/**CFile**************************************************************** FileName [abcMfs.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Hierarchical word-level netlist.] Synopsis [Optimization with don't-cares.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - July 21, 2015.] Revision [$Id: abcMfs.c,v 1.00 2014/11/29 00:00:00 alanmi Exp $] ***********************************************************************/ #include "acb.h" #include "bool/kit/kit.h" #include "sat/bsat/satSolver.h" #include "sat/cnf/cnf.h" #include "misc/util/utilTruth.h" #include "acbPar.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// static inline int Acb_ObjIsDelayCriticalFanin( Acb_Ntk_t * p, int i, int f ) { return !Acb_ObjIsCi(p, f) && Acb_ObjLevelR(p, i) + Acb_ObjLevelD(p, f) == p->LevelMax; } static inline int Acb_ObjIsAreaCritical( Acb_Ntk_t * p, int f ) { return !Acb_ObjIsCi(p, f) && Acb_ObjFanoutNum(p, f) == 1; } static inline int Acb_ObjIsCritical( Acb_Ntk_t * p, int i, int f, int fDel ) { return fDel ? Acb_ObjIsDelayCriticalFanin(p, i, f) : Acb_ObjIsAreaCritical(p, f); } //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Derive CNF for nodes in the window.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Acb_DeriveCnfFromTruth( word Truth, int nVars, Vec_Int_t * vCover, Vec_Str_t * vCnf ) { Vec_StrClear( vCnf ); if ( Truth == 0 || ~Truth == 0 ) { // assert( nVars == 0 ); Vec_StrPush( vCnf, (char)(Truth == 0) ); Vec_StrPush( vCnf, (char)-1 ); return 1; } else { int i, k, c, RetValue, Literal, Cube, nCubes = 0; assert( nVars > 0 ); for ( c = 0; c < 2; c ++ ) { Truth = c ? ~Truth : Truth; RetValue = Kit_TruthIsop( (unsigned *)&Truth, nVars, vCover, 0 ); assert( RetValue == 0 ); nCubes += Vec_IntSize( vCover ); Vec_IntForEachEntry( vCover, Cube, i ) { for ( k = 0; k < nVars; k++ ) { Literal = 3 & (Cube >> (k << 1)); if ( Literal == 1 ) // '0' -> pos lit Vec_StrPush( vCnf, (char)Abc_Var2Lit(k, 0) ); else if ( Literal == 2 ) // '1' -> neg lit Vec_StrPush( vCnf, (char)Abc_Var2Lit(k, 1) ); else if ( Literal != 0 ) assert( 0 ); } Vec_StrPush( vCnf, (char)Abc_Var2Lit(nVars, c) ); Vec_StrPush( vCnf, (char)-1 ); } } return nCubes; } } void Acb_DeriveCnfForWindowOne( Acb_Ntk_t * p, int iObj ) { Vec_Wec_t * vCnfs = &p->vCnfs; Vec_Str_t * vCnfBase = Acb_ObjCnfs( p, iObj ); assert( Vec_StrSize(vCnfBase) == 0 ); // unassigned assert( Vec_WecSize(vCnfs) == Acb_NtkObjNumMax(p) ); Acb_DeriveCnfFromTruth( Acb_ObjTruth(p, iObj), Acb_ObjFaninNum(p, iObj), &p->vCover, &p->vCnf ); Vec_StrGrow( vCnfBase, Vec_StrSize(&p->vCnf) ); memcpy( Vec_StrArray(vCnfBase), Vec_StrArray(&p->vCnf), (size_t)Vec_StrSize(&p->vCnf) ); vCnfBase->nSize = Vec_StrSize(&p->vCnf); } Vec_Wec_t * Acb_DeriveCnfForWindow( Acb_Ntk_t * p, Vec_Int_t * vWin, int PivotVar ) { Vec_Wec_t * vCnfs = &p->vCnfs; Vec_Str_t * vCnfBase; int i, iObj; assert( Vec_WecSize(vCnfs) == Acb_NtkObjNumMax(p) ); Vec_IntForEachEntry( vWin, iObj, i ) { if ( Abc_LitIsCompl(iObj) && i < PivotVar ) continue; iObj = Abc_Lit2Var(iObj); vCnfBase = Acb_ObjCnfs( p, iObj ); if ( Vec_StrSize(vCnfBase) > 0 ) continue; Acb_DeriveCnfForWindowOne( p, iObj ); } return vCnfs; } /**Function************************************************************* Synopsis [Constructs CNF for the window.] Description [The window for the pivot node is represented as a DFS ordered array of objects (vWinObjs) whose indexes are used as SAT variable IDs (stored in p->vCopies). PivotVar is the index of the pivot node in array vWinObjs. The nodes before (after) PivotVar are TFI (TFO) nodes. The leaf (root) nodes are labeled with Abc_LitIsCompl(). If fQbf is 1, returns the instance meant for QBF solving. It uses the last variable (LastVar) as the placeholder for the second copy of the pivot node.] SideEffects [] SeeAlso [] ***********************************************************************/ void Acb_TranslateCnf( Vec_Int_t * vClas, Vec_Int_t * vLits, Vec_Str_t * vCnf, Vec_Int_t * vSatVars, int iPivotVar ) { signed char Entry; int i, Lit; Vec_StrForEachEntry( vCnf, Entry, i ) { if ( (int)Entry == -1 ) { Vec_IntPush( vClas, Vec_IntSize(vLits) ); continue; } Lit = Abc_Lit2LitV( Vec_IntArray(vSatVars), (int)Entry ); Lit = Abc_LitNotCond( Lit, Abc_Lit2Var(Lit) == iPivotVar ); Vec_IntPush( vLits, Lit ); } } int Acb_NtkCountRoots( Vec_Int_t * vWinObjs, int PivotVar ) { int i, iObjLit, nRoots = 0; Vec_IntForEachEntryStart( vWinObjs, iObjLit, i, PivotVar + 1 ) nRoots += Abc_LitIsCompl(iObjLit); return nRoots; } void Acb_DeriveCnfForNode( Acb_Ntk_t * p, int iObj, sat_solver * pSat, int OutVar ) { Vec_Wec_t * vCnfs = &p->vCnfs; Vec_Int_t * vFaninVars = &p->vCover; Vec_Int_t * vClas = Vec_IntAlloc( 100 ); Vec_Int_t * vLits = Vec_IntAlloc( 100 ); int k, iFanin, * pFanins, Prev, This; // collect SAT variables Vec_IntClear( vFaninVars ); Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k ) { assert( Acb_ObjFunc(p, iFanin) >= 0 ); Vec_IntPush( vFaninVars, Acb_ObjFunc(p, iFanin) ); } Vec_IntPush( vFaninVars, OutVar ); // derive CNF for the node Acb_TranslateCnf( vClas, vLits, (Vec_Str_t *)Vec_WecEntry(vCnfs, iObj), vFaninVars, -1 ); // add clauses Prev = 0; Vec_IntForEachEntry( vClas, This, k ) { if ( !sat_solver_addclause( pSat, Vec_IntArray(vLits) + Prev, Vec_IntArray(vLits) + This ) ) printf( "Error: SAT solver became UNSAT at a wrong place (while adding new CNF).