pGia, Gia_ObjFanin0(pObj)), Abc_ObjGetMax2(pStr, pGia, Gia_ObjFanin1(pObj)) ) ); } /**Function************************************************************* Synopsis [Get the Gia_Obj_t.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Gia_Obj_t * Abc_NtkRecGetObj(int Rec_ID) { Gia_Man_t * p = s_pMan->pGia; Gia_Obj_t * pPO = Gia_ManPo(p, Rec_ID); return Gia_ObjFanin0(pPO); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_NtkRecIsRunning2() { return s_pMan != NULL; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_NtkRecIsInTrimMode2() { return (s_pMan != NULL && s_pMan->fTrim); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Gia_Man_t * Abc_NtkRecGetGia() { return s_pMan->pGia; } /**Function************************************************************* Synopsis [Set frequency.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Abc_NtkRecFrequencyInc(int entry) { // the hit number of this functional class increased if (entry != REC_EMPTY_ID && Rec_Obj(s_pMan, entry)->nFrequency < 0x7fffffff) Rec_Obj(s_pMan, entry)->nFrequency += 1; } /**Function************************************************************* Synopsis [stretch the truthtable to have more input variables.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static void If_CutTruthStretch(unsigned* pInOut, int nVarS, int nVarB) { int w, i; int step = Kit_TruthWordNum(nVarS); int nWords = Kit_TruthWordNum(nVarB); assert(step <= nWords); if (step == nWords) return; for (w = 0; w delayFromTable[i]) { equal = 0; dominace = 0; if (smallThan == 0) bigThan = 1; } } if(equal) return REC_EQUAL; else if(dominace) return REC_DOMINANCE; else if(beDominaced) return REC_BEDOMINANCED; if(bigThan) return REC_BIG; else if(smallThan) return REC_SMALL; else return REC_SMALL; } /**Function************************************************************* Synopsis [Delete a useless structure in the library.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecDeleteSubGragh2(Gia_Obj_t* pObj) { //assert(pObj->fMark0 == 0); //pObj->fMark0 = 1; Vec_IntPush(s_pMan->vUselessPos, Gia_ObjId(s_pMan->pGia, pObj)); s_pMan->nTrimed++; } /**Function************************************************************* Synopsis [Mark NonDangling nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecMarkNonDanglingNodes_Rec(Gia_Man_t * pGia, Gia_Obj_t * pRoot) { Gia_Obj_t * pFanin0, * pFanin1; //assert(pRoot->fMark0 == 0); pRoot->fMark0 = 1; pFanin0 = Gia_ObjFanin0(pRoot); pFanin1 = Gia_ObjFanin1(pRoot); if (pFanin0->fMark0 == 0) { if(Gia_ObjIsPi(pGia, pFanin0)) pFanin0->fMark0 = 1; else Abc_NtkRecMarkNonDanglingNodes_Rec(pGia, pFanin0); } if (pFanin1->fMark0 == 0) { if(Gia_ObjIsPi(pGia, pFanin1)) pFanin1->fMark0 = 1; else Abc_NtkRecMarkNonDanglingNodes_Rec(pGia, pFanin1); } } /**Function************************************************************* Synopsis [Mark Dangling nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecMarkCompl(Gia_Man_t * pGia) { Gia_Obj_t * pObj; int i; Gia_ManForEachObj1(pGia, pObj,i) pObj->fMark0 = !pObj->fMark0; } /**Function************************************************************* Synopsis [Mark Dangling nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecMarkNonDanglingNodes(Gia_Man_t * pGia) { Gia_Obj_t * pObj, * pFanin; int i; int Id; // int counter = 0; Gia_ManForEachObj(pGia, pObj, i) { if (pObj->fMark1 == 1) { pObj->fMark1 = 0; } if (pObj->fMark0 == 1) { pObj->fMark0 = 0; } } Vec_IntForEachEntry(s_pMan->vUselessPos, Id, i) { pObj = Gia_ManObj(pGia, Id); pObj->fMark1 = 1; } Gia_ManForEachPo(pGia, pObj,i) { pFanin = Gia_ObjFanin0(pObj); if (!pFanin->fMark1) { pObj->fMark0 = 1; Abc_NtkRecMarkNonDanglingNodes_Rec(pGia, pFanin); } } Vec_IntClear(s_pMan->vUselessPos); Abc_NtkRecMarkCompl(pGia); } /**Function************************************************************* Synopsis [Duplicates non-dangling nodes and POs driven by constants.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Gia_Man_t * Abc_NtkDupWithoutDangling2( Gia_Man_t * pGia ) { Gia_Man_t * pGiaNew; Abc_NtkRecMarkNonDanglingNodes(pGia); pGiaNew = Gia_ManDupMarked(pGia); return pGiaNew; } /**Function************************************************************* Synopsis [Filter the library.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecFilter2(int nLimit) { int previous = REC_EMPTY_ID, entry = REC_EMPTY_ID, pTemp; int i; Gia_Man_t * pGia = s_pMan->pGia, *newPGia; //int time = Abc_Clock(); Abc_ManRec_t2 *p = s_pMan; // Gia_Obj_t * pObj; char fileName[256]; if (nLimit > 0) { for ( i = 0; i < s_pMan->nBins; i++ ) { previous = REC_EMPTY_ID; for ( entry = s_pMan->pBins[i]; entry != REC_EMPTY_ID; entry = Rec_Obj(p, entry)->pCopy) { assert(Rec_Obj(p, entry)->nFrequency != 0); // only filter the functional classed with frequency less than nLimit. if(Rec_Obj(p, entry)->nFrequency > nLimit) { previous = entry; continue; } if(previous == REC_EMPTY_ID) { s_pMan->pBins[i] = Rec_Obj(p, entry)->pCopy; previous = REC_EMPTY_ID; } else Rec_Obj(p, previous)->pCopy = Rec_Obj(p, entry)->pCopy; s_pMan->nAddedFuncs--; //delete all the subgragh. for ( pTemp = entry; pTemp != REC_EMPTY_ID;) { s_pMan->nAdded--; Abc_NtkRecDeleteSubGragh2(Abc_NtkRecGetObj(pTemp)); pTemp = Rec_Obj(p, pTemp)->pNext; //Mem_FixedEntryRecycle(s_pMan->pMemObj, (char *)pTemp); //pTemp = pNextOne; } } } } // remove dangling nodes and POs driven by constants newPGia = Abc_NtkDupWithoutDangling2(pGia); sprintf( fileName, "RecLib%d_Filtered%d.aig", p->nVars, nLimit); Gia_AigerWrite( newPGia, fileName, 0, 0 ); Abc_Print(1, "Library %s was written.", fileName); //Gia_ManHashStop(newPGia); Gia_ManStop(newPGia); Abc_NtkRecStop2(); Abc_Print(1, "Record stopped."); // collect runtime stats //s_pMan->timeTrim += Abc_Clock() - time; //s_pMan->timeTotal += Abc_Clock() - time; } /**Function************************************************************* Synopsis [Returns the hash key.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline unsigned Abc_NtkRecTableHash( unsigned * pTruth, int nVars, int nBins, int * pPrimes ) { int i, nWords = Kit_TruthWordNum( nVars ); unsigned uHash = 0; for ( i = 0; i < nWords; i++ ) uHash ^= pTruth[i] * pPrimes[i & 0x7]; return uHash % nBins; } /**Function************************************************************* Synopsis [Returns the given record.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static int * Abc_NtkRecTableLookup2(Abc_ManRec_t2* p, int * pBins, int nBins, unsigned * pTruth, int nVars ) { static int s_Primes[10] = { 1291, 1699, 2357, 4177, 5147, 5647, 6343, 7103, 7873, 8147 }; int * ppSpot, pEntry; ppSpot = pBins + Abc_NtkRecTableHash( pTruth, nVars, nBins, s_Primes ); for ( pEntry = *ppSpot; pEntry != REC_EMPTY_ID; ppSpot = &(Rec_Obj(p,pEntry)->pCopy), pEntry = Rec_Obj(p,pEntry)->pCopy ) // if ( Kit_TruthIsEqualWithPhase((unsigned *)Vec_PtrEntry(p->vTtNodes, pEntry), pTruth, nVars) ) if ( Kit_TruthIsEqualWithPhase( Rec_MemReadEntry(p, Rec_Obj(p, pEntry)->truthID), pTruth, nVars) ) return ppSpot; return ppSpot; } /**Function************************************************************* Synopsis [Resize the hash table.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static void Abc_NtkRecResizeHash2(Abc_ManRec_t2* p) { int * pBinsNew, *ppSpot; int pEntry, pTemp; int nBinsNew, Counter, i; int clk = Abc_Clock(); // get the new table size nBinsNew = Cudd_Prime( 2 * p->nBins ); printf("Hash table resize from %d to %d.