/**CFile*********************************************************************** FileName [cuddRead.c] PackageName [cudd] Synopsis [Functions to read in a matrix] Description [External procedures included in this module:
Cudd_addRead produces an ADD that depends on two sets of variables: x and y. The x variables (x\[0\] ... x\[nx-1\]) encode the row index and the y variables (y\[0\] ... y\[ny-1\]) encode the column index. x\[0\] and y\[0\] are the most significant bits in the indices. The variables may already exist or may be created by the function. The index of x\[i\] is bx+i*sx, and the index of y\[i\] is by+i*sy.
On input, nx and ny hold the numbers of row and column variables already in existence. On output, they hold the numbers of row and column variables actually used by the matrix. When Cudd_addRead creates the variable arrays, the index of x\[i\] is bx+i*sx, and the index of y\[i\] is by+i*sy. When some variables already exist Cudd_addRead expects the indices of the existing x variables to be bx+i*sx, and the indices of the existing y variables to be by+i*sy.
m and n are set to the numbers of rows and columns of the matrix. Their values on input are immaterial. The ADD for the sparse matrix is returned in E, and its reference count is > 0. Cudd_addRead returns 1 in case of success; 0 otherwise.] SideEffects [nx and ny are set to the numbers of row and column variables. m and n are set to the numbers of rows and columns. x and y are possibly extended to represent the array of row and column variables. Similarly for xn and yn_, which hold on return from Cudd_addRead the complements of the row and column variables.] SeeAlso [Cudd_addHarwell Cudd_bddRead] ******************************************************************************/ int Cudd_addRead( FILE * fp /* input file pointer */, DdManager * dd /* DD manager */, DdNode ** E /* characteristic function of the graph */, DdNode *** x /* array of row variables */, DdNode *** y /* array of column variables */, DdNode *** xn /* array of complemented row variables */, DdNode *** yn_ /* array of complemented column variables */, int * nx /* number or row variables */, int * ny /* number or column variables */, int * m /* number of rows */, int * n /* number of columns */, int bx /* first index of row variables */, int sx /* step of row variables */, int by /* first index of column variables */, int sy /* step of column variables */) { DdNode *one, *zero; DdNode *w, *neW; DdNode *minterm1; int u, v, err, i, nv; int lnx, lny; CUDD_VALUE_TYPE val; DdNode **lx, **ly, **lxn, **lyn; one = DD_ONE(dd); zero = DD_ZERO(dd); err = fscanf(fp, "%d %d", &u, &v); if (err == EOF) { return(0); } else if (err != 2) { return(0); } *m = u; /* Compute the number of x variables. */ lx = *x; lxn = *xn; u--; /* row and column numbers start from 0 */ for (lnx=0; u > 0; lnx++) { u >>= 1; } /* Here we rely on the fact that REALLOC of a null pointer is ** translates to an ALLOC. */ if (lnx > *nx) { *x = lx = ABC_REALLOC(DdNode *, *x, lnx); if (lx == NULL) { dd->errorCode = CUDD_MEMORY_OUT; return(0); } *xn = lxn = ABC_REALLOC(DdNode *, *xn, lnx); if (lxn == NULL) { dd->errorCode = CUDD_MEMORY_OUT; return(0); } } *n = v; /* Compute the number of y variables. */ ly = *y; lyn = *yn_; v--; /* row and column numbers start from 0 */ for (lny=0; v > 0; lny++) { v >>= 1; } /* Here we rely on the fact that REALLOC of a null pointer is ** translates to an ALLOC. */ if (lny > *ny) { *y = ly = ABC_REALLOC(DdNode *, *y, lny); if (ly == NULL) { dd->errorCode = CUDD_MEMORY_OUT; return(0); } *yn_ = lyn = ABC_REALLOC(DdNode *, *yn_, lny); if (lyn == NULL) { dd->errorCode = CUDD_MEMORY_OUT; return(0); } } /* Create all new variables. */ for (i = *nx, nv = bx + (*nx) * sx; i < lnx; i++, nv += sx) { do { dd->reordered = 0; lx[i] = cuddUniqueInter(dd, nv, one, zero); } while (dd->reordered == 1); if (lx[i] == NULL) return(0); cuddRef(lx[i]); do { dd->reordered = 0; lxn[i] = cuddUniqueInter(dd, nv, zero, one); } while (dd->reordered == 1); if (lxn[i] == NULL) return(0); cuddRef(lxn[i]); } for (i = *ny, nv = by + (*ny) * sy; i < lny; i++, nv += sy) { do { dd->reordered = 0; ly[i] = cuddUniqueInter(dd, nv, one, zero); } while (dd->reordered == 1); if (ly[i] == NULL) return(0); cuddRef(ly[i]); do { dd->reordered = 0; lyn[i] = cuddUniqueInter(dd, nv, zero, one); } while (dd->reordered == 1); if (lyn[i] == NULL) return(0); cuddRef(lyn[i]); } *nx = lnx; *ny = lny; *E = dd->background; /* this call will never cause reordering */ cuddRef(*E); while (! feof(fp)) { err = fscanf(fp, "%d %d %lf", &u, &v, &val); if (err == EOF) { break; } else if (err != 3) { return(0); } else if (u >= *m || v >= *n || u < 0 || v < 0) { return(0); } minterm1 = one; cuddRef(minterm1); /* Build minterm1 corresponding to this arc */ for (i = lnx - 1; i>=0; i--) { if (u & 1) { w = Cudd_addApply(dd, Cudd_addTimes, minterm1, lx[i]); } else { w = Cudd_addApply(dd, Cudd_addTimes, minterm1, lxn[i]); } if (w == NULL) { Cudd_RecursiveDeref(dd, minterm1); return(0); } cuddRef(w); Cudd_RecursiveDeref(dd, minterm1); minterm1 = w; u >>= 1; } for (i = lny - 1; i>=0; i--) { if (v & 1) { w = Cudd_addApply(dd, Cudd_addTimes, minterm1, ly[i]); } else { w = Cudd_addApply(dd, Cudd_addTimes, minterm1, lyn[i]); } if (w == NULL) { Cudd_RecursiveDeref(dd, minterm1); return(0); } cuddRef(w); Cudd_RecursiveDeref(dd, minterm1); minterm1 = w; v >>= 1; } /* Create new constant node if necessary. ** This call will never cause reordering. */ neW = cuddUniqueConst(dd, val); if (neW == NULL) { Cudd_RecursiveDeref(dd, minterm1); return(0); } cuddRef(neW); w = Cudd_addIte(dd, minterm1, neW, *E); if (w == NULL) { Cudd_RecursiveDeref(dd, minterm1); Cudd_RecursiveDeref(dd, neW); return(0); } cuddRef(w); Cudd_RecursiveDeref(dd, minterm1); Cudd_RecursiveDeref(dd, neW); Cudd_RecursiveDeref(dd, *E); *E = w; } return(1); } /* end of Cudd_addRead */ /**Function******************************************************************** Synopsis [Reads in a graph (without labels) given as a list of arcs.] Description [Reads in a graph (without labels) given as an adjacency matrix. The first line of the input contains the numbers of rows and columns of the adjacency matrix. The remaining lines contain the arcs of the graph, one per line. Each arc is described by two integers, i.e., the row and column number, or the indices of the two endpoints. Cudd_bddRead produces a BDD that depends on two sets of variables: x and y. The x variables (x\[0\] ... x\[nx-1\]) encode the row index and the y variables (y\[0\] ... y\[ny-1\]) encode the column index. x\[0\] and y\[0\] are the most significant bits in the indices. The variables may already exist or may be created by the function. The index of x\[i\] is bx+i*sx, and the index of y\[i\] is by+i*sy.
On input, nx and ny hold the numbers of row and column variables already in existence. On output, they hold the numbers of row and column variables actually used by the matrix. When Cudd_bddRead creates the variable arrays, the index of x\[i\] is bx+i*sx, and the index of y\[i\] is by+i*sy. When some variables already exist, Cudd_bddRead expects the indices of the existing x variables to be bx+i*sx, and the indices of the existing y variables to be by+i*sy.
