/**CFile**************************************************************** FileName [dsc.h] SystemName [ABC: Logic synthesis and verification system.] PackageName [Disjoint support decomposition - ICCD'15] Synopsis [Disjoint-support decomposition with cofactoring and boolean difference analysis from V. Callegaro, F. S. Marranghello, M. G. A. Martins, R. P. Ribas and A. I. Reis, "Bottom-up disjoint-support decomposition based on cofactor and boolean difference analysis," ICCD'15] Author [Vinicius Callegaro, Mayler G. A. Martins, Felipe S. Marranghello, Renato P. Ribas and Andre I. Reis] Affiliation [UFRGS - Federal University of Rio Grande do Sul - Brazil] Date [Ver. 1.0. Started - October 24, 2014.] Revision [$Id: dsc.h,v 1.00 2014/10/24 00:00:00 vcallegaro Exp $] ***********************************************************************/ #include "dsc.h" #include #include "misc/util/utilTruth.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// /* This code performs truth-table-based decomposition for 6-variable functions. Representation of operations: ! = not; (ab) = a and b; [ab] = a xor b; */ typedef struct Dsc_node_t_ Dsc_node_t; struct Dsc_node_t_ { word *pNegCof; word *pPosCof; word *pBoolDiff; unsigned int on[DSC_MAX_VAR+1]; // pos cofactor spec - first element denotes the size of the array unsigned int off[DSC_MAX_VAR+1]; // neg cofactor spec - first element denotes the size of the array char exp[DSC_MAX_STR]; }; //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// static inline void xorInPlace( word * pOut, word * pIn2, int nWords) { int w; for ( w = 0; w < nWords; w++ ) pOut[w] ^= pIn2[w]; } static inline void dsc_debug_node(Dsc_node_t * pNode, int nVars, const int TRUTH_WORDS) { int i; printf("Node:\t%s\n",pNode->exp); printf("\tneg cof:\t");Abc_TtPrintHexRev(stdout, pNode->pNegCof, nVars); printf("\tpos cof:\t");Abc_TtPrintHexRev(stdout, pNode->pPosCof, nVars); printf("\tbool diff:\t");Abc_TtPrintHexRev(stdout, pNode->pBoolDiff, nVars); printf("\toff:\t"); for (i=1;i<=(int)pNode->off[0];i++) { printf("%c%c", (pNode->off[i] & 1U) ? ' ' : '!', 'a'+(pNode->off[i] >> 1)); } printf("\ton:\t"); for (i=1;i<=(int)pNode->on[0];i++) { printf("%c%c", (pNode->on[i] & 1U) ? ' ' : '!', 'a'+(pNode->on[i] >> 1)); } printf("\n"); } static inline int dsc_and_test(Dsc_node_t *ni, Dsc_node_t *nj, const int TRUTH_WORDS, int* ci, int* cj) { if (Abc_TtEqual(ni->pNegCof, nj->pNegCof, TRUTH_WORDS)) {*ci=1; *cj=1; return 1;} else if (Abc_TtEqual(ni->pNegCof, nj->pPosCof, TRUTH_WORDS)) {*ci=1; *cj=0; return 1;} else if (Abc_TtEqual(ni->pPosCof, nj->pNegCof, TRUTH_WORDS)) {*ci=0; *cj=1; return 1;} else if (Abc_TtEqual(ni->pPosCof, nj->pPosCof, TRUTH_WORDS)) {*ci=0; *cj=0; return 1;} return 0; } static inline int dsc_xor_test(Dsc_node_t *ni, Dsc_node_t *nj, const int TRUTH_WORDS) { return Abc_TtEqual(ni->pBoolDiff, nj->pBoolDiff, TRUTH_WORDS); } static inline void concat(char* target, char begin, char end, char* s1, int s1Polarity, char* s2, int