/**CFile**************************************************************** FileName [exorLink.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Exclusive sum-of-product minimization.] Synopsis [Cube iterators.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: exorLink.c,v 1.0 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ //////////////////////////////////////////////////////////////////////// /// /// /// Implementation of EXORCISM - 4 /// /// An Exclusive Sum-of-Product Minimizer /// /// /// /// Alan Mishchenko /// /// /// //////////////////////////////////////////////////////////////////////// /// /// /// Generation of ExorLinked Cubes /// /// /// /// Ver. 1.0. Started - July 26, 2000. Last update - July 29, 2000 /// /// Ver. 1.4. Started - Aug 10, 2000. Last update - Aug 12, 2000 /// /// /// //////////////////////////////////////////////////////////////////////// /// This software was tested with the BDD package "CUDD", v.2.3.0 /// /// by Fabio Somenzi /// /// http://vlsi.colorado.edu/~fabio/ /// //////////////////////////////////////////////////////////////////////// #include "exor.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// MACRO DEFINITIONS /// //////////////////////////////////////////////////////////////////////// #define LARGE_NUM 1000000 //////////////////////////////////////////////////////////////////////// /// EXTERNAL FUNCTION DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTIONS OF THIS MODULE /// //////////////////////////////////////////////////////////////////////// int ExorLinkCubeIteratorStart( Cube** pGroup, Cube* pC1, Cube* pC2, cubedist Dist ); // this function starts the Exor-Link iterator, which iterates // through the cube groups starting from the group with min literals // returns 1 on success, returns 0 if the cubes have wrong distance int ExorLinkCubeIteratorNext( Cube** pGroup ); // give the next group in the decreasing order of sum of literals // returns 1 on success, returns 0 if there are no more groups int ExorLinkCubeIteratorPick( Cube** pGroup, int g ); // gives the group #g in the order in which the groups were given // during iteration // returns 1 on success, returns 0 if something g is too large void ExorLinkCubeIteratorCleanUp( int fTakeLastGroup ); // removes the cubes from the store back into the list of free cubes // if fTakeLastGroup is 0, removes all cubes // if fTakeLastGroup is 1, does not store the last group //////////////////////////////////////////////////////////////////////// /// EXTERNAL VARIABLES /// //////////////////////////////////////////////////////////////////////// // information about the cube cover before extern cinfo g_CoverInfo; // new IDs are assigned only when it is known that the cubes are useful // this is done in ExorLinkCubeIteratorCleanUp(); // the head of the list of free cubes extern Cube* g_CubesFree; extern byte BitCount[]; //////////////////////////////////////////////////////////////////////// /// EXORLINK