/**CFile**************************************************************** FileName [sfmTim.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [SAT-based optimization using internal don't-cares.] Synopsis [Timing manager.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: sfmTim.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "sfmInt.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// struct Sfm_Tim_t_ { // external Mio_Library_t * pLib; // library Scl_Con_t * pExt; // external timing Abc_Ntk_t * pNtk; // mapped network int Delay; // the largest delay int DeltaCrit; // critical delay delta // timing info Vec_Int_t vTimArrs; // arrivals (rise/fall) Vec_Int_t vTimReqs; // required (rise/fall) // incremental timing Vec_Wec_t vLevels; // levels // critical path Vec_Int_t vPath; // critical path Vec_Wrd_t vSortData; // node priority order }; static inline int * Sfm_TimArrId( Sfm_Tim_t * p, int Id ) { return Vec_IntEntryP( &p->vTimArrs, Abc_Var2Lit(Id, 0) ); } static inline int * Sfm_TimReqId( Sfm_Tim_t * p, int Id ) { return Vec_IntEntryP( &p->vTimReqs, Abc_Var2Lit(Id, 0) ); } static inline int * Sfm_TimArr( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { return Vec_IntEntryP( &p->vTimArrs, Abc_Var2Lit(Abc_ObjId(pNode), 0) ); } static inline int * Sfm_TimReq( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { return Vec_IntEntryP( &p->vTimReqs, Abc_Var2Lit(Abc_ObjId(pNode), 0) ); } static inline int Sfm_TimArrMaxId( Sfm_Tim_t * p, int Id ) { int * a = Sfm_TimArrId(p, Id); return Abc_MaxInt(a[0], a[1]); } static inline int Sfm_TimArrMax( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { int * a = Sfm_TimArr(p, pNode); return Abc_MaxInt(a[0], a[1]); } static inline void Sfm_TimSetReq( Sfm_Tim_t * p, Abc_Obj_t * pNode, int t ) { int * r = Sfm_TimReq(p, pNode); r[0] = r[1] = t; } static inline int Sfm_TimSlack( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { int * r = Sfm_TimReq(p, pNode), * a = Sfm_TimArr(p, pNode); return Abc_MinInt(r[0]-a[0], r[1]-a[1]); } //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Sfm_TimEdgeArrival( Sfm_Tim_t * p, Mio_Pin_t * pPin, int * pTimeIn, int * pTimeOut ) { Mio_PinPhase_t PinPhase = Mio_PinReadPhase(pPin); int tDelayBlockRise = Scl_Flt2Int(Mio_PinReadDelayBlockRise(pPin)); int tDelayBlockFall = Scl_Flt2Int(Mio_PinReadDelayBlockFall(pPin)); if ( PinPhase != MIO_PHASE_INV ) // NONINV phase is present { pTimeOut[0] = Abc_MaxInt( pTimeOut[0], pTimeIn[0] + tDelayBlockRise ); pTimeOut[1] = Abc_MaxInt( pTimeOut[1], pTimeIn[1] + tDelayBlockFall ); } if ( PinPhase != MIO_PHASE_NONINV ) // INV phase is present { pTimeOut[0] = Abc_MaxInt( pTimeOut[0], pTimeIn[1] + tDelayBlockRise ); pTimeOut[1] = Abc_MaxInt( pTimeOut[1], pTimeIn[0] + tDelayBlockFall ); } } static inline void Sfm_TimGateArrival( Sfm_Tim_t * p, Mio_Gate_t * pGate, int ** pTimesIn, int * pTimeOut ) { Mio_Pin_t * pPin; int i = 0; pTimeOut[0] = pTimeOut[1] = 0; Mio_GateForEachPin( pGate, pPin ) Sfm_TimEdgeArrival( p, pPin, pTimesIn[i++], pTimeOut ); assert( i == Mio_GateReadPinNum(pGate) ); } static inline void Sfm_TimNodeArrival( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { int i, iFanin, * pTimesIn[6]; int * pTimeOut = Sfm_TimArr(p, pNode); assert( Abc_ObjFaninNum(pNode) <= 6 ); Abc_ObjForEachFaninId( pNode, iFanin, i ) pTimesIn[i] = Sfm_TimArrId( p, iFanin ); Sfm_TimGateArrival( p, (Mio_Gate_t *)pNode->pData, pTimesIn, pTimeOut ); } static inline void Sfm_TimEdgeRequired( Sfm_Tim_t * p, Mio_Pin_t * pPin, int * pTimeIn, int * pTimeOut ) { Mio_PinPhase_t PinPhase = Mio_PinReadPhase(pPin); int tDelayBlockRise = Scl_Flt2Int(Mio_PinReadDelayBlockRise(pPin)); int tDelayBlockFall = Scl_Flt2Int(Mio_PinReadDelayBlockFall(pPin)); if ( PinPhase != MIO_PHASE_INV ) // NONINV phase is present { pTimeIn[0] = Abc_MinInt( pTimeIn[0], pTimeOut[0] - tDelayBlockRise ); pTimeIn[1] = Abc_MinInt( pTimeIn[1], pTimeOut[1] - tDelayBlockFall ); } if ( PinPhase != MIO_PHASE_NONINV ) // INV phase is present { pTimeIn[0] = Abc_MinInt( pTimeIn[0], pTimeOut[1] - tDelayBlockRise ); pTimeIn[1] = Abc_MinInt( pTimeIn[1], pTimeOut[0] - tDelayBlockFall ); } } static inline void Sfm_TimGateRequired( Sfm_Tim_t * p, Mio_Gate_t * pGate, int ** pTimesIn, int * pTimeOut ) { Mio_Pin_t * pPin; int i = 0; Mio_GateForEachPin( pGate, pPin ) Sfm_TimEdgeRequired( p, pPin, pTimesIn[i++], pTimeOut ); assert( i == Mio_GateReadPinNum(pGate) ); } void Sfm_TimNodeRequired( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { int i, iFanin, * pTimesIn[6]; int * pTimeOut = Sfm_TimReq(p, pNode); assert( Abc_ObjFaninNum(pNode) <= 6 ); Abc_ObjForEachFaninId( pNode, iFanin, i ) pTimesIn[i] = Sfm_TimReqId( p, iFanin ); Sfm_TimGateRequired( p, (Mio_Gate_t *)pNode->pData, pTimesIn, pTimeOut ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Sfm_TimCriticalPath_int( Sfm_Tim_t * p, Abc_Obj_t * pObj, Vec_Int_t * vPath, int SlackMax ) { Abc_Obj_t * pNext; int i; if ( Abc_NodeIsTravIdCurrent( pObj ) ) return; Abc_NodeSetTravIdCurrent( pObj ); assert( Abc_ObjIsNode(pObj) ); Abc_ObjForEachFanin( pObj, pNext, i ) { if ( Abc_ObjIsCi(pNext) || Abc_ObjFaninNum(pNext) == 0 ) continue; assert( Abc_ObjIsNode(pNext) ); if ( Sfm_TimSlack(p, pNext) <= SlackMax ) Sfm_TimCriticalPath_int( p, pNext, vPath, SlackMax ); } if ( Abc_ObjFaninNum(pObj) > 0 ) Vec_IntPush( vPath, Abc_ObjId(pObj) ); } int Sfm_TimCriticalPath( Sfm_Tim_t * p, int Window ) { int i, SlackMax = p->Delay * Window / 100; Abc_Obj_t * pObj, * pNext; Vec_IntClear( &p->vPath ); Abc_NtkIncrementTravId( p->pNtk ); Abc_NtkForEachCo( p->pNtk, pObj, i ) { pNext = Abc_ObjFanin0(pObj); if ( Abc_ObjIsCi(pNext) || Abc_ObjFaninNum(pNext) == 0 ) continue; assert( Abc_ObjIsNode(pNext) ); if ( Sfm_TimSlack(p, pNext) <= SlackMax ) Sfm_TimCriticalPath_int( p, pNext, &p->vPath, SlackMax ); } return Vec_IntSize(&p->vPath); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Sfm_TimTrace( Sfm_Tim_t * p ) { Abc_Obj_t * pObj; int i, Delay = 0; Vec_Ptr_t * vNodes = Abc_NtkDfs( p->pNtk, 1 ); Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i ) Sfm_TimNodeArrival( p, pObj ); Abc_NtkForEachCo( p->pNtk, pObj, i ) Delay = Abc_MaxInt( Delay, Sfm_TimArrMax(p, Abc_ObjFanin0(pObj)) ); Vec_IntFill( &p->vTimReqs, 2*Abc_NtkObjNumMax(p->pNtk), ABC_INFINITY ); Abc_NtkForEachCo( p->pNtk, pObj, i ) Sfm_TimSetReq( p, Abc_ObjFanin0(pObj), Delay ); Vec_PtrForEachEntryReverse( Abc_Obj_t *, vNodes, pObj, i ) Sfm_TimNodeRequired( p, pObj ); Vec_PtrFree( vNodes ); return Delay; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Sfm_Tim_t * Sfm_TimStart( Mio_Library_t * pLib, Scl_Con_t * pExt, Abc_Ntk_t * pNtk, int DeltaCrit ) { Sfm_Tim_t * p = ABC_CALLOC( Sfm_Tim_t, 1 ); p->pLib = pLib; p->pExt = pExt; p->pNtk = pNtk; Vec_IntFill( &p->vTimArrs, 3*Abc_NtkObjNumMax(pNtk), 0 ); Vec_IntFill( &p->vTimReqs, 3*Abc_NtkObjNumMax(pNtk), 0 ); p->Delay = Sfm_TimTrace( p ); assert( DeltaCrit > 0 && DeltaCrit < Scl_Flt2Int(1000.0) ); p->DeltaCrit = DeltaCrit; return p; } void Sfm_TimStop( Sfm_Tim_t * p ) { Vec_IntErase( &p->vTimArrs ); Vec_IntErase( &p->vTimReqs ); Vec_WecErase( &p->vLevels ); Vec_IntErase( &p->vPath ); Vec_WrdErase( &p->vSortData ); ABC_FREE( p ); } int Sfm_TimReadNtkDelay( Sfm_Tim_t * p ) { return p->Delay; } int Sfm_TimReadObjDelay( Sfm_Tim_t * p, int iObj ) { return Sfm_TimArrMaxId(p, iObj); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Sfm_TimTest( Abc_Ntk_t * pNtk ) { Mio_Library_t * pLib = (Mio_Library_t *)pNtk->pManFunc; Sfm_Tim_t * p = Sfm_TimStart( pLib, NULL, pNtk, 100 ); printf( "Max delay = %.2f. Path = %d (%d).\n", Scl_Int2Flt(p->Delay), Sfm_TimCriticalPath(p, 1), Abc_NtkNodeNum(p->pNtk) ); Sfm_TimStop( p ); } /**Function************************************************************* Synopsis [Levelized structure.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Sfm_TimUpdateClean( Sfm_Tim_t * p ) { Vec_Int_t * vLevel; Abc_Obj_t * pObj; int i, k; Vec_WecForEachLevel( &p->vLevels, vLevel, i ) { Abc_NtkForEachObjVec( vLevel, p->pNtk, pObj, k ) { assert( pObj->fMarkC == 1 ); pObj->fMarkC = 0; } Vec_IntClear( vLevel ); } } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Sfm_TimUpdateTiming( Sfm_Tim_t * p, Vec_Int_t * vTimeNodes ) { assert( Vec_IntSize(vTimeNodes) > 0 && Vec_IntSize(vTimeNodes) <= 2 ); Vec_IntFillExtra( &p->vTimArrs, 2*Abc_NtkObjNumMax(p->pNtk), 0 ); Vec_IntFillExtra( &p->vTimReqs, 2*Abc_NtkObjNumMax(p->pNtk), 0 ); p->Delay = Sfm_TimTrace( p ); } /**Function************************************************************* Synopsis [Sort an array of nodes using their max arrival times.] Description [Returns the number of new divisor nodes.] SideEffects [] SeeAlso [] ***********************************************************************/ int Sfm_TimSortArrayByArrival( Sfm_Tim_t * p, Vec_Int_t * vNodes, int iPivot ) { word Entry; int i, Id, Time, nDivNew = -1; int MaxDelay = ABC_INFINITY/2+Sfm_TimArrMaxId(p, iPivot); assert( p->DeltaCrit > 0 ); // collect