\n" ); Prev = This; } Vec_IntFree( vClas ); Vec_IntFree( vLits ); } Cnf_Dat_t * Acb_NtkWindow2Cnf( Acb_Ntk_t * p, Vec_Int_t * vWinObjs, int Pivot ) { Cnf_Dat_t * pCnf; Vec_Int_t * vFaninVars = Vec_IntAlloc( 8 ); int PivotVar = Vec_IntFind(vWinObjs, Abc_Var2Lit(Pivot, 0)); int nRoots = Acb_NtkCountRoots(vWinObjs, PivotVar); int TfoStart = PivotVar + 1; int nTfoSize = Vec_IntSize(vWinObjs) - TfoStart; int nVarsAll = Vec_IntSize(vWinObjs) + nTfoSize + nRoots; int i, k, iObj, iObjLit, iFanin, * pFanins, Entry; Vec_Wec_t * vCnfs = Acb_DeriveCnfForWindow( p, vWinObjs, PivotVar ); Vec_Int_t * vClas = Vec_IntAlloc( 100 ); Vec_Int_t * vLits = Vec_IntAlloc( 1000 ); // mark new SAT variables Vec_IntForEachEntry( vWinObjs, iObj, i ) Acb_ObjSetFunc( p, Abc_Lit2Var(iObj), i ); // add clauses for all nodes Vec_IntPush( vClas, Vec_IntSize(vLits) ); Vec_IntForEachEntry( vWinObjs, iObjLit, i ) { if ( Abc_LitIsCompl(iObjLit) && i < PivotVar ) continue; iObj = Abc_Lit2Var(iObjLit); assert( !Acb_ObjIsCio(p, iObj) ); // collect SAT variables Vec_IntClear( vFaninVars ); Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k ) Vec_IntPush( vFaninVars, Acb_ObjFunc(p, iFanin) ); Vec_IntPush( vFaninVars, Acb_ObjFunc(p, iObj) ); // derive CNF for the node Acb_TranslateCnf( vClas, vLits, (Vec_Str_t *)Vec_WecEntry(vCnfs, iObj), vFaninVars, -1 ); } // add second clauses for the TFO Vec_IntForEachEntryStart( vWinObjs, iObjLit, i, TfoStart ) { iObj = Abc_Lit2Var(iObjLit); assert( !Acb_ObjIsCio(p, iObj) ); // collect SAT variables Vec_IntClear( vFaninVars ); Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k ) Vec_IntPush( vFaninVars, Acb_ObjFunc(p, iFanin) + (Acb_ObjFunc(p, iFanin) > PivotVar) * nTfoSize ); Vec_IntPush( vFaninVars, Acb_ObjFunc(p, iObj) + nTfoSize ); // derive CNF for the node Acb_TranslateCnf( vClas, vLits, (Vec_Str_t *)Vec_WecEntry(vCnfs, iObj), vFaninVars, PivotVar ); } if ( nRoots > 0 ) { // create XOR clauses for the roots int nVars = Vec_IntSize(vWinObjs) + nTfoSize; Vec_IntClear( vFaninVars ); Vec_IntForEachEntryStart( vWinObjs, iObjLit, i, TfoStart ) { if ( !Abc_LitIsCompl(iObjLit) ) continue; iObj = Abc_Lit2Var(iObjLit); // add clauses Vec_IntPushThree( vLits, Abc_Var2Lit(Acb_ObjFunc(p, iObj), 1), Abc_Var2Lit(Acb_ObjFunc(p, iObj) + nTfoSize, 0), Abc_Var2Lit(nVars, 0) ); Vec_IntPush( vClas, Vec_IntSize(vLits) ); Vec_IntPushThree( vLits, Abc_Var2Lit(Acb_ObjFunc(p, iObj), 0), Abc_Var2Lit(Acb_ObjFunc(p, iObj) + nTfoSize, 1), Abc_Var2Lit(nVars, 0) ); Vec_IntPush( vClas, Vec_IntSize(vLits) ); Vec_IntPushThree( vLits, Abc_Var2Lit(Acb_ObjFunc(p, iObj), 0), Abc_Var2Lit(Acb_ObjFunc(p, iObj) + nTfoSize, 0), Abc_Var2Lit(nVars, 1) ); Vec_IntPush( vClas, Vec_IntSize(vLits) ); Vec_IntPushThree( vLits, Abc_Var2Lit(Acb_ObjFunc(p, iObj), 1), Abc_Var2Lit(Acb_ObjFunc(p, iObj) + nTfoSize, 1), Abc_Var2Lit(nVars, 1) ); Vec_IntPush( vClas, Vec_IntSize(vLits) ); Vec_IntPush( vFaninVars, Abc_Var2Lit(nVars++, 0) ); } Vec_IntAppend( vLits, vFaninVars ); Vec_IntPush( vClas, Vec_IntSize(vLits) ); assert( nRoots == Vec_IntSize(vFaninVars) ); assert( nVars == nVarsAll ); } Vec_IntFree( vFaninVars ); // create CNF structure pCnf = ABC_CALLOC( Cnf_Dat_t, 1 ); pCnf->nVars = nVarsAll; pCnf->nClauses = Vec_IntSize(vClas)-1; pCnf->nLiterals = Vec_IntSize(vLits); pCnf->pClauses = ABC_ALLOC( int *, Vec_IntSize(vClas) ); pCnf->pClauses[0] = Vec_IntReleaseArray(vLits); Vec_IntForEachEntry( vClas, Entry, i ) pCnf->pClauses[i] = pCnf->pClauses[0] + Entry; // cleanup Vec_IntFree( vClas ); Vec_IntFree( vLits ); //Cnf_DataPrint( pCnf, 1 ); return pCnf; } void Acb_NtkWindowUndo( Acb_Ntk_t * p, Vec_Int_t * vWin ) { int i, iObj; Vec_IntForEachEntry( vWin, iObj, i ) { assert( Vec_IntEntry(&p->vObjFunc, Abc_Lit2Var(iObj)) != -1 ); Vec_IntWriteEntry( &p->vObjFunc, Abc_Lit2Var(iObj), -1 ); } } /**Function************************************************************* Synopsis [Creates SAT solver containing several copies of the window.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Acb_NtkWindow2Solver( sat_solver * pSat, Cnf_Dat_t * pCnf, Vec_Int_t * vFlip, int PivotVar, int nDivs, int nTimes ) { int n, i, RetValue, Test = pCnf->pClauses[0][0]; int nGroups = nTimes <= 2 ? nTimes-1 : 2; int nRounds = nTimes <= 2 ? nTimes-1 : nTimes; assert( sat_solver_nvars(pSat) == 0 ); sat_solver_setnvars( pSat, nTimes * pCnf->nVars + nGroups * nDivs + 2 ); assert( nTimes == 1 || nTimes == 2 || nTimes == 6 ); for ( n = 0; n < nTimes; n++ ) { if ( n & 1 ) Cnf_DataLiftAndFlipLits( pCnf, -pCnf->nVars, vFlip ); for ( i = 0; i < pCnf->nClauses; i++ ) if ( !sat_solver_addclause( pSat, pCnf->pClauses[i], pCnf->pClauses[i+1] ) ) printf( "Error: SAT solver became UNSAT at a wrong place.\n" ); if ( n & 1 ) Cnf_DataLiftAndFlipLits( pCnf, pCnf->nVars, vFlip ); if ( n < nTimes - 1 ) Cnf_DataLift( pCnf, pCnf->nVars ); else if ( n ) // if ( n == nTimes - 1 ) Cnf_DataLift( pCnf, -(nTimes - 1) * pCnf->nVars ); } assert( Test == pCnf->pClauses[0][0] ); // add conditional buffers for ( n = 0; n < nRounds; n++ ) { int BaseA = n * pCnf->nVars; int BaseB = ((n + 1) % nTimes) * pCnf->nVars; int BaseC = nTimes * pCnf->nVars + (n & 1) * nDivs; for ( i = 0; i < nDivs; i++ ) sat_solver_add_buffer_enable( pSat, BaseA + i, BaseB + i, BaseC + i, 0 ); } // finalize RetValue = sat_solver_simplify( pSat ); if ( !RetValue ) printf( "Error: SAT solver became UNSAT at a wrong place.\n" ); return 1; } /**Function************************************************************* Synopsis [Computes function of the node] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ word Acb_ComputeFunction( sat_solver * pSat, int PivotVar, int FreeVar, Vec_Int_t * vDivVars, int fCompl ) { int fExpand = 0; word uCube, uTruth = 0; Vec_Int_t * vTempLits = Vec_IntAlloc( 100 ); int status, i, iVar, iLit, nFinal, * pFinal, pLits[2]; assert( FreeVar < sat_solver_nvars(pSat) ); // if ( fCompl ) // pLits[0] = Abc_Var2Lit( sat_solver_nvars(pSat)-2, 0 ); // F = 1 // else pLits[0] = Abc_Var2Lit( PivotVar, fCompl ); // F = 1 pLits[1] = Abc_Var2Lit( FreeVar, 0 ); // iNewLit while ( 1 ) { // find onset minterm status = sat_solver_solve( pSat, pLits, pLits + 2, 0, 0, 0, 0 ); if ( status == l_False ) { Vec_IntFree( vTempLits ); return uTruth; } assert( status == l_True ); if ( fExpand ) { // collect divisor literals Vec_IntFill( vTempLits, 1, Abc_LitNot(pLits[0]) ); // F = 0 Vec_IntForEachEntry( vDivVars, iVar, i ) Vec_IntPush( vTempLits, sat_solver_var_literal(pSat, iVar) ); // check against offset status = sat_solver_solve( pSat, Vec_IntArray(vTempLits), Vec_IntLimit(vTempLits), 0, 0, 0, 0 ); if ( status != l_False ) printf( "Failed internal check during function comptutation.