/**CFile***********************************************************************
FileName [cuddBddIte.c]
PackageName [cudd]
Synopsis [BDD ITE function and satellites.]
Description [External procedures included in this module:
- Cudd_bddIte()
- Cudd_bddIteConstant()
- Cudd_bddIntersect()
- Cudd_bddAnd()
- Cudd_bddOr()
- Cudd_bddNand()
- Cudd_bddNor()
- Cudd_bddXor()
- Cudd_bddXnor()
- Cudd_bddLeq()
Internal procedures included in this module:
- cuddBddIteRecur()
- cuddBddIntersectRecur()
- cuddBddAndRecur()
- cuddBddXorRecur()
Static procedures included in this module:
- bddVarToConst()
- bddVarToCanonical()
- bddVarToCanonicalSimple()
]
SeeAlso []
Author [Fabio Somenzi]
Copyright [This file was created at the University of Colorado at
Boulder. The University of Colorado at Boulder makes no warranty
about the suitability of this software for any purpose. It is
presented on an AS IS basis.]
******************************************************************************/
#include "util_hack.h"
#include "cuddInt.h"
/*---------------------------------------------------------------------------*/
/* Constant declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Stucture declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Type declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Variable declarations */
/*---------------------------------------------------------------------------*/
#ifndef lint
static char rcsid[] DD_UNUSED = "$Id: cuddBddIte.c,v 1.1.1.1 2003/02/24 22:23:51 wjiang Exp $";
#endif
/*---------------------------------------------------------------------------*/
/* Macro declarations */
/*---------------------------------------------------------------------------*/
/**AutomaticStart*************************************************************/
/*---------------------------------------------------------------------------*/
/* Static function prototypes */
/*---------------------------------------------------------------------------*/
static void bddVarToConst ARGS((DdNode *f, DdNode **gp, DdNode **hp, DdNode *one));
static int bddVarToCanonical ARGS((DdManager *dd, DdNode **fp, DdNode **gp, DdNode **hp, unsigned int *topfp, unsigned int *topgp, unsigned int *tophp));
static int bddVarToCanonicalSimple ARGS((DdManager *dd, DdNode **fp, DdNode **gp, DdNode **hp, unsigned int *topfp, unsigned int *topgp, unsigned int *tophp));
/**AutomaticEnd***************************************************************/
/*---------------------------------------------------------------------------*/
/* Definition of exported functions */
/*---------------------------------------------------------------------------*/
/**Function********************************************************************
Synopsis [Implements ITE(f,g,h).]
Description [Implements ITE(f,g,h). Returns a pointer to the
resulting BDD if successful; NULL if the intermediate result blows
up.]
SideEffects [None]
SeeAlso [Cudd_addIte Cudd_bddIteConstant Cudd_bddIntersect]
******************************************************************************/
DdNode *
Cudd_bddIte(
DdManager * dd,
DdNode * f,
DdNode * g,
DdNode * h)
{
DdNode *res;
do {
dd->reordered = 0;
res = cuddBddIteRecur(dd,f,g,h);
} while (dd->reordered == 1);
return(res);
} /* end of Cudd_bddIte */
/**Function********************************************************************
Synopsis [Implements ITEconstant(f,g,h).]
Description [Implements ITEconstant(f,g,h). Returns a pointer to the
resulting BDD (which may or may not be constant) or DD_NON_CONSTANT.
No new nodes are created.]