\n", p->nBins, nBinsNew); // allocate a new array pBinsNew = ABC_ALLOC( int, nBinsNew ); memset( pBinsNew, -1, sizeof(int) * nBinsNew ); // rehash the entries from the old table Counter = 0; for ( i = 0; i < p->nBins; i++ ) for ( pEntry = p->pBins[i]; pEntry != REC_EMPTY_ID;) { pTemp = Rec_Obj(p, pEntry)->pCopy; // ppSpot = Abc_NtkRecTableLookup2(p, pBinsNew, nBinsNew, (unsigned *)Vec_PtrEntry(p->vTtNodes, pEntry), p->nVars); ppSpot = Abc_NtkRecTableLookup2(p, pBinsNew, nBinsNew, Rec_MemReadEntry(p, Rec_Obj(p, pEntry)->truthID), p->nVars); assert(*ppSpot == REC_EMPTY_ID); *ppSpot = pEntry; Rec_Obj(p, pEntry)->pCopy = REC_EMPTY_ID; pEntry = pTemp; Counter++; } assert( Counter == p->nAddedFuncs); ABC_FREE( p->pBins ); p->pBins = pBinsNew; p->nBins = nBinsNew; p->timeReHash += Abc_Clock() - clk; p->timeTotal += Abc_Clock() - clk; } /**Function************************************************************* Synopsis [Compute area of the structure.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static unsigned char Abc_NtkRecAreaAndMark_rec(Gia_Obj_t* pObj) { unsigned char Area0, Area1, Area; pObj = Gia_Regular(pObj); if(Gia_ObjIsCi(pObj) || pObj->fMark0 == 1) return 0; Area0 = Abc_NtkRecAreaAndMark_rec(Gia_ObjFanin0(pObj)); Area1 = Abc_NtkRecAreaAndMark_rec(Gia_ObjFanin1(pObj)); Area = Area1 + Area0 + 1; // assert(Area <= 255); pObj->fMark0 = 1; return Area; } /**Function************************************************************* Synopsis [Compute area of the structure.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static void Abc_NtkRecAreaUnMark_rec(Gia_Obj_t* pObj) { pObj = Gia_Regular(pObj); if ( Gia_ObjIsCi(pObj) || pObj->fMark0 == 0 ) return; Abc_NtkRecAreaUnMark_rec( Gia_ObjFanin0(pObj) ); Abc_NtkRecAreaUnMark_rec( Gia_ObjFanin1(pObj) ); assert( pObj->fMark0 ); // loop detection pObj->fMark0 = 0; } /**Function************************************************************* Synopsis [Compute area of the structure.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ unsigned char Abc_NtkRecArea2(Gia_Obj_t* pObj) { unsigned char area; area = Abc_NtkRecAreaAndMark_rec(pObj); Abc_NtkRecAreaUnMark_rec(pObj); return area; } /**Function************************************************************* Synopsis [Compute pin-to-pin delay of the structure.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ char If_CutDepthRecComput_rec2(Gia_Obj_t* pObj, int iLeaf) { char Depth0, Depth1, Depth; pObj = Gia_Regular(pObj); if(Gia_ObjId(s_pMan->pGia, pObj) == iLeaf) return 0; if(Gia_ObjIsCi(pObj)) return -IF_BIG_CHAR; Depth0 = If_CutDepthRecComput_rec2(Gia_ObjFanin0(pObj), iLeaf); Depth1 = If_CutDepthRecComput_rec2(Gia_ObjFanin1(pObj), iLeaf); Depth = Abc_MaxInt(Depth0, Depth1); Depth = (Depth == -IF_BIG_CHAR) ? -IF_BIG_CHAR : Depth + 1; // assert(Depth <= 127); return Depth; } /**Function************************************************************* Synopsis [Check if the structure is dominant or not.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static int ABC_NtkRecIsDominant(char* delayFromStruct, char* delayFromTable, int nVar) { int i; for (i = 0; i < nVar; i++) { if(delayFromStruct[i] > delayFromTable[i]) return 0; } return 1; } /**Function************************************************************* Synopsis [Sweep the dominated structures.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static void Abc_NtkRecSweepDominance(Abc_ManRec_t2* p, int previous, int current, char * delayFromStruct, int nVars) { Gia_Obj_t* pObj; while(current != REC_EMPTY_ID) { if (ABC_NtkRecIsDominant(delayFromStruct, Rec_Obj(p, current)->pinToPinDelay, nVars)) { pObj = Abc_NtkRecGetObj(current); Rec_Obj(p, previous)->pNext = Rec_Obj(p, current)->pNext; //current->pNext = NULL; //Mem_FixedEntryRecycle(p->pMemObj, (char *)current); current = Rec_Obj(p, previous)->pNext; p->nAdded--; // if filter the library is needed, then point the PO to a constant. Abc_NtkRecDeleteSubGragh2(pObj); } else { previous = current; current = Rec_Obj(p, current)->pNext; } } } /**Function************************************************************* Synopsis [Insert a structure into the look up table.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecReplaceCurrentEntry(int previous, int * current, int entry, int * ppSpot) { Abc_ManRec_t2 * p = s_pMan; Rec_Obj(p,entry)->pCopy = Rec_Obj(p, *current)->pCopy; Rec_Obj(p,entry)->pNext = Rec_Obj(p, *current)->pNext; if (previous == REC_EMPTY_ID) { *ppSpot = entry; Rec_Obj(p,entry)->nFrequency = Rec_Obj(p, *current)->nFrequency; } else { Rec_Obj(p,previous)->pNext = entry; } *current = entry; } /**Function************************************************************* Synopsis [Insert a structure into the look up table.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecInsertToLookUpTable2(Abc_ManRec_t2* p, int* ppSpot, Gia_Obj_t* pPO, int nVars, unsigned * pTruth, int fTrim) { char delayFromStruct[16]; int i, hasRealloced = 0; Gia_Obj_t* pLeaf, *pObj = Gia_ObjFanin0(pPO); int entry, previous = REC_EMPTY_ID, current = * ppSpot; unsigned char costFromStruct = Abc_NtkRecArea2(pObj); Abc_LookUpStatus_t2 result; Rec_Obj_t2 * pRecObj; assert( nVars > 0 ); for (i = 0; i < nVars; i++) { pLeaf = Gia_ManPi( p->pGia, i); pLeaf =Gia_Regular(pLeaf); delayFromStruct[i] = If_CutDepthRecComput_rec2(pObj, Gia_ObjId(p->pGia, pLeaf)); } hasRealloced = Rec_AppendObj(p, &pRecObj); if(hasRealloced) // ppSpot = Abc_NtkRecTableLookup2(p, p->pBins, p->nBins, (unsigned *)Vec_PtrEntry( p->vTtNodes, Gia_ObjCioId(pPO)), p->nVars ); ppSpot = Abc_NtkRecTableLookup2(p, p->pBins, p->nBins, pTruth, p->nVars ); assert(Rec_ObjID(p, pRecObj) == Gia_ObjCioId(pPO)); if (current == REC_EMPTY_ID) { pRecObj->truthID = p->nAddedFuncs; Rec_MemSetEntry( p, pRecObj->truthID, pTruth); } else pRecObj->truthID = Rec_Obj(p, current)->truthID; if(fTrim) { while(1) { if (current == REC_EMPTY_ID) { p->nAdded++; entry = Rec_ObjSet2(p, pRecObj, delayFromStruct, costFromStruct, nVars); if(previous != REC_EMPTY_ID) { Rec_Obj(p, previous)->pNext = entry; //previous->pNext = entry; } else { // new functional class found p->nAddedFuncs++; *ppSpot = entry; Rec_Obj(p, entry)->nFrequency = 1; } break; } result = ABC_NtkRecDelayCompare(delayFromStruct, Rec_Obj(p, current)->pinToPinDelay, nVars); if(result == REC_EQUAL) { // when delay profile is equal, replace only if it has smaller cost. if(costFromStruct < (Rec_Obj(p, current)->cost)) { Abc_NtkRecDeleteSubGragh2(Abc_NtkRecGetObj(current)); entry = Rec_ObjSet2(p, pRecObj, delayFromStruct, costFromStruct, nVars); Abc_NtkRecReplaceCurrentEntry(previous, ¤t, entry, ppSpot); } else Abc_NtkRecDeleteSubGragh2(pObj); break; } // when the new structure can dominate others, sweep them out of the library, delete them if required. else if(result == REC_DOMINANCE) { Abc_NtkRecDeleteSubGragh2(Abc_NtkRecGetObj(current)); entry = Rec_ObjSet2(p, pRecObj, delayFromStruct, costFromStruct, nVars); Abc_NtkRecReplaceCurrentEntry(previous, ¤t, entry, ppSpot); Abc_NtkRecSweepDominance(p,current,Rec_Obj(p, current)->pNext,delayFromStruct, nVars); break; } // when the new structure is domianted by an existed one, don't store it. else if (result == REC_BEDOMINANCED) { Abc_NtkRecDeleteSubGragh2(pObj); break; } // when the new structure's delay profile is big than the current, test the next one else if (result == REC_BIG) { previous = current; current = Rec_Obj(p, current)->pNext; } // insert the new structure to the right position, sweep the ones it can dominate. else if (result == REC_SMALL) { p->nAdded++; entry = Rec_ObjSet2(p, pRecObj, delayFromStruct, costFromStruct, nVars); if(previous != REC_EMPTY_ID) { Rec_Obj(p, previous)->pNext = entry; Rec_Obj(p, entry)->pNext = current; } else { Rec_Obj(p, entry)->pNext = current; Rec_Obj(p, entry)->pCopy = Rec_Obj(p, *ppSpot)->pCopy; Rec_Obj(p, entry)->nFrequency = Rec_Obj(p, *ppSpot)->nFrequency; Rec_Obj(p, *ppSpot)->pCopy = REC_EMPTY_ID; Rec_Obj(p, *ppSpot)->nFrequency = 0; *ppSpot = entry; } Abc_NtkRecSweepDominance(p,current,Rec_Obj(p, current)->pNext,delayFromStruct, nVars); break; } else assert(0); } } else { entry = Rec_ObjSet2(p, pRecObj, delayFromStruct, costFromStruct, nVars); if (current == REC_EMPTY_ID) { p->nAdded++; p->nAddedFuncs++; *ppSpot = entry; Rec_Obj(p, entry)->nFrequency = 1; } else { p->nAdded++; Rec_Obj(p, entry)->pNext = Rec_Obj(p, *ppSpot)->pNext; Rec_Obj(p, *ppSpot)->pNext = entry; } } } /* int Abc_NtkRecComputeTruth2( Gia_Obj_t * pObj, Vec_Ptr_t * vTtNodes, int nVars ) { unsigned * pTruth, * pTruth0, * pTruth1; //int RetValue; Gia_Man_t *pGia = s_pMan->pGia; Gia_Obj_t *pFanin0, *pFanin1; pFanin0 = Gia_ObjFanin0(pObj); pFanin1 = Gia_ObjFanin1(pObj); assert( Gia_ObjIsAnd(pObj) ); pTruth = (unsigned *)Vec_PtrEntry( vTtNodes, Gia_ObjId(pGia, pObj) ); pTruth0 = (unsigned *)Vec_PtrEntry( vTtNodes, Gia_ObjId(pGia, pFanin0) ); pTruth1 = (unsigned *)Vec_PtrEntry( vTtNodes, Gia_ObjId(pGia, pFanin1) ); Kit_TruthAndPhase( pTruth, pTruth0, pTruth1, nVars, Gia_ObjFaninC0(pObj), Gia_ObjFaninC1(pObj) ); //assert((pTruth[0] & 1) == pObj->fPhase ) //RetValue = ((pTruth[0] & 1) == pObj->fPhase); return 1; } */ void Abc_NtkRecStart2( Gia_Man_t * pGia, int nVars, int nCuts, int fTrim ) { Abc_ManRec_t2 * p; Gia_Obj_t * pObj, *pFanin; int * ppSpot; unsigned * pTruth; int i;//, j = 0; int clkTotal = Abc_Clock(), clk, timeInsert; assert( s_pMan == NULL ); if ( pGia == NULL ) { assert( nVars > 2 && nVars <= 16 ); pGia = Gia_ManStart( 1 << 16 ); pGia->pName = Extra_UtilStrsav( "record" ); } else { if ( Gia_ManCountChoices(pGia) > 0 ) { printf( "The starting record should be a network without choice nodes.\n" ); return; } if ( Gia_ManPiNum(pGia) > 16 ) { printf( "The starting record should be a network with no more than %d primary inputs.\n", 16 ); return; } if ( Gia_ManPiNum(pGia) > nVars ) printf( "The starting record has %d inputs (warning only).\n", Gia_ManPiNum(pGia) ); } // Gia_ManHashStart( pGia ); // move this to rec_add2, because if the library is never used for adding new structures // structural hashing is not needed if ( pGia->pHTable != NULL ) Gia_ManHashStop( pGia ); // create the primary inputs for ( i = Gia_ManPiNum(pGia); i < nVars; i++ ) Gia_ManAppendCi(pGia); p = ABC_CALLOC( Abc_ManRec_t2, 1 ); s_pMan = p; // memset( p, 0, sizeof(Abc_ManRec_t2) ); // no need for this if we use ABC_CALLOC p->pGia = pGia; p->nVars = Gia_ManPiNum(pGia); p->nWords = Kit_TruthWordNum( p->nVars ); p->nCuts = nCuts; p->nVarsInit = nVars; p->recObjSize = sizeof(Rec_Obj_t2) + sizeof(char) * p->nVars; p->recObjSize = sizeof(void *) * ((p->recObjSize / sizeof(void *)) + ((p->recObjSize % sizeof(void *)) > 0)); p->nRecObjsAlloc = 1 << 16; p->pRecObjs = (char *) calloc(p->nRecObjsAlloc, p->recObjSize); //p->pMemObj = Mem_FixedStart(p->recObjSize); p->fTrim = fTrim; // create elementary truth tables p->vTtElems = Vec_PtrAlloc( 0 ); assert( p->vTtElems->pArray == NULL ); p->vTtElems->nSize = p->nVars; p->vTtElems->nCap = p->nVars; p->vTtElems->pArray = (void **)Extra_TruthElementary( p->nVars ); p->vInputs = Vec_StrStart( 1 << 16 ); p->vUselessPos = Vec_IntAlloc(1 << 16); // p->vTtNodes = Vec_PtrAlloc( 1000 ); // p->pMmTruth = Mem_FixedStart( sizeof(unsigned)*p->nWords ); // for ( i = 0; i < Gia_ManPoNum(pGia); i++ ) // Vec_PtrPush( p->vTtNodes, Mem_FixedEntryFetch(p->pMmTruth) ); p->vTtMem = Vec_MemAlloc( p->nWords/2, 12 ); // 32 KB/page for 6-var functions // create hash table p->nBins = 20011; //p->nBins =500011; p->pBins = ABC_ALLOC( int, p->nBins ); memset( p->pBins, -1, sizeof(int) * p->nBins ); clk = Abc_Clock(); // Gia_ManForEachPo( pGia, pObj, i ) // { // pTruthSrc = (unsigned *)Gia_ObjComputeTruthTable(pGia, pObj); // // pTruthDst = (unsigned *)Vec_PtrEntry( p->vTtNodes, Gia_ObjCioId(pObj) ); // // Kit_TruthCopy(pTruthDst, pTruthSrc, p->nVars); // Rec_MemSetEntry( p, Gia_ObjCioId(pObj), pTruthSrc ); // } p->timeTruth += Abc_Clock() - clk; // insert the PO nodes into the table timeInsert = Abc_Clock(); Abc_NtkRecMarkInputs(p, pGia); Gia_ManForEachPo( pGia, pObj, i ) { p->nTried++; pFanin = Gia_ObjFanin0(pObj); // mark the nodes with CO fanout. assert(pFanin->fMark1 == 0); pFanin->fMark1 = 1; // pTruth = (unsigned *)Vec_PtrEntry( p->vTtNodes, Gia_ObjCioId(pObj) ); pTruth = (unsigned *)Gia_ObjComputeTruthTable(pGia, pObj); //pTruth = Rec_MemReadEntry( p, Gia_ObjCioId(pObj) ); // add the resulting truth table to the hash table if(p->nAddedFuncs > 2 * p->nBins) Abc_NtkRecResizeHash2(p); ppSpot = Abc_NtkRecTableLookup2(p, p->pBins, p->nBins, pTruth, p->nVars ); Abc_NtkRecInsertToLookUpTable2(p, ppSpot, pObj, Abc_ObjGetMax2(p->vInputs, pGia, pFanin), pTruth, p->fTrim); } p->timeInsert += Abc_Clock() - timeInsert; // temporaries p->pBytes = ABC_ALLOC( int, 4*p->nWords ); p->pMints = ABC_ALLOC( int, 2*p->nVars ); p->pTemp1 = ABC_ALLOC( unsigned, p->nWords ); p->pTemp2 = ABC_ALLOC( unsigned, p->nWords ); p->vNodes = Vec_PtrAlloc( 100 ); p->vTtTemps = Vec_PtrAllocSimInfo( 1024, p->nWords ); p->vLabels = Vec_PtrStart( 1000 ); p->vLabelsInt = Vec_IntStart( 1000 ); p->timeTotal += Abc_Clock() - clkTotal; } /**Function************************************************************* Synopsis [Print statistics about the current record.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecPs2(int fPrintLib) { int Counter, Counters[17] = {0}; int CounterS, CountersS[17] = {0}; Abc_ManRec_t2 * p = s_pMan; Gia_Man_t * pGia = p->pGia; int pEntry, pTemp; //Gia_Obj_t * pObj; int i; FILE * pFile; unsigned* pTruth; int entry; int j; int nVars = s_pMan->nVars; // set the max PI number Abc_NtkRecMarkInputs(s_pMan, s_pMan->pGia); if(fPrintLib) { pFile = fopen( "tt10.txt", "wb" ); for ( i = 0; i < p->nBins; i++ ) for ( entry = p->pBins[i]; entry != REC_EMPTY_ID; entry = Rec_Obj(p, entry)->pCopy ) { int tmp = 0; assert( 0 ); // added the next line to silence the warning that 'pEntry' is not initialized pEntry = -1; // pTruth = (unsigned*)Vec_PtrEntry(p->vTtNodes, entry); pTruth = Rec_MemReadEntry( p, Rec_Obj(p, pEntry)->truthID ); /*if ( (int)Kit_TruthSupport(pTruth, nVars) != (1<vInputs, s_pMan->pGia, Abc_NtkRecGetObj(entry)), Rec_Obj(p, entry)->nFrequency, i); Kit_DsdPrintFromTruth2( pFile, pTruth, Abc_ObjGetMax2(s_pMan->vInputs, s_pMan->pGia, Abc_NtkRecGetObj(entry)) ); fprintf( pFile, "\n" ); for ( pTemp = entry; pTemp != REC_EMPTY_ID; pTemp = Rec_Obj(p, pTemp)->pNext ) { fprintf(pFile,"%d :", tmp); for (j = 0; j vInputs, s_pMan->pGia, Abc_NtkRecGetObj(pTemp)); j++) { fprintf(pFile, " %d, ", Rec_Obj(p, pTemp)->pinToPinDelay[j]); } fprintf(pFile, "cost = %d ID = %d\n", Rec_Obj(p, pTemp)->cost, pTemp); tmp++; } fprintf( pFile, "\n"); fprintf( pFile, "\n"); } fclose( pFile) ; } // go through the table Counter = CounterS = 0; for ( i = 0; i < p->nBins; i++ ) for ( pEntry = p->pBins[i]; pEntry != REC_EMPTY_ID; pEntry = Rec_Obj(p, pEntry)->pCopy ) { assert(Abc_ObjGetMax2(s_pMan->vInputs, s_pMan->pGia, Abc_NtkRecGetObj(pEntry)) >= 2); Counters[ Abc_ObjGetMax2(s_pMan->vInputs, s_pMan->pGia, Abc_NtkRecGetObj(pEntry))]++; Counter++; for ( pTemp = pEntry; pTemp != REC_EMPTY_ID; pTemp = Rec_Obj(p, pTemp)->pNext ) { assert( Abc_ObjGetMax2(s_pMan->vInputs, s_pMan->pGia, Abc_NtkRecGetObj(pTemp)) == Abc_ObjGetMax2(s_pMan->vInputs, s_pMan->pGia, Abc_NtkRecGetObj(pEntry)) ); CountersS[ Abc_ObjGetMax2(s_pMan->vInputs, s_pMan->pGia, Abc_NtkRecGetObj(pTemp)) ]++; CounterS++; } } //printf( "Functions = %d. Expected = %d.