/**CFile**************************************************************** FileName [abcTiming.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Network and node package.] Synopsis [Computation of timing info for mapped circuits.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: abcTiming.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include #include "base/abc/abc.h" #include "base/main/main.h" #include "map/mio/mio.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// struct Abc_ManTime_t_ { Abc_Time_t tArrDef; Abc_Time_t tReqDef; Vec_Ptr_t * vArrs; Vec_Ptr_t * vReqs; Abc_Time_t tInDriveDef; Abc_Time_t tOutLoadDef; Abc_Time_t * tInDrive; Abc_Time_t * tOutLoad; }; #define TOLERANCE 0.001 static inline int Abc_FloatEqual( float x, float y ) { return fabs(x-y) < TOLERANCE; } // static functions static Abc_ManTime_t * Abc_ManTimeStart( Abc_Ntk_t * pNtk ); static void Abc_ManTimeExpand( Abc_ManTime_t * p, int nSize, int fProgressive ); // accessing the arrival and required times of a node static inline Abc_Time_t * Abc_NodeArrival( Abc_Obj_t * pNode ) { return (Abc_Time_t *)pNode->pNtk->pManTime->vArrs->pArray[pNode->Id]; } static inline Abc_Time_t * Abc_NodeRequired( Abc_Obj_t * pNode ) { return (Abc_Time_t *)pNode->pNtk->pManTime->vReqs->pArray[pNode->Id]; } //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Reads the arrival.required time of the node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Time_t * Abc_NtkReadDefaultArrival( Abc_Ntk_t * pNtk ) { assert( pNtk->pManTime ); return &pNtk->pManTime->tArrDef; } Abc_Time_t * Abc_NtkReadDefaultRequired( Abc_Ntk_t * pNtk ) { assert( pNtk->pManTime ); return &pNtk->pManTime->tReqDef; } Abc_Time_t * Abc_NodeReadArrival( Abc_Obj_t * pNode ) { assert( pNode->pNtk->pManTime ); return Abc_NodeArrival(pNode); } Abc_Time_t * Abc_NodeReadRequired( Abc_Obj_t * pNode ) { assert( pNode->pNtk->pManTime ); return Abc_NodeRequired(pNode); } float Abc_NtkReadDefaultArrivalWorst( Abc_Ntk_t * pNtk ) { return 0.5 * pNtk->pManTime->tArrDef.Rise + 0.5 * pNtk->pManTime->tArrDef.Fall; } float Abc_NtkReadDefaultRequiredWorst( Abc_Ntk_t * pNtk ) { return 0.5 * pNtk->pManTime->tReqDef.Rise + 0.5 * pNtk->pManTime->tReqDef.Fall; } float Abc_NodeReadArrivalAve( Abc_Obj_t * pNode ) { return 0.5 * Abc_NodeArrival(pNode)->Rise + 0.5 * Abc_NodeArrival(pNode)->Fall; } float Abc_NodeReadRequiredAve( Abc_Obj_t * pNode ) { return 0.5 * Abc_NodeReadRequired(pNode)->Rise + 0.5 * Abc_NodeReadRequired(pNode)->Fall; } float Abc_NodeReadArrivalWorst( Abc_Obj_t * pNode ) { return Abc_MaxFloat( Abc_NodeArrival(pNode)->Rise, Abc_NodeArrival(pNode)->Fall ); } float Abc_NodeReadRequiredWorst( Abc_Obj_t * pNode ) { return Abc_MinFloat( Abc_NodeReadRequired(pNode)->Rise, Abc_NodeReadRequired(pNode)->Fall ); } /**Function************************************************************* Synopsis [Reads the input drive / output load of the node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Time_t * Abc_NtkReadDefaultInputDrive( Abc_Ntk_t * pNtk ) { assert( pNtk->pManTime ); return &pNtk->pManTime->tInDriveDef; } Abc_Time_t * Abc_NtkReadDefaultOutputLoad( Abc_Ntk_t * pNtk ) { assert( pNtk->pManTime ); return &pNtk->pManTime->tOutLoadDef; } Abc_Time_t * Abc_NodeReadInputDrive( Abc_Ntk_t * pNtk, int iPi ) { assert( pNtk->pManTime ); return pNtk->pManTime->tInDrive ? pNtk->pManTime->tInDrive + iPi : NULL; } Abc_Time_t * Abc_NodeReadOutputLoad( Abc_Ntk_t * pNtk, int iPo ) { assert( pNtk->pManTime ); return pNtk->pManTime->tOutLoad ? pNtk->pManTime->tOutLoad + iPo : NULL; } float Abc_NodeReadInputDriveWorst( Abc_Ntk_t * pNtk, int iPi ) { return Abc_MaxFloat( Abc_NodeReadInputDrive(pNtk, iPi)->Rise, Abc_NodeReadInputDrive(pNtk, iPi)->Fall ); } float Abc_NodeReadOutputLoadWorst( Abc_Ntk_t * pNtk, int iPo ) { return Abc_MaxFloat( Abc_NodeReadOutputLoad(pNtk, iPo)->Rise, Abc_NodeReadOutputLoad(pNtk, iPo)->Fall ); } /**Function************************************************************* Synopsis [Sets the default arrival time for the network.] Description [Please note that .default_input_arrival and .default_output_required should precede .input_arrival and .output required. Otherwise, an overwrite may happen.] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkTimeSetDefaultArrival( Abc_Ntk_t * pNtk, float Rise, float Fall ) { Abc_Obj_t * pObj; int i; if ( pNtk->pManTime == NULL ) pNtk->pManTime = Abc_ManTimeStart(pNtk); pNtk->pManTime->tArrDef.Rise = Rise; pNtk->pManTime->tArrDef.Fall = Fall; // set the arrival times for each input Abc_NtkForEachCi( pNtk, pObj, i ) Abc_NtkTimeSetArrival( pNtk, Abc_ObjId(pObj), Rise, Fall ); } void Abc_NtkTimeSetDefaultRequired( Abc_Ntk_t * pNtk, float Rise, float Fall ) { Abc_Obj_t * pObj; int i; if ( pNtk->pManTime == NULL ) pNtk->pManTime = Abc_ManTimeStart(pNtk); pNtk->pManTime->tReqDef.Rise = Rise; pNtk->pManTime->tReqDef.Fall = Fall; // set the required times for each output Abc_NtkForEachCo( pNtk, pObj, i ){ Abc_NtkTimeSetRequired( pNtk, Abc_ObjId(pObj), Rise, Fall ); } } /**Function************************************************************* Synopsis [Sets the arrival time for an object.