SideEffects [None]
SeeAlso [Cudd_bddIte Cudd_bddIntersect Cudd_bddLeq Cudd_addIteConstant]
******************************************************************************/
DdNode *
Cudd_bddIteConstant(
DdManager * dd,
DdNode * f,
DdNode * g,
DdNode * h)
{
DdNode *r, *Fv, *Fnv, *Gv, *Gnv, *H, *Hv, *Hnv, *t, *e;
DdNode *one = DD_ONE(dd);
DdNode *zero = Cudd_Not(one);
int comple;
unsigned int topf, topg, toph, v;
statLine(dd);
/* Trivial cases. */
if (f == one) /* ITE(1,G,H) => G */
return(g);
if (f == zero) /* ITE(0,G,H) => H */
return(h);
/* f now not a constant. */
bddVarToConst(f, &g, &h, one); /* possibly convert g or h */
/* to constants */
if (g == h) /* ITE(F,G,G) => G */
return(g);
if (Cudd_IsConstant(g) && Cudd_IsConstant(h))
return(DD_NON_CONSTANT); /* ITE(F,1,0) or ITE(F,0,1) */
/* => DD_NON_CONSTANT */
if (g == Cudd_Not(h))
return(DD_NON_CONSTANT); /* ITE(F,G,G') => DD_NON_CONSTANT */
/* if F != G and F != G' */
comple = bddVarToCanonical(dd, &f, &g, &h, &topf, &topg, &toph);
/* Cache lookup. */
r = cuddConstantLookup(dd, DD_BDD_ITE_CONSTANT_TAG, f, g, h);
if (r != NULL) {
return(Cudd_NotCond(r,comple && r != DD_NON_CONSTANT));
}
v = ddMin(topg, toph);
/* ITE(F,G,H) = (v,G,H) (non constant) if F = (v,1,0), v < top(G,H). */
if (topf < v && cuddT(f) == one && cuddE(f) == zero) {
return(DD_NON_CONSTANT);
}
/* Compute cofactors. */
if (topf <= v) {
v = ddMin(topf, v); /* v = top_var(F,G,H) */
Fv = cuddT(f); Fnv = cuddE(f);
} else {
Fv = Fnv = f;
}
if (topg == v) {
Gv = cuddT(g); Gnv = cuddE(g);
} else {
Gv = Gnv = g;
}
if (toph == v) {
H = Cudd_Regular(h);
Hv = cuddT(H); Hnv = cuddE(H);
if (Cudd_IsComplement(h)) {
Hv = Cudd_Not(Hv);
Hnv = Cudd_Not(Hnv);
}
} else {
Hv = Hnv = h;
}
/* Recursion. */
t = Cudd_bddIteConstant(dd, Fv, Gv, Hv);
if (t == DD_NON_CONSTANT || !Cudd_IsConstant(t)) {
cuddCacheInsert(dd, DD_BDD_ITE_CONSTANT_TAG, f, g, h, DD_NON_CONSTANT);
return(DD_NON_CONSTANT);
}
e = Cudd_bddIteConstant(dd, Fnv, Gnv, Hnv);
if (e == DD_NON_CONSTANT || !Cudd_IsConstant(e) || t != e) {
cuddCacheInsert(dd, DD_BDD_ITE_CONSTANT_TAG, f, g, h, DD_NON_CONSTANT);
return(DD_NON_CONSTANT);
}
cuddCacheInsert(dd, DD_BDD_ITE_CONSTANT_TAG, f, g, h, t);
return(Cudd_NotCond(t,comple));
} /* end of Cudd_bddIteConstant */
/**Function********************************************************************
Synopsis [Returns a function included in the intersection of f and g.]
Description [Computes a function included in the intersection of f and
g. (That is, a witness that the intersection is not empty.)
Cudd_bddIntersect tries to build as few new nodes as possible. If the
only result of interest is whether f and g intersect,
Cudd_bddLeq should be used instead.]
SideEffects [None]
SeeAlso [Cudd_bddLeq Cudd_bddIteConstant]
******************************************************************************/
DdNode *
Cudd_bddIntersect(
DdManager * dd /* manager */,
DdNode * f /* first operand */,
DdNode * g /* second operand */)
{
DdNode *res;
do {
dd->reordered = 0;
res = cuddBddIntersectRecur(dd,f,g);
} while (dd->reordered == 1);
return(res);
} /* end of Cudd_bddIntersect */
/**Function********************************************************************
Synopsis [Computes the conjunction of two BDDs f and g.]
Description [Computes the conjunction of two BDDs f and g. Returns a
pointer to the resulting BDD if successful; NULL if the intermediate
result blows up.]
SideEffects [None]
SeeAlso [Cudd_bddIte Cudd_addApply Cudd_bddAndAbstract Cudd_bddIntersect
Cudd_bddOr Cudd_bddNand Cudd_bddNor Cudd_bddXor Cudd_bddXnor]
******************************************************************************/
DdNode *
Cudd_bddAnd(
DdManager * dd,
DdNode * f,
DdNode * g)
{
DdNode *res;
do {
dd->reordered = 0;
res = cuddBddAndRecur(dd,f,g);
} while (dd->reordered == 1);
return(res);
} /* end of Cudd_bddAnd */
/**Function********************************************************************
Synopsis [Computes the disjunction of two BDDs f and g.]
Description [Computes the disjunction of two BDDs f and g. Returns a
pointer to the resulting BDD if successful; NULL if the intermediate
result blows up.]
