/**CFile*********************************************************************** FileName [cuddSymmetry.c] PackageName [cudd] Synopsis [Functions for symmetry-based variable reordering.] Description [External procedures included in this file: Internal procedures included in this module: Static procedures included in this module: ] Author [Shipra Panda, Fabio Somenzi] Copyright [This file was created at the University of Colorado at Boulder. The University of Colorado at Boulder makes no warranty about the suitability of this software for any purpose. It is presented on an AS IS basis.] ******************************************************************************/ #include "util_hack.h" #include "cuddInt.h" /*---------------------------------------------------------------------------*/ /* Constant declarations */ /*---------------------------------------------------------------------------*/ #define MV_OOM (Move *)1 /*---------------------------------------------------------------------------*/ /* Stucture declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Type declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Variable declarations */ /*---------------------------------------------------------------------------*/ #ifndef lint static char rcsid[] DD_UNUSED = "$Id: cuddSymmetry.c,v 1.1.1.1 2003/02/24 22:23:53 wjiang Exp $"; #endif static int *entry; extern int ddTotalNumberSwapping; #ifdef DD_STATS extern int ddTotalNISwaps; #endif /*---------------------------------------------------------------------------*/ /* Macro declarations */ /*---------------------------------------------------------------------------*/ /**AutomaticStart*************************************************************/ /*---------------------------------------------------------------------------*/ /* Static function prototypes */ /*---------------------------------------------------------------------------*/ static int ddSymmUniqueCompare ARGS((int *ptrX, int *ptrY)); static int ddSymmSiftingAux ARGS((DdManager *table, int x, int xLow, int xHigh)); static int ddSymmSiftingConvAux ARGS((DdManager *table, int x, int xLow, int xHigh)); static Move * ddSymmSiftingUp ARGS((DdManager *table, int y, int xLow)); static Move * ddSymmSiftingDown ARGS((DdManager *table, int x, int xHigh)); static int ddSymmGroupMove ARGS((DdManager *table, int x, int y, Move **moves)); static int ddSymmGroupMoveBackward ARGS((DdManager *table, int x, int y)); static int ddSymmSiftingBackward ARGS((DdManager *table, Move *moves, int size)); static void ddSymmSummary ARGS((DdManager *table, int lower, int upper, int *symvars, int *symgroups)); /**AutomaticEnd***************************************************************/ /*---------------------------------------------------------------------------*/ /* Definition of exported functions */ /*---------------------------------------------------------------------------*/ /**Function******************************************************************** Synopsis [Prints statistics on symmetric variables.] Description [] SideEffects [None] ******************************************************************************/ void Cudd_SymmProfile( DdManager * table, int lower, int upper) { int i,x,gbot; int TotalSymm = 0; int TotalSymmGroups = 0; for (i = lower; i <= upper; i++) { if (table->subtables[i].next != (unsigned) i) { x = i; (void) fprintf(table->out,"Group:"); do { (void) fprintf(table->out," %d",table->invperm[x]); TotalSymm++; gbot = x; x = table->subtables[x].next; } while (x != i); TotalSymmGroups++; #ifdef DD_DEBUG assert(table->subtables[gbot].next == (unsigned) i); #endif i = gbot; (void) fprintf(table->out,"\n"); } } (void) fprintf(table->out,"Total Symmetric = %d\n",TotalSymm); (void) fprintf(table->out,"Total Groups = %d\n",TotalSymmGroups); } /* end of Cudd_SymmProfile */ /*---------------------------------------------------------------------------*/ /* Definition of internal functions */ /*---------------------------------------------------------------------------*/ /**Function******************************************************************** Synopsis [Checks for symmetry of x and y.] Description [Checks for symmetry of x and y. Ignores projection functions, unless they are isolated. Returns 1 in case of symmetry; 0 otherwise.] SideEffects [None] ******************************************************************************/ int cuddSymmCheck( DdManager * table, int x, int y) { DdNode *f,*f0,*f1,*f01,*f00,*f11,*f10; int comple; /* f0 is complemented */ int xsymmy; /* x and y may be positively symmetric */ int xsymmyp; /* x and y may be negatively symmetric */ int arccount; /* number of arcs from layer x to layer y */ int TotalRefCount; /* total reference count of layer y minus 1 */ int yindex; int i; DdNodePtr *list; int slots; DdNode *sentinel = &(table->sentinel); #ifdef DD_DEBUG int xindex; #endif /* Checks that x and y are not the projection functions. ** For x it is sufficient to check whether there is only one ** node; indeed, if there is one node, it is the projection function ** and it cannot point to y. Hence, if y isn't just the projection ** function, it has one arc coming from a layer different from x. */ if (table->subtables[x].keys == 1) { return(0); } yindex = table->invperm[y]; if (table->subtables[y].keys == 1) { if (table->vars[yindex]->ref == 1) return(0); } xsymmy = xsymmyp = 1; arccount = 0; slots = table->subtables[x].slots; list = table->subtables[x].nodelist; for (i = 0; i < slots; i++) { f = list[i]; while (f != sentinel) { /* Find f1, f0, f11, f10, f01, f00. */ f1 = cuddT(f); f0 = Cudd_Regular(cuddE(f)); comple = Cudd_IsComplement(cuddE(f)); if ((int) f1->index == yindex) { arccount++; f11 = cuddT(f1); f10 = cuddE(f1); } else { if ((int) f0->index != yindex) { /* If f is an isolated projection function it is ** allowed to bypass layer y. */ if (f1 != DD_ONE(table) || f0 != DD_ONE(table) || f->ref != 1) return(0); /* f bypasses layer y */ } f11 = f10 = f1; } if ((int) f0->index == yindex) { arccount++; f01 = cuddT(f0); f00 = cuddE(f0); } else { f01 = f00 = f0; } if (comple) { f01 = Cudd_Not(f01); f00 = Cudd_Not(f00); } if (f1 != DD_ONE(table) || f0 != DD_ONE(table) || f->ref != 1) { xsymmy &= f01 == f10; xsymmyp &= f11 == f00; if ((xsymmy == 0) && (xsymmyp == 0)) return(0); } f = f->next; } /* while */ } /* for */ /* Calculate the total reference counts of y */ TotalRefCount = -1; /* -1 for projection function */ slots = table->subtables[y].slots; list = table->subtables[y].nodelist; for (i = 0; i < slots; i++) { f = list[i]; while (f != sentinel) { TotalRefCount += f->ref; f = f->next; } } #if defined(DD_DEBUG) && defined(DD_VERBOSE) if (arccount == TotalRefCount) { xindex = table->invperm[x]; (void) fprintf(table->out, "Found symmetry! x =%d\ty = %d\tPos(%d,%d)\n", xindex,yindex,x,y); } #endif return(arccount == TotalRefCount); } /* end of cuddSymmCheck */ /**Function******************************************************************** Synopsis [Symmetric sifting algorithm.] Description [Symmetric sifting algorithm. Assumes that no dead nodes are present.