\n", Counter, p->nAddedFuncs ); //printf( "Subgraphs = %d. Expected = %d.\n", CounterS, p->nAdded ); assert( Counter == p->nAddedFuncs ); assert( CounterS == p->nAdded ); // clean printf( "The record with %d AND nodes in %d subgraphs for %d functions with %d inputs:\n", Gia_ManAndNum(pGia), Gia_ManPoNum(pGia), p->nAddedFuncs, Gia_ManPiNum(pGia) ); for ( i = 0; i <= 16; i++ ) { if ( Counters[i] ) printf( "Inputs = %2d. Funcs = %8d. Subgrs = %8d. Ratio = %6.2f.\n", i, Counters[i], CountersS[i], 1.0*CountersS[i]/Counters[i] ); } printf( "Subgraphs tried = %10d. (%6.2f %%)\n", p->nTried, !p->nTried? 0 : 100.0*p->nTried/p->nTried ); printf( "Subgraphs filtered by support size = %10d. (%6.2f %%)\n", p->nFilterSize, !p->nTried? 0 : 100.0*p->nFilterSize/p->nTried ); printf( "Subgraphs filtered by structural redundancy = %10d. (%6.2f %%)\n", p->nFilterRedund, !p->nTried? 0 : 100.0*p->nFilterRedund/p->nTried ); printf( "Subgraphs filtered by volume = %10d. (%6.2f %%)\n", p->nFilterVolume, !p->nTried? 0 : 100.0*p->nFilterVolume/p->nTried ); printf( "Subgraphs filtered by TT redundancy = %10d. (%6.2f %%)\n", p->nFilterTruth, !p->nTried? 0 : 100.0*p->nFilterTruth/p->nTried ); printf( "Subgraphs filtered by error = %10d. (%6.2f %%)\n", p->nFilterError, !p->nTried? 0 : 100.0*p->nFilterError/p->nTried ); printf( "Subgraphs filtered by isomorphism = %10d. (%6.2f %%)\n", p->nFilterSame, !p->nTried? 0 : 100.0*p->nFilterSame/p->nTried ); printf( "Subgraphs added = %10d. (%6.2f %%)\n", p->nAdded, !p->nTried? 0 : 100.0*p->nAdded/p->nTried ); printf( "Functions added = %10d. (%6.2f %%)\n", p->nAddedFuncs, !p->nTried? 0 : 100.0*p->nAddedFuncs/p->nTried ); if(s_pMan->fTrim) printf( "Functions trimed = %10d. (%6.2f %%)\n", p->nTrimed, !p->nTried? 0 : 100.0*p->nTrimed/p->nTried ); p->timeOther = p->timeTotal - p->timeCollect - p->timeTruth - p->timeCanon - p->timeInsert - p->timeBuild - p->timeTrim - p->timeMerge - p->timeReHash; ABC_PRTP( "Collecting nodes ", p->timeCollect, p->timeTotal); ABC_PRTP( "Computing truth ", p->timeTruth, p->timeTotal ); ABC_PRTP( "Canonicizing ", p->timeCanon, p->timeTotal ); ABC_PRTP( "Building ", p->timeBuild, p->timeTotal ); ABC_PRTP( "ReHash ", p->timeReHash, p->timeTotal ); ABC_PRTP( "Merge ", p->timeMerge, p->timeTotal ); ABC_PRTP( "Insert ", p->timeInsert, p->timeTotal); if(s_pMan->fTrim) ABC_PRTP( "Filter ", p->timeTrim, p->timeTotal); ABC_PRTP( "Other ", p->timeOther, p->timeTotal ); ABC_PRTP( "TOTAL ", p->timeTotal, p->timeTotal ); if ( p->nFunsFound ) { printf("\n"); printf( "During rewriting found = %d and not found = %d functions.\n", p->nFunsFound, p->nFunsNotFound ); printf( "Functions tried = %10d. (%6.2f %%)\n", p->nFunsTried, !p->nFunsTried? 0 : 100.0*p->nFunsTried/p->nFunsTried ); printf( "Functions filtered by support = %10d. (%6.2f %%)\n", p->nFunsFilteredBysupport, !p->nFunsFilteredBysupport? 0 : 100.0*p->nFunsFilteredBysupport/p->nFunsTried ); printf( "Functions not found in lib = %10d. (%6.2f %%)\n", p->nFunsNotFound, !p->nFunsNotFound? 0 : 100.0*p->nFunsNotFound/p->nFunsTried ); printf( "Functions founded = %10d. (%6.2f %%)\n", p->nFunsFound, !p->nFunsFound? 0 : 100.0*p->nFunsFound/p->nFunsTried ); printf( "Functions delay computed = %10d. Ratio = %6.2f.\n", p->nFunsDelayComput, !p->nFunsDelayComput? 0 : 1.0*p->nFunsDelayComput/p->nFunsFound ); p->timeIfOther = p->timeIfTotal - p->timeIfCanonicize - p->timeIfComputDelay -p->timeIfDerive; ABC_PRTP( "Canonicize ", p->timeIfCanonicize, p->timeIfTotal ); ABC_PRTP( "Compute Delay ", p->timeIfComputDelay, p->timeIfTotal ); ABC_PRTP( "Derive ", p->timeIfDerive, p->timeIfTotal ); ABC_PRTP( "Other ", p->timeIfOther, p->timeIfTotal ); ABC_PRTP( "TOTAL ", p->timeIfTotal, p->timeIfTotal ); } } /**Function************************************************************* Synopsis [Adds the cut function to the internal storage.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static void Abc_NtkRecCollectNodes_rec( If_Obj_t * pNode, Vec_Ptr_t * vNodes ) { if ( pNode->fMark ) return; pNode->fMark = 1; assert( If_ObjIsAnd(pNode) ); Abc_NtkRecCollectNodes_rec( If_ObjFanin0(pNode), vNodes ); Abc_NtkRecCollectNodes_rec( If_ObjFanin1(pNode), vNodes ); Vec_PtrPush( vNodes, pNode ); } /**Function************************************************************* Synopsis [Adds the cut function to the internal storage.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static int Abc_NtkRecCollectNodes( If_Man_t * pIfMan, If_Obj_t * pRoot, If_Cut_t * pCut, Vec_Ptr_t * vNodes ) { If_Obj_t * pLeaf; int i, RetValue = 1; // collect the internal nodes of the cut Vec_PtrClear( vNodes ); If_CutForEachLeaf( pIfMan, pCut, pLeaf, i ) { Vec_PtrPush( vNodes, pLeaf ); assert( pLeaf->fMark == 0 ); pLeaf->fMark = 1; } // collect other nodes Abc_NtkRecCollectNodes_rec( pRoot, vNodes ); // check if there are leaves, such that both of their fanins are marked // this indicates a redundant cut If_CutForEachLeaf( pIfMan, pCut, pLeaf, i ) { if ( !If_ObjIsAnd(pLeaf) ) continue; if ( If_ObjFanin0(pLeaf)->fMark && If_ObjFanin1(pLeaf)->fMark ) { RetValue = 0; break; } } // clean the mark Vec_PtrForEachEntry( If_Obj_t *, vNodes, pLeaf, i ) pLeaf->fMark = 0; return RetValue; } /**Function************************************************************* Synopsis [Computes truth tables of nodes in the cut.] Description [Returns 0 if the TT does not depend on some cut variables. Or if the TT can be expressed simpler using other nodes.] SideEffects [] SeeAlso [] ***********************************************************************/ static int Abc_NtkRecCutTruth( Vec_Ptr_t * vNodes, int nLeaves, Vec_Ptr_t * vTtTemps, Vec_Ptr_t * vTtElems ) { unsigned * pSims, * pSims0, * pSims1; unsigned * pTemp = s_pMan->pTemp2; unsigned uWord; If_Obj_t * pObj, * pObj2, * pRoot; int i, k, nLimit, nInputs = s_pMan->nVars; assert( Vec_PtrSize(vNodes) > nLeaves ); // set the elementary truth tables and compute the truth tables of the nodes Vec_PtrForEachEntry( If_Obj_t *, vNodes, pObj, i ) { pObj->pCopy = Vec_PtrEntry(vTtTemps, i); pSims = (unsigned *)pObj->pCopy; if ( i < nLeaves ) { Kit_TruthCopy( pSims, (unsigned *)Vec_PtrEntry(vTtElems, i), nInputs ); continue; } assert( If_ObjIsAnd(pObj) ); // get hold of the simulation information pSims0 = (unsigned *)If_ObjFanin0(pObj)->pCopy; pSims1 = (unsigned *)If_ObjFanin1(pObj)->pCopy; // simulate the node Kit_TruthAndPhase( pSims, pSims0, pSims1, nInputs, If_ObjFaninC0(pObj), If_ObjFaninC1(pObj) ); } // check the support size pRoot = (If_Obj_t *)Vec_PtrEntryLast( vNodes ); pSims = (unsigned *)pRoot->pCopy; if ( Kit_TruthSupport(pSims, nInputs) != Kit_BitMask(nLeaves) ) return 0; // make sure none of the nodes has the same simulation info as the output // check pairwise comparisons nLimit = Vec_PtrSize(vNodes) - 1; Vec_PtrForEachEntryStop( If_Obj_t *, vNodes, pObj, i, nLimit ) { pSims0 = (unsigned *)pObj->pCopy; if ( Kit_TruthIsEqualWithPhase(pSims, pSims0, nInputs) ) return 0; Vec_PtrForEachEntryStop( If_Obj_t *, vNodes, pObj2, k, i ) { if ( (If_ObjFanin0(pRoot) == pObj && If_ObjFanin1(pRoot) == pObj2) || (If_ObjFanin1(pRoot) == pObj && If_ObjFanin0(pRoot) == pObj2) ) continue; pSims1 = (unsigned *)pObj2->pCopy; uWord = pSims0[0] & pSims1[0]; if ( pSims[0] == uWord || pSims[0] == ~uWord ) { Kit_TruthAndPhase( pTemp, pSims0, pSims1, nInputs, 0, 0 ); if ( Kit_TruthIsEqualWithPhase(pSims, pTemp, nInputs) ) return 0; } uWord = pSims0[0] & ~pSims1[0]; if ( pSims[0] == uWord || pSims[0] == ~uWord ) { Kit_TruthAndPhase( pTemp, pSims0, pSims1, nInputs, 0, 1 ); if ( Kit_TruthIsEqualWithPhase(pSims, pTemp, nInputs) ) return 0; } uWord = ~pSims0[0] & pSims1[0]; if ( pSims[0] == uWord || pSims[0] == ~uWord ) { Kit_TruthAndPhase( pTemp, pSims0, pSims1, nInputs, 1, 0 ); if ( Kit_TruthIsEqualWithPhase(pSims, pTemp, nInputs) ) return 0; } uWord = ~pSims0[0] & ~pSims1[0]; if ( pSims[0] == uWord || pSims[0] == ~uWord ) { Kit_TruthAndPhase( pTemp, pSims0, pSims1, nInputs, 1, 1 ); if ( Kit_TruthIsEqualWithPhase(pSims, pTemp, nInputs) ) return 0; } } } return 1; } /**Function************************************************************* Synopsis [Adds the cut function to the internal storage.