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkTimeSetArrival( Abc_Ntk_t * pNtk, int ObjId, float Rise, float Fall ) { Vec_Ptr_t * vTimes; Abc_Time_t * pTime; if ( pNtk->pManTime == NULL ) pNtk->pManTime = Abc_ManTimeStart(pNtk); Abc_ManTimeExpand( pNtk->pManTime, ObjId + 1, 1 ); // set the arrival time vTimes = pNtk->pManTime->vArrs; pTime = (Abc_Time_t *)vTimes->pArray[ObjId]; pTime->Rise = Rise; pTime->Fall = Fall; } void Abc_NtkTimeSetRequired( Abc_Ntk_t * pNtk, int ObjId, float Rise, float Fall ) { Vec_Ptr_t * vTimes; Abc_Time_t * pTime; if ( pNtk->pManTime == NULL ) pNtk->pManTime = Abc_ManTimeStart(pNtk); Abc_ManTimeExpand( pNtk->pManTime, ObjId + 1, 1 ); // set the required time vTimes = pNtk->pManTime->vReqs; pTime = (Abc_Time_t *)vTimes->pArray[ObjId]; pTime->Rise = Rise; pTime->Fall = Fall; } /**Function************************************************************* Synopsis [Sets the default arrival time for the network.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkTimeSetDefaultInputDrive( Abc_Ntk_t * pNtk, float Rise, float Fall ) { // if ( Rise == 0.0 && Fall == 0.0 ) // return; if ( pNtk->pManTime == NULL ) pNtk->pManTime = Abc_ManTimeStart(pNtk); pNtk->pManTime->tInDriveDef.Rise = Rise; pNtk->pManTime->tInDriveDef.Fall = Fall; if ( pNtk->pManTime->tInDrive != NULL ) { int i; for ( i = 0; i < Abc_NtkCiNum(pNtk); i++ ) if ( pNtk->pManTime->tInDrive[i].Rise == 0 && pNtk->pManTime->tInDrive[i].Fall == 0 ) pNtk->pManTime->tInDrive[i] = pNtk->pManTime->tInDriveDef; } } void Abc_NtkTimeSetDefaultOutputLoad( Abc_Ntk_t * pNtk, float Rise, float Fall ) { // if ( Rise == 0.0 && Fall == 0.0 ) // return; if ( pNtk->pManTime == NULL ) pNtk->pManTime = Abc_ManTimeStart(pNtk); pNtk->pManTime->tOutLoadDef.Rise = Rise; pNtk->pManTime->tOutLoadDef.Fall = Fall; if ( pNtk->pManTime->tOutLoad != NULL ) { int i; for ( i = 0; i < Abc_NtkCoNum(pNtk); i++ ) if ( pNtk->pManTime->tOutLoad[i].Rise == 0 && pNtk->pManTime->tOutLoad[i].Fall == 0 ) pNtk->pManTime->tOutLoad[i] = pNtk->pManTime->tOutLoadDef; } } /**Function************************************************************* Synopsis [Sets the arrival time for an object.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkTimeSetInputDrive( Abc_Ntk_t * pNtk, int PiNum, float Rise, float Fall ) { Abc_Time_t * pTime; assert( PiNum >= 0 && PiNum < Abc_NtkCiNum(pNtk) ); if ( pNtk->pManTime == NULL ) pNtk->pManTime = Abc_ManTimeStart(pNtk); if ( pNtk->pManTime->tInDriveDef.Rise == Rise && pNtk->pManTime->tInDriveDef.Fall == Fall ) return; if ( pNtk->pManTime->tInDrive == NULL ) { int i; pNtk->pManTime->tInDrive = ABC_CALLOC( Abc_Time_t, Abc_NtkCiNum(pNtk) ); for ( i = 0; i < Abc_NtkCiNum(pNtk); i++ ) pNtk->pManTime->tInDrive[i] = pNtk->pManTime->tInDriveDef; } pTime = pNtk->pManTime->tInDrive + PiNum; pTime->Rise = Rise; pTime->Fall = Fall; } void Abc_NtkTimeSetOutputLoad( Abc_Ntk_t * pNtk, int PoNum, float Rise, float Fall ) { Abc_Time_t * pTime; assert( PoNum >= 0 && PoNum < Abc_NtkCoNum(pNtk) ); if ( pNtk->pManTime == NULL ) pNtk->pManTime = Abc_ManTimeStart(pNtk); if ( pNtk->pManTime->tOutLoadDef.Rise == Rise && pNtk->pManTime->tOutLoadDef.Fall == Fall ) return; if ( pNtk->pManTime->tOutLoad == NULL ) { int i; pNtk->pManTime->tOutLoad = ABC_CALLOC( Abc_Time_t, Abc_NtkCoNum(pNtk) ); for ( i = 0; i < Abc_NtkCoNum(pNtk); i++ ) pNtk->pManTime->tOutLoad[i] = pNtk->pManTime->tOutLoadDef; } pTime = pNtk->pManTime->tOutLoad + PoNum; pTime->Rise = Rise; pTime->Fall = Fall; } /**Function************************************************************* Synopsis [Finalizes the timing manager after setting arr/req times.