  1. Order all the variables according to the number of entries in each unique subtable.
  2. Sift the variable up and down, remembering each time the total size of the DD heap and grouping variables that are symmetric.
  3. Select the best permutation.
  4. Repeat 3 and 4 for all variables.
Returns 1 plus the number of symmetric variables if successful; 0 otherwise.] SideEffects [None] SeeAlso [cuddSymmSiftingConv] ******************************************************************************/ int cuddSymmSifting( DdManager * table, int lower, int upper) { int i; int *var; int size; int x; int result; int symvars; int symgroups; #ifdef DD_STATS int previousSize; #endif size = table->size; /* Find order in which to sift variables. */ var = NULL; entry = ABC_ALLOC(int,size); if (entry == NULL) { table->errorCode = CUDD_MEMORY_OUT; goto ddSymmSiftingOutOfMem; } var = ABC_ALLOC(int,size); if (var == NULL) { table->errorCode = CUDD_MEMORY_OUT; goto ddSymmSiftingOutOfMem; } for (i = 0; i < size; i++) { x = table->perm[i]; entry[i] = table->subtables[x].keys; var[i] = i; } qsort((void *)var,size,sizeof(int),(int (*)(const void *, const void *))ddSymmUniqueCompare); /* Initialize the symmetry of each subtable to itself. */ for (i = lower; i <= upper; i++) { table->subtables[i].next = i; } for (i = 0; i < ddMin(table->siftMaxVar,size); i++) { if (ddTotalNumberSwapping >= table->siftMaxSwap) break; x = table->perm[var[i]]; #ifdef DD_STATS previousSize = table->keys - table->isolated; #endif if (x < lower || x > upper) continue; if (table->subtables[x].next == (unsigned) x) { result = ddSymmSiftingAux(table,x,lower,upper); if (!result) goto ddSymmSiftingOutOfMem; #ifdef DD_STATS if (table->keys < (unsigned) previousSize + table->isolated) { (void) fprintf(table->out,"-"); } else if (table->keys > (unsigned) previousSize + table->isolated) { (void) fprintf(table->out,"+"); /* should never happen */ } else { (void) fprintf(table->out,"="); } fflush(table->out); #endif } } ABC_FREE(var); ABC_FREE(entry); ddSymmSummary(table, lower, upper, &symvars, &symgroups); #ifdef DD_STATS (void) fprintf(table->out, "\n#:S_SIFTING %8d: symmetric variables\n", symvars); (void) fprintf(table->out, "#:G_SIFTING %8d: symmetric groups", symgroups); #endif return(1+symvars); ddSymmSiftingOutOfMem: if (entry != NULL) ABC_FREE(entry); if (var != NULL) ABC_FREE(var); return(0); } /* end of cuddSymmSifting */ /**Function******************************************************************** Synopsis [Symmetric sifting to convergence algorithm.] Description [Symmetric sifting to convergence algorithm. Assumes that no dead nodes are present.
  1. Order all the variables according to the number of entries in each unique subtable.
  2. Sift the variable up and down, remembering each time the total size of the DD heap and grouping variables that are symmetric.