INFO /// //////////////////////////////////////////////////////////////////////// const int s_ELMax = 4; // ExorLink-2: there are 4 cubes, 2 literals each, combined into 2 groups // ExorLink-3: there are 12 cubes, 3 literals each, combined into 6 groups // ExorLink-4: there are 32 cubes, 4 literals each, combined into 24 groups // ExorLink-5: there are 80 cubes, 5 literals each, combined into 120 groups // Exorlink-n: there are n*2^(n-1) cubes, n literals each, combined into n! groups const int s_ELnCubes[4] = { 4, 12, 32, 80 }; const int s_ELnGroups[4] = { 2, 6, 24, 120 }; // value sets of cubes X{a0}Y{b0}Z{c0}U{d0} and X{a1}Y{b1}Z{c1}U{d1} // used to represent the ExorLink cube generation rules enum { vs0, vs1, vsX }; // vs0 = 0, // the value set of the first cube // vs1 = 1, // the value set of the second cube // vsX = 2 // EXOR of the value sets of the first and second cubes // representation of ExorLinked cubes static int s_ELCubeRules[3][32][4] = { { // ExorLink-2 Cube Generating Rules // | 0 | 1 | - sections // |-------| {vsX,vs0}, // cube 0 | | | {vsX,vs1}, // cube 1 | | 0 | {vs0,vsX}, // cube 2 | | | {vs1,vsX} // cube 3 | 0 | | }, { // ExorLink-3 Cube Generating Rules // | 0 | 1 | 2 | - sections // |-----------| {vsX,vs0,vs0}, // cube 0 | | | | {vsX,vs0,vs1}, // cube 1 | | | 0 | {vsX,vs1,vs0}, // cube 2 | | 0 | | {vsX,vs1,vs1}, // cube 3 | | 1 | 1 | {vs0,vsX,vs0}, // cube 4 | | | | {vs0,vsX,vs1}, // cube 5 | | | 2 | {vs1,vsX,vs0}, // cube 6 | 0 | | | {vs1,vsX,vs1}, // cube 7 | 1 | | 3 | {vs0,vs0,vsX}, // cube 8 | | | | {vs0,vs1,vsX}, // cube 9 | | 2 | | {vs1,vs0,vsX}, // cube 10 | 2 | | | {vs1,vs1,vsX} // cube 11 | 3 | 3 | | }, { // ExorLink-4 Rules Generating Rules // | 0 | 1 | 2 | 4 | - sections // |---------------| {vsX,vs0,vs0,vs0}, // cube 0 | | | | | {vsX,vs0,vs0,vs1}, // cube 1 | | | | 0 | {vsX,vs0,vs1,vs0}, // cube 2 | | | 0 | | {vsX,vs0,vs1,vs1}, // cube 3 | | | 1 | 1 | {vsX,vs1,vs0,vs0}, // cube 4 | | 0 | | | {vsX,vs1,vs0,vs1}, // cube 5 | | 1 | | 2 | {vsX,vs1,vs1,vs0}, // cube 6 | | 2 | 2 | | {vsX,vs1,vs1,vs1}, // cube 7 | | 3 | 3 | 3 | {vs0,vsX,vs0,vs0}, // cube 8 | | | | | {vs0,vsX,vs0,vs1}, // cube 9 | | | | 4 | {vs0,vsX,vs1,vs0}, // cube 10 | | | 4 | | {vs0,vsX,vs1,vs1}, // cube 11 | | | 5 | 5 | {vs1,vsX,vs0,vs0}, // cube 12 | 0 | | | | {vs1,vsX,vs0,vs1}, // cube 13 | 1 | | | 6 | {vs1,vsX,vs1,vs0}, // cube 14 | 2 | | 6 | | {vs1,vsX,vs1,vs1}, // cube 15 | 3 | | 7 | 7 | {vs0,vs0,vsX,vs0}, // cube 16 | | | | | {vs0,vs0,vsX,vs1}, // cube 17 | | | | 8 | {vs0,vs1,vsX,vs0}, // cube 18 | | 4 | | | {vs0,vs1,vsX,vs1}, // cube 19 | | 5 | | 9 | {vs1,vs0,vsX,vs0}, // cube 20 | 4 | | | | {vs1,vs0,vsX,vs1}, // cube 21 | 5 | | | 10| {vs1,vs1,vsX,vs0}, // cube 22 | 6 | 6 | | | {vs1,vs1,vsX,vs1}, // cube 23 | 7 | 7 | | 11| {vs0,vs0,vs0,vsX}, // cube 24 | | | | | {vs0,vs0,vs1,vsX}, // cube 25 | | | 8 | | {vs0,vs1,vs0,vsX}, // cube 26 | | 8 | | | {vs0,vs1,vs1,vsX}, // cube 27 | | 9 | 9 | | {vs1,vs0,vs0,vsX}, // cube 28 | 8 | | | | {vs1,vs0,vs1,vsX}, // cube 29 | 9 | | 10| | {vs1,vs1,vs0,vsX}, // cube 30 | 10| 10| | | {vs1,vs1,vs1,vsX} // cube 31 | 11| 11| 11| | } }; // these cubes are combined into groups static int s_ELGroupRules[3][24][4] = { { // ExorLink-2 Group Forming Rules {0,3}, // group 0 - section 0 {2,1} // group 1 - section 1 }, { // ExorLink-3 Group Forming Rules {0,6,11}, // group 0 - section 0 {0,7,10}, // group 1 {4,2,11}, // group 2 - section 1 {4,3,9}, // group 3 {8,1,7}, // group 4 - section 2 {8,3,5} // group 5 }, { // ExorLink-4 Group Forming Rules // section 0: (0-12)(1-13)(2-14)(3-15)(4-20)(5-21)(6-22)(7-23)(8-28)(9-29)(10-30)(11-31) {0,12,22,31}, // group 0 // {0,6,11}, // group 0 - section 0 {0,12,23,30}, // group 1 // {0,7,10}, // group 1 {0,20,14,31}, // group 2 // {4,2,11}, // group 2 {0,20,15,29}, // group 3 // {4,3,9}, // group 3 {0,28,13,23}, // group 4 // {8,1,7}, // group 4 {0,28,15,21}, // group 5 // {8,3,5} // group 5 // section 1: (0-4)(1-5)(2-6)(3-7)(4-18)(5-19)(6-22)(7-23)(8-26)(9-27)(10-30)(11-31) {8,4,22,31}, // group 6 {8,4,23,30}, // group 7 {8,18,6,31}, // group 8 {8,18,7,27}, // group 9 {8,26,5,23}, // group 10 {8,26,7,19}, // group 11 // section 2: (0-2)(1-3)(2-6)(3-7)(4-10)(5-11)(6-14)(7-15)(8-25)(9-27)(10-29)(11-31) {16,2,14,31}, // group 12 {16,2,15,29}, // group 13 {16,10,6,31}, // group 14 {16,10,7,27}, // group 15 {16,25,3,15}, // group 16 {16,25,7,11}, // group 17 // section 3: (0-1)(1-3)(2-5)(3-7)(4-9)(5-11)(6-13)(7-15)(8-17)(9-19)(10-21)(11-23) {24,1,13,23}, // group 18 {24,1,15,21}, // group 19 {24,9, 5,23}, // group 20 {24,9, 7,19}, // group 21 {24,17,3,15}, // group 22 {24,17,7,11} // group 23 } }; // it is assumed that if literals in the first cube, second cube // and their EXOR are 0 or 1 (as opposed to -), they are written // into a mask, which is used to count the number of literals in // the cube groups cubes // // below is the set of masks selecting literals belonging // to the given cube of the group static drow s_CubeLitMasks[3][32] = { { // ExorLink-2 Literal Counting Masks // v3 v2 v1 v0 // -xBA -xBA -xBA -xBA // ------------------- 0x14, // cube 0 <0000 0000 0001 0100> {vsX,vs0} 0x24, // cube 1 <0000 0000 0010 0100> {vsX,vs1} 0x41, // cube 2 <0000 0000 0100 0001> {vs0,vsX} 0x42, // cube 3 <0000 0000 0100 0010> {vs1,vsX} }, { // ExorLink-3 Literal Counting Masks 0x114, // cube 0 <0000 0001 0001 0100> {vsX,vs0,vs0} 0x214, // cube 1 <0000 0010 0001 0100> {vsX,vs0,vs1} 0x124, // cube 2 <0000 0001 0010 0100> {vsX,vs1,vs0} 0x224, // cube 3 <0000 0010 0010 0100> {vsX,vs1,vs1} 0x141, // cube 4 <0000 0001 0100 0001> {vs0,vsX,vs0} 0x241, // cube 5 <0000 0010 0100 0001> {vs0,vsX,vs1} 0x142, // cube 6 <0000 0001 0100 0010> {vs1,vsX,vs0} 0x242, // cube 7 <0000 0010 0100 0010> {vs1,vsX,vs1} 0x411, // cube 8 <0000 0100 0001 0001> {vs0,vs0,vsX} 0x421, // cube 