\n" ); assert( status == l_False ); // compute cube and add clause nFinal = sat_solver_final( pSat, &pFinal ); Vec_IntFill( vTempLits, 1, Abc_LitNot(pLits[1]) ); // NOT(iNewLit) for ( i = 0; i < nFinal; i++ ) if ( pFinal[i] != pLits[0] ) Vec_IntPush( vTempLits, pFinal[i] ); } else { // collect divisor literals Vec_IntFill( vTempLits, 1, Abc_LitNot(pLits[1]) );// NOT(iNewLit) Vec_IntForEachEntry( vDivVars, iVar, i ) Vec_IntPush( vTempLits, Abc_LitNot(sat_solver_var_literal(pSat, iVar)) ); } uCube = ~(word)0; Vec_IntForEachEntryStart( vTempLits, iLit, i, 1 ) { iVar = Vec_IntFind( vDivVars, Abc_Lit2Var(iLit) ); assert( iVar >= 0 ); uCube &= Abc_LitIsCompl(iLit) ? s_Truths6[iVar] : ~s_Truths6[iVar]; } uTruth |= uCube; status = sat_solver_addclause( pSat, Vec_IntArray(vTempLits), Vec_IntLimit(vTempLits) ); if ( status == 0 ) { Vec_IntFree( vTempLits ); return uTruth; } } Vec_IntFree( vTempLits ); assert( 0 ); return ~(word)0; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Acb_NtkPrintVec( Acb_Ntk_t * p, Vec_Int_t * vVec, char * pName ) { int i; printf( "%s: ", pName ); for ( i = 0; i < vVec->nSize; i++ ) printf( "%d ", vVec->pArray[i] ); printf( "\n" ); } void Acb_NtkPrintVec2( Acb_Ntk_t * p, Vec_Int_t * vVec, char * pName ) { int i; printf( "%s: \n", pName ); for ( i = 0; i < vVec->nSize; i++ ) Acb_NtkPrintNode( p, vVec->pArray[i] ); printf( "\n" ); } void Acb_NtkPrintVecWin( Acb_Ntk_t * p, Vec_Int_t * vVec, char * pName ) { int i; printf( "%s: \n", pName ); for ( i = 0; i < vVec->nSize; i++ ) Acb_NtkPrintNode( p, Abc_Lit2Var(vVec->pArray[i]) ); printf( "\n" ); } /**Function************************************************************* Synopsis [Collects divisors in a non-topo order.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Acb_NtkDivisors_rec( Acb_Ntk_t * p, int iObj, int nTfiLevMin, Vec_Int_t * vDivs ) { int k, iFanin, * pFanins; // if ( !Acb_ObjIsCi(p, iObj) && Acb_ObjLevelD(p, iObj) < nTfiLevMin ) if ( !Acb_ObjIsCi(p, iObj) && nTfiLevMin < 0 ) return; if ( Acb_ObjSetTravIdCur(p, iObj) ) return; Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k ) Acb_NtkDivisors_rec( p, iFanin, nTfiLevMin-1, vDivs ); Vec_IntPush( vDivs, iObj ); } Vec_Int_t * Acb_NtkDivisors( Acb_Ntk_t * p, int Pivot, int nTfiLevMin, int fDelay ) { int k, iFanin, * pFanins; Vec_Int_t * vDivs = Vec_IntAlloc( 100 ); Acb_NtkIncTravId( p ); // if ( fDelay ) // delay-oriented if ( 0 ) // delay-oriented { // start from critical fanins assert( Acb_ObjLevelD( p, Pivot ) > 1 ); Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k ) if ( Acb_ObjIsDelayCriticalFanin( p, Pivot, iFanin ) ) Acb_NtkDivisors_rec( p, iFanin, nTfiLevMin, vDivs ); // add non-critical fanins Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k ) if ( !Acb_ObjIsDelayCriticalFanin( p, Pivot, iFanin ) ) if ( !Acb_ObjSetTravIdCur(p, iFanin) ) Vec_IntPush( vDivs, iFanin ); } else { Acb_NtkDivisors_rec( p, Pivot, nTfiLevMin, vDivs ); assert( Vec_IntEntryLast(vDivs) == Pivot ); Vec_IntPop( vDivs ); // add remaining fanins of the node Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k ) if ( !Acb_ObjSetTravIdCur(p, iFanin) ) Vec_IntPush( vDivs, iFanin ); /* // start from critical fanins assert( Acb_ObjLevelD( p, Pivot ) > 1 ); Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k ) if ( Acb_ObjIsAreaCritical( p, iFanin ) ) Acb_NtkDivisors_rec( p, iFanin, nTfiLevMin, vDivs ); // add non-critical fanins Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k ) if ( !Acb_ObjIsAreaCritical( p, iFanin ) ) if ( !Acb_ObjSetTravIdCur(p, iFanin) ) Vec_IntPush( vDivs, iFanin ); */ } return vDivs; } /**Function************************************************************* Synopsis [Marks TFO of divisors.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Acb_ObjMarkTfo_rec( Acb_Ntk_t * p, int iObj, int nTfoLevMax, int nFanMax, Vec_Int_t * vMarked ) { int iFanout, i; if ( Acb_ObjSetTravIdCur(p, iObj) ) return; Vec_IntPush( vMarked, iObj ); if ( Acb_ObjLevelD(p, iObj) > nTfoLevMax || Acb_ObjFanoutNum(p, iObj) > nFanMax ) return; Acb_ObjForEachFanout( p, iObj, iFanout, i ) Acb_ObjMarkTfo_rec( p, iFanout, nTfoLevMax, nFanMax, vMarked ); } Vec_Int_t * Acb_ObjMarkTfo( Acb_Ntk_t * p, Vec_Int_t * vDivs, int Pivot, int nTfoLevMax, int nFanMax ) { Vec_Int_t * vMarked = Vec_IntAlloc( 1000 ); int i, iObj; Acb_NtkIncTravId( p ); Acb_ObjSetTravIdCur( p, Pivot ); Vec_IntPush( vMarked, Pivot ); Vec_IntForEachEntry( vDivs, iObj, i ) Acb_ObjMarkTfo_rec( p, iObj, nTfoLevMax, nFanMax, vMarked ); return vMarked; } void Acb_ObjMarkTfo2( Acb_Ntk_t * p, Vec_Int_t * vMarked ) { int i, Node; Acb_NtkIncTravId( p ); Vec_IntForEachEntry( vMarked, Node, i ) Acb_ObjSetTravIdCur( p, Node ); } /**Function************************************************************* Synopsis [Labels TFO nodes with {none, root, inner} based on their type.] Description [Assuming TFO of TFI is marked with the current trav ID.] SideEffects [] SeeAlso [] ***********************************************************************/ int Acb_ObjLabelTfo_rec( Acb_Ntk_t * p, int iObj, int nTfoLevMax, int nFanMax, int fFirst ) { int iFanout, i, Diff, fHasNone = 0; if ( (Diff = Acb_ObjTravIdDiff(p, iObj)) <= 2 ) return Diff; Acb_ObjSetTravIdDiff( p, iObj, 2 ); if ( Acb_ObjIsCo(p, iObj) || Acb_ObjLevelD(p, iObj) > nTfoLevMax ) return 2; if ( Acb_ObjLevelD(p, iObj) == nTfoLevMax || Acb_ObjFanoutNum(p, iObj) > nFanMax ) { if ( Diff == 3 ) // belongs to TFO of TFI Acb_ObjSetTravIdDiff( p, iObj, 1 ); // root return Acb_ObjTravIdDiff(p, iObj); } Acb_ObjForEachFanout( p, iObj, iFanout, i ) if ( !fFirst || Acb_ObjIsDelayCriticalFanin(p, iFanout, iObj) ) fHasNone |= 2 == Acb_ObjLabelTfo_rec( p, iFanout, nTfoLevMax, nFanMax, 0 ); if ( fHasNone && Diff == 3 ) // belongs to TFO of TFI Acb_ObjSetTravIdDiff( p, iObj, 1 ); // root else if ( !fHasNone ) Acb_ObjSetTravIdDiff( p, iObj, 0 ); // inner return Acb_ObjTravIdDiff(p, iObj); } int Acb_ObjLabelTfo( Acb_Ntk_t * p, int Root, int nTfoLevMax, int nFanMax, int fDelay ) { Acb_NtkIncTravId( p ); // none (2) marked (3) unmarked (4) Acb_NtkIncTravId( p ); // root (1) Acb_NtkIncTravId( p ); // inner (0) assert( Acb_ObjTravIdDiff(p, Root) > 2 ); return Acb_ObjLabelTfo_rec( p, Root, nTfoLevMax, nFanMax, fDelay ); } /**Function************************************************************* Synopsis [Collects labeled TFO.