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_NtkRecAddCut2( If_Man_t * pIfMan, If_Obj_t * pRoot, If_Cut_t * pCut ) { static int s_MaxSize[16] = { 0 }; char pCanonPerm[16]; Gia_Obj_t * pObj = NULL, *pPO; int iFanin0, iFanin1, iRecObj = -1; int * ppSpot, lit;//, test; Gia_Man_t * pAig = s_pMan->pGia; If_Obj_t * pIfObj; Vec_Ptr_t * vNodes = s_pMan->vNodes; unsigned * pInOut = s_pMan->pTemp1; unsigned * pTemp = s_pMan->pTemp2; unsigned *pTruth;//, *pTruthDst; int objectID = 0; int i, RetValue, nNodes, nNodesBeg, nInputs = s_pMan->nVars, nLeaves = If_CutLeaveNum(pCut); unsigned uCanonPhase; int clk, timeInsert, timeBuild; //int begin = Abc_Clock(); assert( nInputs <= 16 ); assert( nInputs == (int)pCut->nLimit ); s_pMan->nTried++; // skip small cuts if ( nLeaves < 2 ) { s_pMan->nFilterSize++; return 1; } // collect internal nodes and skip redundant cuts clk = Abc_Clock(); RetValue = Abc_NtkRecCollectNodes( pIfMan, pRoot, pCut, vNodes ); s_pMan->timeCollect += Abc_Clock() - clk; if ( !RetValue ) { s_pMan->nFilterRedund++; return 1; } // skip cuts with very large volume if ( Vec_PtrSize(vNodes) > nLeaves + 3*(nLeaves-1) + s_MaxSize[nLeaves] ) { s_pMan->nFilterVolume++; return 1; } // compute truth table and skip the redundant structures clk = Abc_Clock(); RetValue = Abc_NtkRecCutTruth( vNodes, nLeaves, s_pMan->vTtTemps, s_pMan->vTtElems ); s_pMan->timeTruth += Abc_Clock() - clk; if ( !RetValue ) { //fprintf(file,"redundant structures\n"); //fclose(file); s_pMan->nFilterTruth++; return 1; } // copy the truth table Kit_TruthCopy( pInOut, (unsigned *)pRoot->pCopy, nInputs ); // set permutation for ( i = 0; i < nLeaves; i++ ) pCanonPerm[i] = i; // semi-canonicize the truth table clk = Abc_Clock(); //uCanonPhase = Kit_TruthSemiCanonicize( pInOut, pTemp, nLeaves, pCanonPerm ); uCanonPhase = Kit_TruthSemiCanonicize_new( pInOut, pTemp, nLeaves, pCanonPerm ); If_CutTruthStretch(pInOut, nLeaves, s_pMan->nVars); s_pMan->timeCanon += Abc_Clock() - clk; // pCanonPerm and uCanonPhase show what was the variable corresponding to each var in the current truth // go through the variables in the new truth table timeBuild = Abc_Clock(); for ( i = 0; i < nLeaves; i++ ) { // get hold of the corresponding leaf pIfObj = If_ManObj( pIfMan, pCut->pLeaves[(int)pCanonPerm[i]] ); // get hold of the corresponding new node pObj = Gia_ManPi( pAig, i ); lit = Gia_ObjId(pAig, pObj); lit = Abc_Var2Lit( lit, ((uCanonPhase & (1 << i)) != 0) ); // map them pIfObj->iCopy = lit; } // build the node and compute its truth table assert( Vec_PtrSize(vNodes) > 0 ); nNodesBeg = Gia_ManObjNum( pAig ); Vec_PtrForEachEntryStart( If_Obj_t *, vNodes, pIfObj, i, nLeaves ) { iFanin0 = Abc_LitNotCond( If_ObjFanin0(pIfObj)->iCopy, If_ObjFaninC0(pIfObj) ); iFanin1 = Abc_LitNotCond( If_ObjFanin1(pIfObj)->iCopy, If_ObjFaninC1(pIfObj) ); nNodes = Gia_ManObjNum( pAig ); iRecObj = Gia_ManHashAnd(pAig, iFanin0, iFanin1 ); //assert( !Gia_IsComplement(pObj) ); //pObj = Gia_Regular(pObj); pIfObj->iCopy = iRecObj; } //assert(pObj); pObj = Gia_ManObj(pAig, Abc_Lit2Var(iRecObj)); pTruth = (unsigned *)Gia_ObjComputeTruthTable(pAig, pObj); s_pMan->timeBuild += Abc_Clock() - timeBuild; if ( Kit_TruthSupport(pTruth, nInputs) != Kit_BitMask(nLeaves) ) { s_pMan->nFilterError++; printf( "S" ); return 1; } // compare the truth tables if ( !Kit_TruthIsEqualWithPhase( pTruth, pInOut, nInputs ) ) { s_pMan->nFilterError++; printf( "F" ); return 1; } // Extra_PrintBinary( stdout, pInOut, 8 ); printf( "\n" ); // look up in the hash table and increase the hit number of the functional class if(s_pMan->nAddedFuncs > 2 * s_pMan->nBins) Abc_NtkRecResizeHash2(s_pMan); ppSpot = Abc_NtkRecTableLookup2(s_pMan, s_pMan->pBins,s_pMan->nBins , pTruth, nInputs ); Abc_NtkRecFrequencyInc(*ppSpot); // if not new nodes were added and the node has a CO fanout if ( nNodesBeg == Gia_ManObjNum(pAig) && pObj->fMark1 == 1 ) { s_pMan->nFilterSame++; //assert(*ppSpot != NULL); return 1; } // create PO for this node objectID = Gia_ObjId(pAig, pObj); pPO = Gia_ManObj(pAig, Gia_ManAppendCo(pAig, Gia_ObjToLit(pAig, pObj)) >> 1); pObj = Gia_ManObj(pAig, objectID); assert(pObj->fMark1 == 0); pObj->fMark1 = 1; // if ( Vec_PtrSize(s_pMan->vTtNodes) <= Gia_ManPoNum(pAig) ) // { // while ( Vec_PtrSize(s_pMan->vTtNodes) <= Gia_ObjCioId(pPO) ) // Vec_PtrPush( s_pMan->vTtNodes, Mem_FixedEntryFetch(s_pMan->pMmTruth) ); // } // pTruthDst = (unsigned *)Vec_PtrEntry( s_pMan->vTtNodes, Gia_ObjCioId(pPO)); // Kit_TruthCopy(pTruthDst, pTruthSrc, s_pMan->nVars); //Rec_MemSetEntry( s_pMan, Gia_ObjCioId(pPO), pTruthSrc ); // add the resulting truth table to the hash table timeInsert = Abc_Clock(); Abc_NtkRecInsertToLookUpTable2(s_pMan, ppSpot, pPO, nLeaves, pTruth, s_pMan->fTrim); s_pMan->timeInsert += Abc_Clock() - timeInsert; // if (pIfMan->pPars->fDelayOpt) // Abc_NtkRecAddSOPB(pIfMan, pCut, pTruth, pCanonPerm, uCanonPhase ); return 1; } /**Function************************************************************* Synopsis [Performs renoding as technology mapping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecAdd2( Abc_Ntk_t * pNtk, int fUseSOPB) { extern Abc_Ntk_t * Abc_NtkIf( Abc_Ntk_t * pNtk, If_Par_t * pPars ); extern int Abc_NtkRecAddCut( If_Man_t * pIfMan, If_Obj_t * pRoot, If_Cut_t * pCut ); If_Par_t Pars, * pPars = &Pars; Abc_Ntk_t * pNtkNew; int clk = Abc_Clock(); if ( Abc_NtkGetChoiceNum( pNtk ) ) printf( "Performing recoding structures with choices.\n" ); // create hash table if not available if ( s_pMan->pGia->pHTable == NULL ) Gia_ManHashStart( s_pMan->pGia ); // set defaults memset( pPars, 0, sizeof(If_Par_t) ); // user-controlable paramters pPars->nLutSize = s_pMan->nVarsInit; pPars->nCutsMax = s_pMan->nCuts; pPars->nFlowIters = 0; pPars->nAreaIters = 0; pPars->DelayTarget = -1; pPars->Epsilon = (float)0.005; pPars->fPreprocess = 0; pPars->fArea = 1; pPars->fFancy = 0; pPars->fExpRed = 0; pPars->fLatchPaths = 0; pPars->fSeqMap = 0; pPars->fVerbose = 0; //pPars->fCutMin = 1; // internal parameters if (fUseSOPB) { pPars->fTruth = 1; pPars->fUsePerm = 1; pPars->fDelayOpt = 1; } else { pPars->fTruth = 1; pPars->fUsePerm = 0; pPars->fDelayOpt = 0; } pPars->nLatchesCi = 0; pPars->nLatchesCo = 0; pPars->pLutLib = NULL; // Abc_FrameReadLibLut(); pPars->pTimesArr = NULL; pPars->pTimesArr = NULL; pPars->fUseBdds = 0; pPars->fUseSops = 0; pPars->fUseCnfs = 0; pPars->fUseMv = 0; pPars->fSkipCutFilter = 1; pPars->pFuncCost = NULL; pPars->pFuncUser = Abc_NtkRecAddCut2; // perform recording pNtkNew = Abc_NtkIf( pNtk, pPars ); Abc_NtkDelete( pNtkNew ); s_pMan->timeTotal += Abc_Clock() - clk; // if ( !Abc_NtkCheck( s_pMan->pNtk ) ) // printf( "Abc_NtkRecAdd: The network check has failed.