9 <0000 0100 0010 0001> {vs0,vs1,vsX} 0x412, // cube 10 <0000 0100 0001 0010> {vs1,vs0,vsX} 0x422, // cube 11 <0000 0100 0010 0010> {vs1,vs1,vsX} }, { // ExorLink-4 Literal Counting Masks 0x1114, // cube 0 <0001 0001 0001 0100> {vsX,vs0,vs0,vs0} 0x2114, // cube 1 <0010 0001 0001 0100> {vsX,vs0,vs0,vs1} 0x1214, // cube 2 <0001 0010 0001 0100> {vsX,vs0,vs1,vs0} 0x2214, // cube 3 <0010 0010 0001 0100> {vsX,vs0,vs1,vs1} 0x1124, // cube 4 <0001 0001 0010 0100> {vsX,vs1,vs0,vs0} 0x2124, // cube 5 <0010 0001 0010 0100> {vsX,vs1,vs0,vs1} 0x1224, // cube 6 <0001 0010 0010 0100> {vsX,vs1,vs1,vs0} 0x2224, // cube 7 <0010 0010 0010 0100> {vsX,vs1,vs1,vs1} 0x1141, // cube 8 <0001 0001 0100 0001> {vs0,vsX,vs0,vs0} 0x2141, // cube 9 <0010 0001 0100 0001> {vs0,vsX,vs0,vs1} 0x1241, // cube 10 <0001 0010 0100 0001> {vs0,vsX,vs1,vs0} 0x2241, // cube 11 <0010 0010 0100 0001> {vs0,vsX,vs1,vs1} 0x1142, // cube 12 <0001 0001 0100 0010> {vs1,vsX,vs0,vs0} 0x2142, // cube 13 <0010 0001 0100 0010> {vs1,vsX,vs0,vs1} 0x1242, // cube 14 <0001 0010 0100 0010> {vs1,vsX,vs1,vs0} 0x2242, // cube 15 <0010 0010 0100 0010> {vs1,vsX,vs1,vs1} 0x1411, // cube 16 <0001 0100 0001 0001> {vs0,vs0,vsX,vs0} 0x2411, // cube 17 <0010 0100 0001 0001> {vs0,vs0,vsX,vs1} 0x1421, // cube 18 <0001 0100 0010 0001> {vs0,vs1,vsX,vs0} 0x2421, // cube 19 <0010 0100 0010 0001> {vs0,vs1,vsX,vs1} 0x1412, // cube 20 <0001 0100 0001 0010> {vs1,vs0,vsX,vs0} 0x2412, // cube 21 <0010 0100 0001 0010> {vs1,vs0,vsX,vs1} 0x1422, // cube 22 <0001 0100 0010 0010> {vs1,vs1,vsX,vs0} 0x2422, // cube 23 <0010 0100 0010 0010> {vs1,vs1,vsX,vs1} 0x4111, // cube 24 <0100 0001 0001 0001> {vs0,vs0,vs0,vsX} 0x4211, // cube 25 <0100 0010 0001 0001> {vs0,vs0,vs1,vsX} 0x4121, // cube 26 <0100 0001 0010 0001> {vs0,vs1,vs0,vsX} 0x4221, // cube 27 <0100 0010 0010 0001> {vs0,vs1,vs1,vsX} 0x4112, // cube 28 <0100 0001 0001 0010> {vs1,vs0,vs0,vsX} 0x4212, // cube 29 <0100 0010 0001 0010> {vs1,vs0,vs1,vsX} 0x4122, // cube 30 <0100 0001 0010 0010> {vs1,vs1,vs0,vsX} 0x4222, // cube 31 <0100 0010 0010 0010> {vs1,vs1,vs1,vsX} } }; static drow s_BitMasks[32] = { 0x00000001,0x00000002,0x00000004,0x00000008, 0x00000010,0x00000020,0x00000040,0x00000080, 0x00000100,0x00000200,0x00000400,0x00000800, 0x00001000,0x00002000,0x00004000,0x00008000, 0x00010000,0x00020000,0x00040000,0x00080000, 0x00100000,0x00200000,0x00400000,0x00800000, 0x01000000,0x02000000,0x04000000,0x08000000, 0x10000000,0x20000000,0x40000000,0x80000000 }; //////////////////////////////////////////////////////////////////////// /// STATIC VARIABLES /// //////////////////////////////////////////////////////////////////////// // this flag is TRUE as long as the storage is allocated static int fWorking; // set these flags to have minimum literal groups generated first static int fMinLitGroupsFirst[4] = { 0 /*dist2*/, 0 /*dist3*/, 0 /*dist4*/}; static int nDist; static int nCubes; static int nCubesInGroup; static