SideEffects [None]
SeeAlso [Cudd_bddIte Cudd_addApply Cudd_bddAnd Cudd_bddNand Cudd_bddNor
Cudd_bddXor Cudd_bddXnor]
******************************************************************************/
DdNode *
Cudd_bddOr(
DdManager * dd,
DdNode * f,
DdNode * g)
{
DdNode *res;
do {
dd->reordered = 0;
res = cuddBddAndRecur(dd,Cudd_Not(f),Cudd_Not(g));
} while (dd->reordered == 1);
res = Cudd_NotCond(res,res != NULL);
return(res);
} /* end of Cudd_bddOr */
/**Function********************************************************************
Synopsis [Computes the NAND of two BDDs f and g.]
Description [Computes the NAND of two BDDs f and g. Returns a
pointer to the resulting BDD if successful; NULL if the intermediate
result blows up.]
SideEffects [None]
SeeAlso [Cudd_bddIte Cudd_addApply Cudd_bddAnd Cudd_bddOr Cudd_bddNor
Cudd_bddXor Cudd_bddXnor]
******************************************************************************/
DdNode *
Cudd_bddNand(
DdManager * dd,
DdNode * f,
DdNode * g)
{
DdNode *res;
do {
dd->reordered = 0;
res = cuddBddAndRecur(dd,f,g);
} while (dd->reordered == 1);
res = Cudd_NotCond(res,res != NULL);
return(res);
} /* end of Cudd_bddNand */
/**Function********************************************************************
Synopsis [Computes the NOR of two BDDs f and g.]
Description [Computes the NOR of two BDDs f and g. Returns a
pointer to the resulting BDD if successful; NULL if the intermediate
result blows up.]
SideEffects [None]
SeeAlso [Cudd_bddIte Cudd_addApply Cudd_bddAnd Cudd_bddOr Cudd_bddNand
Cudd_bddXor Cudd_bddXnor]
******************************************************************************/
DdNode *
Cudd_bddNor(
DdManager * dd,
DdNode * f,
DdNode * g)
{
DdNode *res;
do {
dd->reordered = 0;
res = cuddBddAndRecur(dd,Cudd_Not(f),Cudd_Not(g));
} while (dd->reordered == 1);
return(res);
} /* end of Cudd_bddNor */
/**Function********************************************************************
Synopsis [Computes the exclusive OR of two BDDs f and g.]
Description [Computes the exclusive OR of two BDDs f and g. Returns a
pointer to the resulting BDD if successful; NULL if the intermediate
result blows up.]
SideEffects [None]
SeeAlso [Cudd_bddIte Cudd_addApply Cudd_bddAnd Cudd_bddOr
Cudd_bddNand Cudd_bddNor Cudd_bddXnor]
******************************************************************************/
DdNode *
Cudd_bddXor(
DdManager * dd,
DdNode * f,
DdNode * g)
{
DdNode *res;
do {
dd->reordered = 0;
res = cuddBddXorRecur(dd,f,g);
} while (dd->reordered == 1);
return(res);
} /* end of Cudd_bddXor */
/**Function********************************************************************
Synopsis [Computes the exclusive NOR of two BDDs f and g.]
Description [Computes the exclusive NOR of two BDDs f and g. Returns a
pointer to the resulting BDD if successful; NULL if the intermediate
result blows up.]
SideEffects [None]
SeeAlso [Cudd_bddIte Cudd_addApply Cudd_bddAnd Cudd_bddOr
Cudd_bddNand Cudd_bddNor Cudd_bddXor]
******************************************************************************/
DdNode *
Cudd_bddXnor(
DdManager * dd,
DdNode * f,
DdNode * g)
{
DdNode *res;
do {
dd->reordered = 0;
res = cuddBddXorRecur(dd,f,Cudd_Not(g));
} while (dd->reordered == 1);
return(res);
} /* end of Cudd_bddXnor */
/**Function********************************************************************
Synopsis [Determines whether f is less than or equal to g.]
Description [Returns 1 if f is less than or equal to g; 0 otherwise.
No new nodes are created.]