\n" ); } /**Function************************************************************* Synopsis [Compute delay of the structure using pin-to-pin delay.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int If_CutComputDelay(If_Man_t* p, Rec_Obj_t2* entry, If_Cut_t* pCut, char* pCanonPerm , int nVars) { If_Obj_t* pLeaf; int i, delayTemp, delayMax = -ABC_INFINITY; for (i = 0; i < nVars; i++) { pLeaf = If_ManObj(p, (pCut)->pLeaves[(int)pCanonPerm[i]]); pLeaf = If_Regular(pLeaf); delayTemp = entry->pinToPinDelay[i] + If_ObjCutBest(pLeaf)->Delay; if(delayTemp > delayMax) delayMax = delayTemp; } // plus each pin's delay with its pin-to-output delay, the biggest one is the delay of the structure. return delayMax; } /**Function************************************************************* Synopsis [Look up the best strcuture in the library.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static int Abc_NtkRecLookUpEnum(If_Man_t * pIfMan,If_Cut_t * pCut, int * ppSpot, int * pCandMin, char * pCanonPerm) { int DelayMin = ABC_INFINITY , Delay = -ABC_INFINITY; int pCand; int nLeaves = pCut->nLeaves; *pCandMin = -1; assert( *ppSpot != -1 ); for ( pCand = *ppSpot; pCand != -1 ; pCand = Rec_Obj(s_pMan,pCand)->pNext ) { s_pMan->nFunsDelayComput++; Delay = If_CutComputDelay(pIfMan, Rec_Obj(s_pMan,pCand), pCut, pCanonPerm ,nLeaves); if ( DelayMin > Delay ) { DelayMin = Delay; *pCandMin = pCand; } else if(Delay == DelayMin) { if(Rec_Obj(s_pMan,pCand)->cost < Rec_Obj(s_pMan, *pCandMin)->cost) *pCandMin = pCand; } } assert( *pCandMin != -1 ); return DelayMin; } /**Function************************************************************* Synopsis [Look up the best strcuture in the library.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static Rec_Obj_t2 * Abc_NtkRecLookUpBest(If_Man_t * pIfMan,If_Cut_t * pCut, unsigned * pInOut, char * pCanonPerm, int * fCompl, int * delayBest) { int pCandMin = REC_EMPTY_ID, pCandMinCompl = REC_EMPTY_ID, *ppSpot; int delay = ABC_INFINITY, delayCompl = ABC_INFINITY; int nVars = s_pMan->nVars; //int nLeaves = pCut->nLeaves; ppSpot = Abc_NtkRecTableLookup2(s_pMan, s_pMan->pBins, s_pMan->nBins, pInOut, nVars ); if (*ppSpot != REC_EMPTY_ID) delay = Abc_NtkRecLookUpEnum(pIfMan, pCut, ppSpot, &pCandMin, pCanonPerm); Kit_TruthNot(pInOut, pInOut, nVars); ppSpot = Abc_NtkRecTableLookup2(s_pMan, s_pMan->pBins, s_pMan->nBins, pInOut, nVars ); if (*ppSpot != REC_EMPTY_ID) delayCompl = Abc_NtkRecLookUpEnum(pIfMan, pCut, ppSpot, &pCandMinCompl, pCanonPerm); if (delayBest) *delayBest = delay < delayCompl ? delay : delayCompl; if (pCandMin == REC_EMPTY_ID && pCandMinCompl == REC_EMPTY_ID) return NULL; else if (pCandMin != REC_EMPTY_ID && pCandMinCompl != REC_EMPTY_ID) { if (delay > delayCompl || (delay == delayCompl && Rec_Obj(s_pMan, pCandMin)->cost > Rec_Obj(s_pMan, pCandMinCompl)->cost)) { if (fCompl) *fCompl = 1; return Rec_Obj(s_pMan, pCandMinCompl); } else { if (fCompl) *fCompl = 0; return Rec_Obj(s_pMan, pCandMin); } } else if (pCandMin != REC_EMPTY_ID) { if (fCompl) *fCompl = 0; return Rec_Obj(s_pMan, pCandMin); } else { if (fCompl) *fCompl = 1; return Rec_Obj(s_pMan, pCandMinCompl); } } /**Function************************************************************* Synopsis [Computes the delay using library.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int If_CutDelayRecCost2(If_Man_t* p, If_Cut_t* pCut, If_Obj_t * pObj) { //int fVerbose = 0; int timeDelayComput, timeTotal = Abc_Clock(), timeCanonicize; int nLeaves, i, DelayMin = ABC_INFINITY , * pDelayBest = &DelayMin; char pCanonPerm[16]; unsigned uCanonPhase; unsigned* pTruthRec; Rec_Obj_t2 * pCandMin; //Abc_Ntk_t *pAig = s_pMan->pNtk; unsigned *pInOut = s_pMan->pTemp1; unsigned *pTemp = s_pMan->pTemp2; int nVars = s_pMan->nVars; //int Counter; assert( s_pMan != NULL ); nLeaves = If_CutLeaveNum(pCut); s_pMan->nFunsTried++; assert( nLeaves >= 2 && nLeaves <= nVars ); Kit_TruthCopy(pInOut, If_CutTruth(pCut), nLeaves); //if not every variables are in the support, skip this cut. if ( Kit_TruthSupport(pInOut, nLeaves) != Kit_BitMask(nLeaves) ) { DelayMin = 0; //s_pMan->nFunsFilteredBysupport++; pCut->fUser = 1; pCut->fUseless = 0; pCut->Cost = 1; for (i = 0; i < nLeaves; i++) { if(Kit_TruthVarInSupport( pInOut, nLeaves, i )) { pCut->pPerm[i] = 0; DelayMin = If_ObjCutBest(If_ManObj( p, pCut->pLeaves[i]))->Delay; } else pCut->pPerm[i] = IF_BIG_CHAR; } return DelayMin; } timeCanonicize = Abc_Clock(); //canonicize for (i = 0; i < nLeaves; i++) pCanonPerm[i] = i; uCanonPhase = Kit_TruthSemiCanonicize_new(pInOut, pTemp, nLeaves, pCanonPerm); If_CutTruthStretch(pInOut, nLeaves, nVars); s_pMan->timeIfCanonicize += Abc_Clock() - timeCanonicize; timeDelayComput = Abc_Clock(); pCandMin = Abc_NtkRecLookUpBest(p, pCut, pInOut, pCanonPerm, NULL,pDelayBest); assert (!(pCandMin == NULL && nLeaves == 2)); s_pMan->timeIfComputDelay += Abc_Clock() - timeDelayComput; //functional class not found in the library. if ( pCandMin == NULL ) { s_pMan->nFunsNotFound++; pCut->Cost = IF_COST_MAX; pCut->fUser = 1; pCut->fUseless = 1; return ABC_INFINITY; } s_pMan->nFunsFound++; // make sure the truth table is the same // pTruthRec = (unsigned*)Vec_PtrEntry( s_pMan->vTtNodes, Rec_ObjID(s_pMan, pCandMin) ); pTruthRec = Rec_MemReadEntry( s_pMan, pCandMin->truthID ); if ( !Kit_TruthIsEqualWithPhase( pTruthRec, pInOut, nLeaves ) ) { assert( 0 ); s_pMan->nIfMapError++; return -1; } // mark as user cut. pCut->fUser = 1; //assert( pCandMin != NULL ); for ( i = 0; i < nLeaves; i++ ) { pCut->pPerm[(int)pCanonPerm[i]] = pCandMin->pinToPinDelay[i]; } s_pMan->timeIfTotal += Abc_Clock() - timeTotal; pCut->Cost = pCandMin->cost; return DelayMin; } /**Function************************************************************* Synopsis [Build up the structure using library.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Hop_Obj_t * Abc_NtkRecBuildUp_rec2(Hop_Man_t* pMan, Gia_Obj_t* pObj, Vec_Ptr_t * vNodes) { Hop_Obj_t * pRes0, *pRes1, *pRes; Gia_Obj_t *pRegular = Gia_Regular(pObj); if (Gia_ObjIsTravIdCurrent(s_pMan->pGia, pRegular) || Gia_ObjIsPi(s_pMan->pGia, pRegular)) return (Hop_Obj_t *)Vec_PtrEntry(vNodes, Gia_ObjId(s_pMan->pGia, pRegular)); Gia_ObjSetTravIdCurrent(s_pMan->pGia, pRegular); pRes0 = Abc_NtkRecBuildUp_rec2(pMan, Gia_ObjFanin0(pRegular), vNodes); pRes0 = Hop_NotCond(pRes0, pRegular->fCompl0); pRes1 = Abc_NtkRecBuildUp_rec2(pMan, Gia_ObjFanin1(pRegular), vNodes); pRes1 = Hop_NotCond(pRes1, pRegular->fCompl1); pRes = Hop_And(pMan, pRes0, pRes1); Vec_PtrWriteEntry(vNodes,Gia_ObjId(s_pMan->pGia, pRegular),pRes); return pRes; } /**Function************************************************************* Synopsis [Derive the final network from the library.