s2Polarity) { *target++ = begin; //s1 if (!s1Polarity) *target++ = '!'; while (*s1 != '\0') *target++ = *s1++; // s2 if (!s2Polarity) *target++ = '!'; while (*s2 != '\0') *target++ = *s2++; // end *target++ = end; *target = '\0'; } static inline void cubeCofactor(word * const pTruth, const unsigned int * const cubeCof, const int TRUTH_WORDS) { int size = cubeCof[0]; int i; for (i = 1; i <= size; i++) { unsigned int c = cubeCof[i]; if (c & 1U) { Abc_TtCofactor1(pTruth, TRUTH_WORDS, c >> 1); } else { Abc_TtCofactor0(pTruth, TRUTH_WORDS, c >> 1); } } } static inline void merge(unsigned int * const pOut, const unsigned int * const pIn) { const int elementsToCopy = pIn[0]; int i, j; for (i = pOut[0]+1, j = 1; j <= elementsToCopy; i++, j++) { pOut[i] = pIn[j]; } pOut[0] += elementsToCopy; } void dsc_and_group(Dsc_node_t * pOut, Dsc_node_t * ni, int niPolarity, Dsc_node_t * nj, int njPolarity, int nVars, const int TRUTH_WORDS) { unsigned int* xiOFF, * xiON, * xjOFF, * xjON; // expression concat(pOut->exp, '(', ')', ni->exp, niPolarity, nj->exp, njPolarity); // ON-OFF if (niPolarity) { xiOFF = ni->off; xiON = ni->on; } else { xiOFF = ni->on; xiON = ni->off; } if (njPolarity) { xjOFF = nj->off; xjON = nj->on; } else { xjOFF = nj->on; xjON = nj->off; } // creating both the new OFF specification and negative cofactor of the new group { // first element of the array represents the size of the cube-cofactor int xiOFFSize = xiOFF[0]; int xjOFFSize = xjOFF[0]; if (xiOFFSize <= xjOFFSize) { int i; pOut->off[0] = xiOFFSize; // set the number of elements for (i = 1; i <= xiOFFSize; i++) { pOut->off[i] = xiOFF[i]; } } else { int i; pOut->off[0] = xjOFFSize; // set the number of elements for (i = 1; i <= xjOFFSize; i++) { pOut->off[i] = xjOFF[i]; } } // set the negative cofactor of the new group pOut->pNegCof = niPolarity ? ni->pNegCof : ni->pPosCof; } // creating both new ON specification and positive cofactor of the new group { int i; int j; unsigned int xiONSize = xiON[0]; unsigned int xjONSize = xjON[0]; pOut->on[0] = xiONSize + xjONSize; for (i = 1; i <= (int)xiONSize; i++) { pOut->on[i] = xiON[i]; } for (j = 1; j <= (int)xjONSize; j++) { pOut->on[i++] = xjON[j]; } // set the positive cofactor of the new group if (xiONSize >= xjONSize) { pOut->pPosCof = niPolarity ? ni->pPosCof : ni->pNegCof; cubeCofactor(pOut->pPosCof, xjON, TRUTH_WORDS); } else { pOut->pPosCof = njPolarity ? nj->pPosCof : nj->pNegCof; cubeCofactor(pOut->pPosCof, xiON, TRUTH_WORDS); } } // set the boolean difference of the new group pOut->pBoolDiff = njPolarity ? nj->pNegCof : nj->pPosCof; xorInPlace(pOut->pBoolDiff, pOut->pPosCof, TRUTH_WORDS); } void dsc_xor_group(Dsc_node_t * pOut, Dsc_node_t * ni, Dsc_node_t * nj, int nVars, const int TRUTH_WORDS) { // const unsigned int * xiOFF = ni->off; const unsigned int * xiON = ni->on; const unsigned int * xjOFF = nj->off; const unsigned int * xjON = nj->on; // const int xiOFFSize = xiOFF[0]; const int xiONSize = xiON[0]; const int xjOFFSize = xjOFF[0]; const int xjONSize = xjON[0]; // minCubeCofs int minCCSize = xiOFFSize; int minCCPolarity = 0; Dsc_node_t * minCCNode = ni; // expression concat(pOut->exp, '[', ']', ni->exp, 1, nj->exp, 1); if (minCCSize > xiONSize) { minCCSize = xiONSize; minCCPolarity = 1; //minCCNode = ni; } if (minCCSize > xjOFFSize) { minCCSize = xjOFFSize; minCCPolarity = 0; minCCNode = nj; } if (minCCSize > xjONSize) { minCCSize = xjONSize; minCCPolarity = 1; minCCNode = nj; } // if (minCCNode == ni) { if (minCCPolarity) { // gOFF = xiON, xjON pOut->pNegCof = nj->pPosCof; cubeCofactor(pOut->pNegCof, xiON, TRUTH_WORDS); // gON = xiON, xjOFF pOut->pPosCof = nj->pNegCof; cubeCofactor(pOut->pPosCof, xiON, TRUTH_WORDS); } else { // gOFF = xiOFF, xjOFF pOut->pNegCof = nj->pNegCof; cubeCofactor(pOut->pNegCof, xiOFF, TRUTH_WORDS); // gON = xiOFF, xjON pOut->pPosCof = nj->pPosCof; cubeCofactor(pOut->pPosCof, xiOFF, TRUTH_WORDS); } }else { if (minCCPolarity) { // gOFF = xjON, xiON pOut->pNegCof = ni->pPosCof; cubeCofactor(pOut->pNegCof, xjON, TRUTH_WORDS); // gON = xjON, xiOFF pOut->pPosCof = ni->pNegCof; cubeCofactor(pOut->pPosCof, xjON, TRUTH_WORDS); } else { // gOFF = xjOFF, xiOFF pOut->pNegCof = ni->pNegCof; cubeCofactor(pOut->pNegCof, xjOFF, TRUTH_WORDS); // gON = xjOFF, xiON pOut->pPosCof = ni->pPosCof; cubeCofactor(pOut->pPosCof, xjOFF, TRUTH_WORDS); } } // bool diff pOut->pBoolDiff = ni->pBoolDiff; // evaluating specs // off spec pOut->off[0] = 0; if ((xiOFFSize+xjOFFSize) <= (xiONSize+xjONSize)) { merge(pOut->off, xiOFF); merge(pOut->off, xjOFF); } else { merge(pOut->off, xiON); merge(pOut->off, xjON); } // on spec pOut->on[0] = 0; if ((xiOFFSize+xjONSize) <= (xiONSize+xjOFFSize)) { merge(pOut->on, xiOFF); merge(pOut->on, xjON); } else { merge(pOut->on, xiON); merge(pOut->on, xjOFF); } } /** * memory allocator with a capacity of storing 3*nVars * truth-tables for negative and positive cofactors and * the boolean difference for each input variable */ extern word * Dsc_alloc_pool(int nVars) { return ABC_ALLOC(word, 3 * Abc_TtWordNum(nVars) * nVars); } /** * just free the memory pool */ extern void Dsc_free_pool(word * pool) { ABC_FREE(pool); } /** * This method implements the paper proposed by V. Callegaro, F. S. Marranghello, M. G. A. Martins, R. P. Ribas and A. I. Reis, * entitled "Bottom-up disjoint-support decomposition based on cofactor and boolean difference analysis", presented at ICCD 2015. * pTruth: pointer for the truth table representing the target function. * nVarsInit: the number of variables of the truth table of the target function. * pRes: pointer for storing the resulting decomposition, whenever a decomposition can be found. * pool: NULL or a pointer for with a capacity of storing 3*nVars truth-tables. IF NULL, the function will allocate and free the memory of each call. * (the results presented on ICCD paper are running this method with NULL for the memory pool). * The method returns 0 if a full decomposition was found and a negative