SideEffects [None]
SeeAlso [Cudd_bddIteConstant Cudd_addEvalConst]
******************************************************************************/
int
Cudd_bddLeq(
DdManager * dd,
DdNode * f,
DdNode * g)
{
DdNode *one, *zero, *tmp, *F, *fv, *fvn, *gv, *gvn;
unsigned int topf, topg, res;
statLine(dd);
/* Terminal cases and normalization. */
if (f == g) return(1);
if (Cudd_IsComplement(g)) {
/* Special case: if f is regular and g is complemented,
** f(1,...,1) = 1 > 0 = g(1,...,1).
*/
if (!Cudd_IsComplement(f)) return(0);
/* Both are complemented: Swap and complement because
** f <= g <=> g' <= f' and we want the second argument to be regular.
*/
tmp = g;
g = Cudd_Not(f);
f = Cudd_Not(tmp);
} else if (Cudd_IsComplement(f) && g < f) {
tmp = g;
g = Cudd_Not(f);
f = Cudd_Not(tmp);
}
/* Now g is regular and, if f is not regular, f < g. */
one = DD_ONE(dd);
if (g == one) return(1); /* no need to test against zero */
if (f == one) return(0); /* since at this point g != one */
if (Cudd_Not(f) == g) return(0); /* because neither is constant */
zero = Cudd_Not(one);
if (f == zero) return(1);
/* Here neither f nor g is constant. */
/* Check cache. */
tmp = cuddCacheLookup2(dd,(DdNode * (*)(DdManager *, DdNode *,
DdNode *))Cudd_bddLeq,f,g);
if (tmp != NULL) {
return(tmp == one);
}
/* Compute cofactors. */
F = Cudd_Regular(f);
topf = dd->perm[F->index];
topg = dd->perm[g->index];
if (topf <= topg) {
fv = cuddT(F); fvn = cuddE(F);
if (f != F) {
fv = Cudd_Not(fv);
fvn = Cudd_Not(fvn);
}
} else {
fv = fvn = f;
}
if (topg <= topf) {
gv = cuddT(g); gvn = cuddE(g);
} else {
gv = gvn = g;
}
/* Recursive calls. Since we want to maximize the probability of
** the special case f(1,...,1) > g(1,...,1), we consider the negative
** cofactors first. Indeed, the complementation parity of the positive
** cofactors is the same as the one of the parent functions.
*/
res = Cudd_bddLeq(dd,fvn,gvn) && Cudd_bddLeq(dd,fv,gv);
/* Store result in cache and return. */
cuddCacheInsert2(dd,(DdNode * (*)(DdManager *, DdNode *, DdNode *))Cudd_bddLeq,f,g,(res ? one : zero));
return(res);
} /* end of Cudd_bddLeq */
/*---------------------------------------------------------------------------*/
/* Definition of internal functions */
/*---------------------------------------------------------------------------*/
/**Function********************************************************************
Synopsis [Implements the recursive step of Cudd_bddIte.]
Description [Implements the recursive step of Cudd_bddIte. Returns a
pointer to the resulting BDD. NULL if the intermediate result blows
up or if reordering occurs.]
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode *
cuddBddIteRecur(
DdManager * dd,
DdNode * f,
DdNode * g,
DdNode * h)
{
DdNode *one, *zero, *res;
DdNode *r, *Fv, *Fnv, *Gv, *Gnv, *H, *Hv, *Hnv, *t, *e;
unsigned int topf, topg, toph, v;
int index = 0; // Suppress "might be used uninitialized"
int comple;
statLine(dd);
/* Terminal cases. */
/* One variable cases. */
if (f == (one = DD_ONE(dd))) /* ITE(1,G,H) = G */
return(g);
if (f == (zero = Cudd_Not(one))) /* ITE(0,G,H) = H */
return(h);
/* From now on, f is known not to be a constant. */