  3. Select the best permutation.
  4. Repeat 3 and 4 for all variables.
  5. Repeat 1-4 until no further improvement.
Returns 1 plus the number of symmetric variables if successful; 0 otherwise.] SideEffects [None] SeeAlso [cuddSymmSifting] ******************************************************************************/ int cuddSymmSiftingConv( DdManager * table, int lower, int upper) { int i; int *var; int size; int x; int result; int symvars; int symgroups; int classes; int initialSize; #ifdef DD_STATS int previousSize; #endif initialSize = table->keys - table->isolated; size = table->size; /* Find order in which to sift variables. */ var = NULL; entry = ABC_ALLOC(int,size); if (entry == NULL) { table->errorCode = CUDD_MEMORY_OUT; goto ddSymmSiftingConvOutOfMem; } var = ABC_ALLOC(int,size); if (var == NULL) { table->errorCode = CUDD_MEMORY_OUT; goto ddSymmSiftingConvOutOfMem; } for (i = 0; i < size; i++) { x = table->perm[i]; entry[i] = table->subtables[x].keys; var[i] = i; } qsort((void *)var,size,sizeof(int),(int (*)(const void *, const void *))ddSymmUniqueCompare); /* Initialize the symmetry of each subtable to itself ** for first pass of converging symmetric sifting. */ for (i = lower; i <= upper; i++) { table->subtables[i].next = i; } for (i = 0; i < ddMin(table->siftMaxVar, table->size); i++) { if (ddTotalNumberSwapping >= table->siftMaxSwap) break; x = table->perm[var[i]]; if (x < lower || x > upper) continue; /* Only sift if not in symmetry group already. */ if (table->subtables[x].next == (unsigned) x) { #ifdef DD_STATS previousSize = table->keys - table->isolated; #endif result = ddSymmSiftingAux(table,x,lower,upper); if (!result) goto ddSymmSiftingConvOutOfMem; #ifdef DD_STATS if (table->keys < (unsigned) previousSize + table->isolated) { (void) fprintf(table->out,"-"); } else if (table->keys > (unsigned) previousSize + table->isolated) { (void) fprintf(table->out,"+"); } else { (void) fprintf(table->out,"="); } fflush(table->out); #endif } } /* Sifting now until convergence. */ while ((unsigned) initialSize > table->keys - table->isolated) { initialSize = table->keys - table->isolated; #ifdef DD_STATS (void) fprintf(table->out,"\n"); #endif /* Here we consider only one representative for each symmetry class. */ for (x = lower, classes = 0; x <= upper; x++, classes++) { while ((unsigned) x < table->subtables[x].next) { x = table->subtables[x].next; } /* Here x is the largest index in a group. ** Groups consist of adjacent variables. ** Hence, the next increment of x will move it to a new group. */ i = table->invperm[x]; entry[i] = table->subtables[x].keys; var[classes] = i; } qsort((void *)var,classes,sizeof(int),(int (*)(const void *, const void *))ddSymmUniqueCompare); /* Now sift. */ for (i = 0; i < ddMin(table->siftMaxVar,classes); i++) { if (ddTotalNumberSwapping >= table->siftMaxSwap) break; x = table->perm[var[i]]; if ((unsigned) x >= table->subtables[x].next) { #ifdef DD_STATS previousSize = table->keys - table->isolated; #endif result = ddSymmSiftingConvAux(table,x,lower,upper); if (!result ) goto ddSymmSiftingConvOutOfMem; #ifdef DD_STATS if (table->keys < (unsigned) previousSize + table->isolated) { (void) fprintf(table->out,"-"); } else if (table->keys > (unsigned) previousSize + table->isolated) { (void) fprintf(table->out,"+"); } else { (void) fprintf(table->out,"="); } fflush(table->out); #endif } } /* for */ } ddSymmSummary(table, lower, upper, &symvars, &symgroups); #ifdef DD_STATS (void) fprintf(table->out, "\n#:S_SIFTING %8d: symmetric variables\n", symvars); (void) fprintf(table->out, "#:G_SIFTING %8d: symmetric groups", symgroups); #endif ABC_FREE(var); ABC_FREE(entry); return(1+symvars); ddSymmSiftingConvOutOfMem: if (entry != NULL) ABC_FREE(entry); if (var != NULL) ABC_FREE(var); return(0); } /* end of cuddSymmSiftingConv */ /*---------------------------------------------------------------------------*/ /* Definition of static functions */ /*---------------------------------------------------------------------------*/ /**Function******************************************************************** Synopsis [Comparison function used by qsort.] Description [Comparison function used by qsort to order the variables according to the number of keys in the subtables. Returns the difference in number of keys between the two variables being compared.] SideEffects [None] ******************************************************************************/ static int ddSymmUniqueCompare( int * ptrX, int * ptrY) { #if 0 if (entry[*ptrY] == entry[*ptrX]) { return((*ptrX) - (*ptrY)); } #endif return(entry[*ptrY] - entry[*ptrX]); } /* end of ddSymmUniqueCompare */ /**Function******************************************************************** Synopsis [Given xLow <= x <= xHigh moves x up and down between the boundaries.] Description [Given xLow <= x <= xHigh moves x up and down between the boundaries. Finds the best position and does the required changes. Assumes that x is not part of a symmetry group. Returns 1 if successful; 0 otherwise.] SideEffects [None] ******************************************************************************/ static int ddSymmSiftingAux( DdManager * table, int x, int xLow, int xHigh) { Move *move; Move *moveUp; /* list of up moves */ Move *moveDown; /* list of down moves */ int initialSize; int result; int i; int topbot; /* index to either top or bottom of symmetry group */ int initGroupSize, finalGroupSize; #ifdef DD_DEBUG /* check for previously detected symmetry */ assert(table->subtables[x].next == (unsigned) x); #endif initialSize = table->keys - table->isolated; moveDown = NULL; moveUp = NULL; if ((x - xLow) > (xHigh - x)) { /* Will go down first, unless x == xHigh: ** Look for consecutive symmetries above x. */ for (i = x; i > xLow; i--) { if (!cuddSymmCheck(table,i-1,i)) break; topbot = table->subtables[i-1].next; /* find top of i-1's group */ table->subtables[i-1].next = i; table->subtables[x].next = topbot; /* x is bottom of group so its */ /* next is top of i-1's group */ i = topbot + 1; /* add 1 for i--; new i is top of symm group */ } } else { /* Will go up first unless x == xlow: ** Look for consecutive symmetries below x. */ for (i = x; i < xHigh; i++) { if (!cuddSymmCheck(table,i,i+1)) break; /* find bottom of i+1's symm group */ topbot = i + 1; while ((unsigned) topbot < table->subtables[topbot].next) { topbot = table->subtables[topbot].next; } table->subtables[topbot].next = table->subtables[i].next; table->subtables[i].next = i + 1; i = topbot - 1; /* subtract 1 for i++; new i is bottom of group */ } } /* Now x may be in the middle of a symmetry group. ** Find bottom of x's symm group. */ while ((unsigned) x < table->subtables[x].next) x = table->subtables[x].next; if (x == xLow) { /* Sift down */ #ifdef DD_DEBUG /* x must be a singleton */ assert((unsigned) x == table->subtables[x].next); #endif if (x == xHigh) return(1); /* just one variable */ initGroupSize = 1; moveDown = ddSymmSiftingDown(table,x,xHigh); /* after this point x --> xHigh, unless early term */ if (moveDown == MV_OOM) goto ddSymmSiftingAuxOutOfMem; if (moveDown == NULL) return(1); x = moveDown->y; /* Find bottom of x's group */ i = x; while ((unsigned) i < table->subtables[i].next) { i = table->subtables[i].next; } #ifdef DD_DEBUG /* x should be the top of the symmetry group and i the bottom */ assert((unsigned) i >= table->subtables[i].next); assert((unsigned) x == table->subtables[i].next); #endif finalGroupSize = i - x + 1; if (initGroupSize == finalGroupSize) { /* No new symmetry groups detected, return to best position */ result = ddSymmSiftingBackward(table,moveDown,initialSize); } else { initialSize = table->keys - table->isolated; moveUp = ddSymmSiftingUp(table,x,xLow); result = ddSymmSiftingBackward(table,moveUp,initialSize); } if (!result) goto ddSymmSiftingAuxOutOfMem; } else if (cuddNextHigh(table,x) > xHigh) { /* Sift up */ /* Find top of x's symm group */ i = x; /* bottom */ x = table->subtables[x].next; /* top */ if (x == xLow) return(1); /* just one big group */ initGroupSize = i - x + 1; moveUp = ddSymmSiftingUp(table,x,xLow); /* after this point x --> xLow, unless early term */ if (moveUp == MV_OOM) goto ddSymmSiftingAuxOutOfMem; if (moveUp == NULL) return(1); x = moveUp->x; /* Find top of x's group */ i = table->subtables[x].next; #ifdef DD_DEBUG /* x should be the bottom of the symmetry group and i the top */ assert((unsigned) x >= table->subtables[x].next); assert((unsigned) i == table->subtables[x].next); #endif finalGroupSize = x - i + 1; if (initGroupSize == finalGroupSize) { /* No new symmetry groups detected, return to best position */ result = ddSymmSiftingBackward(table,moveUp,initialSize); } else { initialSize = table->keys - table->isolated; moveDown = ddSymmSiftingDown(table,x,xHigh); result = ddSymmSiftingBackward(table,moveDown,initialSize); } if (!result) goto ddSymmSiftingAuxOutOfMem; } else if ((x - xLow) > (xHigh - x)) { /* must go down first: shorter */ moveDown = ddSymmSiftingDown(table,x,xHigh); /* at this point x == xHigh, unless early term */ if (moveDown == MV_OOM) goto ddSymmSiftingAuxOutOfMem; if (moveDown != NULL) { x = moveDown->y; /* x is top here */ i = x; while ((unsigned) i < table->subtables[i].next) { i = table->subtables[i].next; } } else { i = x; while ((unsigned) i < table->subtables[i].next) { i = table->subtables[i].next; } x = table->subtables[i].next; } #ifdef DD_DEBUG /* x should be the top of the symmetry group and i the bottom */ assert((unsigned) i >= table->subtables[i].next); assert((unsigned) x == table->subtables[i].next); #endif initGroupSize = i - x + 1; moveUp = ddSymmSiftingUp(table,x,xLow); if (moveUp == MV_OOM) goto ddSymmSiftingAuxOutOfMem; if (moveUp != NULL) { x = moveUp->x; i = table->subtables[x].next; } else { i = x; while ((unsigned) x < table->subtables[x].next) x = table->subtables[x].next; } #ifdef DD_DEBUG /* x should be the bottom of the symmetry group and i the top */ assert((unsigned) x >= table->subtables[x].next); assert((unsigned) i == table->subtables[x].next); #endif finalGroupSize = x - i + 1; if (initGroupSize == finalGroupSize) { /* No new symmetry groups detected, return to best position */ result = ddSymmSiftingBackward(table,moveUp,initialSize); } else { while (moveDown != NULL) { move = moveDown->next; cuddDeallocNode(table, (DdNode *) moveDown); moveDown = move; } initialSize = table->keys - table->isolated; moveDown = ddSymmSiftingDown(table,x,xHigh); result = ddSymmSiftingBackward(table,moveDown,initialSize); } if (!result) goto ddSymmSiftingAuxOutOfMem; } else { /* moving up first: shorter */ /* Find top of x's symmetry group */ x = table->subtables[x].next; moveUp = ddSymmSiftingUp(table,x,xLow); /* at this point x == xHigh, unless early term */ if (moveUp == MV_OOM) goto ddSymmSiftingAuxOutOfMem; if (moveUp != NULL) { x = moveUp->x; i = table->subtables[x].next; } else { while ((unsigned) x < table->subtables[x].next) x = table->subtables[x].next; i = table->subtables[x].next; } #ifdef DD_DEBUG /* x is bottom of the symmetry group and