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Acb_ObjDeriveTfo_rec( Acb_Ntk_t * p, int iObj, Vec_Int_t * vTfo, Vec_Int_t * vRoots, int fFirst ) { int iFanout, i, Diff = Acb_ObjTravIdDiff(p, iObj); if ( Acb_ObjSetTravIdCur(p, iObj) ) return; if ( Diff == 2 ) // root { Vec_IntPush( vRoots, iObj ); Vec_IntPush( vTfo, iObj ); return; } assert( Diff == 1 ); Acb_ObjForEachFanout( p, iObj, iFanout, i ) if ( !fFirst || Acb_ObjIsDelayCriticalFanin(p, iFanout, iObj) ) Acb_ObjDeriveTfo_rec( p, iFanout, vTfo, vRoots, 0 ); Vec_IntPush( vTfo, iObj ); } void Acb_ObjDeriveTfo( Acb_Ntk_t * p, int Pivot, int nTfoLevMax, int nFanMax, Vec_Int_t ** pvTfo, Vec_Int_t ** pvRoots, int fDelay ) { int Res = Acb_ObjLabelTfo( p, Pivot, nTfoLevMax, nFanMax, fDelay ); Vec_Int_t * vTfo = *pvTfo = Vec_IntAlloc( 10 ); Vec_Int_t * vRoots = *pvRoots = Vec_IntAlloc( 10 ); if ( Res ) // none or root return; Acb_NtkIncTravId( p ); // root (2) inner (1) visited (0) Acb_ObjDeriveTfo_rec( p, Pivot, vTfo, vRoots, fDelay ); assert( Vec_IntEntryLast(vTfo) == Pivot ); Vec_IntPop( vTfo ); assert( Vec_IntEntryLast(vRoots) != Pivot ); Vec_IntReverseOrder( vTfo ); Vec_IntReverseOrder( vRoots ); } /**Function************************************************************* Synopsis [Collect side-inputs of the TFO, except the node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Acb_NtkCollectTfoSideInputs( Acb_Ntk_t * p, int Pivot, Vec_Int_t * vTfo ) { Vec_Int_t * vSide = Vec_IntAlloc( 100 ); int i, k, Node, iFanin, * pFanins; Acb_NtkIncTravId( p ); Vec_IntPush( vTfo, Pivot ); Vec_IntForEachEntry( vTfo, Node, i ) Acb_ObjSetTravIdCur( p, Node ); Vec_IntForEachEntry( vTfo, Node, i ) Acb_ObjForEachFaninFast( p, Node, pFanins, iFanin, k ) if ( !Acb_ObjSetTravIdCur(p, iFanin) && iFanin != Pivot ) Vec_IntPush( vSide, iFanin ); Vec_IntPop( vTfo ); return vSide; } /**Function************************************************************* Synopsis [From side inputs, collect marked nodes and their unmarked fanins.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Acb_NtkCollectNewTfi1_rec( Acb_Ntk_t * p, int iObj, Vec_Int_t * vTfiNew ) { int i, iFanin, * pFanins; if ( !Acb_ObjIsTravIdPrev(p, iObj) ) return; if ( Acb_ObjSetTravIdCur(p, iObj) ) return; Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, i ) Acb_NtkCollectNewTfi1_rec( p, iFanin, vTfiNew ); Vec_IntPush( vTfiNew, iObj ); } void Acb_NtkCollectNewTfi2_rec( Acb_Ntk_t * p, int iObj, Vec_Int_t * vTfiNew ) { int i, iFanin, * pFanins; int fTravIdPrev = Acb_ObjIsTravIdPrev(p, iObj); if ( Acb_ObjSetTravIdCur(p, iObj) ) return; if ( fTravIdPrev && !Acb_ObjIsCi(p, iObj) ) Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, i ) Acb_NtkCollectNewTfi2_rec( p, iFanin, vTfiNew ); Vec_IntPush( vTfiNew, iObj ); } Vec_Int_t * Acb_NtkCollectNewTfi( Acb_Ntk_t * p, int Pivot, Vec_Int_t * vDivs, Vec_Int_t * vSide, int * pnDivs ) { Vec_Int_t * vTfiNew = Vec_IntAlloc( 100 ); int i, Node; Acb_NtkIncTravId( p ); //Acb_NtkPrintVec( p, vDivs, "vDivs" ); Vec_IntForEachEntry( vDivs, Node, i ) Acb_NtkCollectNewTfi1_rec( p, Node, vTfiNew ); //Acb_NtkPrintVec( p, vTfiNew, "vTfiNew" ); Acb_NtkCollectNewTfi1_rec( p, Pivot, vTfiNew ); //Acb_NtkPrintVec( p, vTfiNew, "vTfiNew" ); assert( Vec_IntEntryLast(vTfiNew) == Pivot ); Vec_IntPop( vTfiNew ); /* Vec_IntForEachEntry( vDivs, Node, i ) { Acb_ObjSetTravIdCur( p, Node ); Vec_IntPush( vTfiNew, Node ); } */ *pnDivs = Vec_IntSize(vTfiNew); Vec_IntForEachEntry( vSide, Node, i ) Acb_NtkCollectNewTfi2_rec( p, Node, vTfiNew ); Vec_IntPush( vTfiNew, Pivot ); return vTfiNew; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Acb_NtkCollectWindow( Acb_Ntk_t * p, int Pivot, Vec_Int_t * vTfi, Vec_Int_t * vTfo, Vec_Int_t * vRoots ) { Vec_Int_t * vWin = Vec_IntAlloc( 100 ); int i, k, iObj, iFanin, * pFanins; assert( Vec_IntEntryLast(vTfi) == Pivot ); // mark nodes Acb_NtkIncTravId( p ); Vec_IntForEachEntry( vTfi, iObj, i ) Acb_ObjSetTravIdCur(p, iObj); // add TFI Vec_IntForEachEntry( vTfi, iObj, i ) { int fIsTfiInput = 0; Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k ) if ( !Acb_ObjIsTravIdCur(p, iFanin) ) // fanin is not in TFI fIsTfiInput = 1; // mark as leaf Vec_IntPush( vWin, Abc_Var2Lit(iObj, Acb_ObjIsCi(p, iObj) || fIsTfiInput) ); } // mark roots Acb_NtkIncTravId( p ); Vec_IntForEachEntry( vRoots, iObj, i ) Acb_ObjSetTravIdCur(p, iObj); // add TFO Vec_IntForEachEntry( vTfo, iObj, i ) { assert( !Acb_ObjIsCo(p, iObj) ); Vec_IntPush( vWin, Abc_Var2Lit(iObj, Acb_ObjIsTravIdCur(p, iObj)) ); } return vWin; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Acb_NtkWindow( Acb_Ntk_t * p, int Pivot, int nTfiLevs, int nTfoLevs, int nFanMax, int fDelay, int * pnDivs ) { int fVerbose = 0; //int nTfiLevMin = Acb_ObjLevelD(p, Pivot) - nTfiLevs; int nTfoLevMax = Acb_ObjLevelD(p, Pivot) + nTfoLevs; Vec_Int_t * vWin, * vDivs, * vMarked, * vTfo, * vRoots, * vSide, * vTfi; // collect divisors by traversing limited TFI vDivs = Acb_NtkDivisors( p, Pivot, nTfiLevs, fDelay ); if ( fVerbose ) Acb_NtkPrintVec( p, vDivs, "vDivs" ); // mark limited TFO of the divisors vMarked = Acb_ObjMarkTfo( p, vDivs, Pivot, nTfoLevMax, nFanMax ); // collect TFO and roots Acb_ObjDeriveTfo( p, Pivot, nTfoLevMax, nFanMax, &vTfo, &vRoots, 0 );//fDelay ); if ( fVerbose ) Acb_NtkPrintVec( p, vTfo, "vTfo" ); if ( fVerbose ) Acb_NtkPrintVec( p, vRoots, "vRoots" ); // collect side inputs of the TFO vSide = Acb_NtkCollectTfoSideInputs( p, Pivot, vTfo ); if ( fVerbose ) Acb_NtkPrintVec( p, vSide, "vSide" ); // mark limited TFO of the divisors //Acb_ObjMarkTfo( p, vDivs, Pivot, nTfoLevMax, nFanMax ); Acb_ObjMarkTfo2( p, vMarked ); Vec_IntFree( vMarked ); // collect new TFI vTfi = Acb_NtkCollectNewTfi( p, Pivot, vDivs, vSide, pnDivs ); if ( fVerbose ) Acb_NtkPrintVec( p, vTfi, "vTfi" ); Vec_IntFree( vSide ); Vec_IntFree( vDivs ); // collect all nodes vWin = Acb_NtkCollectWindow( p, Pivot, vTfi, vTfo, vRoots ); // cleanup Vec_IntFree( vTfi ); Vec_IntFree( vTfo ); Vec_IntFree( vRoots ); return vWin; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Vec_IntVars2Vars( Vec_Int_t * p, int Shift ) { int i; for ( i = 0; i < p->nSize; i++ ) p->pArray[i] += Shift; } static inline