if (g == one || f == g) { /* ITE(F,F,H) = ITE(F,1,H) = F + H */
if (h == zero) { /* ITE(F,1,0) = F */
return(f);
} else {
res = cuddBddAndRecur(dd,Cudd_Not(f),Cudd_Not(h));
return(Cudd_NotCond(res,res != NULL));
}
} else if (g == zero || f == Cudd_Not(g)) { /* ITE(F,!F,H) = ITE(F,0,H) = !F * H */
if (h == one) { /* ITE(F,0,1) = !F */
return(Cudd_Not(f));
} else {
res = cuddBddAndRecur(dd,Cudd_Not(f),h);
return(res);
}
}
if (h == zero || f == h) { /* ITE(F,G,F) = ITE(F,G,0) = F * G */
res = cuddBddAndRecur(dd,f,g);
return(res);
} else if (h == one || f == Cudd_Not(h)) { /* ITE(F,G,!F) = ITE(F,G,1) = !F + G */
res = cuddBddAndRecur(dd,f,Cudd_Not(g));
return(Cudd_NotCond(res,res != NULL));
}
/* Check remaining one variable case. */
if (g == h) { /* ITE(F,G,G) = G */
return(g);
} else if (g == Cudd_Not(h)) { /* ITE(F,G,!G) = F <-> G */
res = cuddBddXorRecur(dd,f,h);
return(res);
}
/* From here, there are no constants. */
comple = bddVarToCanonicalSimple(dd, &f, &g, &h, &topf, &topg, &toph);
/* f & g are now regular pointers */
v = ddMin(topg, toph);
/* A shortcut: ITE(F,G,H) = (v,G,H) if F = (v,1,0), v < top(G,H). */
if (topf < v && cuddT(f) == one && cuddE(f) == zero) {
r = cuddUniqueInter(dd, (int) f->index, g, h);
return(Cudd_NotCond(r,comple && r != NULL));
}
/* Check cache. */
r = cuddCacheLookup(dd, DD_BDD_ITE_TAG, f, g, h);
if (r != NULL) {
return(Cudd_NotCond(r,comple));
}
/* Compute cofactors. */
if (topf <= v) {
v = ddMin(topf, v); /* v = top_var(F,G,H) */
index = f->index;
Fv = cuddT(f); Fnv = cuddE(f);
} else {
Fv = Fnv = f;
}
if (topg == v) {
index = g->index;
Gv = cuddT(g); Gnv = cuddE(g);
} else {
Gv = Gnv = g;
}
if (toph == v) {
H = Cudd_Regular(h);
index = H->index;
Hv = cuddT(H); Hnv = cuddE(H);
if (Cudd_IsComplement(h)) {
Hv = Cudd_Not(Hv);
Hnv = Cudd_Not(Hnv);
}
} else {
Hv = Hnv = h;
}
/* Recursive step. */
t = cuddBddIteRecur(dd,Fv,Gv,Hv);
if (t == NULL) return(NULL);
cuddRef(t);
e = cuddBddIteRecur(dd,Fnv,Gnv,Hnv);
if (e == NULL) {
Cudd_IterDerefBdd(dd,t);
return(NULL);
}
cuddRef(e);
r = (t == e) ? t : cuddUniqueInter(dd,index,t,e);
if (r == NULL) {
Cudd_IterDerefBdd(dd,t);
Cudd_IterDerefBdd(dd,e);
return(NULL);
}
cuddDeref(t);
cuddDeref(e);
cuddCacheInsert(dd, DD_BDD_ITE_TAG, f, g, h, r);
return(Cudd_NotCond(r,comple));
} /* end of cuddBddIteRecur */
/**Function********************************************************************
Synopsis [Implements the recursive step of Cudd_bddIntersect.]
Description []
SideEffects [None]
SeeAlso [Cudd_bddIntersect]
******************************************************************************/
DdNode *
cuddBddIntersectRecur(
DdManager * dd,
DdNode * f,
DdNode * g)
{
DdNode *res;
DdNode *F, *G, *t, *e;
DdNode *fv, *fnv, *gv, *gnv;
DdNode *one, *zero;
unsigned int index, topf, topg;
statLine(dd);
one = DD_ONE(dd);
zero = Cudd_Not(one);
/* Terminal cases. */
if (f == zero || g == zero || f == Cudd_Not(g)) return(zero);
if (f == g || g == one) return(f);
if (f == one) return(g);
/* At this point f and g are not constant. */
if (f > g) { DdNode *tmp = f; f = g; g = tmp; }
res = cuddCacheLookup2(dd,Cudd_bddIntersect,f,g);
if (res != NULL) return(res);