i is top */ assert((unsigned) x >= table->subtables[x].next); assert((unsigned) i == table->subtables[x].next); #endif initGroupSize = x - i + 1; moveDown = ddSymmSiftingDown(table,x,xHigh); if (moveDown == MV_OOM) goto ddSymmSiftingAuxOutOfMem; if (moveDown != NULL) { x = moveDown->y; i = x; while ((unsigned) i < table->subtables[i].next) { i = table->subtables[i].next; } } else { i = x; x = table->subtables[x].next; } #ifdef DD_DEBUG /* x should be the top of the symmetry group and i the bottom */ assert((unsigned) i >= table->subtables[i].next); assert((unsigned) x == table->subtables[i].next); #endif finalGroupSize = i - x + 1; if (initGroupSize == finalGroupSize) { /* No new symmetries detected, go back to best position */ result = ddSymmSiftingBackward(table,moveDown,initialSize); } else { while (moveUp != NULL) { move = moveUp->next; cuddDeallocNode(table, (DdNode *) moveUp); moveUp = move; } initialSize = table->keys - table->isolated; moveUp = ddSymmSiftingUp(table,x,xLow); result = ddSymmSiftingBackward(table,moveUp,initialSize); } if (!result) goto ddSymmSiftingAuxOutOfMem; } while (moveDown != NULL) { move = moveDown->next; cuddDeallocNode(table, (DdNode *) moveDown); moveDown = move; } while (moveUp != NULL) { move = moveUp->next; cuddDeallocNode(table, (DdNode *) moveUp); moveUp = move; } return(1); ddSymmSiftingAuxOutOfMem: if (moveDown != MV_OOM) { while (moveDown != NULL) { move = moveDown->next; cuddDeallocNode(table, (DdNode *) moveDown); moveDown = move; } } if (moveUp != MV_OOM) { while (moveUp != NULL) { move = moveUp->next; cuddDeallocNode(table, (DdNode *) moveUp); moveUp = move; } } return(0); } /* end of ddSymmSiftingAux */ /**Function******************************************************************** Synopsis [Given xLow <= x <= xHigh moves x up and down between the boundaries.] Description [Given xLow <= x <= xHigh moves x up and down between the boundaries. Finds the best position and does the required changes. Assumes that x is either an isolated variable, or it is the bottom of a symmetry group. All symmetries may not have been found, because of exceeded growth limit. Returns 1 if successful; 0 otherwise.] SideEffects [None] ******************************************************************************/ static int ddSymmSiftingConvAux( DdManager * table, int x, int xLow, int xHigh) { Move *move; Move *moveUp; /* list of up moves */ Move *moveDown; /* list of down moves */ int initialSize; int result; int i; int initGroupSize, finalGroupSize; initialSize = table->keys - table->isolated; moveDown = NULL; moveUp = NULL; if (x == xLow) { /* Sift down */ #ifdef DD_DEBUG /* x is bottom of symmetry group */ assert((unsigned) x >= table->subtables[x].next); #endif i = table->subtables[x].next; initGroupSize = x - i + 1; moveDown = ddSymmSiftingDown(table,x,xHigh); /* at this point x == xHigh, unless early term */ if (moveDown == MV_OOM) goto ddSymmSiftingConvAuxOutOfMem; if (moveDown == NULL) return(1); x = moveDown->y; i = x; while ((unsigned) i < table->subtables[i].next) { i = table->subtables[i].next; } #ifdef DD_DEBUG /* x should be the top of the symmetric group and i the bottom */ assert((unsigned) i >= table->subtables[i].next); assert((unsigned) x == table->subtables[i].next); #endif finalGroupSize = i - x + 1; if (initGroupSize == finalGroupSize) { /* No new symmetries detected, go back to best position */ result = ddSymmSiftingBackward(table,moveDown,initialSize); } else { initialSize = table->keys - table->isolated; moveUp = ddSymmSiftingUp(table,x,xLow); result = ddSymmSiftingBackward(table,moveUp,initialSize); } if (!result) goto ddSymmSiftingConvAuxOutOfMem; } else if (cuddNextHigh(table,x) > xHigh) { /* Sift up */ /* Find top of x's symm group */ while ((unsigned) x < table->subtables[x].next) x = table->subtables[x].next; i = x; /* bottom */ x = table->subtables[x].next; /* top */ if (x == xLow) return(1); initGroupSize = i - x + 1; moveUp = ddSymmSiftingUp(table,x,xLow); /* at this point x == xLow, unless early term */ if (moveUp == MV_OOM) goto ddSymmSiftingConvAuxOutOfMem; if (moveUp == NULL) return(1); x = moveUp->x; i = table->subtables[x].next; #ifdef DD_DEBUG /* x should be the bottom of the symmetry group and i the top */ assert((unsigned) x >= table->subtables[x].next); assert((unsigned) i == table->subtables[x].next); #endif finalGroupSize = x - i + 1; if (initGroupSize == finalGroupSize) { /* No new symmetry groups detected, return to best position */ result = ddSymmSiftingBackward(table,moveUp,initialSize); } else { initialSize = table->keys - table->isolated; moveDown = ddSymmSiftingDown(table,x,xHigh); result = ddSymmSiftingBackward(table,moveDown,initialSize); } if (!result) goto ddSymmSiftingConvAuxOutOfMem; } else if ((x - xLow) > (xHigh - x)) { /* must go down first: shorter */ moveDown = ddSymmSiftingDown(table,x,xHigh); /* at this point x == xHigh, unless early term */ if (moveDown == MV_OOM) goto ddSymmSiftingConvAuxOutOfMem; if (moveDown != NULL) { x = moveDown->y; i = x; while ((unsigned) i < table->subtables[i].next) { i = table->subtables[i].next; } } else { while ((unsigned) x < table->subtables[x].next) x = table->subtables[x].next; i = x; x = table->subtables[x].next; } #ifdef DD_DEBUG /* x should be the top of the symmetry group and i the bottom */ assert((unsigned) i >= table->subtables[i].next); assert((unsigned) x == table->subtables[i].next); #endif initGroupSize = i - x + 1; moveUp = ddSymmSiftingUp(table,x,xLow); if (moveUp == MV_OOM) goto ddSymmSiftingConvAuxOutOfMem; if (moveUp != NULL) { x = moveUp->x; i = table->subtables[x].next; } else { i = x; while ((unsigned) x < table->subtables[x].next) x = table->subtables[x].next; } #ifdef DD_DEBUG /* x should be the bottom of the symmetry group and i the top */ assert((unsigned) x >= table->subtables[x].next); assert((unsigned) i == table->subtables[x].next); #endif finalGroupSize = x - i + 1; if (initGroupSize == finalGroupSize) { /* No new symmetry groups detected, return to best position */ result = ddSymmSiftingBackward(table,moveUp,initialSize); } else { while (moveDown != NULL) { move = moveDown->next; cuddDeallocNode(table, (DdNode *) moveDown); moveDown = move; } initialSize = table->keys - table->isolated; moveDown = ddSymmSiftingDown(table,x,xHigh); result = ddSymmSiftingBackward(table,moveDown,initialSize); } if (!result) goto ddSymmSiftingConvAuxOutOfMem; } else { /* moving up first: shorter */ /* Find top of x's symmetry group */ x = table->subtables[x].next; moveUp = ddSymmSiftingUp(table,x,xLow); /* at this point x == xHigh, unless early term */ if (moveUp == MV_OOM) goto ddSymmSiftingConvAuxOutOfMem; if (moveUp != NULL) { x = moveUp->x; i = table->subtables[x].next; } else { i = x; while ((unsigned) x < table->subtables[x].next) x = table->subtables[x].next; } #ifdef DD_DEBUG /* x is bottom of the symmetry group and i is top */ assert((unsigned) x >= table->subtables[x].next); assert((unsigned) i == table->subtables[x].next); #endif initGroupSize = x - i + 1; moveDown = ddSymmSiftingDown(table,x,xHigh); if (moveDown == MV_OOM) goto ddSymmSiftingConvAuxOutOfMem; if (moveDown != NULL) { x = moveDown->y; i = x; while ((unsigned) i < table->subtables[i].next) { i = table->subtables[i].next; } } else { i = x; x = table->subtables[x].next; } #ifdef DD_DEBUG /* x should be the top of the symmetry group and i the bottom */ assert((unsigned) i >= table->subtables[i].next); assert((unsigned) x == table->subtables[i].next); #endif finalGroupSize = i - x + 1; if (initGroupSize == finalGroupSize) { /* No new symmetries detected, go back to best position */ result = ddSymmSiftingBackward(table,moveDown,initialSize); } else { while (moveUp != NULL) { move = moveUp->next; cuddDeallocNode(table, (DdNode *) moveUp); moveUp = move; } initialSize = table->keys - table->isolated; moveUp = ddSymmSiftingUp(table,x,xLow); result = ddSymmSiftingBackward(table,moveUp,initialSize); } if (!result) goto ddSymmSiftingConvAuxOutOfMem; } while (moveDown != NULL) { move = moveDown->next; cuddDeallocNode(table, (DdNode *) moveDown); moveDown = move; } while (moveUp != NULL) { move = moveUp->next; cuddDeallocNode(table, (DdNode *) moveUp); moveUp = move; } return(1); ddSymmSiftingConvAuxOutOfMem: if (moveDown != MV_OOM) { while (moveDown != NULL) { move = moveDown->next; cuddDeallocNode(table, (DdNode *) moveDown); moveDown = move; } } if (moveUp != MV_OOM) { while (moveUp != NULL) { move = moveUp->next; cuddDeallocNode(table, (DdNode *) moveUp); moveUp = move; } } return(0); } /* end of ddSymmSiftingConvAux */ /**Function******************************************************************** Synopsis [Moves x up until either it reaches the bound (xLow) or the size of the DD heap increases too much.] Description [Moves x up until either it reaches the bound (xLow) or the size of the DD heap increases too much. Assumes that x is the top of a symmetry group. Checks x for symmetry to the adjacent variables. If symmetry is found, the symmetry group of x is merged with the symmetry group of the other variable. Returns the set of moves in case of success; MV_OOM if memory is full.] SideEffects [None] ******************************************************************************/ static Move * ddSymmSiftingUp( DdManager * table, int y, int xLow) { Move *moves; Move *move; int x; int size; int i; int gxtop,gybot; int limitSize; int xindex, yindex; int zindex; int z; int isolated; int L; /* lower bound on DD size */ #ifdef DD_DEBUG int checkL; #endif moves = NULL; yindex = table->invperm[y]; /* Initialize the lower bound. ** The part of the DD below the bottom of y' group will not change. ** The part of the DD above y that does not interact with y will not ** change. The rest may vanish in the best case, except for ** the nodes at level xLow, which will not vanish, regardless. */ limitSize = L = table->keys - table->isolated; gybot = y; while ((unsigned) gybot < table->subtables[gybot].next) gybot = table->subtables[gybot].next; for (z = xLow + 1; z <= gybot; z++) { zindex = table->invperm[z]; if (zindex == yindex || cuddTestInteract(table,zindex,yindex)) { isolated = table->vars[zindex]->ref == 1; L -= table->subtables[z].keys - isolated; } } x = cuddNextLow(table,y); while (x >= xLow && L <= limitSize) { #ifdef DD_DEBUG gybot = y; while ((unsigned) gybot < table->subtables[gybot].next) gybot = table->subtables[gybot].next; checkL = table->keys - table->isolated; for (z = xLow + 1; z <= gybot; z++) { zindex = table->invperm[z]; if (zindex == yindex || cuddTestInteract(table,zindex,yindex)) { isolated = table->vars[zindex]->ref == 1; checkL -= table->subtables[z].keys - isolated; } } assert(L == checkL); #endif gxtop = table->subtables[x].next; if (cuddSymmCheck(table,x,y)) { /* Symmetry found, attach symm groups */ table->subtables[x].next = y; i = table->subtables[y].next; while (table->subtables[i].next != (unsigned) y) i = table->subtables[i].next; table->subtables[i].next = gxtop; } else if (table->subtables[x].next == (unsigned) x && table->subtables[y].next == (unsigned) y) { /* x and y have self symmetry */ xindex = table->invperm[x]; size = cuddSwapInPlace(table,x,y); #ifdef DD_DEBUG assert(table->subtables[x].next == (unsigned) x); assert(table->subtables[y].next == (unsigned) y); #endif if (size == 0) goto ddSymmSiftingUpOutOfMem; /* Update the lower bound. */ if (cuddTestInteract(table,xindex,yindex)) { isolated = table->vars[xindex]->ref == 1; L += table->subtables[y].keys - isolated; } move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) goto ddSymmSiftingUpOutOfMem; move->x = x; move->y = y; move->size = size; move->next = moves; moves = move; if ((double) size > (double) limitSize * table->maxGrowth) return(moves); if (size < limitSize) limitSize = size; } else { /* Group move */ size = ddSymmGroupMove(table,x,y,&moves); if (size == 0) goto ddSymmSiftingUpOutOfMem; /* Update the lower bound. */ z = moves->y; do { zindex = table->invperm[z]; if (cuddTestInteract(table,zindex,yindex)) { isolated = table->vars[zindex]->ref == 1; L += table->subtables[z].keys - isolated; } z = table->subtables[z].next; } while (z != (int) moves->y); if ((double) size > (double) limitSize * table->maxGrowth) return(moves); if (size < limitSize) limitSize = size; } y = gxtop; x = cuddNextLow(table,y); } return(moves); ddSymmSiftingUpOutOfMem: while (moves != NULL) { move = moves->next; cuddDeallocNode(table, (DdNode *) moves); moves = move; } return(MV_OOM); } /* end of ddSymmSiftingUp */ /**Function******************************************************************** Synopsis [Moves x down until either it reaches the bound (xHigh) or the size of the DD heap increases too much.] Description [Moves x down until either it reaches the bound (xHigh) or the size of the DD heap increases too much. Assumes that x is the bottom of a symmetry group. Checks x for symmetry to the adjacent variables. If symmetry is found, the symmetry group of x is merged with the symmetry group of the other variable. Returns the set of moves in case of success; MV_OOM if memory is full.] SideEffects [None] ******************************************************************************/ static Move * ddSymmSiftingDown( DdManager * table, int x, int xHigh) { Move *moves; Move *move; int y; int size; int limitSize; int gxtop,gybot; int R; /* upper bound on node decrease */ int xindex, yindex; int isolated; int z; int zindex; #ifdef DD_DEBUG int checkR; #endif moves = NULL; /* Initialize R */ xindex = table->invperm[x]; gxtop = table->subtables[x].next; limitSize = size = table->keys - table->isolated; R = 0; for (z = xHigh; z > gxtop; z--) { zindex = table->invperm[z]; if (zindex == xindex || cuddTestInteract(table,xindex,zindex)) { isolated = table->vars[zindex]->ref == 1; R += table->subtables[z].keys - isolated; } } y = cuddNextHigh(table,x); while (y <= xHigh && size - R < limitSize) { #ifdef DD_DEBUG gxtop = table->subtables[x].next; checkR = 0; for (z = xHigh; z > gxtop; z--) { zindex = table->invperm[z]; if (zindex == xindex || cuddTestInteract(table,xindex,zindex)) { isolated = table->vars[zindex]->ref == 1; checkR += table->subtables[z].keys - isolated; } } assert(R == checkR); #endif gybot = table->subtables[y].next; while (table->subtables[gybot].next != (unsigned) y) gybot = table->subtables[gybot].next; if (cuddSymmCheck(table,x,y)) { /* Symmetry found, attach symm groups */ gxtop = table->subtables[x].next; table->subtables[x].next = y; table->subtables[gybot].next = gxtop; } else if (table->subtables[x].next == (unsigned) x && table->subtables[y].next == (unsigned) y) { /* x and y have self symmetry */ /* Update upper bound on node decrease. */ yindex = table->invperm[y]; if (cuddTestInteract(table,xindex,yindex)) { isolated = table->vars[yindex]->ref == 1; R -= table->subtables[y].keys - isolated; } size = cuddSwapInPlace(table,x,y); #ifdef DD_DEBUG assert(table->subtables[x].next == (unsigned) x); assert(table->subtables[y].next == (unsigned) y); #endif if (size == 0) goto ddSymmSiftingDownOutOfMem; move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) goto ddSymmSiftingDownOutOfMem; move->x = x; move->y = y; move->size = size; move->next = moves; moves = move; if ((double) size > (double) limitSize * table->maxGrowth) return(moves); if (size < limitSize) limitSize = size; } else { /* Group move */ /* Update upper bound on node decrease: first phase. */ gxtop = table->subtables[x].next; z = gxtop + 1; do { zindex = table->invperm[z]; if (zindex == xindex || cuddTestInteract(table,xindex,zindex)) { isolated = table->vars[zindex]->ref == 1; R -= table->subtables[z].keys - isolated; } z++; } while (z <= gybot); size = ddSymmGroupMove(table,x,y,&moves); if (size == 0) goto ddSymmSiftingDownOutOfMem; if ((double) size > (double) limitSize * table->maxGrowth) return(moves); if (size < limitSize) limitSize = size; /* Update upper bound on node decrease: second phase. */ gxtop = table->subtables[gybot].next; for (z = gxtop + 1; z <= gybot; z++) { zindex = table->invperm[z]; if (zindex == xindex || cuddTestInteract(table,xindex,zindex)) { isolated = table->vars[zindex]->ref == 1; R += table->subtables[z].keys - isolated; } } } x = gybot; y = cuddNextHigh(table,x); } return(moves); ddSymmSiftingDownOutOfMem: while (moves != NULL) { move = moves->next; cuddDeallocNode(table, (DdNode *) moves); moves = move; } return(MV_OOM); } /* end of ddSymmSiftingDown */ /**Function******************************************************************** Synopsis [Swaps two groups.] Description [Swaps two groups. x is assumed to be the bottom variable