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Hop_Obj_t * Abc_RecToHop2( Hop_Man_t * pMan, If_Man_t * pIfMan, If_Cut_t * pCut, If_Obj_t * pIfObj ) { Rec_Obj_t2 * pCandMin; Hop_Obj_t* pHopObj, * pFan0, * pFan1; Gia_Obj_t* pGiaObj, *pGiaTemp; Gia_Man_t * pAig = s_pMan->pGia; int nLeaves, i;// DelayMin = ABC_INFINITY , Delay = -ABC_INFINITY unsigned uCanonPhase; int nVars = s_pMan->nVars; char pCanonPerm[16]; unsigned *pInOut = s_pMan->pTemp1; unsigned *pTemp = s_pMan->pTemp2; int time = Abc_Clock(); int fCompl; int * pCompl = &fCompl; nLeaves = If_CutLeaveNum(pCut); // if (nLeaves < 3) // return Abc_NodeTruthToHop(pMan, pIfMan, pCut); Kit_TruthCopy(pInOut, If_CutTruth(pCut), pCut->nLimit); //special cases when cut-minimization return 2, that means there is only one leaf in the cut. if ((Kit_TruthIsConst0(pInOut, nLeaves) && pCut->fCompl == 0) || (Kit_TruthIsConst1(pInOut, nLeaves) && pCut->fCompl == 1)) return Hop_ManConst0(pMan); if ((Kit_TruthIsConst0(pInOut, nLeaves) && pCut->fCompl == 1) || (Kit_TruthIsConst1(pInOut, nLeaves) && pCut->fCompl == 0)) return Hop_ManConst1(pMan); if (Kit_TruthSupport(pInOut, nLeaves) != Kit_BitMask(nLeaves)) { for (i = 0; i < nLeaves; i++) if(Kit_TruthVarInSupport( pInOut, nLeaves, i )) return Hop_NotCond(Hop_IthVar(pMan, i), (pCut->fCompl ^ ((*pInOut & 0x01) > 0))); } for (i = 0; i < nLeaves; i++) pCanonPerm[i] = i; uCanonPhase = Kit_TruthSemiCanonicize_new(pInOut, pTemp, nLeaves, pCanonPerm); If_CutTruthStretch(pInOut, nLeaves, nVars); pCandMin = Abc_NtkRecLookUpBest(pIfMan, pCut, pInOut, pCanonPerm, pCompl,NULL); /* Vec_PtrGrow(s_pMan->vLabels, Gia_ManObjNum(pAig)); s_pMan->vLabels->nSize = s_pMan->vLabels->nCap; for (i = 0; i < nLeaves; i++) { pGiaObj = Gia_ManPi( pAig, i ); pHopObj = Hop_IthVar(pMan, pCanonPerm[i]); pHopObj = Hop_NotCond(pHopObj, ((uCanonPhase & (1 << i)) > 0)); Vec_PtrWriteEntry(s_pMan->vLabels, Gia_ObjId(pAig, pGiaObj), pHopObj); } //Abc_NtkIncrementTravId(pAig); Gia_ManIncrementTravId(pAig); //derive the best structure in the library. pHopObj = Abc_NtkRecBuildUp_rec2(pMan, Abc_NtkRecGetObj(Rec_ObjID(s_pMan, pCandMin)), s_pMan->vLabels); */ // get the top-most GIA node pGiaObj = Abc_NtkRecGetObj( Rec_ObjID(s_pMan, pCandMin) ); assert( Gia_ObjIsAnd(pGiaObj) || Gia_ObjIsPi(pAig, pGiaObj) ); // collect internal nodes into pAig->vTtNodes if ( pAig->vTtNodes == NULL ) pAig->vTtNodes = Vec_IntAlloc( 256 ); Gia_ObjCollectInternal( pAig, pGiaObj ); // collect HOP nodes for leaves Vec_PtrClear( s_pMan->vLabels ); for (i = 0; i < nLeaves; i++) { pHopObj = Hop_IthVar(pMan, pCanonPerm[i]); pHopObj = Hop_NotCond(pHopObj, ((uCanonPhase & (1 << i)) > 0)); Vec_PtrPush(s_pMan->vLabels, pHopObj); } // compute HOP nodes for internal nodes Gia_ManForEachObjVec( pAig->vTtNodes, pAig, pGiaTemp, i ) { pGiaTemp->fMark0 = 0; // unmark node marked by Gia_ObjCollectInternal() if ( Gia_ObjIsAnd(Gia_ObjFanin0(pGiaTemp)) ) pFan0 = (Hop_Obj_t *)Vec_PtrEntry(s_pMan->vLabels, Gia_ObjNum(pAig, Gia_ObjFanin0(pGiaTemp)) + nLeaves); else pFan0 = (Hop_Obj_t *)Vec_PtrEntry(s_pMan->vLabels, Gia_ObjCioId(Gia_ObjFanin0(pGiaTemp))); pFan0 = Hop_NotCond(pFan0, Gia_ObjFaninC0(pGiaTemp)); if ( Gia_ObjIsAnd(Gia_ObjFanin1(pGiaTemp)) ) pFan1 = (Hop_Obj_t *)Vec_PtrEntry(s_pMan->vLabels, Gia_ObjNum(pAig, Gia_ObjFanin1(pGiaTemp)) + nLeaves); else pFan1 = (Hop_Obj_t *)Vec_PtrEntry(s_pMan->vLabels, Gia_ObjCioId(Gia_ObjFanin1(pGiaTemp))); pFan1 = Hop_NotCond(pFan1, Gia_ObjFaninC1(pGiaTemp)); pHopObj = Hop_And(pMan, pFan0, pFan1); Vec_PtrPush(s_pMan->vLabels, pHopObj); } // get the final result if ( Gia_ObjIsAnd(pGiaObj) ) pHopObj = (Hop_Obj_t *)Vec_PtrEntry(s_pMan->vLabels, Gia_ObjNum(pAig, pGiaObj) + nLeaves); else if ( Gia_ObjIsPi(pAig, pGiaObj) ) pHopObj = (Hop_Obj_t *)Vec_PtrEntry(s_pMan->vLabels, Gia_ObjCioId(pGiaObj)); else assert( 0 ); s_pMan->timeIfDerive += Abc_Clock() - time; s_pMan->timeIfTotal += Abc_Clock() - time; // complement the result if needed return Hop_NotCond(pHopObj, (pCut->fCompl)^(((uCanonPhase & (1 << nLeaves)) > 0)) ^ fCompl); } /**Function************************************************************* Synopsis [Derive the final network from the library.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_RecToGia2( Gia_Man_t * pMan, If_Man_t * pIfMan, If_Cut_t * pCut, If_Obj_t * pIfObj, Vec_Int_t * vLeaves, int fHash ) { Rec_Obj_t2 * pCandMin; int pHopObj, pFan0, pFan1; Gia_Obj_t* pGiaObj, *pGiaTemp; Gia_Man_t * pAig = s_pMan->pGia; int nLeaves, i;// DelayMin = ABC_INFINITY , Delay = -ABC_INFINITY unsigned uCanonPhase; int nVars = s_pMan->nVars; char pCanonPerm[16]; unsigned *pInOut = s_pMan->pTemp1; unsigned *pTemp = s_pMan->pTemp2; int time = Abc_Clock(); int fCompl; int * pCompl = &fCompl; nLeaves = If_CutLeaveNum(pCut); // if (nLeaves < 3) // return Abc_NodeTruthToHop(pMan, pIfMan, pCut); Kit_TruthCopy(pInOut, If_CutTruth(pCut), pCut->nLimit); //special cases when cut-minimization return 2, that means there is only one leaf in the cut. if ((Kit_TruthIsConst0(pInOut, nLeaves) && pCut->fCompl == 0) || (Kit_TruthIsConst1(pInOut, nLeaves) && pCut->fCompl == 1)) return 0; if ((Kit_TruthIsConst0(pInOut, nLeaves) && pCut->fCompl == 1) || (Kit_TruthIsConst1(pInOut, nLeaves) && pCut->fCompl == 0)) return 1; if (Kit_TruthSupport(pInOut, nLeaves) != Kit_BitMask(nLeaves)) { for (i = 0; i < nLeaves; i++) if(Kit_TruthVarInSupport( pInOut, nLeaves, i )) return Abc_LitNotCond( Vec_IntEntry(vLeaves, i), (pCut->fCompl ^ ((*pInOut & 0x01) > 0)) ); } for (i = 0; i < nLeaves; i++) pCanonPerm[i] = i; uCanonPhase = Kit_TruthSemiCanonicize_new(pInOut, pTemp, nLeaves, pCanonPerm); If_CutTruthStretch(pInOut, nLeaves, nVars); pCandMin = Abc_NtkRecLookUpBest(pIfMan, pCut, pInOut, pCanonPerm, pCompl,NULL); // get the top-most GIA node pGiaObj = Abc_NtkRecGetObj( Rec_ObjID(s_pMan, pCandMin) ); assert( Gia_ObjIsAnd(pGiaObj) || Gia_ObjIsPi(pAig, pGiaObj) ); // collect internal nodes into pAig->vTtNodes if ( pAig->vTtNodes == NULL ) pAig->vTtNodes = Vec_IntAlloc( 256 ); Gia_ObjCollectInternal( pAig, pGiaObj ); // collect HOP nodes for leaves Vec_IntClear( s_pMan->vLabelsInt ); for (i = 0; i < nLeaves; i++) { pHopObj = Vec_IntEntry(vLeaves, pCanonPerm[i]); pHopObj = Abc_LitNotCond(pHopObj, ((uCanonPhase & (1 << i)) > 0)); Vec_IntPush(s_pMan->vLabelsInt, pHopObj); } // compute HOP nodes for internal nodes Gia_ManForEachObjVec( pAig->vTtNodes, pAig, pGiaTemp, i ) { pGiaTemp->fMark0 = 0; // unmark node marked by Gia_ObjCollectInternal() if ( Gia_ObjIsAnd(Gia_ObjFanin0(pGiaTemp)) ) pFan0 = Vec_IntEntry(s_pMan->vLabelsInt, Gia_ObjNum(pAig, Gia_ObjFanin0(pGiaTemp)) + nLeaves); else pFan0 = Vec_IntEntry(s_pMan->vLabelsInt, Gia_ObjCioId(Gia_ObjFanin0(pGiaTemp))); pFan0 = Abc_LitNotCond(pFan0, Gia_ObjFaninC0(pGiaTemp)); if ( Gia_ObjIsAnd(Gia_ObjFanin1(pGiaTemp)) ) pFan1 = Vec_IntEntry(s_pMan->vLabelsInt, Gia_ObjNum(pAig, Gia_ObjFanin1(pGiaTemp)) + nLeaves); else pFan1 = Vec_IntEntry(s_pMan->vLabelsInt, Gia_ObjCioId(Gia_ObjFanin1(pGiaTemp))); pFan1 = Abc_LitNotCond(pFan1, Gia_ObjFaninC1(pGiaTemp)); if ( fHash ) pHopObj = Gia_ManHashAnd(pMan, pFan0, pFan1); else pHopObj = Gia_ManAppendAnd(pMan, pFan0, pFan1); Vec_IntPush(s_pMan->vLabelsInt, pHopObj); } // get the final result if ( Gia_ObjIsAnd(pGiaObj) ) pHopObj = Vec_IntEntry(s_pMan->vLabelsInt, Gia_ObjNum(pAig, pGiaObj) + nLeaves); else if ( Gia_ObjIsPi(pAig, pGiaObj) ) pHopObj = Vec_IntEntry(s_pMan->vLabelsInt, Gia_ObjCioId(pGiaObj)); else assert( 0 ); s_pMan->timeIfDerive += Abc_Clock() - time; s_pMan->timeIfTotal += Abc_Clock() - time; // complement the result if needed return Abc_LitNotCond(pHopObj, (pCut->fCompl)^(((uCanonPhase & (1 << nLeaves)) > 0)) ^ fCompl); } /**Function************************************************************* Synopsis [Returns the given record.