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkTimeInitialize( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkOld ) { Abc_Obj_t * pObj; Abc_Time_t ** ppTimes; int i; assert( pNtkOld == NULL || pNtkOld->pManTime != NULL ); assert( pNtkOld == NULL || Abc_NtkCiNum(pNtk) == Abc_NtkCiNum(pNtkOld) ); assert( pNtkOld == NULL || Abc_NtkCoNum(pNtk) == Abc_NtkCoNum(pNtkOld) ); if ( pNtk->pManTime == NULL ) return; // create timing manager with default values Abc_ManTimeExpand( pNtk->pManTime, Abc_NtkObjNumMax(pNtk), 0 ); // set global defaults from pNtkOld if ( pNtkOld ) { pNtk->pManTime->tArrDef = pNtkOld->pManTime->tArrDef; pNtk->pManTime->tReqDef = pNtkOld->pManTime->tReqDef; pNtk->AndGateDelay = pNtkOld->AndGateDelay; } // set the default timing for CI and COs ppTimes = (Abc_Time_t **)pNtk->pManTime->vArrs->pArray; Abc_NtkForEachCi( pNtk, pObj, i ) *ppTimes[pObj->Id] = pNtkOld ? *Abc_NodeReadArrival(Abc_NtkCi(pNtkOld, i)) : pNtk->pManTime->tArrDef; ppTimes = (Abc_Time_t **)pNtk->pManTime->vReqs->pArray; Abc_NtkForEachCo( pNtk, pObj, i ) *ppTimes[pObj->Id] = pNtkOld ? *Abc_NodeReadRequired(Abc_NtkCo(pNtkOld, i)) : pNtk->pManTime->tReqDef; } /**Function************************************************************* Synopsis [This procedure scales user timing by multiplicative factor.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkTimeScale( Abc_Ntk_t * pNtk, float Scale ) { Abc_Obj_t * pObj; Abc_Time_t ** ppTimes, * pTime; int i; if ( pNtk->pManTime == NULL ) return; // arrival pNtk->pManTime->tArrDef.Fall *= Scale; pNtk->pManTime->tArrDef.Rise *= Scale; // departure pNtk->pManTime->tReqDef.Fall *= Scale; pNtk->pManTime->tReqDef.Rise *= Scale; // set the default timing ppTimes = (Abc_Time_t **)pNtk->pManTime->vArrs->pArray; Abc_NtkForEachCi( pNtk, pObj, i ) { pTime = ppTimes[pObj->Id]; pTime->Fall *= Scale; pTime->Rise *= Scale; } // set the default timing ppTimes = (Abc_Time_t **)pNtk->pManTime->vReqs->pArray; Abc_NtkForEachCo( pNtk, pObj, i ) { pTime = ppTimes[pObj->Id]; pTime->Fall *= Scale; pTime->Rise *= Scale; } } /**Function************************************************************* Synopsis [Prepares the timing manager for delay trace.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkTimePrepare( Abc_Ntk_t * pNtk ) { Abc_Obj_t * pObj; Abc_Time_t ** ppTimes, * pTime; int i; // if there is no timing manager, allocate and initialize if ( pNtk->pManTime == NULL ) { pNtk->pManTime = Abc_ManTimeStart(pNtk); Abc_NtkTimeInitialize( pNtk, NULL ); return; } // if timing manager is given, expand it if necessary Abc_ManTimeExpand( pNtk->pManTime, Abc_NtkObjNumMax(pNtk), 0 ); // clean arrivals except for PIs ppTimes = (Abc_Time_t **)pNtk->pManTime->vArrs->pArray; Abc_NtkForEachNode( pNtk, pObj, i ) { pTime = ppTimes[pObj->Id]; pTime->Fall = pTime->Rise = Abc_ObjFaninNum(pObj) ? -ABC_INFINITY : 0; // set contant node arrivals to zero } Abc_NtkForEachCo( pNtk, pObj, i ) { pTime = ppTimes[pObj->Id]; pTime->Fall = pTime->Rise = -ABC_INFINITY; } // clean required except for POs ppTimes = (Abc_Time_t **)pNtk->pManTime->vReqs->pArray; Abc_NtkForEachNode( pNtk, pObj, i ) { pTime = ppTimes[pObj->Id]; pTime->Fall = pTime->Rise = ABC_INFINITY; } Abc_NtkForEachCi( pNtk, pObj, i ) { pTime = ppTimes[pObj->Id]; pTime->Fall = pTime->Rise = ABC_INFINITY; } } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_ManTime_t * Abc_ManTimeStart( Abc_Ntk_t * pNtk ) { int fUseZeroDefaultOutputRequired = 1; Abc_ManTime_t * p; Abc_Time_t* pTime; Abc_Obj_t * pObj; int i; p = pNtk->pManTime = ABC_ALLOC( Abc_ManTime_t, 1 ); memset( p, 0, sizeof(Abc_ManTime_t) ); p->vArrs = Vec_PtrAlloc( 0 ); p->vReqs = Vec_PtrAlloc( 0 ); // set default default input=arrivals (assumed to be 0) // set default default output-requireds (can be either 0 or +infinity, based on the flag) // extend manager Abc_ManTimeExpand( p, Abc_NtkObjNumMax(pNtk) + 1, 0 ); // set the default timing for CIs Abc_NtkForEachCi( pNtk, pObj, i ){ //get the constrained value, if there is one Vec_Ptr_t * vTimes; vTimes = pNtk->pManTime->vArrs; pTime = (Abc_Time_t *)vTimes->pArray[Abc_ObjId(pObj)]; //unconstrained arrival defaults. Note that //unconstrained value in vTimes set to -ABC_INFINITY. if (pTime && (!(p-> tArrDef.Fall == -ABC_INFINITY || p-> tArrDef.Rise != -ABC_INFINITY )) ){ p->tArrDef.Fall = pTime -> Fall; p->tArrDef.Rise = pTime -> Rise; } else { //use the default arrival time 0 (implicit in memset 0, above). p->tArrDef.Rise = 0; p->tArrDef.Fall = 0; } Abc_NtkTimeSetArrival( pNtk, Abc_ObjId(pObj), p->tArrDef.Rise, p->tArrDef.Rise ); } Abc_NtkForEachCo( pNtk, pObj, i ){ Vec_Ptr_t * vTimes; vTimes = pNtk->pManTime->vArrs; pTime = (Abc_Time_t *)vTimes->pArray[Abc_ObjId(pObj)]; if (pTime){ p->tReqDef.Fall = pTime -> Fall; p->tReqDef.Rise = pTime -> Rise; } else{ //use the default p->tReqDef.Rise = fUseZeroDefaultOutputRequired ? 0 : ABC_INFINITY; p->tReqDef.Fall = fUseZeroDefaultOutputRequired ? 0 : ABC_INFINITY; } Abc_NtkTimeSetRequired( pNtk, Abc_ObjId(pObj), p->tReqDef.Rise, p->tReqDef.Rise ); } return p; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_ManTimeStop( Abc_ManTime_t * p ) { if ( p->tInDrive ) ABC_FREE( p->tInDrive ); if ( p->tOutLoad ) ABC_FREE( p->tOutLoad ); if ( Vec_PtrSize(p->vArrs) > 0 ) ABC_FREE( p->vArrs->pArray[0] ); Vec_PtrFree( p->vArrs ); if ( Vec_PtrSize(p->vReqs) > 0 ) ABC_FREE( p->vReqs->pArray[0] ); Vec_PtrFree( p->vReqs ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [Duplicates the timing manager with the PI/PO timing info.] Description [The PIs/POs of the new network should be allocated.] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_ManTimeDup( Abc_Ntk_t * pNtkOld, Abc_Ntk_t * pNtkNew ) { extern void Abc_NtkTimePrint( Abc_Ntk_t * pNtk ); Abc_Obj_t * pObj; Abc_Time_t ** ppTimesOld, ** ppTimesNew; int i; if ( pNtkOld->pManTime == NULL ) return; assert( Abc_NtkCiNum(pNtkOld) == Abc_NtkCiNum(pNtkNew) ); assert( Abc_NtkCoNum(pNtkOld) == Abc_NtkCoNum(pNtkNew) ); assert( Abc_NtkLatchNum(pNtkOld) == Abc_NtkLatchNum(pNtkNew) ); // create the new timing manager pNtkNew->pManTime = Abc_ManTimeStart(pNtkNew); Abc_ManTimeExpand( pNtkNew->pManTime, Abc_NtkObjNumMax(pNtkNew), 0 ); // set the default timing pNtkNew->pManTime->tArrDef = pNtkOld->pManTime->tArrDef; pNtkNew->pManTime->tReqDef = pNtkOld->pManTime->tReqDef; // set the CI timing ppTimesOld = (Abc_Time_t **)pNtkOld->pManTime->vArrs->pArray; ppTimesNew = (Abc_Time_t **)pNtkNew->pManTime->vArrs->pArray; Abc_NtkForEachCi( pNtkOld, pObj, i ) *ppTimesNew[ Abc_NtkCi(pNtkNew,i)->Id ] = *ppTimesOld[ pObj->Id ]; // set the CO timing ppTimesOld = (Abc_Time_t **)pNtkOld->pManTime->vReqs->pArray; ppTimesNew = (Abc_Time_t **)pNtkNew->pManTime->vReqs->pArray; Abc_NtkForEachCo( pNtkOld, pObj, i ) *ppTimesNew[ Abc_NtkCo(pNtkNew,i)->Id ] = *ppTimesOld[ pObj->Id ]; // duplicate input drive pNtkNew->pManTime->tInDriveDef = pNtkOld->pManTime->tInDriveDef; pNtkNew->pManTime->tOutLoadDef = pNtkOld->pManTime->tOutLoadDef; if ( pNtkOld->pManTime->tInDrive ) { pNtkNew->pManTime->tInDrive = ABC_ALLOC( Abc_Time_t, Abc_NtkCiNum(pNtkOld) ); memcpy( pNtkNew->pManTime->tInDrive, pNtkOld->pManTime->tInDrive, sizeof(Abc_Time_t) * Abc_NtkCiNum(pNtkOld) ); } if ( pNtkOld->pManTime->tOutLoad ) { pNtkNew->pManTime->tOutLoad = ABC_ALLOC( Abc_Time_t, Abc_NtkCiNum(pNtkOld) ); memcpy( pNtkNew->pManTime->tOutLoad, pNtkOld->pManTime->tOutLoad, sizeof(Abc_Time_t) * Abc_NtkCoNum(pNtkOld) ); } } /**Function************************************************************* Synopsis [Prints out the timing manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkTimePrint( Abc_Ntk_t * pNtk ) { if ( pNtk->pManTime == NULL ) printf( "There is no timing manager\n" ); else { Abc_Obj_t * pObj; int i; printf( "Default arrival = %8f\n", pNtk->pManTime->tArrDef.Fall ); printf( "Default required = %8f\n", pNtk->pManTime->tReqDef.Fall ); printf( "Inputs (%d):\n", Abc_NtkCiNum(pNtk) ); Abc_NtkForEachCi( pNtk, pObj, i ) printf( "%20s arrival = %8f required = %8f\n", Abc_ObjName(pObj), Abc_NodeReadArrivalWorst(pObj), Abc_NodeReadRequiredWorst(pObj) ); printf( "Outputs (%d):\n", Abc_NtkCoNum(pNtk) ); Abc_NtkForEachCo( pNtk, pObj, i ) printf( "%20s arrival = %8f required = %8f\n", Abc_ObjName(pObj), Abc_NodeReadArrivalWorst(pObj), Abc_NodeReadRequiredWorst(pObj) ); } } /**Function************************************************************* Synopsis [Expends the storage for timing information.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_ManTimeExpand( Abc_ManTime_t * p, int nSize, int fProgressive ) { Vec_Ptr_t * vTimes; Abc_Time_t * ppTimes, * ppTimesOld, * pTime; int nSizeOld, nSizeNew, i; nSizeOld = p->vArrs->nSize; if ( nSizeOld >= nSize ) return; nSizeNew = fProgressive? 2 * nSize : nSize; if ( nSizeNew < 100 ) nSizeNew = 100; vTimes = p->vArrs; Vec_PtrGrow( vTimes, nSizeNew ); vTimes->nSize = nSizeNew; ppTimesOld = ( nSizeOld == 0 )? NULL : (Abc_Time_t *)vTimes->pArray[0]; ppTimes = ABC_REALLOC( Abc_Time_t, ppTimesOld, nSizeNew ); for ( i = 0; i < nSizeNew; i++ ) vTimes->pArray[i] = ppTimes + i; for ( i = nSizeOld; i < nSizeNew; i++ ) { pTime = (Abc_Time_t *)vTimes->pArray[i]; pTime->Rise = -ABC_INFINITY; pTime->Fall = -ABC_INFINITY; } vTimes = p->vReqs; Vec_PtrGrow( vTimes, nSizeNew ); vTimes->nSize = nSizeNew; ppTimesOld = ( nSizeOld == 0 )? NULL : (Abc_Time_t *)vTimes->pArray[0]; ppTimes = ABC_REALLOC( Abc_Time_t, ppTimesOld, nSizeNew ); for ( i = 0; i < nSizeNew; i++ ) vTimes->pArray[i] = ppTimes + i; for ( i = nSizeOld; i < nSizeNew; i++ ) { pTime = (Abc_Time_t *)vTimes->pArray[i]; pTime->Rise = ABC_INFINITY; pTime->Fall = ABC_INFINITY; } } /**Function************************************************************* Synopsis [Sets the CI node levels according to the arrival info.