/* Find splitting variable. Here we can skip the use of cuddI,
** because the operands are known to be non-constant.
*/
F = Cudd_Regular(f);
topf = dd->perm[F->index];
G = Cudd_Regular(g);
topg = dd->perm[G->index];
/* Compute cofactors. */
if (topf <= topg) {
index = F->index;
fv = cuddT(F);
fnv = cuddE(F);
if (Cudd_IsComplement(f)) {
fv = Cudd_Not(fv);
fnv = Cudd_Not(fnv);
}
} else {
index = G->index;
fv = fnv = f;
}
if (topg <= topf) {
gv = cuddT(G);
gnv = cuddE(G);
if (Cudd_IsComplement(g)) {
gv = Cudd_Not(gv);
gnv = Cudd_Not(gnv);
}
} else {
gv = gnv = g;
}
/* Compute partial results. */
t = cuddBddIntersectRecur(dd,fv,gv);
if (t == NULL) return(NULL);
cuddRef(t);
if (t != zero) {
e = zero;
} else {
e = cuddBddIntersectRecur(dd,fnv,gnv);
if (e == NULL) {
Cudd_IterDerefBdd(dd, t);
return(NULL);
}
}
cuddRef(e);
if (t == e) { /* both equal zero */
res = t;
} else if (Cudd_IsComplement(t)) {
res = cuddUniqueInter(dd,(int)index,Cudd_Not(t),Cudd_Not(e));
if (res == NULL) {
Cudd_IterDerefBdd(dd, t);
Cudd_IterDerefBdd(dd, e);
return(NULL);
}
res = Cudd_Not(res);
} else {
res = cuddUniqueInter(dd,(int)index,t,e);
if (res == NULL) {
Cudd_IterDerefBdd(dd, t);
Cudd_IterDerefBdd(dd, e);
return(NULL);
}
}
cuddDeref(e);
cuddDeref(t);
cuddCacheInsert2(dd,Cudd_bddIntersect,f,g,res);
return(res);
} /* end of cuddBddIntersectRecur */
/**Function********************************************************************
Synopsis [Implements the recursive step of Cudd_bddAnd.]
Description [Implements the recursive step of Cudd_bddAnd by taking
the conjunction of two BDDs. Returns a pointer to the result is
successful; NULL otherwise.]
SideEffects [None]
SeeAlso [Cudd_bddAnd]
******************************************************************************/
DdNode *
cuddBddAndRecur(
DdManager * manager,
DdNode * f,
DdNode * g)
{
DdNode *F, *fv, *fnv, *G, *gv, *gnv;
DdNode *one, *r, *t, *e;
unsigned int topf, topg, index;
statLine(manager);
one = DD_ONE(manager);
/* Terminal cases. */
F = Cudd_Regular(f);
G = Cudd_Regular(g);
if (F == G) {
if (f == g) return(f);
else return(Cudd_Not(one));
}
if (F == one) {
if (f == one) return(g);
else return(f);
}
if (G == one) {
if (g == one) return(f);
else return(g);
}
/* At this point f and g are not constant. */
if (f > g) { /* Try to increase cache efficiency. */
DdNode *tmp = f;
f = g;
g = tmp;
F = Cudd_Regular(f);
G = Cudd_Regular(g);
}
/* Check cache. */
if (F->ref != 1 || G->ref != 1) {
r = cuddCacheLookup2(manager, Cudd_bddAnd, f, g);
if (r != NULL) return(r);
}
/* Here we can skip the use of cuddI, because the operands are known
** to be non-constant.
*/
topf = manager->perm[F->index];
topg = manager->perm[G->index];
/* Compute cofactors. */
if (topf <= topg) {
index = F->index;
fv = cuddT(F);
fnv = cuddE(F);
if (Cudd_IsComplement(f)) {
fv = Cudd_Not(fv);
fnv = Cudd_Not(fnv);
}
} else {
index = G->index;
fv = fnv = f;
}
if (topg <= topf) {
gv = cuddT(G);
gnv = cuddE(G);
if (Cudd_IsComplement(g)) {
gv = Cudd_Not(gv);
gnv = Cudd_Not(gnv);
}
} else {
gv = gnv = g;
}
t = cuddBddAndRecur(manager, fv, gv);
if (t == NULL) return(NULL);
cuddRef(t);
e = cuddBddAndRecur(manager, fnv, gnv);
if (e == NULL) {
Cudd_IterDerefBdd(manager, t);
return(NULL);
}
cuddRef(e);
if (t == e) {
r = t;
} else {
if (Cudd_IsComplement(t)) {
r = cuddUniqueInter(manager,(int)index,Cudd_Not(t),Cudd_Not(e));
if (r == NULL) {
Cudd_IterDerefBdd(manager, t);
Cudd_IterDerefBdd(manager, e);
return(NULL);
}
r = Cudd_Not(r);
} else {
r = cuddUniqueInter(manager,(int)index,t,e);
if (r == NULL) {
Cudd_IterDerefBdd(manager, t);
Cudd_IterDerefBdd(manager, e);
return(NULL);
}
}
}
cuddDeref(e);
cuddDeref(t);
if (F->ref != 1 || G->ref != 1)
cuddCacheInsert2(manager, Cudd_bddAnd, f, g, r);
return(r);
} /* end of cuddBddAndRecur */
/**Function********************************************************************
Synopsis [Implements the recursive step of Cudd_bddXor.]
