/**CFile*********************************************************************** FileName [cuddDecomp.c] PackageName [cudd] Synopsis [Functions for BDD decomposition.] Description [External procedures included in this file: Static procedures included in this module: ] Author [Kavita Ravi, Fabio Somenzi] Copyright [This file was created at the University of Colorado at Boulder. The University of Colorado at Boulder makes no warranty about the suitability of this software for any purpose. It is presented on an AS IS basis.] ******************************************************************************/ #include "util_hack.h" #include "cuddInt.h" /*---------------------------------------------------------------------------*/ /* Constant declarations */ /*---------------------------------------------------------------------------*/ #define DEPTH 5 #define THRESHOLD 10 #define NONE 0 #define PAIR_ST 1 #define PAIR_CR 2 #define G_ST 3 #define G_CR 4 #define H_ST 5 #define H_CR 6 #define BOTH_G 7 #define BOTH_H 8 /*---------------------------------------------------------------------------*/ /* Stucture declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Type declarations */ /*---------------------------------------------------------------------------*/ typedef struct Conjuncts { DdNode *g; DdNode *h; } Conjuncts; typedef struct NodeStat { int distance; int localRef; } NodeStat; /*---------------------------------------------------------------------------*/ /* Variable declarations */ /*---------------------------------------------------------------------------*/ #ifndef lint static char rcsid[] DD_UNUSED = "$Id: cuddDecomp.c,v 1.1.1.1 2003/02/24 22:23:51 wjiang Exp $"; #endif static DdNode *one, *zero; long lastTimeG; /*---------------------------------------------------------------------------*/ /* Macro declarations */ /*---------------------------------------------------------------------------*/ #define FactorsNotStored(factors) ((int)((long)(factors) & 01)) #define FactorsComplement(factors) ((Conjuncts *)((long)(factors) | 01)) #define FactorsUncomplement(factors) ((Conjuncts *)((long)(factors) ^ 01)) /**AutomaticStart*************************************************************/ /*---------------------------------------------------------------------------*/ /* Static function prototypes */ /*---------------------------------------------------------------------------*/ static NodeStat * CreateBotDist ARGS((DdNode * node, st_table * distanceTable)); static double CountMinterms ARGS((DdNode * node, double max, st_table * mintermTable, FILE *fp)); static void ConjunctsFree ARGS((DdManager * dd, Conjuncts * factors)); static int PairInTables ARGS((DdNode * g, DdNode * h, st_table * ghTable)); static Conjuncts * CheckTablesCacheAndReturn ARGS((DdNode * node, DdNode * g, DdNode * h, st_table * ghTable, st_table * cacheTable)); static Conjuncts * PickOnePair ARGS((DdNode * node, DdNode * g1, DdNode * h1, DdNode * g2, DdNode * h2, st_table * ghTable, st_table * cacheTable)); static Conjuncts * CheckInTables ARGS((DdNode * node, DdNode * g1, DdNode * h1, DdNode * g2, DdNode * h2, st_table * ghTable, st_table * cacheTable, int * outOfMem)); static Conjuncts * ZeroCase ARGS((DdManager * dd, DdNode * node, Conjuncts * factorsNv, st_table * ghTable, st_table * cacheTable, int switched)); static Conjuncts * BuildConjuncts ARGS((DdManager * dd, DdNode * node, st_table * distanceTable, st_table * cacheTable, int approxDistance, int maxLocalRef, st_table * ghTable, st_table * mintermTable)); static int cuddConjunctsAux ARGS((DdManager * dd, DdNode * f, DdNode ** c1, DdNode ** c2)); /**AutomaticEnd***************************************************************/ /*---------------------------------------------------------------------------*/ /* Definition of exported functions */ /*---------------------------------------------------------------------------*/ /**Function******************************************************************** Synopsis [Performs two-way conjunctive decomposition of a BDD.] Description [Performs two-way conjunctive decomposition of a BDD. This procedure owes its name to the use of supersetting to obtain an initial factor of the given function. Returns the number of conjuncts produced, that is, 2 if successful; 1 if no meaningful decomposition was found; 0 otherwise. The conjuncts produced by this procedure tend to be imbalanced.] SideEffects [The factors are returned in an array as side effects. The array is allocated by this function. It is the caller's responsibility to ABC_FREE it. On successful completion, the conjuncts are already referenced. If the function returns 0, the array for the conjuncts is not allocated. If the function returns 1, the only factor equals the function to be decomposed.] SeeAlso [Cudd_bddApproxDisjDecomp Cudd_bddIterConjDecomp Cudd_bddGenConjDecomp Cudd_bddVarConjDecomp Cudd_RemapOverApprox Cudd_bddSqueeze Cudd_bddLICompaction] ******************************************************************************/ int Cudd_bddApproxConjDecomp( DdManager * dd /* manager */, DdNode * f /* function to be decomposed */, DdNode *** conjuncts /* address of the first factor */) { DdNode *superset1, *superset2, *glocal, *hlocal; int nvars = Cudd_SupportSize(dd,f); /* Find a tentative first factor by overapproximation and minimization. */ superset1 = Cudd_RemapOverApprox(dd,f,nvars,0,1.0); if (superset1 == NULL) return(0); cuddRef(superset1); superset2 = Cudd_bddSqueeze(dd,f,superset1); if (superset2 == NULL) { Cudd_RecursiveDeref(dd,superset1); return(0); } cuddRef(superset2); Cudd_RecursiveDeref(dd,superset1); /* Compute the second factor by minimization. */ hlocal = Cudd_bddLICompaction(dd,f,superset2); if (hlocal == NULL) { Cudd_RecursiveDeref(dd,superset2); return(0); } cuddRef(hlocal); /* Refine the first factor by minimization. If h turns out to be f, this ** step guarantees that g will be 1. */ glocal = Cudd_bddLICompaction(dd,superset2,hlocal); if (glocal == NULL) { Cudd_RecursiveDeref(dd,superset2); Cudd_RecursiveDeref(dd,hlocal); return(0); } cuddRef(glocal); Cudd_RecursiveDeref(dd,superset2); if (glocal != DD_ONE(dd)) { if (hlocal != DD_ONE(dd)) { *conjuncts = ABC_ALLOC(DdNode *,2); if (*conjuncts == NULL) { Cudd_RecursiveDeref(dd,glocal); Cudd_RecursiveDeref(dd,hlocal); dd->errorCode = CUDD_MEMORY_OUT; return(0); } (*conjuncts)[0] = glocal; (*conjuncts)[1] = hlocal; return(2); } else { Cudd_RecursiveDeref(dd,hlocal); *conjuncts = ABC_ALLOC(DdNode *,1); if (*conjuncts == NULL) { Cudd_RecursiveDeref(dd,glocal); dd->errorCode = CUDD_MEMORY_OUT; return(0); } (*conjuncts)[0] = glocal; return(1); } } else { Cudd_RecursiveDeref(dd,glocal); *conjuncts = ABC_ALLOC(DdNode *,1); if (*conjuncts == NULL) { Cudd_RecursiveDeref(dd,hlocal); dd->errorCode = CUDD_MEMORY_OUT; return(0); } (*conjuncts)[0] = hlocal; return(1); } } /* end of Cudd_bddApproxConjDecomp */ /**Function******************************************************************** Synopsis [Performs two-way disjunctive decomposition of a