/**CFile**************************************************************** FileName [sfmArea.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [SAT-based optimization using internal don't-cares.] Synopsis [Area optimization.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: sfmArea.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "sfmInt.h" #include "map/mio/mio.h" #include "misc/util/utilTruth.h" #include "misc/util/utilNam.h" #include "map/scl/sclLib.h" #include "map/scl/sclCon.h" #include "opt/dau/dau.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Precompute cell parameters.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Abc_NtkPrecomputeCellPairs( Mio_Cell2_t * pCells, int nCells ) { Vec_Int_t * vInfo = Vec_IntAlloc( 1000 ); word iBestArea, tCur, iThis; int * pPerm[7], nPerms[7], Perm[7], * Perm1, * Perm2; int iBestCell, iBestPerm, iBestDiff; int i, k, n, v, p, Count = 0; int iGate1 = -1, iGate2 = -1; for ( i = 1; i <= 6; i++ ) pPerm[i] = Extra_PermSchedule( i ); for ( i = 1; i <= 6; i++ ) nPerms[i] = Extra_Factorial( i ); for ( i = 2; i < nCells; i++ ) { int nFanins = pCells[i].nFanins; for ( n = 0; n <= nFanins; n++ ) { // get the truth table iThis = (n == nFanins) ? ~pCells[i].uTruth : Abc_Tt6Flip(pCells[i].uTruth, n); // init the comparison iBestArea = ~((word)0); iBestCell = iBestPerm = iBestDiff = -1; // iterate through cells for ( k = 2; k < nCells; k++ ) { if ( nFanins != (int)pCells[k].nFanins ) continue; if ( i != k && pCells[i].uTruth == pCells[k].uTruth ) { iGate1 = i; iGate2 = k; Count++; continue; } // set unit permutation for ( v = 0; v < nFanins; v++ ) Perm[v] = v; // go through all permutation of Cell[k] tCur = pCells[k].uTruth; for ( p = 0; p < nPerms[nFanins]; p++ ) { if ( iThis == tCur && iBestArea > pCells[k].AreaW ) { iBestArea = pCells[k].AreaW; iBestCell = k; iBestPerm = 0; for ( v = 0; v < nFanins; v++ ) iBestPerm |= (v << (Perm[v] << 2)); iBestDiff = (pCells[i].AreaW >= pCells[k].AreaW) ? (int)(pCells[i].AreaW - pCells[k].AreaW) : -(int)(pCells[k].AreaW - pCells[i].AreaW); } if ( nPerms[nFanins] == 1 ) continue; // update tCur = Abc_Tt6SwapAdjacent( tCur, pPerm[nFanins][p] ); Perm1 = Perm + pPerm[nFanins][p]; Perm2 = Perm1 + 1; ABC_SWAP( int, *Perm1, *Perm2 ); } assert( tCur == pCells[k].uTruth ); } Vec_IntPushThree( vInfo, iBestCell, iBestPerm, iBestDiff ); } } for ( i = 1; i <= 6; i++ ) ABC_FREE( pPerm[i] ); if ( Count ) printf( "In this library, %d cell pairs have equal functions (for example, %s and %s).\n", Count/2, pCells[iGate1].pName, pCells[iGate2].pName ); return vInfo; } Vec_Int_t * Abc_NtkPrecomputeFirsts( Mio_Cell2_t * pCells, int nCells ) { int i, Index = 0; Vec_Int_t * vFirst = Vec_IntStartFull( 2 ); for ( i = 2; i < nCells; i++ ) { Vec_IntPush( vFirst, Index ); Index += 3 * (pCells[i].nFanins + 1); } assert( nCells == Vec_IntSize(vFirst) ); return vFirst; } int Abc_NtkPrecomputePrint( Mio_Cell2_t * pCells, int nCells, Vec_Int_t * vInfo ) { int i, n, v, Index = 0, nRecUsed = 0; for ( i = 2; i < nCells; i++ ) { int nFanins = pCells[i].nFanins; printf( "%3d : %8s Fanins = %d ", i, pCells[i].pName, nFanins ); Dau_DsdPrintFromTruth( &pCells[i].uTruth, nFanins ); for ( n = 0; n <= nFanins; n++, Index += 3 ) { int iCellA = Vec_IntEntry( vInfo, Index+0 ); int iPerm = Vec_IntEntry( vInfo, Index+1 ); int Diff = Vec_IntEntry( vInfo, Index+2 ); if ( iCellA == -1 ) continue; printf( "%d : {", n ); for ( v = 0; v < nFanins; v++ ) printf( " %d ", (iPerm >> (v << 2)) & 15 ); printf( "} Index = %d ", Index ); printf( "Gain = %6.2f ", Scl_Int2Flt(Diff) ); Dau_DsdPrintFromTruth( &pCells[iCellA].uTruth, pCells[iCellA].nFanins ); nRecUsed++; } } return nRecUsed; } void Abc_NtkPrecomputeCellPairsTest() { int nCells; Mio_Cell2_t * pCells = Mio_CollectRootsNewDefault2( 6, &nCells, 0 ); Vec_Int_t * vInfo = Abc_NtkPrecomputeCellPairs( pCells, nCells ); int nRecUsed = Abc_NtkPrecomputePrint( pCells, nCells, vInfo ); // iterate through the cells Vec_Int_t * vFirst = Abc_NtkPrecomputeFirsts( pCells, nCells ); printf( "Used records = %d. All records = %d.\n", nRecUsed, Vec_IntSize(vInfo)/3 - nRecUsed ); assert( nCells == Vec_IntSize(vFirst) ); Vec_IntFree( vFirst ); Vec_IntFree( vInfo ); ABC_FREE( pCells ); } int Abc_NodeCheckFanoutHasFanin( Abc_Obj_t * pNode, Abc_Obj_t * pFanin ) { Abc_Obj_t * pThis; int i; Abc_ObjForEachFanout( pNode, pThis, i ) if ( Abc_NodeFindFanin(pThis, pFanin) >= 0 ) return i; return -1; } /**Function************************************************************* Synopsis [Evaluate changes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_ObjHasDupFanins( Abc_Obj_t * pObj ) { int * pArray = pObj->vFanins.pArray; int i, k, Limit = Abc_ObjFaninNum(pObj); for ( i = 0; i < Limit; i++ ) for ( k = i+1; k < Limit; k++ ) if ( pArray[i] == pArray[k] ) return 1; return 0; } int Abc_ObjHasDupFanouts( Abc_Obj_t * pObj ) { int * pArray = pObj->vFanouts.pArray; int i, k, Limit = Abc_ObjFanoutNum(pObj); for ( i = 0; i < Limit; i++ ) for ( k = i+1; k < Limit; k++ ) if ( pArray[i] == pArray[k] ) return 1; return 0; } int Abc_ObjChangeEval( Abc_Obj_t * pObj, Vec_Int_t * vInfo, Vec_Int_t * vFirst, int InvArea, int * pfUseInv ) { Abc_Obj_t * pNext; //Mio_Gate_t * pGate = (Mio_Gate_t *)pObj->pData; int iFanCell, iNodeCell = Mio_GateReadCell( (Mio_Gate_t *)pObj->pData ); int * pFanInfo, * pNodeInfo = Vec_IntEntryP( vInfo, Vec_IntEntry(vFirst, iNodeCell) ); int i, fNeedInv = 0, Gain = 0, iFanin = Abc_ObjFaninNum(pObj), fUseInv = Abc_NodeIsInv(pObj); assert( iFanin > 0 ); *pfUseInv = 0; if ( pNodeInfo[3*iFanin] == -1 ) return 0; if ( fUseInv ) Gain = InvArea; else Gain = pNodeInfo[3*iFanin+2]; Abc_ObjForEachFanout( pObj, pNext, i ) { if ( fUseInv && Abc_NodeFindFanin(pNext, Abc_ObjFanin0(pObj)) >= 0 ) return 0; if ( Abc_ObjHasDupFanins(pNext) ) return 0; if ( !Abc_ObjIsNode(pNext) || Abc_NodeIsBuf(pNext) ) { fNeedInv = 1; continue; } if ( Abc_NodeIsInv(pNext) ) { if ( Abc_NodeCheckFanoutHasFanin(pNext, pObj) >= 0 ) return 0; Gain += InvArea; continue; } iFanCell = Mio_GateReadCell( (Mio_Gate_t *)pNext->pData ); pFanInfo = Vec_IntEntryP( vInfo, Vec_IntEntry(vFirst, iFanCell) ); iFanin = Abc_NodeFindFanin( pNext, pObj ); if ( pFanInfo[3*iFanin] == -1 ) { fNeedInv = 1; continue; } Gain += pFanInfo[3*iFanin+2]; } if ( fNeedInv ) Gain -= InvArea; *pfUseInv = fNeedInv; return Gain; } void Abc_ObjChangeUpdate( Abc_Obj_t * pObj, int iFanin, Mio_Cell2_t * pCells, int * pNodeInfo, Vec_Int_t * vTemp ) { int v, Perm, iNodeCell = pNodeInfo[3*iFanin]; //Mio_Gate_t * pGate = (Mio_Gate_t *)pObj->pData; //Abc_ObjPrint( stdout, pObj ); //printf( "Replacing fanout %d with %s by %s with fanin %d.