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecStop2() { assert( s_pMan != NULL ); // Abc_NtkRecDumpTruthTables( s_pMan ); if ( s_pMan->pGia ) Gia_ManStop(s_pMan->pGia); // Vec_PtrFreeFree( s_pMan->vTtNodes ); // Mem_FixedStop( s_pMan->pMmTruth, 0 ); // Vec_PtrFree( s_pMan->vTtNodes ); Vec_MemFreeP( &s_pMan->vTtMem ); Vec_StrFree( s_pMan->vInputs ); Vec_PtrFree( s_pMan->vTtElems ); ABC_FREE( s_pMan->pBins ); // temporaries ABC_FREE( s_pMan->pBytes ); ABC_FREE( s_pMan->pMints ); ABC_FREE( s_pMan->pTemp1 ); ABC_FREE( s_pMan->pTemp2 ); Vec_PtrFree( s_pMan->vNodes ); Vec_PtrFree( s_pMan->vTtTemps ); Vec_PtrFree( s_pMan->vLabels ); Vec_IntFree( s_pMan->vLabelsInt ); //if(s_pMan->pMemObj) // Mem_FixedStop(s_pMan->pMemObj, 0); Vec_IntFree( s_pMan->vUselessPos); ABC_FREE(s_pMan->pRecObjs); // if(s_pMan->vFiltered) // Vec_StrFree(s_pMan->vFiltered); ABC_FREE( s_pMan ); s_pMan = NULL; } /**Function************************************************************* Synopsis [Adds the cut function to the internal storage.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecCollectNodesFromLib_rec2(Gia_Man_t* pGia, Gia_Obj_t * pNode, Vec_Ptr_t * vNodes ) { if ( Gia_ObjIsPi(pGia, pNode)) return; Abc_NtkRecCollectNodesFromLib_rec2(pGia, Gia_ObjFanin0(pNode), vNodes ); Abc_NtkRecCollectNodesFromLib_rec2(pGia, Gia_ObjFanin1(pNode), vNodes ); Vec_PtrPush( vNodes, pNode ); } /**Function************************************************************* Synopsis [Adds the cut function to the internal storage.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecCollectNodesFromLib2(Gia_Man_t* pGia, Gia_Obj_t * pRoot, Vec_Ptr_t * vNodes , int nVars) { int i; // collect the internal nodes of the cut Vec_PtrClear( vNodes ); for ( i = 0; i < nVars; i++ ) Vec_PtrPush( vNodes, Gia_ManPi(pGia, i)); // collect other nodes Abc_NtkRecCollectNodesFromLib_rec2(pGia, pRoot, vNodes ); } /**Function************************************************************* Synopsis [Computes truth tables of nodes in the cut.] Description [Returns 0 if the TT does not depend on some cut variables. Or if the TT can be expressed simpler using other nodes.] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecCutTruthFromLib2( Gia_Man_t * pGia2, Vec_Ptr_t * vNodes, int nLeaves, Vec_Ptr_t * vTtTemps, Vec_Ptr_t * vTtElems ) { unsigned * pSims, * pSims0, * pSims1; //unsigned * pTemp = s_pMan->pTemp2; Gia_Obj_t * pObj, * pRoot; int i, nInputs = s_pMan->nVars; assert( Vec_PtrSize(vNodes) > nLeaves ); Vec_PtrForEachEntry( Gia_Obj_t *, vNodes, pObj, i ) { Gia_ObjSetCopyF(pGia2, 0, pObj, i); pSims = (unsigned *)Vec_PtrEntry(vTtTemps, i); if ( i < nLeaves ) { Kit_TruthCopy( pSims, (unsigned *)Vec_PtrEntry(vTtElems, i), nInputs ); continue; } // get hold of the simulation information pSims0 = (unsigned *)Vec_PtrEntry(vTtTemps,Gia_ObjCopyF(pGia2, 0, Gia_ObjFanin0(pObj))); pSims1 = (unsigned *)Vec_PtrEntry(vTtTemps,Gia_ObjCopyF(pGia2, 0, Gia_ObjFanin1(pObj))); // simulate the node Kit_TruthAndPhase( pSims, pSims0, pSims1, nInputs, Gia_ObjFaninC0(pObj), Gia_ObjFaninC1(pObj) ); } // check the support size pRoot = (Gia_Obj_t *)Vec_PtrEntryLast( vNodes ); pSims = (unsigned *)Vec_PtrEntry(vTtTemps,Gia_ObjCopyF(pGia2, 0, pRoot)); assert ( Kit_TruthSupport(pSims, nInputs) == Kit_BitMask(nLeaves) ); } /**Function************************************************************* Synopsis [Adds the cut function to the internal storage.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecAddFromLib2( Gia_Man_t * pGia2, Gia_Obj_t * pRoot, int nVars ) { Gia_Obj_t * pObj = NULL, * pFanin0, * pFanin1, *pPO; int* ppSpot; Gia_Man_t * pGia = s_pMan->pGia; Gia_Obj_t * pAbcObj; Vec_Ptr_t * vNodes = s_pMan->vNodes; unsigned * pInOut = s_pMan->pTemp1; //unsigned * pTemp = s_pMan->pTemp2; unsigned *pTruth;//, *pTruthDst; int objectID; int i, nNodes, nNodesBeg, nInputs = s_pMan->nVars, nLeaves = nVars; assert( nInputs <= 16 ); // collect internal nodes and skip redundant cuts Abc_NtkRecCollectNodesFromLib2(pGia2, pRoot, vNodes , nLeaves); Abc_NtkRecCutTruthFromLib2(pGia2, vNodes, nLeaves, s_pMan->vTtTemps, s_pMan->vTtElems ); // copy the truth table Kit_TruthCopy( pInOut, (unsigned *)Vec_PtrEntry(s_pMan->vTtTemps, Gia_ObjCopyF(pGia2, 0, pRoot)), nInputs ); // go through the variables in the new truth table for ( i = 0; i < nLeaves; i++ ) { // get hold of the corresponding leaf pAbcObj = Gia_ManPi(pGia2, i); // get hold of the corresponding new node pObj = Gia_ManPi( pGia, i ); // map them Gia_ObjSetCopyF(pGia2, 0, pAbcObj, Gia_ObjId(pGia,pObj)); } nNodesBeg = Gia_ManObjNum( pGia ); Vec_PtrForEachEntryStart( Gia_Obj_t *, vNodes, pAbcObj, i, nLeaves ) { pFanin0 = Gia_NotCond(Gia_ManObj(pGia, Gia_ObjCopyF(pGia2, 0, Gia_ObjFanin0(pAbcObj))), Gia_ObjFaninC0(pAbcObj) ); pFanin1 = Gia_NotCond(Gia_ManObj(pGia, Gia_ObjCopyF(pGia2, 0, Gia_ObjFanin1(pAbcObj))), Gia_ObjFaninC1(pAbcObj) ); nNodes = Gia_ManObjNum( pGia ); pObj = Gia_ObjFromLit(pGia, Gia_ManHashAnd(pGia, Gia_ObjToLit(pGia,pFanin0), Gia_ObjToLit(pGia,pFanin1) )) ; //assert( !Gia_IsComplement(pObj) ); pObj = Gia_Regular(pObj); Gia_ObjSetCopyF(pGia2, 0, pAbcObj, Gia_ObjId(pGia,pObj)); } assert(pObj); pTruth = (unsigned *)Gia_ObjComputeTruthTable(pGia, pObj); //pTruth = (unsigned *)Vec_PtrEntry( s_pMan->vTtNodes, Gia_ObjId(pGia, pObj) ); assert ( Kit_TruthSupport(pTruth, nInputs) == Kit_BitMask(nLeaves) ); // compare the truth tables assert (Kit_TruthIsEqual( pTruth, pInOut, nInputs ) ); if(s_pMan->nAddedFuncs > 2 * s_pMan->nBins) Abc_NtkRecResizeHash2(s_pMan); ppSpot = Abc_NtkRecTableLookup2(s_pMan, s_pMan->pBins,s_pMan->nBins , pTruth, nInputs ); // if not new nodes were added and the node has a CO fanout if ( nNodesBeg == Gia_ManObjNum(pGia) && pObj->fMark1 == 1 ) { s_pMan->nFilterSame++; //assert(*ppSpot != NULL); return; } // create PO for this node objectID = Gia_ObjId(pGia, pObj); pPO = Gia_ManObj(pGia, Gia_ManAppendCo(pGia, Gia_ObjToLit(pGia, pObj)) >> 1); pObj = Gia_ManObj(pGia, objectID); assert(pObj->fMark1 == 0); pObj->fMark1 = 1; // if ( Vec_PtrSize(s_pMan->vTtNodes) <= Gia_ManPoNum(pGia) ) // { // while ( Vec_PtrSize(s_pMan->vTtNodes) <= Gia_ObjCioId(pPO) ) // Vec_PtrPush( s_pMan->vTtNodes, Mem_FixedEntryFetch(s_pMan->pMmTruth) ); // } // pTruthDst = (unsigned *)Vec_PtrEntry( s_pMan->vTtNodes, Gia_ObjCioId(pPO)); // Kit_TruthCopy(pTruthDst, pTruthSrc, s_pMan->nVars); //Rec_MemSetEntry( s_pMan, Gia_ObjCioId(pPO), pTruthSrc ); // add the resulting truth table to the hash table Abc_NtkRecInsertToLookUpTable2(s_pMan, ppSpot, pPO, nLeaves, pTruth, s_pMan->fTrim); return; } /**Function************************************************************* Synopsis [Starts the record for the given network.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkRecLibMerge2(Gia_Man_t* pGia2) { int i; Gia_Obj_t * pObj; Abc_ManRec_t2 * p = s_pMan; int clk = Abc_Clock(); if ( Gia_ManPiNum(pGia2) > s_pMan->nVars ) { printf( "The library has more inputs than the record.\n"); return; } pGia2->pCopies = ABC_FALLOC( int, Gia_ManObjNum(pGia2) ); // create hash table if not available if ( s_pMan->pGia->pHTable == NULL ) Gia_ManHashStart( s_pMan->pGia ); Abc_NtkRecMarkInputs(p, pGia2); // insert the PO nodes into the table Gia_ManForEachPo( pGia2, pObj, i ) { p->nTried++; //if the PO's input is a constant, skip it. if (Gia_ObjChild0(pObj) == Gia_ManConst0(pGia2)) { p->nTrimed++; continue; } pObj = Gia_ObjFanin0(pObj); Abc_NtkRecAddFromLib2(pGia2, pObj, Abc_ObjGetMax2(s_pMan->vInputs, pGia2, pObj) ); } ABC_FREE(pGia2->pCopies); s_pMan->timeMerge += Abc_Clock() - clk; s_pMan->timeTotal += Abc_Clock() - clk; } ABC_NAMESPACE_IMPL_END