of the first group. y is assumed to be the top variable of the second group. Updates the list of moves. Returns the number of keys in the table if successful; 0 otherwise.] SideEffects [None] ******************************************************************************/ static int ddSymmGroupMove( DdManager * table, int x, int y, Move ** moves) { Move *move; int size = 0; // Suppress "might be used uninitialized" int i,j; int xtop,xbot,xsize,ytop,ybot,ysize,newxtop; int swapx = 0,swapy = 0; // Suppress "might be used uninitialized" #if DD_DEBUG assert(x < y); /* we assume that x < y */ #endif /* Find top, bottom, and size for the two groups. */ xbot = x; xtop = table->subtables[x].next; xsize = xbot - xtop + 1; ybot = y; while ((unsigned) ybot < table->subtables[ybot].next) ybot = table->subtables[ybot].next; ytop = y; ysize = ybot - ytop + 1; /* Sift the variables of the second group up through the first group. */ for (i = 1; i <= ysize; i++) { for (j = 1; j <= xsize; j++) { size = cuddSwapInPlace(table,x,y); if (size == 0) return(0); swapx = x; swapy = y; y = x; x = y - 1; } y = ytop + i; x = y - 1; } /* fix symmetries */ y = xtop; /* ytop is now where xtop used to be */ for (i = 0; i < ysize-1 ; i++) { table->subtables[y].next = y + 1; y = y + 1; } table->subtables[y].next = xtop; /* y is bottom of its group, join */ /* its symmetry to top of its group */ x = y + 1; newxtop = x; for (i = 0; i < xsize - 1 ; i++) { table->subtables[x].next = x + 1; x = x + 1; } table->subtables[x].next = newxtop; /* x is bottom of its group, join */ /* its symmetry to top of its group */ /* Store group move */ move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) return(0); move->x = swapx; move->y = swapy; move->size = size; move->next = *moves; *moves = move; return(size); } /* end of ddSymmGroupMove */ /**Function******************************************************************** Synopsis [Undoes the swap of two groups.] Description [Undoes the swap of two groups. x is assumed to be the bottom variable of the first group. y is assumed to be the top variable of the second group. Returns the number of keys in the table if successful; 0 otherwise.] SideEffects [None] ******************************************************************************/ static int ddSymmGroupMoveBackward( DdManager * table, int x, int y) { int size = 0; // Suppress "might be used uninitialized" int i,j; int xtop,xbot,xsize,ytop,ybot,ysize,newxtop; #if DD_DEBUG assert(x < y); /* We assume that x < y */ #endif /* Find top, bottom, and size for the two groups. */ xbot = x; xtop = table->subtables[x].next; xsize = xbot - xtop + 1; ybot = y; while ((unsigned) ybot < table->subtables[ybot].next) ybot = table->subtables[ybot].next; ytop = y; ysize = ybot - ytop + 1; /* Sift the variables of the second group up through the first group. */ for (i = 1; i <= ysize; i++) { for (j = 1; j <= xsize; j++) { size = cuddSwapInPlace(table,x,y); if (size == 0) return(0); y = x; x = cuddNextLow(table,y); } y = ytop + i; x = y - 1; } /* Fix symmetries. */ y = xtop; for (i = 0; i < ysize-1 ; i++) { table->subtables[y].next = y + 1; y = y + 1; } table->subtables[y].next = xtop; /* y is bottom of its group, join */ /* its symmetry to top of its group */ x = y + 1; newxtop = x; for (i = 0; i < xsize-1 ; i++) { table->subtables[x].next = x + 1; x = x + 1; } table->subtables[x].next = newxtop; /* x is bottom of its group, join */ /* its symmetry to top of its group */ return(size); } /* end of ddSymmGroupMoveBackward */ /**Function******************************************************************** Synopsis [Given a set of moves, returns the DD heap to the position giving the minimum size.] Description [Given a set of moves, returns the DD heap to the position giving the minimum size. In case of ties, returns to the closest position giving the minimum size. Returns 1 in case of success; 0 otherwise.] SideEffects [None] ******************************************************************************/ static int ddSymmSiftingBackward( DdManager * table, Move * moves, int size) { Move *move; int res; for (move = moves; move != NULL; move = move->next) { if (move->size < size) { size = move->size; } } for (move = moves; move != NULL; move = move->next) { if (move->size == size) return(1); if (table->subtables[move->x].next == move->x && table->subtables[move->y].next == move->y) { res = cuddSwapInPlace(table,(int)move->x,(int)move->y); #ifdef DD_DEBUG assert(table->subtables[move->x].next == move->x); assert(table->subtables[move->y].next == move->y); #endif } else { /* Group move necessary */ res = ddSymmGroupMoveBackward(table,(int)move->x,(int)move->y); } if (!res) return(0); } return(1); } /* end of ddSymmSiftingBackward */ /**Function******************************************************************** Synopsis [Counts numbers of symmetric variables and symmetry groups.] Description [] SideEffects [None] ******************************************************************************/ static void ddSymmSummary( DdManager * table, int lower, int upper, int * symvars, int * symgroups) { int i,x,gbot; int TotalSymm = 0; int TotalSymmGroups = 0; for (i = lower; i <= upper; i++) { if (table->subtables[i].next != (unsigned) i) { TotalSymmGroups++; x = i; do { TotalSymm++; gbot = x; x = table->subtables[x].next; } while (x != i); #ifdef DD_DEBUG assert(table->subtables[gbot].next == (unsigned) i); #endif i = gbot; } } *symvars = TotalSymm; *symgroups = TotalSymmGroups; return; } /* end of ddSymmSummary */