BDD.] Description [Performs two-way disjunctive decomposition of a BDD. Returns the number of disjuncts produced, that is, 2 if successful; 1 if no meaningful decomposition was found; 0 otherwise. The disjuncts produced by this procedure tend to be imbalanced.] SideEffects [The two disjuncts are returned in an array as side effects. The array is allocated by this function. It is the caller's responsibility to ABC_FREE it. On successful completion, the disjuncts are already referenced. If the function returns 0, the array for the disjuncts is not allocated. If the function returns 1, the only factor equals the function to be decomposed.] SeeAlso [Cudd_bddApproxConjDecomp Cudd_bddIterDisjDecomp Cudd_bddGenDisjDecomp Cudd_bddVarDisjDecomp] ******************************************************************************/ int Cudd_bddApproxDisjDecomp( DdManager * dd /* manager */, DdNode * f /* function to be decomposed */, DdNode *** disjuncts /* address of the array of the disjuncts */) { int result, i; result = Cudd_bddApproxConjDecomp(dd,Cudd_Not(f),disjuncts); for (i = 0; i < result; i++) { (*disjuncts)[i] = Cudd_Not((*disjuncts)[i]); } return(result); } /* end of Cudd_bddApproxDisjDecomp */ /**Function******************************************************************** Synopsis [Performs two-way conjunctive decomposition of a BDD.] Description [Performs two-way conjunctive decomposition of a BDD. This procedure owes its name to the iterated use of supersetting to obtain a factor of the given function. Returns the number of conjuncts produced, that is, 2 if successful; 1 if no meaningful decomposition was found; 0 otherwise. The conjuncts produced by this procedure tend to be imbalanced.] SideEffects [The factors are returned in an array as side effects. The array is allocated by this function. It is the caller's responsibility to ABC_FREE it. On successful completion, the conjuncts are already referenced. If the function returns 0, the array for the conjuncts is not allocated. If the function returns 1, the only factor equals the function to be decomposed.] SeeAlso [Cudd_bddIterDisjDecomp Cudd_bddApproxConjDecomp Cudd_bddGenConjDecomp Cudd_bddVarConjDecomp Cudd_RemapOverApprox Cudd_bddSqueeze Cudd_bddLICompaction] ******************************************************************************/ int Cudd_bddIterConjDecomp( DdManager * dd /* manager */, DdNode * f /* function to be decomposed */, DdNode *** conjuncts /* address of the array of conjuncts */) { DdNode *superset1, *superset2, *old[2], *res[2]; int sizeOld, sizeNew; int nvars = Cudd_SupportSize(dd,f); old[0] = DD_ONE(dd); cuddRef(old[0]); old[1] = f; cuddRef(old[1]); sizeOld = Cudd_SharingSize(old,2); do { /* Find a tentative first factor by overapproximation and ** minimization. */ superset1 = Cudd_RemapOverApprox(dd,old[1],nvars,0,1.0); if (superset1 == NULL) { Cudd_RecursiveDeref(dd,old[0]); Cudd_RecursiveDeref(dd,old[1]); return(0); } cuddRef(superset1); superset2 = Cudd_bddSqueeze(dd,old[1],superset1); if (superset2 == NULL) { Cudd_RecursiveDeref(dd,old[0]); Cudd_RecursiveDeref(dd,old[1]); Cudd_RecursiveDeref(dd,superset1); return(0); } cuddRef(superset2); Cudd_RecursiveDeref(dd,superset1); res[0] = Cudd_bddAnd(dd,old[0],superset2); if (res[0] == NULL) { Cudd_RecursiveDeref(dd,superset2); Cudd_RecursiveDeref(dd,old[0]); Cudd_RecursiveDeref(dd,old[1]); return(0); } cuddRef(res[0]); Cudd_RecursiveDeref(dd,superset2); if (res[0] == old[0]) { Cudd_RecursiveDeref(dd,res[0]); break; /* avoid infinite loop */ } /* Compute the second factor by minimization. */ res[1] = Cudd_bddLICompaction(dd,old[1],res[0]); if (res[1] == NULL) { Cudd_RecursiveDeref(dd,old[0]); Cudd_RecursiveDeref(dd,old[1]); return(0); } cuddRef(res[1]); sizeNew = Cudd_SharingSize(res,2); if (sizeNew <= sizeOld) { Cudd_RecursiveDeref(dd,old[0]); old[0] = res[0]; Cudd_RecursiveDeref(dd,old[1]); old[1] = res[1]; sizeOld = sizeNew; } else { Cudd_RecursiveDeref(dd,res[0]); Cudd_RecursiveDeref(dd,res[1]); break; } } while (1); /* Refine the first factor by minimization. If h turns out to ** be f, this step guarantees that g will be 1. */ superset1 = Cudd_bddLICompaction(dd,old[0],old[1]); if (superset1 == NULL) { Cudd_RecursiveDeref(dd,old[0]); Cudd_RecursiveDeref(dd,old[1]); return(0); } cuddRef(superset1); Cudd_RecursiveDeref(dd,old[0]); old[0] = superset1; if (old[0] != DD_ONE(dd)) { if (old[1] != DD_ONE(dd)) { *conjuncts = ABC_ALLOC(DdNode *,2); if (*conjuncts == NULL) { Cudd_RecursiveDeref(dd,old[0]); Cudd_RecursiveDeref(dd,old[1]); dd->errorCode = CUDD_MEMORY_OUT; return(0); } (*conjuncts)[0] = old[0]; (*conjuncts)[1] = old[1]; return(2); } else { Cudd_RecursiveDeref(dd,old[1]); *conjuncts = ABC_ALLOC(DdNode *,1); if (*conjuncts == NULL) { Cudd_RecursiveDeref(dd,old[0]); dd->errorCode = CUDD_MEMORY_OUT; return(0); } (*conjuncts)[0] = old[0]; return(1); } } else { Cudd_RecursiveDeref(dd,old[0]); *conjuncts = ABC_ALLOC(DdNode *,1); if (*conjuncts == NULL) { Cudd_RecursiveDeref(dd,old[1]); dd->errorCode = CUDD_MEMORY_OUT; return(0); } (*conjuncts)[0] = old[1]; return(1); } } /* end of Cudd_bddIterConjDecomp */ /**Function******************************************************************** Synopsis [Performs two-way disjunctive decomposition of a BDD.] Description [Performs two-way disjunctive decomposition of a BDD. Returns the number of disjuncts produced, that is, 2 if successful; 1 if no meaningful decomposition was found; 0 otherwise. The disjuncts produced by this procedure tend to be imbalanced.] SideEffects [The two disjuncts are returned in an array as side effects. The array is allocated by this function. It is the caller's responsibility to ABC_FREE it. On successful completion, the disjuncts are already referenced. If the function returns 0, the array for the disjuncts is not allocated. If the function returns 1, the only factor equals the function to be decomposed.] SeeAlso [Cudd_bddIterConjDecomp Cudd_bddApproxDisjDecomp Cudd_bddGenDisjDecomp Cudd_bddVarDisjDecomp] ******************************************************************************/ int Cudd_bddIterDisjDecomp( DdManager * dd /* manager */, DdNode * f /* function to be decomposed */, DdNode *** disjuncts /* address of the array of the disjuncts */) { int result, i; result = Cudd_bddIterConjDecomp(dd,Cudd_Not(f),disjuncts); for (i = 0; i < result; i++) { (*disjuncts)[i] = Cudd_Not((*disjuncts)[i]); } return(result); } /* end of Cudd_bddIterDisjDecomp */ /**Function******************************************************************** Synopsis [Performs two-way conjunctive decomposition of a BDD.] Description [Performs two-way conjunctive decomposition of a BDD. This procedure owes its name to the fact tht it generalizes the decomposition based on the cofactors with respect to one variable. Returns the number of conjuncts produced, that is, 2 if successful; 1 if no meaningful decomposition was found; 0 otherwise. The conjuncts produced by this procedure tend to be balanced.] SideEffects [The two factors are returned in an array as side