int nGroups; static Cube *pCA, *pCB; // storage for variable numbers that are different in the cubes static int DiffVars[5]; static int* pDiffVars; static int nDifferentVars; // storage for the bits and words of different input variables static int nDiffVarsIn; static int DiffVarWords[5]; static int DiffVarBits[5]; // literal mask used to count the number of literals in the cubes static drow MaskLiterals; // the base for counting literals static int StartingLiterals; // the number of literals in each cube static int CubeLiterals[32]; static int BitShift; static int DiffVarValues[4][3]; static int Value; // the sorted array of groups in the increasing order of costs static int GroupCosts[32]; static int GroupCostBest; static int GroupCostBestNum; static int CubeNum; static int NewZ; static drow Temp; // the cubes currently created static Cube* ELCubes[32]; // the bit string with 1's corresponding to cubes in ELCubes[] // that constitute the last group static drow LastGroup; static int GroupOrder[24]; static drow VisitedGroups; static int nVisitedGroups; //int RemainderBits = (nVars*2)%(sizeof(drow)*8); //int TotalWords = (nVars*2)/(sizeof(drow)*8) + (RemainderBits > 0); static drow DammyBitData[(MAXVARS*2)/(sizeof(drow)*8)+(MAXVARS*2)%(sizeof(drow)*8)]; //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINTIONS /// //////////////////////////////////////////////////////////////////////// // IDEA! if we already used a cube to count distances and it did not improve // there is no need to try it again with other group // (this idea works only for ExorLink-2 and -3) int ExorLinkCubeIteratorStart( Cube** pGroup, Cube* pC1, Cube* pC2, cubedist Dist ) // this function starts the Exor-Link iterator, which iterates // through the cube groups starting from the group with min literals // returns 1 on success, returns 0 if the cubes have wrong distance { int i, c; // check that everything is okey assert( pC1 != NULL ); assert( pC2 != NULL ); assert( !fWorking ); nDist = Dist; nCubes = Dist + 2; nCubesInGroup = s_ELnCubes[nDist]; nGroups = s_ELnGroups[Dist]; pCA = pC1; pCB = pC2; // find what variables are different in these two cubes // FindDiffVars returns DiffVars[0] < 0, if the output is different nDifferentVars = FindDiffVars( DiffVars, pCA, pCB ); if ( nCubes != nDifferentVars ) { // cout << "ExorLinkCubeIterator(): Distance mismatch"; // cout << " nCubes = " << nCubes << " nDiffVars = " << nDifferentVars << endl; fWorking = 0; return 0; } // copy the input variable cube data into DammyBitData[] for ( i = 0; i < g_CoverInfo.nWordsIn; i++ ) DammyBitData[i] = pCA->pCubeDataIn[i]; // find the number of different input variables nDiffVarsIn = ( DiffVars[0] >= 0 )? nCubes: nCubes-1; // assign the pointer to the place where the number of diff input vars is stored pDiffVars = ( DiffVars[0] >= 0 )? DiffVars: DiffVars+1; // find the bit offsets and remove different variables for ( i = 0; i < nDiffVarsIn; i++ ) { DiffVarWords[i] = ((2*pDiffVars[i]) >> LOGBPI) ; DiffVarBits[i] = ((2*pDiffVars[i]) & BPIMASK); // clear this position DammyBitData[ DiffVarWords[i] ] &= ~( 3 << DiffVarBits[i] ); } // extract the values from the cubes and create the mask of literals MaskLiterals = 0; // initialize the base for literal counts StartingLiterals = pCA->a; for ( i = 0, BitShift = 0; i < nDiffVarsIn; i++, BitShift++ ) { DiffVarValues[i][0] = ( pCA->pCubeDataIn[DiffVarWords[i]] >> DiffVarBits[i] ) & 3; if ( DiffVarValues[i][0] != VAR_ABS ) { MaskLiterals |= ( 1 << BitShift ); // update the base for literal counts StartingLiterals--; } BitShift++; DiffVarValues[i][1] = ( pCB->pCubeDataIn[DiffVarWords[i]] >> DiffVarBits[i] ) & 3; if ( DiffVarValues[i][1] != VAR_ABS ) MaskLiterals |= ( 1 << BitShift ); BitShift++; DiffVarValues[i][2] = DiffVarValues[i][0] ^ DiffVarValues[i][1]; if ( DiffVarValues[i][2] != VAR_ABS ) MaskLiterals |= ( 1 << BitShift ); BitShift++; } // count the number of additional literals in each cube of the group for ( i = 0; i < nCubesInGroup; i++ ) CubeLiterals[i] = BitCount[ MaskLiterals & s_CubeLitMasks[Dist][i] ]; // compute the costs of all groups for ( i = 0; i < nGroups; i++ ) // go over all cubes in the group for ( GroupCosts[i] = 0, c = 0; c < nCubes; c++ ) GroupCosts[i] += CubeLiterals[ s_ELGroupRules[Dist][i][c] ]; // find the best cost group if ( fMinLitGroupsFirst[Dist] ) { // find the minimum cost group GroupCostBest = LARGE_NUM; for ( i = 0; i < nGroups; i++ ) if ( GroupCostBest > GroupCosts[i] ) { GroupCostBest = GroupCosts[i]; GroupCostBestNum = i; } } else { // find the maximum cost group GroupCostBest = -1; for ( i = 0; i < nGroups; i++ ) if ( GroupCostBest < GroupCosts[i] ) { GroupCostBest = GroupCosts[i]; GroupCostBestNum = i; } } // create the cubes with min number of literals needed for the group LastGroup = 0; for ( c = 0; c < nCubes; c++ ) { CubeNum = s_ELGroupRules[Dist][GroupCostBestNum][c]; LastGroup |= s_BitMasks[CubeNum]; // bring a cube from the free cube list ELCubes[CubeNum] = GetFreeCube(); // copy the input bit data into the cube for ( i = 0; i < g_CoverInfo.nWordsIn; i++ ) ELCubes[CubeNum]->pCubeDataIn[i] = DammyBitData[i]; // copy the output bit data into the cube NewZ = 0; if ( DiffVars[0] >= 0 ) // the output is not involved in ExorLink { for ( i = 0; i < g_CoverInfo.nWordsOut; i++ ) ELCubes[CubeNum]->pCubeDataOut[i] = pCA->pCubeDataOut[i]; NewZ = pCA->z; } else // the output is involved { // determine where the output information comes from Value = s_ELCubeRules[Dist][CubeNum][nDiffVarsIn]; if ( Value == vs0 ) for ( i = 0; i < g_CoverInfo.nWordsOut; i++ ) { Temp = pCA->pCubeDataOut[i]; ELCubes[CubeNum]->pCubeDataOut[i] = Temp; NewZ += BIT_COUNT(Temp); } else if ( Value == vs1 ) for ( i = 0; i < g_CoverInfo.nWordsOut; i++ ) { Temp = pCB->pCubeDataOut[i]; ELCubes[CubeNum]->pCubeDataOut[i] = Temp; NewZ += BIT_COUNT(Temp); } else