m and n are set to the numbers of rows and columns of the matrix. Their values on input are immaterial. The BDD for the graph is returned in E, and its reference count is > 0. Cudd_bddRead returns 1 in case of success; 0 otherwise.] SideEffects [nx and ny are set to the numbers of row and column variables. m and n are set to the numbers of rows and columns. x and y are possibly extended to represent the array of row and column variables.] SeeAlso [Cudd_addHarwell Cudd_addRead] ******************************************************************************/ int Cudd_bddRead( FILE * fp /* input file pointer */, DdManager * dd /* DD manager */, DdNode ** E /* characteristic function of the graph */, DdNode *** x /* array of row variables */, DdNode *** y /* array of column variables */, int * nx /* number or row variables */, int * ny /* number or column variables */, int * m /* number of rows */, int * n /* number of columns */, int bx /* first index of row variables */, int sx /* step of row variables */, int by /* first index of column variables */, int sy /* step of column variables */) { DdNode *one, *zero; DdNode *w; DdNode *minterm1; int u, v, err, i, nv; int lnx, lny; DdNode **lx, **ly; one = DD_ONE(dd); zero = Cudd_Not(one); err = fscanf(fp, "%d %d", &u, &v); if (err == EOF) { return(0); } else if (err != 2) { return(0); } *m = u; /* Compute the number of x variables. */ lx = *x; u--; /* row and column numbers start from 0 */ for (lnx=0; u > 0; lnx++) { u >>= 1; } if (lnx > *nx) { *x = lx = ABC_REALLOC(DdNode *, *x, lnx); if (lx == NULL) { dd->errorCode = CUDD_MEMORY_OUT; return(0); } } *n = v; /* Compute the number of y variables. */ ly = *y; v--; /* row and column numbers start from 0 */ for (lny=0; v > 0; lny++) { v >>= 1; } if (lny > *ny) { *y = ly = ABC_REALLOC(DdNode *, *y, lny); if (ly == NULL) { dd->errorCode = CUDD_MEMORY_OUT; return(0); } } /* Create all new variables. */ for (i = *nx, nv = bx + (*nx) * sx; i < lnx; i++, nv += sx) { do { dd->reordered = 0; lx[i] = cuddUniqueInter(dd, nv, one, zero); } while (dd->reordered == 1); if (lx[i] == NULL) return(0); cuddRef(lx[i]); } for (i = *ny, nv = by + (*ny) * sy; i < lny; i++, nv += sy) { do { dd->reordered = 0; ly[i] = cuddUniqueInter(dd, nv, one, zero); } while (dd->reordered == 1); if (ly[i] == NULL) return(0); cuddRef(ly[i]); } *nx = lnx; *ny = lny; *E = zero; /* this call will never cause reordering */ cuddRef(*E); while (! feof(fp)) { err = fscanf(fp, "%d %d", &u, &v); if (err == EOF) { break; } else if (err != 2) { return(0); } else if (u >= *m || v >= *n || u < 0 || v < 0) { return(0); } minterm1 = one; cuddRef(minterm1); /* Build minterm1 corresponding to this arc. */ for (i = lnx - 1; i>=0; i--) { if (u & 1) { w = Cudd_bddAnd(dd, minterm1, lx[i]); } else { w = Cudd_bddAnd(dd, minterm1, Cudd_Not(lx[i])); } if (w == NULL) { Cudd_RecursiveDeref(dd, minterm1); return(0); } cuddRef(w); Cudd_RecursiveDeref(dd,minterm1); minterm1 = w; u >>= 1; } for (i = lny - 1; i>=0; i--) { if (v & 1) { w = Cudd_bddAnd(dd, minterm1, ly[i]); } else { w = Cudd_bddAnd(dd, minterm1, Cudd_Not(ly[i])); } if (w == NULL) { Cudd_RecursiveDeref(dd, minterm1); return(0); } cuddRef(w); Cudd_RecursiveDeref(dd, minterm1); minterm1 = w; v >>= 1; } w = Cudd_bddAnd(dd, Cudd_Not(minterm1), Cudd_Not(*E)); if (w == NULL) { Cudd_RecursiveDeref(dd, minterm1); return(0); } w = Cudd_Not(w); cuddRef(w); Cudd_RecursiveDeref(dd, minterm1); Cudd_RecursiveDeref(dd, *E); *E = w; } return(1); } /* end of Cudd_bddRead */ /*---------------------------------------------------------------------------*/ /* Definition of internal functions */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Definition of static functions */ /*---------------------------------------------------------------------------*/ ABC_NAMESPACE_IMPL_END