\n", Abc_ObjId(pObj), Mio_GateReadName(pGate), Mio_GateReadName((Mio_Gate_t *)pCells[iNodeCell].pMioGate), iFanin ); pObj->pData = (Mio_Gate_t *)pCells[iNodeCell].pMioGate; Perm = pNodeInfo[3*iFanin+1]; Vec_IntClear( vTemp ); for ( v = 0; v < Abc_ObjFaninNum(pObj); v++ ) Vec_IntPush( vTemp, Abc_ObjFaninId(pObj, (Perm >> (v << 2)) & 15) ); Vec_IntClear( &pObj->vFanins ); Vec_IntAppend( &pObj->vFanins, vTemp ); } void Abc_ObjChangePerform( Abc_Obj_t * pObj, Vec_Int_t * vInfo, Vec_Int_t * vFirst, int fUseInv, Vec_Int_t * vTemp, Vec_Ptr_t * vFanout, Vec_Ptr_t * vFanout2, Mio_Cell2_t * pCells ) { Abc_Obj_t * pNext, * pNext2, * pNodeInv = NULL; int iFanCell, iNodeCell = Mio_GateReadCell( (Mio_Gate_t *)pObj->pData ); int * pFanInfo, * pNodeInfo = Vec_IntEntryP( vInfo, Vec_IntEntry(vFirst, iNodeCell) ); int i, k, iFanin = Abc_ObjFaninNum(pObj); assert( iFanin > 0 && pNodeInfo[3*iFanin] != -1 ); // update the node Abc_NodeCollectFanouts( pObj, vFanout ); if ( Abc_NodeIsInv(pObj) ) { Abc_Obj_t * pFanin = Abc_ObjFanin0(pObj); Vec_PtrForEachEntry( Abc_Obj_t *, vFanout, pNext, k ) Abc_ObjPatchFanin( pNext, pObj, pFanin ); assert( Abc_ObjFanoutNum(pObj) == 0 ); Abc_NtkDeleteObj(pObj); pObj = pFanin; // assert( fUseInv == 0 ); } else Abc_ObjChangeUpdate( pObj, iFanin, pCells, pNodeInfo, vTemp ); // add inverter if needed if ( fUseInv ) pNodeInv = Abc_NtkCreateNodeInv(pObj->pNtk, pObj); // update the fanouts Vec_PtrForEachEntry( Abc_Obj_t *, vFanout, pNext, i ) { if ( !Abc_ObjIsNode(pNext) || Abc_NodeIsBuf(pNext) ) { Abc_ObjPatchFanin( pNext, pObj, pNodeInv ); continue; } if ( Abc_NodeIsInv(pNext) ) { Abc_NodeCollectFanouts( pNext, vFanout2 ); Vec_PtrForEachEntry( Abc_Obj_t *, vFanout2, pNext2, k ) Abc_ObjPatchFanin( pNext2, pNext, pObj ); assert( Abc_ObjFanoutNum(pNext) == 0 ); Abc_NtkDeleteObj(pNext); continue; } iFanin = Abc_NodeFindFanin( pNext, pObj ); iFanCell = Mio_GateReadCell( (Mio_Gate_t *)pNext->pData ); pFanInfo = Vec_IntEntryP( vInfo, Vec_IntEntry(vFirst, iFanCell) ); if ( pFanInfo[3*iFanin] == -1 ) { Abc_ObjPatchFanin( pNext, pObj, pNodeInv ); continue; } Abc_ObjChangeUpdate( pNext, iFanin, pCells, pFanInfo, vTemp ); } } void Abc_NtkChangePerform( Abc_Ntk_t * pNtk, int fVerbose ) { abctime clk = Abc_Clock(); int i, fNeedInv, nCells, Gain, GainAll = 0, Count = 0, CountInv = 0; Mio_Cell2_t * pCells = Mio_CollectRootsNewDefault2( 6, &nCells, 0 ); Vec_Int_t * vInfo = Abc_NtkPrecomputeCellPairs( pCells, nCells ); Vec_Int_t * vFirst = Abc_NtkPrecomputeFirsts( pCells, nCells ); Vec_Ptr_t * vFanout = Vec_PtrAlloc( 100 ); Vec_Ptr_t * vFanout2 = Vec_PtrAlloc( 100 ); Vec_Int_t * vTemp = Vec_IntAlloc( 100 ); Abc_Obj_t * pObj; Abc_NtkForEachNode( pNtk, pObj, i ) { if ( Abc_ObjFaninNum(pObj) < 2 && !Abc_NodeIsInv(pObj) ) continue; if ( Abc_ObjHasDupFanouts(pObj) ) continue; Gain = Abc_ObjChangeEval( pObj, vInfo, vFirst, (int)pCells[3].AreaW, &fNeedInv ); if ( Gain <= 0 ) continue; //printf( "Obj %d\n", Abc_ObjId(pObj) ); Count++; CountInv += Abc_NodeIsInv(pObj); GainAll += Gain; Abc_ObjChangePerform( pObj, vInfo, vFirst, fNeedInv, vTemp, vFanout, vFanout2, pCells ); } Vec_PtrFree( vFanout2 ); Vec_PtrFree( vFanout ); Vec_IntFree( vTemp ); Vec_IntFree( vFirst ); Vec_IntFree( vInfo ); ABC_FREE( pCells ); if ( fVerbose ) printf( "Total gain in area = %6.2f after %d changes (including %d inverters). ", Scl_Int2Flt(GainAll), Count, CountInv ); if ( fVerbose ) Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END