if ( Value == vsX ) for ( i = 0; i < g_CoverInfo.nWordsOut; i++ ) { Temp = pCA->pCubeDataOut[i] ^ pCB->pCubeDataOut[i]; ELCubes[CubeNum]->pCubeDataOut[i] = Temp; NewZ += BIT_COUNT(Temp); } } // set the variables that should be there for ( i = 0; i < nDiffVarsIn; i++ ) { Value = DiffVarValues[i][ s_ELCubeRules[Dist][CubeNum][i] ]; ELCubes[CubeNum]->pCubeDataIn[ DiffVarWords[i] ] |= ( Value << DiffVarBits[i] ); } // set the number of literals ELCubes[CubeNum]->a = StartingLiterals + CubeLiterals[CubeNum]; ELCubes[CubeNum]->z = NewZ; ELCubes[CubeNum]->q = ComputeQCostBits( ELCubes[CubeNum] ); // assign the ID ELCubes[CubeNum]->ID = g_CoverInfo.cIDs++; // skip through zero-ID if ( g_CoverInfo.cIDs == 256 ) g_CoverInfo.cIDs = 1; // prepare the return array pGroup[c] = ELCubes[CubeNum]; } // mark this group as visited VisitedGroups |= s_BitMasks[ GroupCostBestNum ]; // set the first visited group number GroupOrder[0] = GroupCostBestNum; // increment the counter of visited groups nVisitedGroups = 1; fWorking = 1; return 1; } int ExorLinkCubeIteratorNext( Cube** pGroup ) // give the next group in the decreasing order of sum of literals // returns 1 on success, returns 0 if there are no more groups { int i, c; // check that everything is okey assert( fWorking ); if ( nVisitedGroups == nGroups ) // we have iterated through all groups return 0; // find the min/max cost group if ( fMinLitGroupsFirst[nDist] ) // if ( nCubes == 4 ) { // find the minimum cost // go through all groups GroupCostBest = LARGE_NUM; for ( i = 0; i < nGroups; i++ ) if ( !(VisitedGroups & s_BitMasks[i]) && GroupCostBest > GroupCosts[i] ) { GroupCostBest = GroupCosts[i]; GroupCostBestNum = i; } assert( GroupCostBest != LARGE_NUM ); } else { // find the maximum cost // go through all groups GroupCostBest = -1; for ( i = 0; i < nGroups; i++ ) if ( !(VisitedGroups & s_BitMasks[i]) && GroupCostBest < GroupCosts[i] ) { GroupCostBest = GroupCosts[i]; GroupCostBestNum = i; } assert( GroupCostBest != -1 ); } // create the cubes needed for the group, if they are not created already LastGroup = 0; for ( c = 0; c < nCubes; c++ ) { CubeNum = s_ELGroupRules[nDist][GroupCostBestNum][c]; LastGroup |= s_BitMasks[CubeNum]; if ( ELCubes[CubeNum] == NULL ) // this cube does not exist { // bring a cube from the free cube list ELCubes[CubeNum] = GetFreeCube(); // copy the input bit data into the cube for ( i = 0; i < g_CoverInfo.nWordsIn; i++ ) ELCubes[CubeNum]->pCubeDataIn[i] = DammyBitData[i]; // copy the output bit data into the cube NewZ = 0; if ( DiffVars[0] >= 0 ) // the output is not involved in ExorLink { for ( i = 0; i < g_CoverInfo.nWordsOut; i++ ) ELCubes[CubeNum]->pCubeDataOut[i] = pCA->pCubeDataOut[i]; NewZ = pCA->z; } else // the output is involved { // determine where the output information comes from Value = s_ELCubeRules[nDist][CubeNum][nDiffVarsIn]; if ( Value == vs0 ) for ( i = 0; i < g_CoverInfo.nWordsOut; i++ ) { Temp = pCA->pCubeDataOut[i]; ELCubes[CubeNum]->pCubeDataOut[i] = Temp; NewZ += BIT_COUNT(Temp); } else if ( Value == vs1 ) for ( i = 0; i < g_CoverInfo.nWordsOut; i++ ) { Temp = pCB->pCubeDataOut[i]; ELCubes[CubeNum]->pCubeDataOut[i] = Temp; NewZ += BIT_COUNT(Temp); } else if ( Value == vsX ) for ( i = 0; i < g_CoverInfo.nWordsOut; i++ ) { Temp = pCA->pCubeDataOut[i] ^ pCB->pCubeDataOut[i]; ELCubes[CubeNum]->pCubeDataOut[i] = Temp; NewZ += BIT_COUNT(Temp); } } // set the variables that should be there for ( i = 0; i < nDiffVarsIn; i++ ) { Value = DiffVarValues[i][ s_ELCubeRules[nDist][CubeNum][i] ]; ELCubes[CubeNum]->pCubeDataIn[ DiffVarWords[i] ] |= ( Value << DiffVarBits[i] ); } // set the number of literals and output ones ELCubes[CubeNum]->a = StartingLiterals + CubeLiterals[CubeNum]; ELCubes[CubeNum]->z = NewZ; ELCubes[CubeNum]->q = ComputeQCostBits( ELCubes[CubeNum] ); assert( NewZ != 255 ); // assign the ID ELCubes[CubeNum]->ID = g_CoverInfo.cIDs++; // skip through zero-ID if ( g_CoverInfo.cIDs == 256 ) g_CoverInfo.cIDs = 1; } // prepare the return array pGroup[c] = ELCubes[CubeNum]; } // mark this group as visited VisitedGroups |= s_BitMasks[ GroupCostBestNum ]; // set the next visited group number and // increment the counter of visited groups GroupOrder[ nVisitedGroups++ ] = GroupCostBestNum; return 1; } int ExorLinkCubeIteratorPick( Cube** pGroup, int g ) // gives the group #g in the order in which the groups were given // during iteration // returns 1 on success, returns 0 if something is wrong (g is too large) { int GroupNum, c; assert( fWorking ); assert( g >= 0 && g < nGroups ); assert( VisitedGroups & s_BitMasks[g] ); GroupNum = GroupOrder[g]; // form the group LastGroup = 0; for ( c = 0; c < nCubes; c++ ) { CubeNum = s_ELGroupRules[nDist][GroupNum][c]; // remember this group as the last one LastGroup |= s_BitMasks[CubeNum]; assert( ELCubes[CubeNum] != NULL ); // this cube should exist // prepare the return array pGroup[c] = ELCubes[CubeNum]; } return 1; } void ExorLinkCubeIteratorCleanUp( int fTakeLastGroup ) // removes the cubes from the store back into the list of free cubes // if fTakeLastGroup is 0, removes all cubes // if fTakeLastGroup is 1, does not store the last group { int c; assert( fWorking ); // put cubes back // set the cube pointers to zero if ( fTakeLastGroup == 0 ) for ( c = 0; c < nCubesInGroup; c++ ) { ELCubes[c]->fMark = 0; AddToFreeCubes( ELCubes[c] ); ELCubes[c] = NULL; } else for ( c = 0; c < nCubesInGroup; c++ ) if ( ELCubes[c] ) { ELCubes[c]->fMark = 0; if ( (LastGroup & s_BitMasks[c]) == 0 ) // does not belong to the last group AddToFreeCubes( ELCubes[c] ); ELCubes[c] = NULL; } // set the cube groups to zero VisitedGroups = 0; // shut down the iterator fWorking = 0; } /////////////////////////////////////////////////////////////////// //////////// End of File ///////////////// /////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END