void Vec_IntVars2Lits( Vec_Int_t * p, int Shift, int fCompl ) { int i; for ( i = 0; i < p->nSize; i++ ) p->pArray[i] = Abc_Var2Lit( p->pArray[i] + Shift, fCompl ); } static inline void Vec_IntLits2Vars( Vec_Int_t * p, int Shift ) { int i; for ( i = 0; i < p->nSize; i++ ) p->pArray[i] = Abc_Lit2Var( p->pArray[i] ) + Shift; } static inline void Vec_IntRemap( Vec_Int_t * p, Vec_Int_t * vMap ) { int i; for ( i = 0; i < p->nSize; i++ ) p->pArray[i] = Vec_IntEntry(vMap, p->pArray[i]); } static inline void Acb_WinPrint( Acb_Ntk_t * p, Vec_Int_t * vWin, int Pivot, int nDivs ) { int i, Node; printf( "Window for node %d with %d divisors:\n", Pivot, nDivs ); Vec_IntForEachEntry( vWin, Node, i ) { if ( i == nDivs ) printf( " | " ); if ( Abc_Lit2Var(Node) == Pivot ) printf( "(%d) ", Pivot ); else printf( "%s%d ", Abc_LitIsCompl(Node) ? "*":"", Abc_Lit2Var(Node) ); } printf( "\n" ); } static inline void Acb_NtkOrderByRefCount( Acb_Ntk_t * p, Vec_Int_t * vSupp ) { int i, j, best_i, nSize = Vec_IntSize(vSupp); int * pArray = Vec_IntArray(vSupp); for ( i = 0; i < nSize-1; i++ ) { best_i = i; for ( j = i+1; j < nSize; j++ ) if ( Acb_ObjFanoutNum(p, pArray[j]) > Acb_ObjFanoutNum(p, pArray[best_i]) ) best_i = j; ABC_SWAP( int, pArray[i], pArray[best_i] ); } } static inline void Acb_NtkRemapIntoSatVariables( Acb_Ntk_t * p, Vec_Int_t * vSupp ) { int k, iFanin; Vec_IntForEachEntry( vSupp, iFanin, k ) { assert( Acb_ObjFunc(p, iFanin) >= 0 ); Vec_IntWriteEntry( vSupp, k, Acb_ObjFunc(p, iFanin) ); } } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Acb_NtkFindSupp1( Acb_Ntk_t * p, int Pivot, sat_solver * pSat, int nVars, int nDivs, Vec_Int_t * vWin, Vec_Int_t * vSupp ) { int nSuppNew, status, k, iFanin, * pFanins; Vec_IntClear( vSupp ); Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k ) Vec_IntPush( vSupp, iFanin ); Acb_NtkOrderByRefCount( p, vSupp ); Acb_NtkRemapIntoSatVariables( p, vSupp ); Vec_IntVars2Lits( vSupp, 2*nVars, 0 ); status = sat_solver_solve( pSat, Vec_IntArray(vSupp), Vec_IntLimit(vSupp), 0, 0, 0, 0 ); if ( status != l_False ) printf( "Failed internal check at node %d.\n", Pivot ); assert( status == l_False ); nSuppNew = sat_solver_minimize_assumptions( pSat, Vec_IntArray(vSupp), Vec_IntSize(vSupp), 0 ); Vec_IntShrink( vSupp, nSuppNew ); Vec_IntLits2Vars( vSupp, -2*nVars ); return Vec_IntSize(vSupp) < Acb_ObjFaninNum(p, Pivot); } static int StrCount = 0; int Acb_NtkFindSupp2( Acb_Ntk_t * p, int Pivot, sat_solver * pSat, int nVars, int nDivs, Vec_Int_t * vWin, Vec_Int_t * vSupp, int nLutSize, int fDelay ) { int nSuppNew, status, k, iFanin, * pFanins, k2, iFanin2, * pFanins2; Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k ) assert( Acb_ObjFunc(p, iFanin) >= 0 && Acb_ObjFunc(p, iFanin) < nDivs ); if ( fDelay ) { // add non-timing-critical fanins int nNonCrits, k2, iFanin2 = 0, * pFanins2; assert( Acb_ObjLevelD( p, Pivot ) > 1 ); Vec_IntClear( vSupp ); Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k ) if ( !Acb_ObjIsDelayCriticalFanin( p, Pivot, iFanin ) ) Vec_IntPush( vSupp, iFanin ); nNonCrits = Vec_IntSize(vSupp); // add fanins of timing critical fanins Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k ) if ( Acb_ObjIsDelayCriticalFanin( p, Pivot, iFanin ) ) Acb_ObjForEachFaninFast( p, iFanin, pFanins2, iFanin2, k2 ) Vec_IntPushUnique( vSupp, iFanin2 ); assert( nNonCrits < Vec_IntSize(vSupp) ); // sort additional fanins by level Vec_IntSelectSortCost( Vec_IntArray(vSupp) + nNonCrits, Vec_IntSize(vSupp) - nNonCrits, &p->vLevelD ); // translate to SAT vars Vec_IntForEachEntry( vSupp, iFanin, k ) { assert( Acb_ObjFunc(p, iFanin) >= 0 ); Vec_IntWriteEntry( vSupp, k, Acb_ObjFunc(p, iFanin) ); } // solve for these fanins Vec_IntVars2Lits( vSupp, 2*nVars, 0 ); status = sat_solver_solve( pSat, Vec_IntArray(vSupp), Vec_IntLimit(vSupp), 0, 0, 0, 0 ); if ( status != l_False ) printf( "Failed internal check at node %d.\n", Pivot ); assert( status == l_False ); nSuppNew = sat_solver_minimize_assumptions( pSat, Vec_IntArray(vSupp), Vec_IntSize(vSupp), 0 ); Vec_IntShrink( vSupp, nSuppNew ); Vec_IntLits2Vars( vSupp, -2*nVars ); return Vec_IntSize(vSupp) <= nLutSize; } // iterate through different fanout free cones Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k ) { if ( !Acb_ObjIsAreaCritical(p, iFanin) ) continue; // collect fanins of the root node Vec_IntClear( vSupp ); Acb_ObjForEachFaninFast( p, Pivot, pFanins2, iFanin2, k2 ) if ( iFanin != iFanin2 ) Vec_IntPush( vSupp, iFanin2 ); // collect fanins of the selected node Acb_ObjForEachFaninFast( p, iFanin, pFanins2, iFanin2, k2 ) Vec_IntPushUnique( vSupp, iFanin2 ); // sort fanins by level Vec_IntSelectSortCost( Vec_IntArray(vSupp), Vec_IntSize(vSupp), &p->vLevelD ); //Acb_NtkOrderByRefCount( p, vSupp ); Acb_NtkRemapIntoSatVariables( p, vSupp ); // solve for these fanins Vec_IntVars2Lits( vSupp, 2*nVars, 0 ); status = sat_solver_solve( pSat, Vec_IntArray(vSupp), Vec_IntLimit(vSupp), 0, 0, 0, 0 ); if ( status != l_False ) printf( "Failed internal check at node %d.\n", Pivot ); assert( status == l_False ); nSuppNew = sat_solver_minimize_assumptions( pSat, Vec_IntArray(vSupp), Vec_IntSize(vSupp), 0 ); Vec_IntShrink( vSupp, nSuppNew ); Vec_IntLits2Vars( vSupp, -2*nVars ); if ( Vec_IntSize(vSupp) <= nLutSize ) return 1; } return 0; } int Acb_NtkFindSupp3( Acb_Ntk_t * p, int Pivot, sat_solver * pSat, int nVars, int nDivs, Vec_Int_t * vWin, Vec_Int_t * vSupp, int nLutSize, int fDelay ) { int nSuppNew, status, k, iFanin, * pFanins, k2, iFanin2, * pFanins2, k3, iFanin3, * pFanins3, NodeMark; if ( fDelay ) return 0; // iterate through pairs of fanins with one fanouts Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k ) { if ( !Acb_ObjIsAreaCritical(p, iFanin) ) continue; Acb_ObjForEachFaninFast( p, Pivot, pFanins2, iFanin2, k2 ) { if ( !Acb_ObjIsAreaCritical(p, iFanin2) || k2 == k ) continue; // iFanin and iFanin2 have 1 fanout assert( iFanin != iFanin2 ); // collect fanins of the root node Vec_IntClear( vSupp ); Acb_ObjForEachFaninFast( p, Pivot, pFanins3, iFanin3, k3 ) if ( iFanin3 != iFanin && iFanin3 != iFanin2 ) { assert( Acb_ObjFunc(p, iFanin3) >= 0 ); Vec_IntPush( vSupp, Abc_Var2Lit(Acb_ObjFunc(p, iFanin3) + 6*nVars, 0) ); } NodeMark = Vec_IntSize(vSupp); // collect fanins of the second node Acb_ObjForEachFaninFast( p, iFanin, pFanins3, iFanin3, k3 ) { assert( Acb_ObjFunc(p, iFanin3) >= 0 ); Vec_IntPush( vSupp, Abc_Var2Lit(Acb_ObjFunc(p, iFanin3) + 6*nVars + nDivs, 0) ); } // collect fanins of the third node Acb_ObjForEachFaninFast( p, iFanin2, pFanins3, iFanin3, k3 ) { assert( Acb_ObjFunc(p, iFanin3) >= 0 ); Vec_IntPushUnique( vSupp, Abc_Var2Lit(Acb_ObjFunc(p, iFanin3) + 6*nVars + nDivs, 0) ); } assert( Vec_IntCheckUniqueSmall(vSupp) ); // sort fanins by level //Vec_IntSelectSortCost( Vec_IntArray(vSupp) + NodeMark, Vec_IntSize(vSupp) - NodeMark, &p->vLevelD ); // solve for these fanins status = sat_solver_solve( pSat, Vec_IntArray(vSupp), Vec_IntLimit(vSupp), 0, 0, 0, 0 ); if ( status != l_False ) continue; assert( status == l_False ); nSuppNew = sat_solver_minimize_assumptions( pSat, Vec_IntArray(vSupp), Vec_IntSize(vSupp), 0 ); Vec_IntShrink( vSupp, nSuppNew ); Vec_IntLits2Vars( vSupp, -6*nVars ); Vec_IntSort( vSupp, 1 ); // count how many belong to H; the rest belong to G NodeMark = 0; Vec_IntForEachEntry( vSupp, iFanin3, k3 ) if ( iFanin3 >= nDivs ) Vec_IntWriteEntry( vSupp, k3, iFanin3 - nDivs ); else NodeMark++; if ( NodeMark == 0 ) { //printf( "Obj %d: Special case 1 (vars = %d)\n", Pivot, Vec_IntSize(vSupp) ); continue; } assert( NodeMark > 0 ); if ( Vec_IntSize(vSupp) - NodeMark <= nLutSize ) return NodeMark; } } // iterate through fanins with one fanout and their fanins with one fanout Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k ) { if ( !Acb_ObjIsAreaCritical(p, iFanin) ) continue; Acb_ObjForEachFaninFast( p, iFanin, pFanins2, iFanin2, k2 ) { if ( !Acb_ObjIsAreaCritical(p, iFanin2) ) continue; // iFanin and iFanin2 have 1 fanout assert( iFanin != iFanin2 ); // collect fanins of the root node Vec_IntClear( vSupp ); Acb_ObjForEachFaninFast( p, Pivot, pFanins3, iFanin3, k3 ) if ( iFanin3 != iFanin && iFanin3 != iFanin2 ) Vec_IntPush( vSupp, Abc_Var2Lit(Acb_ObjFunc(p, iFanin3) + 6*nVars, 0) ); NodeMark = Vec_IntSize(vSupp); // collect fanins of the second node Acb_ObjForEachFaninFast( p, iFanin, pFanins3, iFanin3, k3 ) if ( iFanin3 != iFanin2 ) Vec_IntPush( vSupp, Abc_Var2Lit(Acb_ObjFunc(p, iFanin3) + 6*nVars + nDivs, 0) ); // collect fanins of the third node Acb_ObjForEachFaninFast( p, iFanin2, pFanins3, iFanin3, k3 ) { assert( Acb_ObjFunc(p, iFanin3) >= 0 ); Vec_IntPushUnique( vSupp, Abc_Var2Lit(Acb_ObjFunc(p, iFanin3) + 6*nVars + nDivs, 0) ); } assert( Vec_IntCheckUniqueSmall(vSupp) ); // sort fanins by level //Vec_IntSelectSortCost( Vec_IntArray(vSupp) + NodeMark, Vec_IntSize(vSupp) - NodeMark, &p->vLevelD ); //Sat_SolverWriteDimacs( pSat, NULL, Vec_IntArray(vSupp), Vec_IntLimit(vSupp), 0 ); // solve for these fanins status = sat_solver_solve( pSat, Vec_IntArray(vSupp), Vec_IntLimit(vSupp), 0, 0, 0, 0 ); if ( status != l_False ) printf( "Failed internal check at node %d.\n", Pivot ); assert( status == l_False ); nSuppNew = sat_solver_minimize_assumptions( pSat, Vec_IntArray(vSupp), Vec_IntSize(vSupp), 0 ); Vec_IntShrink( vSupp, nSuppNew ); Vec_IntLits2Vars( vSupp, -6*nVars ); Vec_IntSort( vSupp, 1 ); // count how many belong to H; the rest belong to G NodeMark = 0; Vec_IntForEachEntry( vSupp, iFanin3, k3 ) if ( iFanin3 >= nDivs ) Vec_IntWriteEntry( vSupp, k3, iFanin3 - nDivs ); else NodeMark++; if ( NodeMark == 0 ) { //printf( "Obj %d: Special case 2 (vars = %d)\n", Pivot, Vec_IntSize(vSupp) ); continue; } assert( NodeMark > 0 ); if ( Vec_IntSize(vSupp) - NodeMark <= nLutSize ) return NodeMark; } } return 0; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ typedef struct Acb_Mfs_t_ Acb_Mfs_t; struct Acb_Mfs_t_ { Acb_Ntk_t * pNtk; // network Acb_Par_t * pPars; // parameters sat_solver * pSat[3]; // SAT solvers Vec_Int_t * vSupp; // support Vec_Int_t * vFlip; // support Vec_Int_t * vValues; // support int nNodes; // nodes int nWins; // windows int nWinsAll; // windows int nDivsAll; // windows int nChanges[8]; // changes int nOvers; // overflows int nTwoNodes; // two nodes abctime timeTotal; abctime timeCnf; abctime timeSol; abctime timeWin; abctime timeSat; abctime timeSatU; abctime timeSatS; }; Acb_Mfs_t * Acb_MfsStart( Acb_Ntk_t * pNtk, Acb_Par_t * pPars ) { Acb_Mfs_t * p = ABC_CALLOC( Acb_Mfs_t, 1 ); p->pNtk = pNtk; p->pPars = pPars; p->timeTotal = Abc_Clock(); p->pSat[0] = sat_solver_new(); p->pSat[1] = sat_solver_new(); p->pSat[2] = sat_solver_new(); p->vSupp = Vec_IntAlloc(100); p->vFlip = Vec_IntAlloc(100); p->vValues = Vec_IntAlloc(100); return p; } void Acb_MfsStop( Acb_Mfs_t * p ) { Vec_IntFree( p->vFlip ); Vec_IntFree( p->vSupp ); Vec_IntFree( p->vValues ); sat_solver_delete( p->pSat[0] ); sat_solver_delete( p->pSat[1] ); sat_solver_delete( p->pSat[2] ); ABC_FREE( p ); } static inline int Acb_NtkObjMffcEstimate( Acb_Ntk_t * pNtk, int iObj ) { int k, iFanin, * pFanins, Count = 0, iFaninCrit = -1; Acb_ObjForEachFaninFast( pNtk, iObj, pFanins, iFanin, k ) if ( Acb_ObjIsAreaCritical(pNtk, iFanin) ) iFaninCrit = iFanin, Count++; if ( Count != 1 ) return Count; Acb_ObjForEachFaninFast( pNtk, iFaninCrit, pFanins, iFanin, k ) if ( Acb_ObjIsAreaCritical(pNtk, iFanin) ) Count++; return Count; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Acb_NtkOptNodeAnalyze( Acb_Mfs_t * p, int PivotVar, int nDivs, int nValues, int * pValues, Vec_Int_t * vSupp ) { word OnSet[64] = {0}; word OffSet[64] = {0}; word Diffs[64] = {0}; int s, nScope = 1 + 2*nDivs, d, i; int f, nFrames = nValues / nScope; int start = nDivs < 64 ? 0 : nDivs - 64; int stop = nDivs < 64 ? nDivs : 64; assert( nValues % nScope == 0 ); assert( nFrames <= 16 ); for ( f = 0; f < nFrames; f++ ) { int * pStart = pValues + f * nScope; int * pOnSet = pStart + 1 + (pStart[0] ? 