/**CFile*********************************************************************** FileName [cuddBddAbs.c] PackageName [cudd] Synopsis [Quantification functions for BDDs.] Description [External procedures included in this module: Internal procedures included in this module: Static procedures included in this module: ] Author [Fabio Somenzi] Copyright [This file was created at the University of Colorado at Boulder. The University of Colorado at Boulder makes no warranty about the suitability of this software for any purpose. It is presented on an AS IS basis.] ******************************************************************************/ #include "util.h" #include "cuddInt.h" /*---------------------------------------------------------------------------*/ /* Constant declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Stucture declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Type declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Variable declarations */ /*---------------------------------------------------------------------------*/ #ifndef lint static char rcsid[] DD_UNUSED = "$Id: cuddBddAbs.c,v 1.1.1.1 2003/02/24 22:23:51 wjiang Exp $"; #endif /*---------------------------------------------------------------------------*/ /* Macro declarations */ /*---------------------------------------------------------------------------*/ /**AutomaticStart*************************************************************/ /*---------------------------------------------------------------------------*/ /* Static function prototypes */ /*---------------------------------------------------------------------------*/ static int bddCheckPositiveCube ARGS((DdManager *manager, DdNode *cube)); /**AutomaticEnd***************************************************************/ /*---------------------------------------------------------------------------*/ /* Definition of exported functions */ /*---------------------------------------------------------------------------*/ /**Function******************************************************************** Synopsis [Existentially abstracts all the variables in cube from f.] Description [Existentially abstracts all the variables in cube from f. Returns the abstracted BDD if successful; NULL otherwise.] SideEffects [None] SeeAlso [Cudd_bddUnivAbstract Cudd_addExistAbstract] ******************************************************************************/ DdNode * Cudd_bddExistAbstract( DdManager * manager, DdNode * f, DdNode * cube) { DdNode *res; if (bddCheckPositiveCube(manager, cube) == 0) { (void) fprintf(manager->err, "Error: Can only abstract positive cubes\n"); manager->errorCode = CUDD_INVALID_ARG; return(NULL); } do { manager->reordered = 0; res = cuddBddExistAbstractRecur(manager, f, cube); } while (manager->reordered == 1); return(res); } /* end of Cudd_bddExistAbstract */ /**Function******************************************************************** Synopsis [Takes the exclusive OR of two BDDs and simultaneously abstracts the variables in cube.] Description [Takes the exclusive OR of two BDDs and simultaneously abstracts the variables in cube. The variables are existentially abstracted. Returns a pointer to the result is successful; NULL otherwise.] SideEffects [None] SeeAlso [Cudd_bddUnivAbstract Cudd_bddExistAbstract Cudd_bddAndAbstract] ******************************************************************************/ DdNode * Cudd_bddXorExistAbstract( DdManager * manager, DdNode * f, DdNode * g, DdNode * cube) { DdNode *res; if (bddCheckPositiveCube(manager, cube) == 0) { (void) fprintf(manager->err, "Error: Can only abstract positive cubes\n"); manager->errorCode = CUDD_INVALID_ARG; return(NULL); } do { manager->reordered = 0; res = cuddBddXorExistAbstractRecur(manager, f, g, cube); } while (manager->reordered == 1); return(res); } /* end of Cudd_bddXorExistAbstract */ /**Function******************************************************************** Synopsis [Universally abstracts all the variables in cube from f.] Description [Universally abstracts all the variables in cube from f. Returns the abstracted BDD if successful; NULL