nodes Vec_WrdClear( &p->vSortData ); Vec_IntForEachEntry( vNodes, Id, i ) { Time = Sfm_TimArrMaxId( p, Id ); assert( -ABC_INFINITY/2 < Time && Time < ABC_INFINITY/2 ); Vec_WrdPush( &p->vSortData, ((word)Id << 32) | (ABC_INFINITY/2+Time) ); } // sort nodes by delay Abc_QuickSort3( Vec_WrdArray(&p->vSortData), Vec_WrdSize(&p->vSortData), 0 ); // collect sorted nodes and find place where divisors end Vec_IntClear( vNodes ); Vec_WrdForEachEntry( &p->vSortData, Entry, i ) { Vec_IntPush( vNodes, (int)(Entry >> 32) ); if ( nDivNew == -1 && ((int)Entry) + p->DeltaCrit > MaxDelay ) nDivNew = i; } return nDivNew; } /**Function************************************************************* Synopsis [Priority of nodes to try remapping for delay.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Sfm_TimPriorityNodes( Sfm_Tim_t * p, Vec_Int_t * vCands, int Window ) { Vec_Int_t * vLevel; Abc_Obj_t * pObj; int i, k; assert( Window >= 0 && Window <= 100 ); // collect critical path Sfm_TimCriticalPath( p, Window ); // add nodes to the levelized structure Sfm_TimUpdateClean( p ); Abc_NtkForEachObjVec( &p->vPath, p->pNtk, pObj, i ) { assert( pObj->fMarkC == 0 ); pObj->fMarkC = 1; Vec_WecPush( &p->vLevels, Abc_ObjLevel(pObj), Abc_ObjId(pObj) ); } // prioritize nodes by expected gain Vec_WecSort( &p->vLevels, 0 ); Vec_IntClear( vCands ); Vec_WecForEachLevel( &p->vLevels, vLevel, i ) Abc_NtkForEachObjVec( vLevel, p->pNtk, pObj, k ) if ( !pObj->fMarkA ) Vec_IntPush( vCands, Abc_ObjId(pObj) ); // printf( "Path = %5d Cand = %5d\n", Vec_IntSize(&p->vPath) ); return Vec_IntSize(vCands) > 0; } /**Function************************************************************* Synopsis [Returns 1 if node is relatively non-critical compared to the pivot.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Sfm_TimNodeIsNonCritical( Sfm_Tim_t * p, Abc_Obj_t * pPivot, Abc_Obj_t * pNode ) { return Sfm_TimArrMax(p, pNode) + p->DeltaCrit <= Sfm_TimArrMax(p, pPivot); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Sfm_TimEvalRemapping( Sfm_Tim_t * p, Vec_Int_t * vFanins, Vec_Int_t * vMap, Mio_Gate_t * pGate1, char * pFans1, Mio_Gate_t * pGate2, char * pFans2 ) { int TimeOut[2][2]; int * pTimesIn1[6], * pTimesIn2[6]; int i, nFanins1, nFanins2; // process the first gate nFanins1 = Mio_GateReadPinNum( pGate1 ); for ( i = 0; i < nFanins1; i++ ) pTimesIn1[i] = Sfm_TimArrId( p, Vec_IntEntry(vMap, Vec_IntEntry(vFanins, (int)pFans1[i])) ); Sfm_TimGateArrival( p, pGate1, pTimesIn1, TimeOut[0] ); if ( pGate2 == NULL ) return Abc_MaxInt(TimeOut[0][0], TimeOut[0][1]); // process the second gate nFanins2 = Mio_GateReadPinNum( pGate2 ); for ( i = 0; i < nFanins2; i++ ) if ( (int)pFans2[i] == 16 ) pTimesIn2[i] = TimeOut[0]; else pTimesIn2[i] = Sfm_TimArrId( p, Vec_IntEntry(vMap, Vec_IntEntry(vFanins, (int)pFans2[i])) ); Sfm_TimGateArrival( p, pGate2, pTimesIn2, TimeOut[1] ); return Abc_MaxInt(TimeOut[1][0], TimeOut[1][1]); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END