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkSetNodeLevelsArrival( Abc_Ntk_t * pNtkOld ) { Abc_Obj_t * pNodeOld, * pNodeNew; float tAndDelay; int i; if ( pNtkOld->pManTime == NULL ) return; if ( Abc_FrameReadLibGen() == NULL || Mio_LibraryReadNand2((Mio_Library_t *)Abc_FrameReadLibGen()) == NULL ) return; tAndDelay = Mio_LibraryReadDelayNand2Max((Mio_Library_t *)Abc_FrameReadLibGen()); Abc_NtkForEachCi( pNtkOld, pNodeOld, i ) { pNodeNew = pNodeOld->pCopy; pNodeNew->Level = (int)(Abc_NodeReadArrivalWorst(pNodeOld) / tAndDelay); } } /**Function************************************************************* Synopsis [Sets the CI node levels according to the arrival info.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Time_t * Abc_NtkGetCiArrivalTimes( Abc_Ntk_t * pNtk ) { Abc_Time_t * p; Abc_Obj_t * pNode; int i; p = ABC_CALLOC( Abc_Time_t, Abc_NtkCiNum(pNtk) ); if ( pNtk->pManTime == NULL ) return p; // set the PI arrival times Abc_NtkForEachCi( pNtk, pNode, i ) p[i] = *Abc_NodeArrival(pNode); return p; } Abc_Time_t * Abc_NtkGetCoRequiredTimes( Abc_Ntk_t * pNtk ) { Abc_Time_t * p; Abc_Obj_t * pNode; int i; p = ABC_CALLOC( Abc_Time_t, Abc_NtkCoNum(pNtk) ); if ( pNtk->pManTime == NULL ) return p; // set the PO required times Abc_NtkForEachCo( pNtk, pNode, i ) p[i] = *Abc_NodeRequired(pNode); return p; } /**Function************************************************************* Synopsis [Sets the CI node levels according to the arrival info.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ float * Abc_NtkGetCiArrivalFloats( Abc_Ntk_t * pNtk ) { float * p; Abc_Obj_t * pNode; int i; p = ABC_CALLOC( float, Abc_NtkCiNum(pNtk) ); if ( pNtk->pManTime == NULL ) return p; // set the PI arrival times Abc_NtkForEachCi( pNtk, pNode, i ) p[i] = Abc_NodeReadArrivalWorst(pNode); return p; } float * Abc_NtkGetCoRequiredFloats( Abc_Ntk_t * pNtk ) { float * p; Abc_Obj_t * pNode; int i; if ( pNtk->pManTime == NULL ) return NULL; // set the PO required times p = ABC_CALLOC( float, Abc_NtkCoNum(pNtk) ); Abc_NtkForEachCo( pNtk, pNode, i ) p[i] = Abc_NodeReadRequiredWorst(pNode); return p; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Abc_NtkDelayTraceSlackStart( Abc_Ntk_t * pNtk ) { Vec_Int_t * vSlacks; Abc_Obj_t * pObj; int i, k; vSlacks = Vec_IntAlloc( Abc_NtkObjNumMax(pNtk) + Abc_NtkGetTotalFanins(pNtk) ); Vec_IntFill( vSlacks, Abc_NtkObjNumMax(pNtk), -1 ); Abc_NtkForEachNode( pNtk, pObj, i ) { Vec_IntWriteEntry( vSlacks, i, Vec_IntSize(vSlacks) ); for ( k = 0; k < Abc_ObjFaninNum(pObj); k++ ) Vec_IntPush( vSlacks, -1 ); } // assert( Abc_MaxInt(16, Vec_IntSize(vSlacks)) == Vec_IntCap(vSlacks) ); return vSlacks; } /**Function************************************************************* Synopsis [Read/write edge slacks.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline float Abc_NtkDelayTraceSlack( Vec_Int_t * vSlacks, Abc_Obj_t * pObj, int iFanin ) { return Abc_Int2Float( Vec_IntEntry( vSlacks, Vec_IntEntry(vSlacks, Abc_ObjId(pObj)) + iFanin ) ); } static inline void Abc_NtkDelayTraceSetSlack( Vec_Int_t * vSlacks, Abc_Obj_t * pObj, int iFanin, float Num ) { Vec_IntWriteEntry( vSlacks, Vec_IntEntry(vSlacks, Abc_ObjId(pObj)) + iFanin, Abc_Float2Int(Num) ); } /**Function************************************************************* Synopsis [Find most-critical path (the path with smallest slacks).] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_NtkDelayTraceCritPath_rec( Vec_Int_t * vSlacks, Abc_Obj_t * pNode, Abc_Obj_t * pLeaf, Vec_Int_t * vBest ) { Abc_Obj_t * pFanin, * pFaninBest = NULL; float SlackMin = ABC_INFINITY; int i; // check primary inputs if ( Abc_ObjIsCi(pNode) ) return (pLeaf == NULL || pLeaf == pNode); assert( Abc_ObjIsNode(pNode) ); // check visited if ( Abc_NodeIsTravIdCurrent( pNode ) ) return Vec_IntEntry(vBest, Abc_ObjId(pNode)) >= 0; Abc_NodeSetTravIdCurrent( pNode ); // check the node assert( Abc_ObjIsNode(pNode) ); Abc_ObjForEachFanin( pNode, pFanin, i ) { if ( !Abc_NtkDelayTraceCritPath_rec( vSlacks, pFanin, pLeaf, vBest ) ) continue; if ( pFaninBest == NULL || SlackMin > Abc_NtkDelayTraceSlack(vSlacks, pNode, i) ) { pFaninBest = pFanin; SlackMin = Abc_NtkDelayTraceSlack(vSlacks, pNode, i); } } if ( pFaninBest != NULL ) Vec_IntWriteEntry( vBest, Abc_ObjId(pNode), Abc_NodeFindFanin(pNode, pFaninBest) ); return (pFaninBest != NULL); } /**Function************************************************************* Synopsis [Find most-critical path (the path with smallest slacks).] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkDelayTraceCritPathCollect_rec( Vec_Int_t * vSlacks, Abc_Obj_t * pNode, Vec_Int_t * vBest, Vec_Ptr_t * vPath ) { assert( Abc_ObjIsCi(pNode) || Abc_ObjIsNode(pNode) ); if ( Abc_ObjIsNode(pNode) ) { int iFanin = Vec_IntEntry( vBest, Abc_ObjId(pNode) ); assert( iFanin >= 0 ); Abc_NtkDelayTraceCritPathCollect_rec( vSlacks, Abc_ObjFanin(pNode, iFanin), vBest, vPath ); } Vec_PtrPush( vPath, pNode ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NodeDelayTraceArrival( Abc_Obj_t * pNode, Vec_Int_t * vSlacks ) { Abc_Obj_t * pFanin; Abc_Time_t * pTimeIn, * pTimeOut; float tDelayBlockRise, tDelayBlockFall; Mio_PinPhase_t PinPhase; Mio_Pin_t * pPin; int i; // start the arrival time of the node pTimeOut = Abc_NodeArrival(pNode); pTimeOut->Rise = pTimeOut->Fall = -ABC_INFINITY; // consider the buffer if ( Abc_ObjIsBarBuf(pNode) ) { pTimeIn = Abc_NodeArrival(Abc_ObjFanin0(pNode)); *pTimeOut = *pTimeIn; return; } // go through the pins of the gate pPin = Mio_GateReadPins((Mio_Gate_t *)pNode->pData); Abc_ObjForEachFanin( pNode, pFanin, i ) { pTimeIn = Abc_NodeArrival(pFanin); // get the interesting parameters of this pin PinPhase = Mio_PinReadPhase(pPin); tDelayBlockRise = (float)Mio_PinReadDelayBlockRise( pPin ); tDelayBlockFall = (float)Mio_PinReadDelayBlockFall( pPin ); // compute the arrival times of the positive phase if ( PinPhase != MIO_PHASE_INV ) // NONINV phase is present { if ( pTimeOut->Rise < pTimeIn->Rise + tDelayBlockRise ) pTimeOut->Rise = pTimeIn->Rise + tDelayBlockRise; if ( pTimeOut->Fall < pTimeIn->Fall + tDelayBlockFall ) pTimeOut->Fall = pTimeIn->Fall + tDelayBlockFall; } if ( PinPhase != MIO_PHASE_NONINV ) // INV phase is present { if ( pTimeOut->Rise < pTimeIn->Fall + tDelayBlockRise ) pTimeOut->Rise = pTimeIn->Fall + tDelayBlockRise; if ( pTimeOut->Fall < pTimeIn->Rise + tDelayBlockFall ) pTimeOut->Fall = pTimeIn->Rise + tDelayBlockFall; } pPin = Mio_PinReadNext(pPin); } // compute edge slacks if ( vSlacks ) { float Slack; // go through the pins of the gate pPin = Mio_GateReadPins((Mio_Gate_t *)pNode->pData); Abc_ObjForEachFanin( pNode, pFanin, i ) { pTimeIn = Abc_NodeArrival(pFanin); // get the interesting parameters of this pin PinPhase = Mio_PinReadPhase(pPin); tDelayBlockRise = (float)Mio_PinReadDelayBlockRise( pPin ); tDelayBlockFall = (float)Mio_PinReadDelayBlockFall( pPin ); // compute the arrival times of the positive phase Slack = ABC_INFINITY; if ( PinPhase != MIO_PHASE_INV ) // NONINV phase is present { Slack = Abc_MinFloat( Slack, Abc_AbsFloat(pTimeIn->Rise + tDelayBlockRise - pTimeOut->Rise) ); Slack = Abc_MinFloat( Slack, Abc_AbsFloat(pTimeIn->Fall + tDelayBlockFall - pTimeOut->Fall) ); } if ( PinPhase != MIO_PHASE_NONINV ) // INV phase is present { Slack = Abc_MinFloat( Slack, Abc_AbsFloat(pTimeIn->Fall + tDelayBlockRise - pTimeOut->Rise) ); Slack = Abc_MinFloat( Slack, Abc_AbsFloat(pTimeIn->Rise + tDelayBlockFall - pTimeOut->Fall) ); } pPin = Mio_PinReadNext(pPin); Abc_NtkDelayTraceSetSlack( vSlacks, pNode, i, Slack ); } } } /**Function************************************************************* Synopsis [Performs delay-trace of the network. If input (pIn) or output (pOut) are given, finds the most-timing-critical path between them and prints it to the standard output. If input and/or output are not given, finds the most-critical path in the network and prints it.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ float Abc_NtkDelayTrace( Abc_Ntk_t * pNtk, Abc_Obj_t * pOut, Abc_Obj_t * pIn, int fPrint ) { Vec_Int_t * vSlacks = NULL; Abc_Obj_t * pNode, * pDriver; Vec_Ptr_t * vNodes; Abc_Time_t * pTime; float tArrivalMax; int i; assert( Abc_NtkIsMappedLogic(pNtk) ); assert( pOut == NULL || Abc_ObjIsCo(pOut) ); assert( pIn == NULL || Abc_ObjIsCi(pIn) ); // create slacks (need slacks if printing is requested even if pIn/pOut are not given) if ( pOut || pIn || fPrint ) vSlacks = Abc_NtkDelayTraceSlackStart( pNtk ); // compute the timing Abc_NtkTimePrepare( pNtk ); vNodes = Abc_NtkDfs( pNtk, 1 ); Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pNode, i ) Abc_NodeDelayTraceArrival( pNode, vSlacks ); Vec_PtrFree( vNodes ); // get the latest arrival times tArrivalMax = -ABC_INFINITY; Abc_NtkForEachCo( pNtk, pNode, i ) { pDriver = Abc_ObjFanin0(pNode); pTime = Abc_NodeArrival(pDriver); if ( tArrivalMax < Abc_MaxFloat(pTime->Fall, pTime->Rise) ) tArrivalMax = Abc_MaxFloat(pTime->Fall, pTime->Rise); } // determine the output to print if ( fPrint && pOut == NULL ) { Abc_NtkForEachCo( pNtk, pNode, i ) { pDriver = Abc_ObjFanin0(pNode); pTime = Abc_NodeArrival(pDriver); if ( tArrivalMax == Abc_MaxFloat(pTime->Fall, pTime->Rise) ) pOut = pNode; } assert( pOut != NULL ); } if ( fPrint ) { Vec_Ptr_t * vPath = Vec_PtrAlloc( 100 ); Vec_Int_t * vBest = Vec_IntStartFull( Abc_NtkObjNumMax(pNtk) ); // traverse to determine the critical path Abc_NtkIncrementTravId( pNtk ); if ( !Abc_NtkDelayTraceCritPath_rec( vSlacks, Abc_ObjFanin0(pOut), pIn, vBest ) ) { if ( pIn == NULL ) printf( "The logic cone of PO \"%s\" has no primary inputs.