effects. The array is allocated by this function. It is the caller's responsibility to ABC_FREE it. On successful completion, the conjuncts are already referenced. If the function returns 0, the array for the conjuncts is not allocated. If the function returns 1, the only factor equals the function to be decomposed.] SeeAlso [Cudd_bddGenDisjDecomp Cudd_bddApproxConjDecomp Cudd_bddIterConjDecomp Cudd_bddVarConjDecomp] ******************************************************************************/ int Cudd_bddGenConjDecomp( DdManager * dd /* manager */, DdNode * f /* function to be decomposed */, DdNode *** conjuncts /* address of the array of conjuncts */) { int result; DdNode *glocal, *hlocal; one = DD_ONE(dd); zero = Cudd_Not(one); do { dd->reordered = 0; result = cuddConjunctsAux(dd, f, &glocal, &hlocal); } while (dd->reordered == 1); if (result == 0) { return(0); } if (glocal != one) { if (hlocal != one) { *conjuncts = ABC_ALLOC(DdNode *,2); if (*conjuncts == NULL) { Cudd_RecursiveDeref(dd,glocal); Cudd_RecursiveDeref(dd,hlocal); dd->errorCode = CUDD_MEMORY_OUT; return(0); } (*conjuncts)[0] = glocal; (*conjuncts)[1] = hlocal; return(2); } else { Cudd_RecursiveDeref(dd,hlocal); *conjuncts = ABC_ALLOC(DdNode *,1); if (*conjuncts == NULL) { Cudd_RecursiveDeref(dd,glocal); dd->errorCode = CUDD_MEMORY_OUT; return(0); } (*conjuncts)[0] = glocal; return(1); } } else { Cudd_RecursiveDeref(dd,glocal); *conjuncts = ABC_ALLOC(DdNode *,1); if (*conjuncts == NULL) { Cudd_RecursiveDeref(dd,hlocal); dd->errorCode = CUDD_MEMORY_OUT; return(0); } (*conjuncts)[0] = hlocal; return(1); } } /* end of Cudd_bddGenConjDecomp */ /**Function******************************************************************** Synopsis [Performs two-way disjunctive decomposition of a BDD.] Description [Performs two-way disjunctive decomposition of a BDD. Returns the number of disjuncts produced, that is, 2 if successful; 1 if no meaningful decomposition was found; 0 otherwise. The disjuncts produced by this procedure tend to be balanced.] SideEffects [The two disjuncts are returned in an array as side effects. The array is allocated by this function. It is the caller's responsibility to ABC_FREE it. On successful completion, the disjuncts are already referenced. If the function returns 0, the array for the disjuncts is not allocated. If the function returns 1, the only factor equals the function to be decomposed.] SeeAlso [Cudd_bddGenConjDecomp Cudd_bddApproxDisjDecomp Cudd_bddIterDisjDecomp Cudd_bddVarDisjDecomp] ******************************************************************************/ int Cudd_bddGenDisjDecomp( DdManager * dd /* manager */, DdNode * f /* function to be decomposed */, DdNode *** disjuncts /* address of the array of the disjuncts */) { int result, i; result = Cudd_bddGenConjDecomp(dd,Cudd_Not(f),disjuncts); for (i = 0; i < result; i++) { (*disjuncts)[i] = Cudd_Not((*disjuncts)[i]); } return(result); } /* end of Cudd_bddGenDisjDecomp */ /**Function******************************************************************** Synopsis [Performs two-way conjunctive decomposition of a BDD.] Description [Conjunctively decomposes one BDD according to a variable. If f is the function of the BDD and x is the variable, the decomposition is (f+x)(f+x'). The variable is chosen so as to balance the sizes of the two conjuncts and to keep them small. Returns the number of conjuncts produced, that is, 2 if successful; 1 if no meaningful decomposition was found; 0 otherwise.] SideEffects [The two factors are returned in an array as side effects. The array is allocated by this function. It is the caller's responsibility to ABC_FREE it. On successful completion, the conjuncts are already referenced. If the function returns 0, the array for the conjuncts is not allocated. If the function returns 1, the only factor equals the function to be decomposed.] SeeAlso [Cudd_bddVarDisjDecomp Cudd_bddGenConjDecomp Cudd_bddApproxConjDecomp Cudd_bddIterConjDecomp] *****************************************************************************/ int Cudd_bddVarConjDecomp( DdManager * dd /* manager */, DdNode * f /* function to be decomposed */, DdNode *** conjuncts /* address of the array of conjuncts */) { int best; int min; DdNode *support, *scan, *var, *glocal, *hlocal; /* Find best cofactoring variable. */ support = Cudd_Support(dd,f); if (support == NULL) return(0); if (Cudd_IsConstant(support)) { *conjuncts = ABC_ALLOC(DdNode *,1); if (*conjuncts == NULL) { dd->errorCode = CUDD_MEMORY_OUT; return(0); } (*conjuncts)[0] = f; cuddRef((*conjuncts)[0]); return(1); } cuddRef(support); min = 1000000000; best = -1; scan = support; while (!Cudd_IsConstant(scan)) { int i = scan->index; int est1 = Cudd_EstimateCofactor(dd,f,i,1); int est0 = Cudd_EstimateCofactor(dd,f,i,0); /* Minimize the size of the larger of the two cofactors. */ int est = (est1 > est0) ? est1 : est0; if (est < min) { min = est; best = i; } scan = cuddT(scan); } #ifdef DD_DEBUG assert(best >= 0 && best < dd->size); #endif Cudd_RecursiveDeref(dd,support); var = Cudd_bddIthVar(dd,best); glocal = Cudd_bddOr(dd,f,var); if (glocal == NULL) { return(0); } cuddRef(glocal); hlocal = Cudd_bddOr(dd,f,Cudd_Not(var)); if (hlocal == NULL) { Cudd_RecursiveDeref(dd,glocal); return(0); } cuddRef(hlocal); if (glocal != DD_ONE(dd)) { if (hlocal != DD_ONE(dd)) { *conjuncts = ABC_ALLOC(DdNode *,2); if (*conjuncts == NULL) { Cudd_RecursiveDeref(dd,glocal); Cudd_RecursiveDeref(dd,hlocal); dd->errorCode = CUDD_MEMORY_OUT; return(0); } (*conjuncts)[0] = glocal; (*conjuncts)[1] = hlocal; return(2); } else { Cudd_RecursiveDeref(dd,hlocal); *conjuncts = ABC_ALLOC(DdNode *,1); if (*conjuncts == NULL) { Cudd_RecursiveDeref(dd,glocal); dd->errorCode = CUDD_MEMORY_OUT; return(0); } (*conjuncts)[0] = glocal; return(1); } } else { Cudd_RecursiveDeref(dd,glocal); *conjuncts = ABC_ALLOC(DdNode *,1); if (*conjuncts == NULL) { Cudd_RecursiveDeref(dd,hlocal); dd->errorCode = CUDD_MEMORY_OUT; return(0); } (*conjuncts)[0] = hlocal; return(1); } } /* end of Cudd_bddVarConjDecomp */ /**Function******************************************************************** Synopsis [Performs two-way disjunctive decomposition of a BDD.] Description [Performs two-way disjunctive decomposition of a BDD according to a variable. If f is the function of the BDD and x is the variable, the decomposition is f*x + f*x'. The variable is chosen so as to balance the sizes of the two disjuncts and to keep them small. Returns the number of disjuncts produced, that is, 2 if successful; 1 if no meaningful decomposition was found; 0 otherwise.] SideEffects [The two disjuncts are returned in an array as side effects. The array is allocated by this function. It is the caller's responsibility to ABC_FREE it. On successful completion, the disjuncts are already referenced. If the function returns 0, the array for the disjuncts is not allocated. If the function returns 1, the only factor equals the function to be decomposed.] SeeAlso [Cudd_bddVarConjDecomp Cudd_bddApproxDisjDecomp Cudd_bddIterDisjDecomp