otherwise.] SideEffects [None] SeeAlso [Cudd_bddExistAbstract Cudd_addUnivAbstract] ******************************************************************************/ DdNode * Cudd_bddUnivAbstract( DdManager * manager, DdNode * f, DdNode * cube) { DdNode *res; if (bddCheckPositiveCube(manager, cube) == 0) { (void) fprintf(manager->err, "Error: Can only abstract positive cubes\n"); manager->errorCode = CUDD_INVALID_ARG; return(NULL); } do { manager->reordered = 0; res = cuddBddExistAbstractRecur(manager, Cudd_Not(f), cube); } while (manager->reordered == 1); if (res != NULL) res = Cudd_Not(res); return(res); } /* end of Cudd_bddUnivAbstract */ /**Function******************************************************************** Synopsis [Computes the boolean difference of f with respect to x.] Description [Computes the boolean difference of f with respect to the variable with index x. Returns the BDD of the boolean difference if successful; NULL otherwise.] SideEffects [None] SeeAlso [] ******************************************************************************/ DdNode * Cudd_bddBooleanDiff( DdManager * manager, DdNode * f, int x) { DdNode *res, *var; /* If the variable is not currently in the manager, f cannot ** depend on it. */ if (x >= manager->size) return(Cudd_Not(DD_ONE(manager))); var = manager->vars[x]; do { manager->reordered = 0; res = cuddBddBooleanDiffRecur(manager, Cudd_Regular(f), var); } while (manager->reordered == 1); return(res); } /* end of Cudd_bddBooleanDiff */ /**Function******************************************************************** Synopsis [Checks whether a variable is dependent on others in a function.] Description [Checks whether a variable is dependent on others in a function. Returns 1 if the variable is dependent; 0 otherwise. No new nodes are created.] SideEffects [None] SeeAlso [] ******************************************************************************/ int Cudd_bddVarIsDependent( DdManager *dd, /* manager */ DdNode *f, /* function */ DdNode *var /* variable */) { DdNode *F, *res, *zero, *ft, *fe; unsigned topf, level; DdNode *(*cacheOp)(DdManager *, DdNode *, DdNode *); int retval; zero = Cudd_Not(DD_ONE(dd)); if (Cudd_IsConstant(f)) return(f == zero); /* From now on f is not constant. */ F = Cudd_Regular(f); topf = (unsigned) dd->perm[F->index]; level = (unsigned) dd->perm[var->index]; /* Check terminal case. If topf > index of var, f does not depend on var. ** Therefore, var is not dependent in f. */ if (topf > level) { return(0); } cacheOp = (DdNode *(*)(DdManager *, DdNode *, DdNode *)) Cudd_bddVarIsDependent; res = cuddCacheLookup2(dd,cacheOp,f,var); if (res != NULL) { return(res != zero); } /* Compute cofactors. */ ft = Cudd_NotCond(cuddT(F), f != F); fe = Cudd_NotCond(cuddE(F), f != F); if (topf == level) { retval = Cudd_bddLeq(dd,ft,Cudd_Not(fe)); } else { retval = Cudd_bddVarIsDependent(dd,ft,var) && Cudd_bddVarIsDependent(dd,fe,var); } cuddCacheInsert2(dd,cacheOp,f,var,Cudd_NotCond(zero,retval)); return(retval); } /* Cudd_bddVarIsDependent */ /*---------------------------------------------------------------------------*/ /* Definition of internal functions */ /*---------------------------------------------------------------------------*/ /**Function******************************************************************** Synopsis [Performs the recursive steps of Cudd_bddExistAbstract.] Description [Performs the recursive steps of Cudd_bddExistAbstract. Returns the BDD obtained by abstracting the variables of cube from f if successful; NULL otherwise. It is also used by Cudd_bddUnivAbstract.] SideEffects [None] SeeAlso [Cudd_bddExistAbstract Cudd_bddUnivAbstract] ******************************************************************************/ DdNode * cuddBddExistAbstractRecur( DdManager * manager, DdNode * f, DdNode * cube) { DdNode *F, *T, *E, *res, *res1, *res2, *one; statLine(manager); one = DD_ONE(manager); F = Cudd_Regular(f); /* Cube is guaranteed to be a cube at this point. */ if (cube == one || F == one) { return(f); } /* From now on, f and cube are non-constant. */ /* Abstract a variable that does not appear in f. */ while (manager->perm[F->index] > manager->perm[cube->index]) { cube = cuddT(cube); if (cube == one) return(f); } /* Check the cache. */ if (F->ref != 1 && (res = cuddCacheLookup2(manager, Cudd_bddExistAbstract, f, cube)) != NULL) { return(res); } /* Compute the cofactors of f. */ T = cuddT(F); E = cuddE(F); if (f != F) { T = Cudd_Not(T); E = Cudd_Not(E); } /* If the two indices are the same, so are their levels. */ if (F->index == cube->index) { if (T == one || E == one || T == Cudd_Not(E)) { return(one); } res1 = cuddBddExistAbstractRecur(manager, T, cuddT(cube)); if (res1 == NULL) return(NULL); if (res1 == one) { if (F->ref != 1) cuddCacheInsert2(manager, Cudd_bddExistAbstract, f, cube, one); return(one); } cuddRef(res1); res2 = cuddBddExistAbstractRecur(manager, E, cuddT(cube)); if (res2 == NULL) { Cudd_IterDerefBdd(manager,res1); return(NULL); } cuddRef(res2); res = cuddBddAndRecur(manager, Cudd_Not(res1), Cudd_Not(res2)); if (res == NULL) { Cudd_IterDerefBdd(manager, res1); Cudd_IterDerefBdd(manager, res2); return(NULL); } res = Cudd_Not(res); cuddRef(res); Cudd_IterDerefBdd(manager, res1); Cudd_IterDerefBdd(manager, res2); if (F->ref != 1) cuddCacheInsert2(manager, Cudd_bddExistAbstract, f, cube, res); cuddDeref(res); return(res); } else { /* if (cuddI(manager,F->index) < cuddI(manager,cube->index)) */ res1 = cuddBddExistAbstractRecur(manager, T, cube); if (res1 == NULL) return(NULL); cuddRef(res1); res2 = cuddBddExistAbstractRecur(manager, E, cube); if (res2 == NULL) { Cudd_IterDerefBdd(manager, res1); return(NULL); } cuddRef(res2); /* ITE takes care of possible complementation of res1 and of the ** case in which res1 == res2. */ res = cuddBddIteRecur(manager, manager->vars[F->index], res1, res2); if (res == NULL) { Cudd_IterDerefBdd(manager, res1); Cudd_IterDerefBdd(manager, res2); return(NULL); } cuddDeref(res1); cuddDeref(res2); if (F->ref != 1) cuddCacheInsert2(manager, Cudd_bddExistAbstract, f, cube, res); return(res); } } /* end of cuddBddExistAbstractRecur */ /**Function******************************************************************** Synopsis [Takes the exclusive OR of two BDDs and simultaneously abstracts the variables in cube.] Description [Takes the exclusive OR of two BDDs and simultaneously abstracts the variables in cube. The variables are existentially abstracted. Returns a pointer to the result is successful; NULL otherwise.] SideEffects [None] SeeAlso [Cudd_bddAndAbstract] ******************************************************************************/ DdNode * cuddBddXorExistAbstractRecur( DdManager * manager, DdNode * f, DdNode * g, DdNode * cube) { DdNode *F, *fv, *fnv, *G, *gv, *gnv; DdNode *one, *zero, *r, *t, *e, *Cube; unsigned int topf, topg, topcube, top, index; statLine(manager); one = DD_ONE(manager); zero = Cudd_Not(one); /* Terminal cases. */ if (f == g) { return(zero); } if (f == Cudd_Not(g)) { return(one); } if (cube == one) { return(cuddBddXorRecur(manager, f, g)); } if (f == one) { return(cuddBddExistAbstractRecur(manager, Cudd_Not(g), cube)); } if (g == one) { return(cuddBddExistAbstractRecur(manager, Cudd_Not(f), cube)); } if (f == zero) { return(cuddBddExistAbstractRecur(manager, g, cube)); } if (g == zero) { return(cuddBddExistAbstractRecur(manager, f, cube)); } /* At this point f, g, and cube are not constant. */ if (f > g) { /* Try to increase cache efficiency. */ DdNode *tmp = f; f = g; g = tmp; } /* Check cache. */ r = cuddCacheLookup(manager, DD_BDD_XOR_EXIST_ABSTRACT_TAG, f, g, cube); if (r != NULL) { return(r); } /* Here we can skip the use of cuddI, because the operands are known ** to be non-constant. */ F = Cudd_Regular(f); topf = manager->perm[F->index]; G = Cudd_Regular(g); topg = manager->perm[G->index]; top = ddMin(topf, topg); topcube = manager->perm[cube->index]; if (topcube < top) { return(cuddBddXorExistAbstractRecur(manager, f, g, cuddT(cube))); } /* Now, topcube >= top. */ if (topf == top) { index = F->index; fv = cuddT(F); fnv = cuddE(F); if (Cudd_IsComplement(f)) { fv = Cudd_Not(fv); fnv = Cudd_Not(fnv); } } else { index = G->index; fv = fnv = f; } if (topg == top) { gv = cuddT(G); gnv = cuddE(G); if (Cudd_IsComplement(g)) { gv = Cudd_Not(gv); gnv = Cudd_Not(gnv); } } else { gv = gnv = g; } if (topcube == top) { Cube = cuddT(cube); } else { Cube = cube; } t = cuddBddXorExistAbstractRecur(manager, fv, gv, Cube); if (t == NULL) return(NULL); /* Special case: 1 OR anything = 1. Hence, no need to compute ** the else branch if t is 1. */ if (t == one && topcube == top) { cuddCacheInsert(manager, DD_BDD_XOR_EXIST_ABSTRACT_TAG, f, g, cube, one); return(one); } cuddRef(t); e = cuddBddXorExistAbstractRecur(manager, fnv, gnv, Cube); if (e == NULL) { Cudd_IterDerefBdd(manager, t); return(NULL); } cuddRef(e); if (topcube == top) { /* abstract */ r = cuddBddAndRecur(manager, Cudd_Not(t), Cudd_Not(e)); if (r == NULL) { Cudd_IterDerefBdd(manager, t); Cudd_IterDerefBdd(manager, e); return(NULL); } r = Cudd_Not(r); cuddRef(r); Cudd_IterDerefBdd(manager, t); Cudd_IterDerefBdd(manager, e); cuddDeref(r); } else if (t == e) { r = t; cuddDeref(t); cuddDeref(e); } else { if (Cudd_IsComplement(t)) { r = cuddUniqueInter(manager,(int)index,Cudd_Not(t),Cudd_Not(e)); if (r == NULL) { Cudd_IterDerefBdd(manager, t); Cudd_IterDerefBdd(manager, e); return(NULL); } r = Cudd_Not(r); } else { r = cuddUniqueInter(manager,(int)index,t,e); if (r == NULL) { Cudd_IterDerefBdd(manager, t); Cudd_IterDerefBdd(manager, e); return(NULL); } } cuddDeref(e); cuddDeref(t); } cuddCacheInsert(manager, DD_BDD_XOR_EXIST_ABSTRACT_TAG, f, g, cube, r); return (r); } /* end of cuddBddXorExistAbstractRecur */ /**Function******************************************************************** Synopsis [Performs the recursive steps of Cudd_bddBoleanDiff.] Description [Performs the recursive steps of Cudd_bddBoleanDiff. Returns the BDD obtained by XORing the cofactors of f with respect to var if successful; NULL otherwise. Exploits the fact that dF/dx = dF'/dx.] SideEffects [None] SeeAlso [] ******************************************************************************/ DdNode * cuddBddBooleanDiffRecur( DdManager * manager, DdNode * f, DdNode * var) { DdNode *T, *E, *res, *res1, *res2; statLine(manager); if (cuddI(manager,f->index) > manager->perm[var->index]) { /* f does not depend on var. */ return(Cudd_Not(DD_ONE(manager))); } /* From now on, f is non-constant. */ /* If the two indices are the same, so are their levels. */ if (f->index == var->index) { res = cuddBddXorRecur(manager, cuddT(f), cuddE(f)); return(res); } /* From now on, cuddI(manager,f->index) < cuddI(manager,cube->index). */ /* Check the cache. */ res = cuddCacheLookup2(manager, cuddBddBooleanDiffRecur, f, var); if (res != NULL) { return(res); } /* Compute the cofactors of f. */ T = cuddT(f); E = cuddE(f); res1 = cuddBddBooleanDiffRecur(manager, T, var); if (res1 == NULL) return(NULL); cuddRef(res1); res2 = cuddBddBooleanDiffRecur(manager, Cudd_Regular(E), var); if (res2 == NULL) { Cudd_IterDerefBdd(manager, res1); return(NULL); } cuddRef(res2); /* ITE takes care of possible complementation of res1 and of the ** case in which res1 == res2. */ res = cuddBddIteRecur(manager, manager->vars[f->index], res1, res2); if (res == NULL) { Cudd_IterDerefBdd(manager, res1); Cudd_IterDerefBdd(manager, res2); return(NULL); } cuddDeref(res1); cuddDeref(res2); cuddCacheInsert2(manager, cuddBddBooleanDiffRecur, f, var, res); return(res); } /* end of cuddBddBooleanDiffRecur */ /*---------------------------------------------------------------------------*/ /* Definition of static functions */ /*---------------------------------------------------------------------------*/ /**Function******************************************************************** Synopsis [Checks whether cube is an BDD representing the product of positive literals.] Description [Returns 1 in case of success; 0 otherwise.] SideEffects [None] ******************************************************************************/ static int bddCheckPositiveCube( DdManager * manager, DdNode * cube) { if (Cudd_IsComplement(cube)) return(0); if (cube == DD_ONE(manager)) return(1); if (cuddIsConstant(cube)) return(0); if (cuddE(cube) == Cudd_Not(DD_ONE(manager))) { return(bddCheckPositiveCube(manager, cuddT(cube))); } return(0); } /* end of bddCheckPositiveCube */