\n", Abc_ObjName(pOut) ); else printf( "There is no combinational path between PI \"%s\" and PO \"%s\".\n", Abc_ObjName(pIn), Abc_ObjName(pOut) ); } else { float Slack = 0.0, SlackAdd; int k, iFanin, Length = 0; Abc_Obj_t * pFanin; // check the additional slack SlackAdd = Abc_NodeReadRequiredWorst(pOut) - Abc_NodeReadArrivalWorst(Abc_ObjFanin0(pOut)); // collect the critical path Abc_NtkDelayTraceCritPathCollect_rec( vSlacks, Abc_ObjFanin0(pOut), vBest, vPath ); if ( pIn == NULL ) pIn = (Abc_Obj_t *)Vec_PtrEntry( vPath, 0 ); // find the longest gate name Vec_PtrForEachEntry( Abc_Obj_t *, vPath, pNode, i ) if ( Abc_ObjIsNode(pNode) ) Length = Abc_MaxInt( Length, strlen(Mio_GateReadName((Mio_Gate_t *)pNode->pData)) ); // print critical path Abc_NtkLevel( pNtk ); printf( "Critical path from PI \"%s\" to PO \"%s\":\n", Abc_ObjName(pIn), Abc_ObjName(pOut) ); Vec_PtrForEachEntry( Abc_Obj_t *, vPath, pNode, i ) { printf( "Level %3d : ", Abc_ObjLevel(pNode) ); if ( Abc_ObjIsCi(pNode) ) { printf( "Primary input \"%s\". ", Abc_ObjName(pNode) ); printf( "Arrival time =%6.1f. ", Abc_NodeReadArrivalWorst(pNode) ); printf( "\n" ); continue; } if ( Abc_ObjIsCo(pNode) ) { printf( "Primary output \"%s\". ", Abc_ObjName(pNode) ); printf( "Arrival =%6.1f. ", Abc_NodeReadArrivalWorst(pNode) ); } else { assert( Abc_ObjIsNode(pNode) ); iFanin = Abc_NodeFindFanin( pNode, (Abc_Obj_t *)Vec_PtrEntry(vPath,i-1) ); Slack = Abc_NtkDelayTraceSlack(vSlacks, pNode, iFanin); printf( "%10s/", Abc_ObjName(pNode) ); printf( "%-4s", Mio_GateReadPinName((Mio_Gate_t *)pNode->pData, iFanin) ); printf( " (%s)", Mio_GateReadName((Mio_Gate_t *)pNode->pData) ); for ( k = strlen(Mio_GateReadName((Mio_Gate_t *)pNode->pData)); k < Length; k++ ) printf( " " ); printf( " " ); printf( "Arrival =%6.1f. ", Abc_NodeReadArrivalWorst(pNode) ); printf( "I/O times: (" ); Abc_ObjForEachFanin( pNode, pFanin, k ) printf( "%s%.1f", (k? ", ":""), Abc_NodeReadArrivalWorst(pFanin) ); // printf( " -> %.1f)", Abc_NodeReadArrival(pNode)->Worst + Slack + SlackAdd ); printf( " -> %.1f)", Abc_NodeReadArrivalWorst(pNode) ); } printf( "\n" ); } printf( "Level %3d : ", Abc_ObjLevel(Abc_ObjFanin0(pOut)) + 1 ); printf( "Primary output \"%s\". ", Abc_ObjName(pOut) ); printf( "Required time = %6.1f. ", Abc_NodeReadRequiredWorst(pOut) ); printf( "Path slack = %6.1f.\n", SlackAdd ); } Vec_PtrFree( vPath ); Vec_IntFree( vBest ); } Vec_IntFreeP( &vSlacks ); return tArrivalMax; } /**Function************************************************************* Synopsis [Computes the level of the node using its fanin levels.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_ObjLevelNew( Abc_Obj_t * pObj ) { Abc_Obj_t * pFanin; int i, Level = 0; Abc_ObjForEachFanin( pObj, pFanin, i ) Level = Abc_MaxFloat( Level, Abc_ObjLevel(pFanin) ); return Level + (int)(Abc_ObjFaninNum(pObj) > 0); } /**Function************************************************************* Synopsis [Computes the reverse level of the node using its fanout levels.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_ObjReverseLevelNew( Abc_Obj_t * pObj ) { Abc_Obj_t * pFanout; int i, LevelCur, Level = 0; Abc_ObjForEachFanout( pObj, pFanout, i ) { LevelCur = Abc_ObjReverseLevel( pFanout ); Level = Abc_MaxFloat( Level, LevelCur ); } return Level + 1; } /**Function************************************************************* Synopsis [Returns required level of the node.] Description [Converts the reverse levels of the node into its required level as follows: ReqLevel(Node) = MaxLevels(Ntk) + 1 - LevelR(Node).] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_ObjRequiredLevel( Abc_Obj_t * pObj ) { Abc_Ntk_t * pNtk = pObj->pNtk; assert( pNtk->vLevelsR ); return pNtk->LevelMax + 1 - Abc_ObjReverseLevel(pObj); } /**Function************************************************************* Synopsis [Returns the reverse level of the node.] Description [The reverse level is the level of the node in reverse topological order, starting from the COs.] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_ObjReverseLevel( Abc_Obj_t * pObj ) { Abc_Ntk_t * pNtk = pObj->pNtk; assert( pNtk->vLevelsR ); Vec_IntFillExtra( pNtk->vLevelsR, pObj->Id + 1, 0 ); return Vec_IntEntry(pNtk->vLevelsR, pObj->Id); } /**Function************************************************************* Synopsis [Sets the reverse level of the node.] Description [The reverse level is the level of the node in reverse topological order, starting from the COs.] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_ObjSetReverseLevel( Abc_Obj_t * pObj, int LevelR ) { Abc_Ntk_t * pNtk = pObj->pNtk; assert( pNtk->vLevelsR ); Vec_IntFillExtra( pNtk->vLevelsR, pObj->Id + 1, 0 ); Vec_IntWriteEntry( pNtk->vLevelsR, pObj->Id, LevelR ); } /**Function************************************************************* Synopsis [Prepares for the computation of required levels.] Description [This procedure should be called before the required times are used. It starts internal data structures, which records the level from the COs of the network nodes in reverse topologogical order.] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkStartReverseLevels( Abc_Ntk_t * pNtk, int nMaxLevelIncrease ) { Vec_Ptr_t * vNodes; Abc_Obj_t * pObj; int i; // remember the maximum number of direct levels pNtk->LevelMax = Abc_NtkLevel(pNtk) + nMaxLevelIncrease; // start the reverse levels pNtk->vLevelsR = Vec_IntAlloc( 0 ); Vec_IntFill( pNtk->vLevelsR, 1 + Abc_NtkObjNumMax(pNtk), 0 ); // compute levels in reverse topological order vNodes = Abc_NtkDfsReverse( pNtk ); Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i ) Abc_ObjSetReverseLevel( pObj, Abc_ObjReverseLevelNew(pObj) ); Vec_PtrFree( vNodes ); } /**Function************************************************************* Synopsis [Cleans the data structures used to compute required levels.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkStopReverseLevels( Abc_Ntk_t * pNtk ) { assert( pNtk->vLevelsR ); Vec_IntFree( pNtk->vLevelsR ); pNtk->vLevelsR = NULL; pNtk->LevelMax = 0; } /**Function************************************************************* Synopsis [Incrementally updates level of the nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkUpdateLevel( Abc_Obj_t * pObjNew, Vec_Vec_t * vLevels ) { Abc_Obj_t * pFanout, * pTemp; int LevelOld, Lev, k, m; // int Counter = 0, CounterMax = 0; // check if level has changed LevelOld = Abc_ObjLevel(pObjNew); if ( LevelOld == Abc_ObjLevelNew(pObjNew) ) return; // start the data structure for level update // we cannot fail to visit a node when using this structure because the // nodes are stored by their _old_ levels, which are assumed to be correct Vec_VecClear( vLevels ); Vec_VecPush( vLevels, LevelOld, pObjNew ); pObjNew->fMarkA = 1; // recursively update level Vec_VecForEachEntryStart( Abc_Obj_t *, vLevels, pTemp, Lev, k, LevelOld ) { // Counter--; pTemp->fMarkA = 0; assert( Abc_ObjLevel(pTemp) == Lev ); Abc_ObjSetLevel( pTemp, Abc_ObjLevelNew(pTemp) ); // if the level did not change, no need to check the fanout levels if ( Abc_ObjLevel(pTemp) == Lev ) continue; // schedule fanout for level update Abc_ObjForEachFanout( pTemp, pFanout, m ) { if ( !Abc_ObjIsCo(pFanout) && !pFanout->fMarkA ) { assert( Abc_ObjLevel(pFanout) >= Lev ); Vec_VecPush( vLevels, Abc_ObjLevel(pFanout), pFanout ); // Counter++; // CounterMax = Abc_MaxFloat( CounterMax, Counter ); pFanout->fMarkA = 1; } } } // printf( "%d ", CounterMax ); } /**Function************************************************************* Synopsis [Incrementally updates level of the nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkUpdateReverseLevel( Abc_Obj_t * pObjNew, Vec_Vec_t * vLevels ) { Abc_Obj_t * pFanin, * pTemp; int LevelOld, LevFanin, Lev, k, m; // check if level has changed LevelOld = Abc_ObjReverseLevel(pObjNew); if ( LevelOld == Abc_ObjReverseLevelNew(pObjNew) ) return; // start the data structure for level update // we cannot fail to visit a node when using this structure because the // nodes are stored by their _old_ levels, which are assumed to be correct Vec_VecClear( vLevels ); Vec_VecPush( vLevels, LevelOld, pObjNew ); pObjNew->fMarkA = 1; // recursively update level Vec_VecForEachEntryStart( Abc_Obj_t *, vLevels, pTemp, Lev, k, LevelOld ) { pTemp->fMarkA = 0; LevelOld = Abc_ObjReverseLevel(pTemp); assert( LevelOld == Lev ); Abc_ObjSetReverseLevel( pTemp, Abc_ObjReverseLevelNew(pTemp) ); // if the level did not change, no need to check the fanout levels if ( Abc_ObjReverseLevel(pTemp) == Lev ) continue; // schedule fanins for level update Abc_ObjForEachFanin( pTemp, pFanin, m ) { if ( !Abc_ObjIsCi(pFanin) && !pFanin->fMarkA ) { LevFanin = Abc_ObjReverseLevel( pFanin ); assert( LevFanin >= Lev ); Vec_VecPush( vLevels, LevFanin, pFanin ); pFanin->fMarkA = 1; } } } } /**Function************************************************************* Synopsis [Replaces the node and incrementally updates levels.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkUpdate( Abc_Obj_t * pObj, Abc_Obj_t * pObjNew, Vec_Vec_t * vLevels ) { // replace the old node by the new node pObjNew->Level = pObj->Level; Abc_ObjReplace( pObj, pObjNew ); // update the level of the node Abc_NtkUpdateLevel( pObjNew, vLevels ); Abc_ObjSetReverseLevel( pObjNew, 0 ); Abc_NtkUpdateReverseLevel( pObjNew, vLevels ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END