0 : nDivs); int * pOffSet = pStart + 1 + (pStart[0] ? nDivs : 0); printf( "%2d:", f ); for ( s = start; s < stop; s++ ) printf( "%d", pOnSet[s] ); printf( "\n" ); printf( "%2d:", f ); for ( s = start; s < stop; s++ ) printf( "%d", pOffSet[s] ); printf( "\n" ); for ( s = start; s < stop; s++ ) { if ( pOnSet[s] ) OnSet[f] |= (((word)1) << (s-start)); if ( pOffSet[s] ) OffSet[f] |= (((word)1) << (s-start)); } } d = 0; for ( f = 0; f < nFrames; f++ ) for ( s = 0; s < nFrames; s++ ) { for ( i = 0; i < d; i++ ) if ( Diffs[i] == (OnSet[f] ^ OffSet[s]) ) break; if ( i < d ) continue; if ( d < 64 ) Diffs[d++] = OnSet[f] ^ OffSet[s]; } printf( "Divisors = %d. Frames = %d. Patterns = %d.\n", nDivs, nFrames, d ); printf( " " ); for ( s = start; s < stop; s++ ) printf( "%d", s / 10 ); printf( "\n" ); printf( " " ); for ( s = start; s < stop; s++ ) printf( "%d", s % 10 ); printf( "\n" ); printf( " " ); for ( s = start; s < stop; s++ ) printf( "%c", Vec_IntFind(vSupp, s) >= 0 ? 'a' + Vec_IntFind(vSupp, s) : ' ' ); printf( "\n" ); for ( s = 0; s < d; s++ ) { printf( "%2d:", s ); for ( f = 0; f < stop; f++ ) printf( "%c", ((Diffs[s] >> f) & 1) ? '*' : ' ' ); printf( "\n" ); } } int Acb_NtkOptNode( Acb_Mfs_t * p, int Pivot ) { Cnf_Dat_t * pCnf = NULL; abctime clk; Vec_Int_t * vWin = NULL; word uTruth; int Result, PivotVar, nDivs = 0, RetValue = 0, c; assert( Acb_ObjFanoutNum(p->pNtk, Pivot) > 0 ); p->nWins++; // compute divisors and window for this target node with these taboo nodes clk = Abc_Clock(); vWin = Acb_NtkWindow( p->pNtk, Pivot, p->pPars->nTfiLevMax, p->pPars->nTfoLevMax, p->pPars->nFanoutMax, !p->pPars->fArea, &nDivs ); p->nWinsAll += Vec_IntSize(vWin); p->nDivsAll += nDivs; p->timeWin += Abc_Clock() - clk; PivotVar = Vec_IntFind( vWin, Abc_Var2Lit(Pivot, 0) ); if ( p->pPars->fVerbose ) printf( "Node %d: Window contains %d objects and %d divisors. ", Pivot, Vec_IntSize(vWin), nDivs ); // Acb_WinPrint( p->pNtk, vWin, Pivot, nDivs ); // Acb_NtkPrintVecWin( p->pNtk, vWin, "Win" ); if ( Vec_IntSize(vWin) > p->pPars->nWinNodeMax ) { p->nOvers++; if ( p->pPars->fVerbose ) printf( "Too many divisors.\n" ); goto cleanup; } // derive CNF clk = Abc_Clock(); pCnf = Acb_NtkWindow2Cnf( p->pNtk, vWin, Pivot ); assert( PivotVar == Acb_ObjFunc(p->pNtk, Pivot) ); Cnf_DataCollectFlipLits( pCnf, PivotVar, p->vFlip ); p->timeCnf += Abc_Clock() - clk; // derive SAT solver clk = Abc_Clock(); Acb_NtkWindow2Solver( p->pSat[0], pCnf, p->vFlip, PivotVar, nDivs, 1 ); p->timeSol += Abc_Clock() - clk; // check constants for ( c = 0; c < 2; c++ ) { int Lit = Abc_Var2Lit( PivotVar, c ); int status = sat_solver_solve( p->pSat[0], &Lit, &Lit + 1, 0, 0, 0, 0 ); if ( status == l_False ) { p->nChanges[0]++; if ( p->pPars->fVerbose ) printf( "Found constant %d.\n", c ); Acb_NtkUpdateNode( p->pNtk, Pivot, c ? ~(word)0 : 0, NULL ); RetValue = 1; goto cleanup; } assert( status == l_True ); } // derive SAT solver clk = Abc_Clock(); Acb_NtkWindow2Solver( p->pSat[1], pCnf, p->vFlip, PivotVar, nDivs, 2 ); p->timeSol += Abc_Clock() - clk; // try to remove useless fanins if ( p->pPars->fArea ) { int fEnableProfile = 0; if ( fEnableProfile ) { // alloc if ( p->pSat[1]->user_values.cap == 0 ) veci_new(&p->pSat[1]->user_values); else p->pSat[1]->user_values.size = 0; if ( p->pSat[1]->user_vars.cap == 0 ) veci_new(&p->pSat[1]->user_vars); else p->pSat[1]->user_vars.size = 0; // set variables veci_push(&p->pSat[1]->user_vars, PivotVar); for ( c = 0; c < nDivs; c++ ) veci_push(&p->pSat[1]->user_vars, c); for ( c = 0; c < nDivs; c++ ) veci_push(&p->pSat[1]->user_vars, c+pCnf->nVars); } // perform solving clk = Abc_Clock(); Result = Acb_NtkFindSupp1( p->pNtk, Pivot, p->pSat[1], pCnf->nVars, nDivs, vWin, p->vSupp ); p->timeSat += Abc_Clock() - clk; // undo variables p->pSat[1]->user_vars.size = 0; if ( Result ) { if ( Vec_IntSize(p->vSupp) == 0 ) p->nChanges[0]++; else p->nChanges[1]++; assert( Vec_IntSize(p->vSupp) < p->pPars->nLutSize ); if ( p->pPars->fVerbose ) printf( "Found %d inputs: ", Vec_IntSize(p->vSupp) ); uTruth = Acb_ComputeFunction( p->pSat[0], PivotVar, sat_solver_nvars(p->pSat[0])-1, p->vSupp, 0 ); if ( p->pPars->fVerbose ) Extra_PrintHex( stdout, (unsigned *)&uTruth, Vec_IntSize(p->vSupp) ); if ( p->pPars->fVerbose ) printf( "\n" ); // create support in terms of nodes Vec_IntRemap( p->vSupp, vWin ); Vec_IntLits2Vars( p->vSupp, 0 ); Acb_NtkUpdateNode( p->pNtk, Pivot, uTruth, p->vSupp ); RetValue = 1; goto cleanup; } if ( fEnableProfile ) { // analyze the resulting values Acb_NtkOptNodeAnalyze( p, PivotVar, nDivs, p->pSat[1]->user_values.size, p->pSat[1]->user_values.ptr, p->vSupp ); p->pSat[1]->user_values.size = 0; } } if ( Acb_NtkObjMffcEstimate(p->pNtk, Pivot) >= 1 ) { // check for one-node implementation clk = Abc_Clock(); Result = Acb_NtkFindSupp2( p->pNtk, Pivot, p->pSat[1], pCnf->nVars, nDivs, vWin, p->vSupp, p->pPars->nLutSize, !p->pPars->fArea ); p->timeSat += Abc_Clock() - clk; if ( Result ) { p->nChanges[2]++; assert( Vec_IntSize(p->vSupp) <= p->pPars->nLutSize ); if ( p->pPars->fVerbose ) printf( "Found %d inputs: ", Vec_IntSize(p->vSupp) ); uTruth = Acb_ComputeFunction( p->pSat[0], PivotVar, sat_solver_nvars(p->pSat[0])-1, p->vSupp, 0 ); if ( p->pPars->fVerbose ) Extra_PrintHex( stdout, (unsigned *)&uTruth, Vec_IntSize(p->vSupp) ); if ( p->pPars->fVerbose ) printf( "\n" ); // create support in terms of nodes Vec_IntRemap( p->vSupp, vWin ); Vec_IntLits2Vars( p->vSupp, 0 ); Acb_NtkUpdateNode( p->pNtk, Pivot, uTruth, p->vSupp ); RetValue = 1; goto cleanup; } } //#if 0 if ( p->pPars->fUseAshen && Acb_NtkObjMffcEstimate(p->pNtk, Pivot) >= 2 )// && Pivot != 70 ) { p->nTwoNodes++; // derive SAT solver clk = Abc_Clock(); Acb_NtkWindow2Solver( p->pSat[2], pCnf, p->vFlip, PivotVar, nDivs, 6 ); p->timeSol += Abc_Clock() - clk; // check for two-node implementation clk = Abc_Clock(); Result = Acb_NtkFindSupp3( p->pNtk, Pivot, p->pSat[2], pCnf->nVars, nDivs, vWin, p->vSupp, p->pPars->nLutSize, !p->pPars->fArea ); p->timeSat += Abc_Clock() - clk; if ( Result ) { int fVerbose = 1; int i, k, Lit, Var, Var2, status, NodeNew, fBecameUnsat = 0, fCompl = 0; assert( Result < p->pPars->nLutSize ); assert( Vec_IntSize(p->vSupp)-Result <= p->pPars->nLutSize ); if ( fVerbose || p->pPars->fVerbose ) printf( "Obj %5d: Found %d Hvars and %d Gvars: ", Pivot, Result, Vec_IntSize(p->vSupp)-Result ); // p->vSupp contains G variables (Vec_IntSize(p->vSupp)-Result) followed