Description [Implements the recursive step of Cudd_bddXor by taking
the exclusive OR of two BDDs. Returns a pointer to the result is
successful; NULL otherwise.]
SideEffects [None]
SeeAlso [Cudd_bddXor]
******************************************************************************/
DdNode *
cuddBddXorRecur(
DdManager * manager,
DdNode * f,
DdNode * g)
{
DdNode *fv, *fnv, *G, *gv, *gnv;
DdNode *one, *zero, *r, *t, *e;
unsigned int topf, topg, index;
statLine(manager);
one = DD_ONE(manager);
zero = Cudd_Not(one);
/* Terminal cases. */
if (f == g) return(zero);
if (f == Cudd_Not(g)) return(one);
if (f > g) { /* Try to increase cache efficiency and simplify tests. */
DdNode *tmp = f;
f = g;
g = tmp;
}
if (g == zero) return(f);
if (g == one) return(Cudd_Not(f));
if (Cudd_IsComplement(f)) {
f = Cudd_Not(f);
g = Cudd_Not(g);
}
/* Now the first argument is regular. */
if (f == one) return(Cudd_Not(g));
/* At this point f and g are not constant. */
/* Check cache. */
r = cuddCacheLookup2(manager, Cudd_bddXor, f, g);
if (r != NULL) return(r);
/* Here we can skip the use of cuddI, because the operands are known
** to be non-constant.
*/
topf = manager->perm[f->index];
G = Cudd_Regular(g);
topg = manager->perm[G->index];
/* Compute cofactors. */
if (topf <= topg) {
index = f->index;
fv = cuddT(f);
fnv = cuddE(f);
} else {
index = G->index;
fv = fnv = f;
}
if (topg <= topf) {
gv = cuddT(G);
gnv = cuddE(G);
if (Cudd_IsComplement(g)) {
gv = Cudd_Not(gv);
gnv = Cudd_Not(gnv);
}
} else {
gv = gnv = g;
}
t = cuddBddXorRecur(manager, fv, gv);
if (t == NULL) return(NULL);
cuddRef(t);
e = cuddBddXorRecur(manager, fnv, gnv);
if (e == NULL) {
Cudd_IterDerefBdd(manager, t);
return(NULL);
}
cuddRef(e);
if (t == e) {
r = t;
} else {
if (Cudd_IsComplement(t)) {
r = cuddUniqueInter(manager,(int)index,Cudd_Not(t),Cudd_Not(e));
if (r == NULL) {
Cudd_IterDerefBdd(manager, t);
Cudd_IterDerefBdd(manager, e);
return(NULL);
}
r = Cudd_Not(r);
} else {
r = cuddUniqueInter(manager,(int)index,t,e);
if (r == NULL) {
Cudd_IterDerefBdd(manager, t);
Cudd_IterDerefBdd(manager, e);
return(NULL);
}
}
}
cuddDeref(e);
cuddDeref(t);
cuddCacheInsert2(manager, Cudd_bddXor, f, g, r);
return(r);
} /* end of cuddBddXorRecur */
/*---------------------------------------------------------------------------*/
/* Definition of static functions */
/*---------------------------------------------------------------------------*/
/**Function********************************************************************
Synopsis [Replaces variables with constants if possible.]
Description [This function performs part of the transformation to
standard form by replacing variables with constants if possible.]
SideEffects [None]
SeeAlso [bddVarToCanonical bddVarToCanonicalSimple]
******************************************************************************/
static void
bddVarToConst(
DdNode * f,
DdNode ** gp,
DdNode ** hp,
DdNode * one)
{
DdNode *g = *gp;
DdNode *h = *hp;
if (f == g) { /* ITE(F,F,H) = ITE(F,1,H) = F + H */
*gp = one;
} else if (f == Cudd_Not(g)) { /* ITE(F,!F,H) = ITE(F,0,H) = !F * H */
*gp = Cudd_Not(one);
}
if (f == h) { /* ITE(F,G,F) = ITE(F,G,0) = F * G */
*hp = Cudd_Not(one);
} else if (f == Cudd_Not(h)) { /* ITE(F,G,!F) = ITE(F,G,1) = !F + G */
*hp = one;
}
} /* end of bddVarToConst */
/**Function********************************************************************
Synopsis [Picks unique member from equiv expressions.]