Cudd_bddGenDisjDecomp] ******************************************************************************/ int Cudd_bddVarDisjDecomp( DdManager * dd /* manager */, DdNode * f /* function to be decomposed */, DdNode *** disjuncts /* address of the array of the disjuncts */) { int result, i; result = Cudd_bddVarConjDecomp(dd,Cudd_Not(f),disjuncts); for (i = 0; i < result; i++) { (*disjuncts)[i] = Cudd_Not((*disjuncts)[i]); } return(result); } /* end of Cudd_bddVarDisjDecomp */ /*---------------------------------------------------------------------------*/ /* Definition of internal functions */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Definition of static functions */ /*---------------------------------------------------------------------------*/ /**Function******************************************************************** Synopsis [Get longest distance of node from constant.] Description [Get longest distance of node from constant. Returns the distance of the root from the constant if successful; CUDD_OUT_OF_MEM otherwise.] SideEffects [None] SeeAlso [] ******************************************************************************/ static NodeStat * CreateBotDist( DdNode * node, st_table * distanceTable) { DdNode *N, *Nv, *Nnv; int distance, distanceNv, distanceNnv; NodeStat *nodeStat, *nodeStatNv, *nodeStatNnv; #if 0 if (Cudd_IsConstant(node)) { return(0); } #endif /* Return the entry in the table if found. */ N = Cudd_Regular(node); if (st_lookup(distanceTable, (char *)N, (char **)&nodeStat)) { nodeStat->localRef++; return(nodeStat); } Nv = cuddT(N); Nnv = cuddE(N); Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); /* Recur on the children. */ nodeStatNv = CreateBotDist(Nv, distanceTable); if (nodeStatNv == NULL) return(NULL); distanceNv = nodeStatNv->distance; nodeStatNnv = CreateBotDist(Nnv, distanceTable); if (nodeStatNnv == NULL) return(NULL); distanceNnv = nodeStatNnv->distance; /* Store max distance from constant; note sometimes this distance ** may be to 0. */ distance = (distanceNv > distanceNnv) ? (distanceNv+1) : (distanceNnv + 1); nodeStat = ABC_ALLOC(NodeStat, 1); if (nodeStat == NULL) { return(0); } nodeStat->distance = distance; nodeStat->localRef = 1; if (st_insert(distanceTable, (char *)N, (char *)nodeStat) == ST_OUT_OF_MEM) { return(0); } return(nodeStat); } /* end of CreateBotDist */ /**Function******************************************************************** Synopsis [Count the number of minterms of each node ina a BDD and store it in a hash table.] Description [] SideEffects [None] SeeAlso [] ******************************************************************************/ static double CountMinterms( DdNode * node, double max, st_table * mintermTable, FILE *fp) { DdNode *N, *Nv, *Nnv; double min, minNv, minNnv; double *dummy; N = Cudd_Regular(node); if (cuddIsConstant(N)) { if (node == zero) { return(0); } else { return(max); } } /* Return the entry in the table if found. */ if (st_lookup(mintermTable, (char *)node, (char **)&dummy)) { min = *dummy; return(min); } Nv = cuddT(N); Nnv = cuddE(N); Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); /* Recur on the children. */ minNv = CountMinterms(Nv, max, mintermTable, fp); if (minNv == -1.0) return(-1.0); minNnv = CountMinterms(Nnv, max, mintermTable, fp); if (minNnv == -1.0) return(-1.0); min = minNv / 2.0 + minNnv / 2.0; /* store */ dummy = ABC_ALLOC(double, 1); if (dummy == NULL) return(-1.0); *dummy = min; if (st_insert(mintermTable, (char *)node, (char *)dummy) == ST_OUT_OF_MEM) { (void) fprintf(fp, "st table insert failed\n"); } return(min); } /* end of CountMinterms */ /**Function******************************************************************** Synopsis [Free factors structure] Description [] SideEffects [None] SeeAlso [] ******************************************************************************/ static void ConjunctsFree( DdManager * dd, Conjuncts * factors) { Cudd_RecursiveDeref(dd, factors->g); Cudd_RecursiveDeref(dd, factors->h); ABC_FREE(factors); return; } /* end of ConjunctsFree */ /**Function******************************************************************** Synopsis [Check whether the given pair is in the tables.] Description [.Check whether the given pair is in the tables. gTable and hTable are combined. absence in both is indicated by 0, presence in gTable is indicated by 1, presence in hTable by 2 and presence in both by 3. The values returned by this function are PAIR_ST, PAIR_CR, G_ST, G_CR, H_ST, H_CR, BOTH_G, BOTH_H, NONE. PAIR_ST implies g in gTable and h in hTable PAIR_CR implies g in hTable and h in gTable G_ST implies g in gTable and h not in any table G_CR implies g in hTable and h not in any table H_ST implies h in hTable and g not in any table H_CR implies h in gTable and g not in any table BOTH_G implies both in gTable BOTH_H implies both in hTable NONE implies none in table; ] SideEffects [] SeeAlso [CheckTablesCacheAndReturn CheckInTables] ******************************************************************************/ static int PairInTables( DdNode * g, DdNode * h, st_table * ghTable) { int valueG, valueH, gPresent, hPresent; valueG = valueH = gPresent = hPresent = 0; gPresent = st_lookup_int(ghTable, (char *)Cudd_Regular(g), &valueG); hPresent = st_lookup_int(ghTable, (char *)Cudd_Regular(h), &valueH); if (!gPresent && !hPresent) return(NONE); if (!hPresent) { if (valueG & 1) return(G_ST); if (valueG & 2) return(G_CR); } if (!gPresent) { if (valueH & 1) return(H_CR); if (valueH & 2) return(H_ST); } /* both in tables */ if ((valueG & 1) && (valueH & 2)) return(PAIR_ST); if ((valueG & 2) && (valueH & 1)) return(PAIR_CR); if (valueG & 1) { return(BOTH_G); } else { return(BOTH_H); } } /* end of PairInTables */ /**Function******************************************************************** Synopsis [Check the tables for the existence of pair and return one combination, cache the result.] Description [Check the tables for the existence of pair and return one combination, cache the result. The assumption is that one of the conjuncts is already in the tables.] SideEffects [g and h referenced for the cache] SeeAlso [ZeroCase] ******************************************************************************/ static Conjuncts * CheckTablesCacheAndReturn( DdNode * node, DdNode * g, DdNode * h, st_table * ghTable, st_table * cacheTable) { int pairValue; int value; Conjuncts *factors; value = 0; /* check tables */ pairValue = PairInTables(g, h, ghTable); assert(pairValue != NONE); /* if both dont exist in table, we know one exists(either g or h). * Therefore store the other and proceed */ factors = ABC_ALLOC(Conjuncts, 1); if (factors == NULL) return(NULL); if ((pairValue == BOTH_H) || (pairValue == H_ST)) { if (g != one) { value = 0; if (st_lookup_int(ghTable, (char *)Cudd_Regular(g), &value)) { value |= 1; } else { value = 1; } if (st_insert(ghTable, (char *)Cudd_Regular(g), (char *)(long)value) == ST_OUT_OF_MEM) { return(NULL); } } factors->g = g; factors->h = h; } else if ((pairValue == BOTH_G) || (pairValue == G_ST)) { if (h != one) { value = 0; if (st_lookup_int(ghTable, (char *)Cudd_Regular(h), &value)) { value |= 2; } else { value = 2; } if (st_insert(ghTable, (char *)Cudd_Regular(h), (char *)(long)value) == ST_OUT_OF_MEM) { return(NULL); } } factors->g = g; factors->h = h; } else if (pairValue == H_CR) { if (g != one) { value = 2; if (st_insert(ghTable, (char *)Cudd_Regular(g), (char *)(long)value) == ST_OUT_OF_MEM) { return(NULL); } } factors->g = h; factors->h = g; } else if (pairValue == G_CR) { if (h != one) { value = 1; if (st_insert(ghTable, (char *)Cudd_Regular(h), (char *)(long)value) == ST_OUT_OF_MEM) { return(NULL); } } factors->g = h; factors->h = g; } else if (pairValue == PAIR_CR) { /* pair exists in table */ factors->g = h; factors->h = g; } else if (pairValue == PAIR_ST) { factors->g = g; factors->h = h; } /* cache the result for this node */ if (st_insert(cacheTable, (char *)node, (char *)factors) == ST_OUT_OF_MEM) { ABC_FREE(factors); return(NULL); } return(factors); } /* end of CheckTablesCacheAndReturn */ /**Function******************************************************************** Synopsis [Check the tables for the existence of pair and return one combination, store in cache.] Description [Check the tables for the existence of pair and return one combination, store in cache. The pair that has more pointers to it is picked. An approximation of the number of local pointers is made by taking the reference count of the pairs sent. ] SideEffects [] SeeAlso [ZeroCase BuildConjuncts] ******************************************************************************/ static Conjuncts * PickOnePair( DdNode * node, DdNode * g1, DdNode * h1, DdNode * g2, DdNode * h2, st_table * ghTable, st_table * cacheTable) { int value; Conjuncts *factors; int oneRef, twoRef; factors = ABC_ALLOC(Conjuncts, 1); if (factors == NULL) return(NULL); /* count the number of pointers to pair 2 */ if (h2 == one) { twoRef = (Cudd_Regular(g2))->ref; } else if (g2 == one) { twoRef = (Cudd_Regular(h2))->ref; } else { twoRef = ((Cudd_Regular(g2))->ref + (Cudd_Regular(h2))->ref)/2; } /* count the number of pointers to pair 1 */ if (h1 == one) { oneRef = (Cudd_Regular(g1))->ref; } else if (g1 == one) { oneRef = (Cudd_Regular(h1))->ref; } else { oneRef = ((Cudd_Regular(g1))->ref + (Cudd_Regular(h1))->ref)/2; } /* pick the pair with higher reference count */ if (oneRef >= twoRef) { factors->g = g1; factors->h = h1; } else { factors->g = g2; factors->h = h2; } /* * Store computed factors in respective tables to encourage * recombination. */ if (factors->g != one) { /* insert g in htable */ value = 0; if (st_lookup_int(ghTable, (char *)Cudd_Regular(factors->g), &value)) { if (value == 2) { value |= 1; if (st_insert(ghTable, (char *)Cudd_Regular(factors->g), (char *)(long)value) == ST_OUT_OF_MEM) { ABC_FREE(factors); return(NULL); } } } else { value = 1; if (st_insert(ghTable, (char *)Cudd_Regular(factors->g), (char *)(long)value) == ST_OUT_OF_MEM) { ABC_FREE(factors); return(NULL); } } } if (factors->h != one) { /* insert h in htable */ value = 0; if (st_lookup_int(ghTable, (char *)Cudd_Regular(factors->h), &value)) { if (value == 1) { value |= 2; if (st_insert(ghTable, (char *)Cudd_Regular(factors->h), (char *)(long)value) == ST_OUT_OF_MEM) { ABC_FREE(factors); return(NULL); } } } else { value = 2; if (st_insert(ghTable, (char *)Cudd_Regular(factors->h), (char *)(long)value) == ST_OUT_OF_MEM) { ABC_FREE(factors); return(NULL); } } } /* Store factors in cache table for later use. */ if (st_insert(cacheTable, (char *)node, (char *)factors) == ST_OUT_OF_MEM) { ABC_FREE(factors); return(NULL); } return(factors); } /* end of PickOnePair */ /**Function******************************************************************** Synopsis [Check if the two pairs exist in the table, If any of the conjuncts do exist, store in the cache and return the corresponding pair.] Description [Check if the two pairs exist in the table. If any of the conjuncts do exist, store in the cache and return the corresponding pair.] SideEffects [] SeeAlso [ZeroCase BuildConjuncts] ******************************************************************************/ static Conjuncts * CheckInTables( DdNode * node, DdNode * g1, DdNode * h1, DdNode * g2, DdNode * h2, st_table * ghTable, st_table * cacheTable, int * outOfMem) { int pairValue1, pairValue2; Conjuncts *factors; int value; *outOfMem = 0; /* check existence of pair in table */ pairValue1 = PairInTables(g1, h1, ghTable); pairValue2 = PairInTables(g2, h2, ghTable); /* if none of the 4 exist in the gh tables, return NULL */ if ((pairValue1 == NONE) && (pairValue2 == NONE)) { return NULL; } factors = ABC_ALLOC(Conjuncts, 1); if (factors == NULL) { *outOfMem = 1; return NULL; } /* pairs that already exist in the table get preference. */ if (pairValue1 == PAIR_ST) { factors->g = g1; factors->h = h1; } else if (pairValue2 == PAIR_ST) { factors->g = g2; factors->h = h2; } else if (pairValue1 == PAIR_CR) { factors->g = h1; factors->h = g1; } else if (pairValue2 == PAIR_CR) { factors->g = h2; factors->h = g2; } else if (pairValue1 == G_ST) { /* g exists in the table, h is not found in either table */ factors->g = g1; factors->h = h1; if (h1 != one) { value = 2; if (st_insert(ghTable, (char *)Cudd_Regular(h1), (char *)(long)value) == ST_OUT_OF_MEM) { *outOfMem = 1; ABC_FREE(factors); return(NULL); } } } else if (pairValue1 == BOTH_G) { /* g and h are found in the g table */ factors->g = g1; factors->h = h1; if (h1 != one) { value = 3; if (st_insert(ghTable, (char *)Cudd_Regular(h1), (char *)(long)value) == ST_OUT_OF_MEM) { *outOfMem = 1; ABC_FREE(factors); return(NULL); } } } else if (pairValue1 == H_ST) { /* h exists in the table, g is not found in either table */ factors->g = g1; factors->h = h1; if (g1 != one) { value = 1; if (st_insert(ghTable, (char *)Cudd_Regular(g1), (char *)(long)value) == ST_OUT_OF_MEM) { *outOfMem = 1; ABC_FREE(factors); return(NULL); } } } else if (pairValue1 == BOTH_H) { /* g and h are found in the h table */ factors->g = g1; factors->h = h1; if (g1 != one) { value = 3; if (st_insert(ghTable, (char *)Cudd_Regular(g1), (char *)(long)value) == ST_OUT_OF_MEM) { *outOfMem = 1; ABC_FREE(factors); return(NULL); } } } else if (pairValue2 == G_ST) { /* g exists in the table, h is not found in either table */ factors->g = g2; factors->h = h2; if (h2 != one) { value = 2; if (st_insert(ghTable, (char *)Cudd_Regular(h2), (char *)(long)value) == ST_OUT_OF_MEM) { *outOfMem = 1; ABC_FREE(factors); return(NULL); } } } else if (pairValue2 == BOTH_G) { /* g and h are found in the g table */ factors->g = g2; factors->h = h2; if (h2 != one) { value = 3; if (st_insert(ghTable, (char *)Cudd_Regular(h2), (char *)(long)value) == ST_OUT_OF_MEM) { *outOfMem = 1; ABC_FREE(factors); return(NULL); } } } else if (pairValue2 == H_ST) { /* h exists in the table, g is not found in either table */ factors->g = g2; factors->h = h2; if (g2 != one) { value = 1; if (st_insert(ghTable, (char *)Cudd_Regular(g2), (char *)(long)value) == ST_OUT_OF_MEM) { *outOfMem = 1; ABC_FREE(factors); return(NULL); } } } else if (pairValue2 == BOTH_H) { /* g and h are found in the h table */ factors->g = g2; factors->h = h2; if (g2 != one) { value = 3; if (st_insert(ghTable, (char *)Cudd_Regular(g2), (char *)(long)value) == ST_OUT_OF_MEM) { *outOfMem = 1; ABC_FREE(factors); return(NULL); } } } else if (pairValue1 == G_CR) { /* g found in h table and h in none */ factors->g = h1; factors->h = g1; if (h1 != one) { value = 1; if (st_insert(ghTable, (char *)Cudd_Regular(h1), (char *)(long)value) == ST_OUT_OF_MEM) { *outOfMem = 1; ABC_FREE(factors); return(NULL); } } } else if (pairValue1 == H_CR) { /* h found in g table and g in none */ factors->g = h1; factors->h = g1; if (g1 != one) { value = 2; if (st_insert(ghTable, (char *)Cudd_Regular(g1), (char *)(long)value) == ST_OUT_OF_MEM) { *outOfMem = 1; ABC_FREE(factors); return(NULL); } } } else if (pairValue2 == G_CR) { /* g found in h table and h in none */ factors->g = h2; factors->h = g2; if (h2 != one) { value = 1; if (st_insert(ghTable, (char *)Cudd_Regular(h2), (char *)(long)value) == ST_OUT_OF_MEM) { *outOfMem = 1; ABC_FREE(factors); return(NULL); } } } else if (pairValue2 == H_CR) { /* h found in g table and g in none */ factors->g = h2; factors->h = g2; if (g2 != one) { value = 2; if (st_insert(ghTable, (char *)Cudd_Regular(g2), (char *)(long)value) == ST_OUT_OF_MEM) { *outOfMem = 1; ABC_FREE(factors); return(NULL); } } } /* Store factors in cache table for later use. */ if (st_insert(cacheTable, (char *)node, (char *)factors) == ST_OUT_OF_MEM) { *outOfMem = 1; ABC_FREE(factors); return(NULL); } return factors; } /* end of CheckInTables */ /**Function******************************************************************** Synopsis [If one child is zero, do explicitly what Restrict does or better] Description [If one child is zero, do explicitly what Restrict does or better. First separate a variable and its child in the base case. In case of a cube times a function, separate the cube and function. As a last resort, look in tables.] SideEffects [Frees the BDDs in factorsNv. factorsNv itself is not freed because it is freed above.] SeeAlso [BuildConjuncts] ******************************************************************************/ static Conjuncts * ZeroCase( DdManager * dd, DdNode * node, Conjuncts * factorsNv, st_table * ghTable, st_table * cacheTable, int switched) { int topid; DdNode *g, *h, *g1, *g2, *h1, *h2, *x, *N, *G, *H, *Gv, *Gnv; DdNode *Hv, *Hnv; int value; int outOfMem; Conjuncts *factors; /* get var at this node */ N = Cudd_Regular(node); topid = N->index; x = dd->vars[topid]; x = (switched) ? Cudd_Not(x): x; cuddRef(x); /* Seprate variable and child */ if (factorsNv->g == one) { Cudd_RecursiveDeref(dd, factorsNv->g); factors = ABC_ALLOC(Conjuncts, 1); if (factors == NULL) { dd->errorCode = CUDD_MEMORY_OUT; Cudd_RecursiveDeref(dd, factorsNv->h); Cudd_RecursiveDeref(dd, x); return(NULL); } factors->g = x; factors->h = factorsNv->h; /* cache the result*/ if (st_insert(cacheTable, (char *)node, (char *)factors) == ST_OUT_OF_MEM) { dd->errorCode = CUDD_MEMORY_OUT; Cudd_RecursiveDeref(dd, factorsNv->h); Cudd_RecursiveDeref(dd, x); ABC_FREE(factors); return NULL; } /* store x in g table, the other node is already in the table */ if (st_lookup_int(ghTable, (char *)Cudd_Regular(x), &value)) { value |= 1; } else { value = 1; } if (st_insert(ghTable, (char *)Cudd_Regular(x), (char *)(long)value) == ST_OUT_OF_MEM) { dd->errorCode = CUDD_MEMORY_OUT; return NULL; } return(factors); } /* Seprate variable and child */ if (factorsNv->h == one) { Cudd_RecursiveDeref(dd, factorsNv->h); factors = ABC_ALLOC(Conjuncts, 1); if (factors == NULL) { dd->errorCode = CUDD_MEMORY_OUT; Cudd_RecursiveDeref(dd, factorsNv->g); Cudd_RecursiveDeref(dd, x); return(NULL); } factors->g = factorsNv->g; factors->h = x; /* cache the result. */ if (st_insert(cacheTable, (char *)node, (char *)factors) == ST_OUT_OF_MEM) { dd->errorCode = CUDD_MEMORY_OUT; Cudd_RecursiveDeref(dd, factorsNv->g); Cudd_RecursiveDeref(dd, x); ABC_FREE(factors); return(NULL); } /* store x in h table, the other node is already in the table */ if (st_lookup_int(ghTable, (char *)Cudd_Regular(x), &value)) { value |= 2; } else { value = 2; } if (st_insert(ghTable, (char *)Cudd_Regular(x), (char *)(long)value) == ST_OUT_OF_MEM) { dd->errorCode = CUDD_MEMORY_OUT; return NULL; } return(factors); } G = Cudd_Regular(factorsNv->g); Gv = cuddT(G); Gnv = cuddE(G); Gv = Cudd_NotCond(Gv, Cudd_IsComplement(node)); Gnv = Cudd_NotCond(Gnv, Cudd_IsComplement(node)); /* if the child below is a variable */ if ((Gv == zero) || (Gnv == zero)) { h = factorsNv->h; g = cuddBddAndRecur(dd, x, factorsNv->g); if (g != NULL) cuddRef(g); Cudd_RecursiveDeref(dd, factorsNv->g); Cudd_RecursiveDeref(dd, x); if (g == NULL) { Cudd_RecursiveDeref(dd, factorsNv->h); return NULL; } /* CheckTablesCacheAndReturn responsible for allocating * factors structure., g,h referenced for cache store the */ factors = CheckTablesCacheAndReturn(node, g, h, ghTable, cacheTable); if (factors == NULL) { dd->errorCode = CUDD_MEMORY_OUT; Cudd_RecursiveDeref(dd, g); Cudd_RecursiveDeref(dd, h); } return(factors); } H = Cudd_Regular(factorsNv->h); Hv = cuddT(H); Hnv = cuddE(H); Hv = Cudd_NotCond(Hv, Cudd_IsComplement(node)); Hnv = Cudd_NotCond(Hnv, Cudd_IsComplement(node)); /* if the child below is a variable */ if ((Hv == zero) || (Hnv == zero)) { g = factorsNv->g; h = cuddBddAndRecur(dd, x, factorsNv->h); if (h!= NULL) cuddRef(h); Cudd_RecursiveDeref(dd, factorsNv->h); Cudd_RecursiveDeref(dd, x); if (h == NULL) { Cudd_RecursiveDeref(dd, factorsNv->g); return NULL; } /* CheckTablesCacheAndReturn responsible for allocating * factors structure.g,h referenced for table store */ factors = CheckTablesCacheAndReturn(node, g, h, ghTable, cacheTable); if (factors == NULL) { dd->errorCode = CUDD_MEMORY_OUT; Cudd_RecursiveDeref(dd, g); Cudd_RecursiveDeref(dd, h); } return(factors); } /* build g1 = x*g; h1 = h */ /* build g2 = g; h2 = x*h */ Cudd_RecursiveDeref(dd, x); h1 = factorsNv->h; g1 = cuddBddAndRecur(dd, x, factorsNv->g); if (g1 != NULL) cuddRef(g1); if (g1 == NULL) { Cudd_RecursiveDeref(dd, factorsNv->g); Cudd_RecursiveDeref(dd, factorsNv->h); return NULL; } g2 = factorsNv->g; h2 = cuddBddAndRecur(dd, x, factorsNv->h); if (h2 != NULL) cuddRef(h2); if (h2 == NULL) { Cudd_RecursiveDeref(dd, factorsNv->h); Cudd_RecursiveDeref(dd, factorsNv->g); return NULL; } /* check whether any pair is in tables */ factors = CheckInTables(node, g1, h1, g2, h2, ghTable, cacheTable, &outOfMem); if (outOfMem) { dd->errorCode = CUDD_MEMORY_OUT; Cudd_RecursiveDeref(dd, g1); Cudd_RecursiveDeref(dd, h1); Cudd_RecursiveDeref(dd, g2); Cudd_RecursiveDeref(dd, h2); return NULL; } if (factors != NULL) { if ((factors->g == g1) || (factors->g == h1)) { Cudd_RecursiveDeref(dd, g2); Cudd_RecursiveDeref(dd, h2); } else { Cudd_RecursiveDeref(dd, g1); Cudd_RecursiveDeref(dd, h1); } return factors; } /* check for each pair in tables and choose one */ factors = PickOnePair(node,g1, h1, g2, h2, ghTable, cacheTable); if (factors == NULL) { dd->errorCode = CUDD_MEMORY_OUT; Cudd_RecursiveDeref(dd, g1); Cudd_RecursiveDeref(dd, h1); Cudd_RecursiveDeref(dd, g2); Cudd_RecursiveDeref(dd, h2); } else { /* now ABC_FREE what was created and not used */ if ((factors->g == g1) || (factors->g == h1)) { Cudd_RecursiveDeref(dd, g2); Cudd_RecursiveDeref(dd, h2); } else { Cudd_RecursiveDeref(dd, g1); Cudd_RecursiveDeref(dd, h1); } } return(factors); } /* end of ZeroCase */ /**Function******************************************************************** Synopsis [Builds the conjuncts recursively, bottom up.] Description [Builds the conjuncts recursively, bottom up. Constants are returned as (f, f). The cache is checked for previously computed result. The decomposition points are determined by the local reference count of this node and the longest distance from the constant. At the decomposition point, the factors returned are (f, 1). Recur on the two children. The order is determined by the heavier branch. Combine the factors of the two children and pick the one that already occurs in the gh table. Occurence in g is indicated by value 1, occurence in h by 2, occurence in both 3.] SideEffects [] SeeAlso [cuddConjunctsAux] ******************************************************************************/ static Conjuncts * BuildConjuncts( DdManager * dd, DdNode * node, st_table * distanceTable, st_table * cacheTable, int approxDistance, int maxLocalRef, st_table * ghTable, st_table * mintermTable) { int topid, distance; Conjuncts *factorsNv = NULL, *factorsNnv = NULL; // Suppress "might be used uninitialized" Conjuncts *factors; Conjuncts *dummy; DdNode *N, *Nv, *Nnv, *temp, *g1, *g2, *h1, *h2, *topv; double minNv = 0.0, minNnv = 0.0; double *doubleDummy; int switched =0; int outOfMem; int freeNv = 0, freeNnv = 0, freeTemp; NodeStat *nodeStat; int value; /* if f is constant, return (f,f) */ if (Cudd_IsConstant(node)) { factors = ABC_ALLOC(Conjuncts, 1); if (factors == NULL) { dd->errorCode = CUDD_MEMORY_OUT; return(NULL); } factors->g = node; factors->h = node; return(FactorsComplement(factors)); } /* If result (a pair of conjuncts) in cache, return the factors. */ if (st_lookup(cacheTable, (char *)node, (char **)&dummy)) { factors = dummy; return(factors); } /* check distance and local reference count of this node */ N = Cudd_Regular(node); if (!st_lookup(distanceTable, (char *)N, (char **)&nodeStat)) { (void) fprintf(dd->err, "Not in table, Something wrong\n"); dd->errorCode = CUDD_INTERNAL_ERROR; return(NULL); } distance = nodeStat->distance; /* at or below decomposition point, return (f, 1) */ if (((nodeStat->localRef > maxLocalRef*2/3) && (distance < approxDistance*2/3)) || (distance <= approxDistance/4)) { factors = ABC_ALLOC(Conjuncts, 1); if (factors == NULL) { dd->errorCode = CUDD_MEMORY_OUT; return(NULL); } /* alternate assigning (f,1) */ value = 0; if (st_lookup_int(ghTable, (char *)Cudd_Regular(node), &value)) { if (value == 3) { if (!lastTimeG) { factors->g = node; factors->h = one; lastTimeG = 1; } else { factors->g = one; factors->h = node; lastTimeG = 0; } } else if (value == 1) { factors->g = node; factors->h = one; } else { factors->g = one; factors->h = node; } } else if (!lastTimeG) { factors->g = node; factors->h = one; lastTimeG = 1; value = 1; if (st_insert(ghTable, (char *)Cudd_Regular(node), (char *)(long)value) == ST_OUT_OF_MEM) { dd->errorCode = CUDD_MEMORY_OUT; ABC_FREE(factors); return NULL; } } else { factors->g = one; factors->h = node; lastTimeG = 0; value = 2; if (st_insert(ghTable, (char *)Cudd_Regular(node), (char *)(long)value) == ST_OUT_OF_MEM) { dd->errorCode = CUDD_MEMORY_OUT; ABC_FREE(factors); return NULL; } } return(FactorsComplement(factors)); } /* get the children and recur */ Nv = cuddT(N); Nnv = cuddE(N); Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); /* Choose which subproblem to solve first based on the number of * minterms. We go first where there are more minterms. */ if (!Cudd_IsConstant(Nv)) { if (!st_lookup(mintermTable, (char *)Nv, (char **)&doubleDummy)) { (void) fprintf(dd->err, "Not in table: Something wrong\n"); dd->errorCode = CUDD_INTERNAL_ERROR; return(NULL); } minNv = *doubleDummy; } if (!Cudd_IsConstant(Nnv)) { if (!st_lookup(mintermTable, (char *)Nnv, (char **)&doubleDummy)) { (void) fprintf(dd->err, "Not in table: Something wrong\n"); dd->errorCode = CUDD_INTERNAL_ERROR; return(NULL); } minNnv = *doubleDummy; } if (minNv < minNnv) { temp = Nv; Nv = Nnv; Nnv = temp; switched = 1; } /* build gt, ht recursively */ if (Nv != zero) { factorsNv = BuildConjuncts(dd, Nv, distanceTable, cacheTable, approxDistance, maxLocalRef, ghTable, mintermTable); if (factorsNv == NULL) return(NULL); freeNv = FactorsNotStored(factorsNv); factorsNv = (freeNv) ? FactorsUncomplement(factorsNv) : factorsNv; cuddRef(factorsNv->g); cuddRef(factorsNv->h); /* Deal with the zero case */ if (Nnv == zero) { /* is responsible for freeing factorsNv */ factors = ZeroCase(dd, node, factorsNv, ghTable, cacheTable, switched); if (freeNv) ABC_FREE(factorsNv); return(factors); } } /* build ge, he recursively */ if (Nnv != zero) { factorsNnv = BuildConjuncts(dd, Nnv, distanceTable, cacheTable, approxDistance, maxLocalRef, ghTable, mintermTable); if (factorsNnv == NULL) { Cudd_RecursiveDeref(dd, factorsNv->g); Cudd_RecursiveDeref(dd, factorsNv->h); if (freeNv) ABC_FREE(factorsNv); return(NULL); } freeNnv = FactorsNotStored(factorsNnv); factorsNnv = (freeNnv) ? FactorsUncomplement(factorsNnv) : factorsNnv; cuddRef(factorsNnv->g); cuddRef(factorsNnv->h); /* Deal with the zero case */ if (Nv == zero) { /* is responsible for freeing factorsNv */ factors = ZeroCase(dd, node, factorsNnv, ghTable, cacheTable, switched); if (freeNnv) ABC_FREE(factorsNnv); return(factors); } } /* construct the 2 pairs */ /* g1 = x*gt + x'*ge; h1 = x*ht + x'*he; */ /* g2 = x*gt + x'*he; h2 = x*ht + x'*ge */ if (switched) { factors = factorsNnv; factorsNnv = factorsNv; factorsNv = factors; freeTemp = freeNv; freeNv = freeNnv; freeNnv = freeTemp; } /* Build the factors for this node. */ topid = N->index; topv = dd->vars[topid]; g1 = cuddBddIteRecur(dd, topv, factorsNv->g, factorsNnv->g); if (g1 == NULL) { Cudd_RecursiveDeref(dd, factorsNv->g); Cudd_RecursiveDeref(dd, factorsNv->h); Cudd_RecursiveDeref(dd, factorsNnv->g); Cudd_RecursiveDeref(dd, factorsNnv->h); if (freeNv) ABC_FREE(factorsNv); if (freeNnv) ABC_FREE(factorsNnv); return(NULL); } cuddRef(g1); h1 = cuddBddIteRecur(dd, topv, factorsNv->h, factorsNnv->h); if (h1 == NULL) { Cudd_RecursiveDeref(dd, factorsNv->g); Cudd_RecursiveDeref(dd, factorsNv->h); Cudd_RecursiveDeref(dd, factorsNnv->g); Cudd_RecursiveDeref(dd, factorsNnv->h); Cudd_RecursiveDeref(dd, g1); if (freeNv) ABC_FREE(factorsNv); if (freeNnv) ABC_FREE(factorsNnv); return(NULL); } cuddRef(h1); g2 = cuddBddIteRecur(dd, topv, factorsNv->g, factorsNnv->h); if (g2 == NULL) { Cudd_RecursiveDeref(dd, factorsNv->h); Cudd_RecursiveDeref(dd, factorsNv->g); Cudd_RecursiveDeref(dd, factorsNnv->g); Cudd_RecursiveDeref(dd, factorsNnv->h); Cudd_RecursiveDeref(dd, g1); Cudd_RecursiveDeref(dd, h1); if (freeNv) ABC_FREE(factorsNv); if (freeNnv) ABC_FREE(factorsNnv); return(NULL); } cuddRef(g2); Cudd_RecursiveDeref(dd, factorsNv->g); Cudd_RecursiveDeref(dd, factorsNnv->h); h2 = cuddBddIteRecur(dd, topv, factorsNv->h, factorsNnv->g); if (h2 == NULL) { Cudd_RecursiveDeref(dd, factorsNv->g); Cudd_RecursiveDeref(dd, factorsNv->h); Cudd_RecursiveDeref(dd, factorsNnv->g); Cudd_RecursiveDeref(dd, factorsNnv->h); Cudd_RecursiveDeref(dd, g1); Cudd_RecursiveDeref(dd, h1); Cudd_RecursiveDeref(dd, g2); if (freeNv) ABC_FREE(factorsNv); if (freeNnv) ABC_FREE(factorsNnv); return(NULL); } cuddRef(h2); Cudd_RecursiveDeref(dd, factorsNv->h); Cudd_RecursiveDeref(dd, factorsNnv->g); if (freeNv) ABC_FREE(factorsNv); if (freeNnv) ABC_FREE(factorsNnv); /* check for each pair in tables and choose one */ factors = CheckInTables(node, g1, h1, g2, h2, ghTable, cacheTable, &outOfMem); if (outOfMem) { dd->errorCode = CUDD_MEMORY_OUT; Cudd_RecursiveDeref(dd, g1); Cudd_RecursiveDeref(dd, h1); Cudd_RecursiveDeref(dd, g2); Cudd_RecursiveDeref(dd, h2); return(NULL); } if (factors != NULL) { if ((factors->g == g1) || (factors->g == h1)) { Cudd_RecursiveDeref(dd, g2); Cudd_RecursiveDeref(dd, h2); } else { Cudd_RecursiveDeref(dd, g1); Cudd_RecursiveDeref(dd, h1); } return(factors); } /* if not in tables, pick one pair */ factors = PickOnePair(node,g1, h1, g2, h2, ghTable, cacheTable); if (factors == NULL) { dd->errorCode = CUDD_MEMORY_OUT; Cudd_RecursiveDeref(dd, g1); Cudd_RecursiveDeref(dd, h1); Cudd_RecursiveDeref(dd, g2); Cudd_RecursiveDeref(dd, h2); } else { /* now ABC_FREE what was created and not used */ if ((factors->g == g1) || (factors->g == h1)) { Cudd_RecursiveDeref(dd, g2); Cudd_RecursiveDeref(dd, h2); } else { Cudd_RecursiveDeref(dd, g1); Cudd_RecursiveDeref(dd, h1); } } return(factors); } /* end of BuildConjuncts */ /**Function******************************************************************** Synopsis [Procedure to compute two conjunctive factors of f and place in *c1 and *c2.] Description [Procedure to compute two conjunctive factors of f and place in *c1 and *c2. Sets up the required data - table of distances from the constant and local reference count. Also minterm table. ] SideEffects [] SeeAlso [] ******************************************************************************/ static int cuddConjunctsAux( DdManager * dd, DdNode * f, DdNode ** c1, DdNode ** c2) { st_table *distanceTable = NULL; st_table *cacheTable = NULL; st_table *mintermTable = NULL; st_table *ghTable = NULL; st_generator *stGen; char *key, *value; Conjuncts *factors; int distance, approxDistance; double max, minterms; int freeFactors; NodeStat *nodeStat; int maxLocalRef; /* initialize */ *c1 = NULL; *c2 = NULL; /* initialize distances table */ distanceTable = st_init_table(st_ptrcmp,st_ptrhash); if (distanceTable == NULL) goto outOfMem; /* make the entry for the constant */ nodeStat = ABC_ALLOC(NodeStat, 1); if (nodeStat == NULL) goto outOfMem; nodeStat->distance = 0; nodeStat->localRef = 1; if (st_insert(distanceTable, (char *)one, (char *)nodeStat) == ST_OUT_OF_MEM) { goto outOfMem; } /* Count node distances from constant. */ nodeStat = CreateBotDist(f, distanceTable); if (nodeStat == NULL) goto outOfMem; /* set the distance for the decomposition points */ approxDistance = (DEPTH < nodeStat->distance) ? nodeStat->distance : DEPTH; distance = nodeStat->distance; if (distance < approxDistance) { /* Too small to bother. */ *c1 = f; *c2 = DD_ONE(dd); cuddRef(*c1); cuddRef(*c2); stGen = st_init_gen(distanceTable); if (stGen == NULL) goto outOfMem; while(st_gen(stGen, (char **)&key, (char **)&value)) { ABC_FREE(value); } st_free_gen(stGen); stGen = NULL; st_free_table(distanceTable); return(1); } /* record the maximum local reference count */ maxLocalRef = 0; stGen = st_init_gen(distanceTable); if (stGen == NULL) goto outOfMem; while(st_gen(stGen, (char **)&key, (char **)&value)) { nodeStat = (NodeStat *)value; maxLocalRef = (nodeStat->localRef > maxLocalRef) ? nodeStat->localRef : maxLocalRef; } st_free_gen(stGen); stGen = NULL; /* Count minterms for each node. */ max = pow(2.0, (double)Cudd_SupportSize(dd,f)); /* potential overflow */ mintermTable = st_init_table(st_ptrcmp,st_ptrhash); if (mintermTable == NULL) goto outOfMem; minterms = CountMinterms(f, max, mintermTable, dd->err); if (minterms == -1.0) goto outOfMem; lastTimeG = Cudd_Random() & 1; cacheTable = st_init_table(st_ptrcmp, st_ptrhash); if (cacheTable == NULL) goto outOfMem; ghTable = st_init_table(st_ptrcmp, st_ptrhash); if (ghTable == NULL) goto outOfMem; /* Build conjuncts. */ factors = BuildConjuncts(dd, f, distanceTable, cacheTable, approxDistance, maxLocalRef, ghTable, mintermTable); if (factors == NULL) goto outOfMem; /* ABC_FREE up tables */ stGen = st_init_gen(distanceTable); if (stGen == NULL) goto outOfMem; while(st_gen(stGen, (char **)&key, (char **)&value)) { ABC_FREE(value); } st_free_gen(stGen); stGen = NULL; st_free_table(distanceTable); distanceTable = NULL; st_free_table(ghTable); ghTable = NULL; stGen = st_init_gen(mintermTable); if (stGen == NULL) goto outOfMem; while(st_gen(stGen, (char **)&key, (char **)&value)) { ABC_FREE(value); } st_free_gen(stGen); stGen = NULL; st_free_table(mintermTable); mintermTable = NULL; freeFactors = FactorsNotStored(factors); factors = (freeFactors) ? FactorsUncomplement(factors) : factors; if (factors != NULL) { *c1 = factors->g; *c2 = factors->h; cuddRef(*c1); cuddRef(*c2); if (freeFactors) ABC_FREE(factors); #if 0 if ((*c1 == f) && (!Cudd_IsConstant(f))) { assert(*c2 == one); } if ((*c2 == f) && (!Cudd_IsConstant(f))) { assert(*c1 == one); } if ((*c1 != one) && (!Cudd_IsConstant(f))) { assert(!Cudd_bddLeq(dd, *c2, *c1)); } if ((*c2 != one) && (!Cudd_IsConstant(f))) { assert(!Cudd_bddLeq(dd, *c1, *c2)); } #endif } stGen = st_init_gen(cacheTable); if (stGen == NULL) goto outOfMem; while(st_gen(stGen, (char **)&key, (char **)&value)) { ConjunctsFree(dd, (Conjuncts *)value); } st_free_gen(stGen); stGen = NULL; st_free_table(cacheTable); cacheTable = NULL; return(1); outOfMem: if (distanceTable != NULL) { stGen = st_init_gen(distanceTable); if (stGen == NULL) goto outOfMem; while(st_gen(stGen, (char **)&key, (char **)&value)) { ABC_FREE(value); } st_free_gen(stGen); stGen = NULL; st_free_table(distanceTable); distanceTable = NULL; } if (mintermTable != NULL) { stGen = st_init_gen(mintermTable); if (stGen == NULL) goto outOfMem; while(st_gen(stGen, (char **)&key, (char **)&value)) { ABC_FREE(value); } st_free_gen(stGen); stGen = NULL; st_free_table(mintermTable); mintermTable = NULL; } if (ghTable != NULL) st_free_table(ghTable); if (cacheTable != NULL) { stGen = st_init_gen(cacheTable); if (stGen == NULL) goto outOfMem; while(st_gen(stGen, (char **)&key, (char **)&value)) { ConjunctsFree(dd, (Conjuncts *)value); } st_free_gen(stGen); stGen = NULL; st_free_table(cacheTable); cacheTable = NULL; } dd->errorCode = CUDD_MEMORY_OUT; return(0); } /* end of cuddConjunctsAux */