by H variables (Result) //sat_solver_restart( p->pSat[1] ); //Acb_NtkWindow2Solver( p->pSat[1], pCnf, p->vFlip, PivotVar, nDivs, 2 ); // constrain H-variables to be equal Vec_IntForEachEntryStart( p->vSupp, Var, i, Vec_IntSize(p->vSupp)-Result ) // H variables { assert( Var >= 0 && Var < nDivs ); assert( Var + 2*pCnf->nVars < sat_solver_nvars(p->pSat[1]) ); Lit = Abc_Var2Lit( Var + 2*pCnf->nVars, 0 ); // HVars are the same if ( !sat_solver_addclause( p->pSat[1], &Lit, &Lit + 1 ) ) { if ( fVerbose || p->pPars->fVerbose ) printf( "Error: SAT solver became UNSAT at a wrong place (place 2). " ); fBecameUnsat = 1; } } // find one satisfying assighment status = sat_solver_solve( p->pSat[1], NULL, NULL, 0, 0, 0, 0 ); assert( status == l_True ); // get assignment of the function fCompl = !sat_solver_var_value( p->pSat[1], PivotVar ); // constrain second set of G-vars to have values equal to the assignment Vec_IntForEachEntryStop( p->vSupp, Var, i, Vec_IntSize(p->vSupp)-Result ) // G variables { // check if this is a C-var Vec_IntForEachEntryStart( p->vSupp, Var2, k, Vec_IntSize(p->vSupp)-Result ) // G variables if ( Var == Var2 ) break; if ( k < Vec_IntSize(p->vSupp) ) // do not constrain a C-var { if ( fVerbose || p->pPars->fVerbose ) printf( "Found C-var in object %d. ", Pivot ); continue; } assert( Var >= 0 && Var < nDivs ); Lit = sat_solver_var_literal( p->pSat[1], Var + pCnf->nVars ); if ( !sat_solver_addclause( p->pSat[1], &Lit, &Lit + 1 ) ) { if ( fVerbose || p->pPars->fVerbose ) printf( "Error: SAT solver became UNSAT at a wrong place (place 1). " ); fBecameUnsat = 1; } } if ( fBecameUnsat ) { StrCount++; if ( fVerbose || p->pPars->fVerbose ) printf( " Quitting.\n" ); goto cleanup; } // consider only G variables p->vSupp->nSize -= Result; // truth table uTruth = Acb_ComputeFunction( p->pSat[1], PivotVar, sat_solver_nvars(p->pSat[1])-1, p->vSupp, fCompl ); if ( fVerbose || p->pPars->fVerbose ) Extra_PrintHex( stdout, (unsigned *)&uTruth, Vec_IntSize(p->vSupp) ); if ( uTruth == 0 || ~uTruth == 0 ) { if ( fVerbose || p->pPars->fVerbose ) printf( " Quitting.\n" ); goto cleanup; } p->nChanges[3]++; // create new node Vec_IntRemap( p->vSupp, vWin ); Vec_IntLits2Vars( p->vSupp, 0 ); NodeNew = Acb_NtkCreateNode( p->pNtk, uTruth, p->vSupp ); Acb_DeriveCnfForWindowOne( p->pNtk, NodeNew ); Acb_DeriveCnfForNode( p->pNtk, NodeNew, p->pSat[0], sat_solver_nvars(p->pSat[0])-2 ); p->vSupp->nSize += Result; // collect new variables Vec_IntForEachEntryStart( p->vSupp, Var, i, Vec_IntSize(p->vSupp)-Result ) Vec_IntWriteEntry( p->vSupp, i-(Vec_IntSize(p->vSupp)-Result), Var ); Vec_IntShrink( p->vSupp, Result ); Vec_IntPush( p->vSupp, sat_solver_nvars(p->pSat[0])-2 ); // truth table uTruth = Acb_ComputeFunction( p->pSat[0], PivotVar, sat_solver_nvars(p->pSat[0])-1, p->vSupp, 0 ); // create new fanins of the node if ( fVerbose || p->pPars->fVerbose ) printf( " " ); if ( fVerbose || p->pPars->fVerbose ) Extra_PrintHex( stdout, (unsigned *)&uTruth, Vec_IntSize(p->vSupp) ); if ( fVerbose || p->pPars->fVerbose ) printf( "\n" ); // create support in terms of nodes Vec_IntPop( p->vSupp ); Vec_IntRemap( p->vSupp, vWin ); Vec_IntLits2Vars( p->vSupp, 0 ); Vec_IntPush( p->vSupp, NodeNew ); Acb_NtkUpdateNode( p->pNtk, Pivot, uTruth, p->vSupp ); RetValue = 2; goto cleanup; } } //#endif if ( p->pPars->fVerbose ) printf( "\n" ); cleanup: sat_solver_restart( p->pSat[0] ); sat_solver_restart( p->pSat[1] ); sat_solver_restart( p->pSat[2] ); if ( pCnf ) { Cnf_DataFree( pCnf ); Acb_NtkWindowUndo( p->pNtk, vWin ); } Vec_IntFreeP( &vWin ); return RetValue; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Acb_NtkOpt( Acb_Ntk_t * pNtk, Acb_Par_t * pPars ) { Acb_Mfs_t * pMan = Acb_MfsStart( pNtk, pPars ); if ( pPars->fVerbose ) printf( "%s-optimization parameters: TfiLev(I) = %d TfoLev(O) = %d WinMax(W) = %d LutSize = %d\n", pMan->pPars->fArea ? "Area" : "Delay", pMan->pPars->nTfiLevMax, pMan->pPars->nTfoLevMax, pMan->pPars->nWinNodeMax, pMan->pPars->nLutSize ); Acb_NtkCreateFanout( pNtk ); // fanout data structure Acb_NtkCleanObjFuncs( pNtk ); // SAT variables Acb_NtkCleanObjCnfs( pNtk ); // CNF representations if ( pMan->pPars->fArea ) { int n = 0, iObj, RetValue, nNodes = Acb_NtkObjNumMax(pNtk); Vec_Bit_t * vVisited = Vec_BitStart( Acb_NtkObjNumMax(pNtk) ); Acb_NtkUpdateLevelD( pNtk, -1 ); // compute forward logic level for ( n = 2; n >= 0; n-- ) Acb_NtkForEachNode( pNtk, iObj ) if ( iObj < nNodes && !Vec_BitEntry(vVisited, iObj) && Acb_NtkObjMffcEstimate(pNtk, iObj) >= n ) { pMan->nNodes++; //if ( iObj != 103 ) // continue; //Acb_NtkOptNode( pMan, iObj ); while ( (RetValue = Acb_NtkOptNode(pMan, iObj)) && Acb_ObjFaninNum(pNtk, iObj) ); Vec_BitWriteEntry( vVisited, iObj, 1 ); } Vec_BitFree( vVisited ); } else { int Value; Acb_NtkUpdateTiming( pNtk, -1 ); // compute delay information while ( (Value = (int)Vec_QueTopPriority(pNtk->vQue)) > 0 ) { int iObj = Vec_QuePop(pNtk->vQue); if ( !Acb_ObjType(pNtk, iObj) ) continue; //if ( iObj != 103 ) // continue; //printf( "Trying node %4d (%4d) ", iObj, Value ); Acb_NtkOptNode( pMan, iObj ); } } if ( pPars->fVerbose ) { pMan->timeTotal = Abc_Clock() - pMan->timeTotal; printf( "Node = %d Win = %d (Ave = %d) DivAve = %d Change = %d C = %d N1 = %d N2 = %d N3 = %d Over = %d Str = %d 2Node = %d.\n", pMan->nNodes, pMan->nWins, pMan->nWinsAll/Abc_MaxInt(1, pMan->nWins), pMan->nDivsAll/Abc_MaxInt(1, pMan->nWins), pMan->nChanges[0] + pMan->nChanges[1] + pMan->nChanges[2] + pMan->nChanges[3], pMan->nChanges[0], pMan->nChanges[1], pMan->nChanges[2], pMan->nChanges[3], pMan->nOvers, StrCount, pMan->nTwoNodes ); ABC_PRTP( "Windowing ", pMan->timeWin, pMan->timeTotal ); ABC_PRTP( "CNF compute", pMan->timeCnf, pMan->timeTotal ); ABC_PRTP( "Make solver", pMan->timeSol, pMan->timeTotal ); ABC_PRTP( "SAT solving", pMan->timeSat, pMan->timeTotal ); // ABC_PRTP( " unsat ", pMan->timeSatU, pMan->timeTotal ); // ABC_PRTP( " sat ", pMan->timeSatS, pMan->timeTotal ); ABC_PRTP( "TOTAL ", pMan->timeTotal, pMan->timeTotal ); fflush( stdout ); } Acb_MfsStop( pMan ); StrCount = 0; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END