Description [Reduces 2 variable expressions to canonical form.]
SideEffects [None]
SeeAlso [bddVarToConst bddVarToCanonicalSimple]
******************************************************************************/
static int
bddVarToCanonical(
DdManager * dd,
DdNode ** fp,
DdNode ** gp,
DdNode ** hp,
unsigned int * topfp,
unsigned int * topgp,
unsigned int * tophp)
{
register DdNode *F, *G, *H, *r, *f, *g, *h;
register unsigned int topf, topg, toph;
DdNode *one = dd->one;
int comple, change;
f = *fp;
g = *gp;
h = *hp;
F = Cudd_Regular(f);
G = Cudd_Regular(g);
H = Cudd_Regular(h);
topf = cuddI(dd,F->index);
topg = cuddI(dd,G->index);
toph = cuddI(dd,H->index);
change = 0;
if (G == one) { /* ITE(F,c,H) */
if ((topf > toph) || (topf == toph && f > h)) {
r = h;
h = f;
f = r; /* ITE(F,1,H) = ITE(H,1,F) */
if (g != one) { /* g == zero */
f = Cudd_Not(f); /* ITE(F,0,H) = ITE(!H,0,!F) */
h = Cudd_Not(h);
}
change = 1;
}
} else if (H == one) { /* ITE(F,G,c) */
if ((topf > topg) || (topf == topg && f > g)) {
r = g;
g = f;
f = r; /* ITE(F,G,0) = ITE(G,F,0) */
if (h == one) {
f = Cudd_Not(f); /* ITE(F,G,1) = ITE(!G,!F,1) */
g = Cudd_Not(g);
}
change = 1;
}
} else if (g == Cudd_Not(h)) { /* ITE(F,G,!G) = ITE(G,F,!F) */
if ((topf > topg) || (topf == topg && f > g)) {
r = f;
f = g;
g = r;
h = Cudd_Not(r);
change = 1;
}
}
/* adjust pointers so that the first 2 arguments to ITE are regular */
if (Cudd_IsComplement(f) != 0) { /* ITE(!F,G,H) = ITE(F,H,G) */
f = Cudd_Not(f);
r = g;
g = h;
h = r;
change = 1;
}
comple = 0;
if (Cudd_IsComplement(g) != 0) { /* ITE(F,!G,H) = !ITE(F,G,!H) */
g = Cudd_Not(g);
h = Cudd_Not(h);
change = 1;
comple = 1;
}
if (change != 0) {
*fp = f;
*gp = g;
*hp = h;
}
*topfp = cuddI(dd,f->index);
*topgp = cuddI(dd,g->index);
*tophp = cuddI(dd,Cudd_Regular(h)->index);
return(comple);
} /* end of bddVarToCanonical */
/**Function********************************************************************
Synopsis [Picks unique member from equiv expressions.]
Description [Makes sure the first two pointers are regular. This
mat require the complementation of the result, which is signaled by
returning 1 instead of 0. This function is simpler than the general
case because it assumes that no two arguments are the same or
complementary, and no argument is constant.]
SideEffects [None]
SeeAlso [bddVarToConst bddVarToCanonical]
******************************************************************************/
static int
bddVarToCanonicalSimple(
DdManager * dd,
DdNode ** fp,
DdNode ** gp,
DdNode ** hp,
unsigned int * topfp,
unsigned int * topgp,
unsigned int * tophp)
{
register DdNode *r, *f, *g, *h;
int comple, change;
f = *fp;
g = *gp;
h = *hp;
change = 0;
/* adjust pointers so that the first 2 arguments to ITE are regular */
if (Cudd_IsComplement(f)) { /* ITE(!F,G,H) = ITE(F,H,G) */
f = Cudd_Not(f);
r = g;
g = h;
h = r;
change = 1;
}
comple = 0;
if (Cudd_IsComplement(g)) { /* ITE(F,!G,H) = !ITE(F,G,!H) */
g = Cudd_Not(g);
h = Cudd_Not(h);
change = 1;
comple = 1;
}
if (change) {
*fp = f;
*gp = g;
*hp = h;
}
/* Here we can skip the use of cuddI, because the operands are known
** to be non-constant.
*/
*topfp = dd->perm[f->index];
*topgp = dd->perm[g->index];
*tophp = dd->perm[Cudd_Regular(h)->index];
return(comple);
} /* end of bddVarToCanonicalSimple */