value otherwise. */ extern int Dsc_Decompose(word * pTruth, const int nVarsInit, char * const pRes, word *pool) { const int TRUTH_WORDS = Abc_TtWordNum(nVarsInit); const int NEED_POOL_ALLOC = (pool == NULL); Dsc_node_t nodes[DSC_MAX_VAR]; Dsc_node_t *newNodes[DSC_MAX_VAR]; Dsc_node_t *oldNodes[DSC_MAX_VAR]; Dsc_node_t freeNodes[DSC_MAX_VAR]; // N is the maximum number of possible groups. int f = 0; // f represent the next free position in the freeNodes array int o = 0; // o stands for the number of already tested nodes int n = 0; // n will represent the number of current nodes (i.e. support) pRes[0] = '\0'; pRes[1] = '\0'; if (NEED_POOL_ALLOC) pool = ABC_ALLOC(word, 3 * TRUTH_WORDS * nVarsInit); // block for the node data allocation { // pointer for the next free truth word word *pNextTruth = pool; int iVar; for (iVar = 0; iVar < nVarsInit; iVar++) { // negative cofactor Abc_TtCofactor0p(pNextTruth, pTruth, TRUTH_WORDS, iVar); // dont care test if (!Abc_TtEqual(pNextTruth, pTruth, TRUTH_WORDS)) { Dsc_node_t *node = &nodes[iVar]; node->pNegCof = pNextTruth; // increment next truth pointer pNextTruth += TRUTH_WORDS; // positive cofactor node->pPosCof = pNextTruth; Abc_TtCofactor1p(node->pPosCof, pTruth, TRUTH_WORDS, iVar); // increment next truth pointer pNextTruth += TRUTH_WORDS; // boolean difference node->pBoolDiff = pNextTruth; Abc_TtXor(node->pBoolDiff, node->pNegCof, node->pPosCof, TRUTH_WORDS, 0); // increment next truth pointer pNextTruth += TRUTH_WORDS; // define on spec - node->on[0] = 1; node->on[1] = (iVar << 1) | 1u; // lit = i*2+1, when polarity=true // define off spec node->off[0] = 1; node->off[1] = iVar << 1;// lit=i*2 otherwise // store the node expression node->exp[0] = 'a'+iVar; // TODO fix the variable names node->exp[1] = '\0'; // add the node to the newNodes array newNodes[n++] = node; } } } //const int initialSupport = n; if (n == 0) { if (NEED_POOL_ALLOC) ABC_FREE(pool); if (Abc_TtIsConst0(pTruth, TRUTH_WORDS)) { { if ( pRes ) pRes[0] = '0', pRes[1] = '\0'; } return 0; } else if (Abc_TtIsConst1(pTruth, TRUTH_WORDS)) { { if ( pRes ) pRes[0] = '1', pRes[1] = '\0'; } return 0; } else { Abc_Print(-1, "ERROR. No variable in the support of f, but f isn't constant!\n"); return -1; } } while (n > 0) { int tempN = 0; int i, j, iPolarity, jPolarity; Dsc_node_t *ni, *nj, *newNode = NULL; for (i = 0; i < n; i++) { ni = newNodes[i]; newNode = NULL; j = 0; while (j < o) { nj = oldNodes[j]; if (dsc_and_test(ni, nj, TRUTH_WORDS, &iPolarity, &jPolarity)) { newNode = &freeNodes[f++]; dsc_and_group(newNode, ni, iPolarity, nj, jPolarity, nVarsInit, TRUTH_WORDS); } // XOR test if ((newNode == NULL) && (dsc_xor_test(ni, nj, TRUTH_WORDS))) { newNode = &freeNodes[f++]; dsc_xor_group(newNode, ni, nj, nVarsInit, TRUTH_WORDS); } if (newNode != NULL) { oldNodes[j] = oldNodes[--o]; break; } else { j++; } } if (newNode != NULL) { newNodes[tempN++] = newNode; } else { oldNodes[o++] = ni; } } n = tempN; } if (o == 1) { Dsc_node_t * solution = oldNodes[0]; if (Abc_TtIsConst0(solution->pNegCof, TRUTH_WORDS) && Abc_TtIsConst1(solution->pPosCof, TRUTH_WORDS)) { // Direct solution found if ( pRes ) strcpy( pRes, solution->exp); if (NEED_POOL_ALLOC) ABC_FREE(pool); return 0; } else if (Abc_TtIsConst1(solution->pNegCof, TRUTH_WORDS) && Abc_TtIsConst0(solution->pPosCof, TRUTH_WORDS)) { // Complementary solution found if ( pRes ) { pRes[0] = '!'; strcpy( &pRes[1], solution->exp); } if (NEED_POOL_ALLOC) ABC_FREE(pool); return 0; } else { printf("DSC ERROR: Final DSC node found, but differs from target function.\n"); if (NEED_POOL_ALLOC) ABC_FREE(pool); return -1; } } if (NEED_POOL_ALLOC) ABC_FREE(pool); return -1; } /**Function************************************************************* Synopsis [DSD formula manipulation.] Description [Code copied from dauDsd.c but changed DAU_MAX_VAR to DSC_MAX_VAR] ***********************************************************************/ int * Dsc_ComputeMatches( char * p ) { static int pMatches[DSC_MAX_VAR]; int pNested[DSC_MAX_VAR]; int v, nNested = 0; for ( v = 0; p[v]; v++ ) { pMatches[v] = 0; if ( p[v] == '(' || p[v] == '[' || p[v] == '<' || p[v] == '{' ) pNested[nNested++] = v; else if ( p[v] == ')' || p[v] == ']' || p[v] == '>' || p[v] == '}' ) pMatches[pNested[--nNested]] = v; assert( nNested < DSC_MAX_VAR ); } assert( nNested == 0 ); return pMatches; } /**Function************************************************************* Synopsis [DSD formula manipulation.] Description [Code copied from dauDsd.c but changed DAU_MAX_VAR to DSC_MAX_VAR] ***********************************************************************/ int Dsc_CountAnds_rec( char * pStr, char ** p, int * pMatches ) { if ( **p == '!' ) (*p)++; while ( (**p >= 'A' && **p <= 'F') || (**p >= '0' && **p <= '9') ) (*p)++; if ( **p == '<' ) { char * q = pStr + pMatches[*p - pStr]; if ( *(q+1) == '{' ) *p = q+1; } if ( **p >= 'a' && **p <= 'z' ) // var return 0; if ( **p == '(' || **p == '[' ) // and/or/xor { int Counter = 0, AddOn = (**p == '(')? 1 : 3; char * q = pStr + pMatches[ *p - pStr ]; assert( *q == **p + 1 + (**p != '(') ); for ( (*p)++; *p < q; (*p)++ ) Counter += AddOn + Dsc_CountAnds_rec( pStr, p, pMatches ); assert( *p == q ); return Counter - AddOn; } if ( **p == '<' || **p == '{' ) // mux { int Counter = 3; char * q = pStr + pMatches[ *p - pStr ]; assert( *q == **p + 1 + (**p != '(') ); for ( (*p)++; *p < q; (*p)++ ) Counter += Dsc_CountAnds_rec( pStr, p, pMatches ); assert( *p == q ); return Counter; } assert( 0 ); return 0; } /**Function************************************************************* Synopsis [DSD formula manipulation.] Description [Code copied from dauDsd.c but changed DAU_MAX_VAR to DSC_MAX_VAR] ***********************************************************************/ extern int Dsc_CountAnds( char * pDsd ) { if ( pDsd[1] == 0 ) return 0; return Dsc_CountAnds_rec( pDsd, &pDsd, Dsc_ComputeMatches(pDsd) ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END