/**CFile**************************************************************** FileName [acecPo.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [CEC for arithmetic circuits.] Synopsis [Core procedures.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: acecPo.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "acecInt.h" #include "misc/vec/vecWec.h" #include "misc/vec/vecHsh.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Parses signature given on the command line.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Acec_ParseSignatureMono( char * p, char * pStop, Vec_Int_t * vLevel ) { char * pTemp = p; int Const = ABC_INFINITY; int fMinus = pTemp[0] == '-'; if ( pTemp[0] == '+' || pTemp[0] == '-' || pTemp[0] == '(' ) pTemp++; while ( pTemp < pStop ) { if ( pTemp[0] == 'i' ) // input Vec_IntPush( vLevel, -1-atoi(++pTemp) ); else if ( pTemp[0] == 'o' ) // output Vec_IntPush( vLevel, atoi(++pTemp) ); else // coefficient { assert( Const == ABC_INFINITY ); Const = 1 + atoi(pTemp); } while ( pTemp[0] >= '0' && pTemp[0] <= '9' ) pTemp++; assert( pTemp == pStop || pTemp[0] == '*' ); pTemp++; } assert( Const != ABC_INFINITY ); Vec_IntPush( vLevel, fMinus ? -Const : Const ); } Vec_Wec_t * Acec_ParseSignatureOne( char * p, char * pStop ) { Vec_Wec_t * vMonos = Vec_WecAlloc( 10 ); char * pTemp = p, * pNext; assert( p[0] == '(' && pStop[0] == ')' ); while ( pTemp[0] != ')' ) { for ( pNext = pTemp+1; pNext < pStop; pNext++ ) if ( pNext[0] == '+' || pNext[0] == '-' ) break; assert( pNext[0] == '+' || pNext[0] == '-' || pNext[0] == ')' ); Acec_ParseSignatureMono( pTemp, pNext, Vec_WecPushLevel(vMonos) ); pTemp = pNext; } return vMonos; } Vec_Wec_t * Acec_ParseDistribute( Vec_Wec_t * vM1, Vec_Wec_t * vM2, Vec_Wec_t * vAdd ) { Vec_Wec_t * vMonos = Vec_WecAlloc( 10 ); Vec_Int_t * vLevel1, * vLevel2, * vLevel; int i, k, n, Entry; Vec_WecForEachLevel( vM1, vLevel1, i ) Vec_WecForEachLevel( vM2, vLevel2, k ) { vLevel = Vec_WecPushLevel(vMonos); Vec_IntForEachEntryStop( vLevel1, Entry, n, Vec_IntSize(vLevel1)-1 ) Vec_IntPush(vLevel, Entry); Vec_IntForEachEntryStop( vLevel2, Entry, n, Vec_IntSize(vLevel2)-1 ) Vec_IntPush(vLevel, Entry); Vec_IntPush(vLevel, Vec_IntEntryLast(vLevel1)+Vec_IntEntryLast(vLevel2)-1); } Vec_WecForEachLevel( vAdd, vLevel1, k ) { vLevel = Vec_WecPushLevel(vMonos); Vec_IntForEachEntry( vLevel1, Entry, n ) Vec_IntPush(vLevel, Entry); } return vMonos; } Vec_Wec_t * Acec_ParseSignature( char * p ) { Vec_Wec_t * vAdd = NULL, * vTemp1, * vTemp2, * vRes; if ( p[0] == '(' ) { char * pStop = strstr(p, ")"); if ( pStop == NULL ) return NULL; vTemp1 = Acec_ParseSignatureOne( p, pStop ); if ( pStop[1] == 0 ) return vTemp1; if ( pStop[1] == '*' ) { char * p2 = pStop + 2; char * pStop2 = strstr(p2, ")"); if ( p2[0] != '(' ) return NULL; if ( pStop2 == NULL ) return NULL; vTemp2 = Acec_ParseSignatureOne( p2, pStop2 ); if ( pStop2[1] == 0 ) { vRes = Acec_ParseDistribute( vTemp1, vTemp2, vAdd ); Vec_WecFree( vTemp1 ); Vec_WecFree( vTemp2 ); return vRes; } if ( pStop2[1] == '+' ) { char * p3 = pStop2 + 2; char * pStop3 = strstr(p3, ")"); if ( p3[0] != '(' ) return NULL; if ( pStop3 == NULL ) return NULL; vAdd = Acec_ParseSignatureOne( p3, pStop3 ); vRes = Acec_ParseDistribute( vTemp1, vTemp2, vAdd ); Vec_WecFree( vTemp1 ); Vec_WecFree( vTemp2 ); Vec_WecFree( vAdd ); return vRes; } assert( 0 ); } assert( 0 ); } else { int Len = strlen(p); char * pCopy = ABC_ALLOC( char, Len+3 ); pCopy[0] = '('; strcpy( pCopy+1, p ); pCopy[Len+1] = ')'; pCopy[Len+2] = '\0'; vRes = Acec_ParseSignatureOne( pCopy, pCopy + Len + 1 ); ABC_FREE( pCopy ); return vRes; } return NULL; } void Acec_PrintSignature( Vec_Wec_t * vMonos ) { Vec_Int_t * vLevel; int i, k, Entry; printf( "Output signature with %d monomials:\n", Vec_WecSize(vMonos) ); Vec_WecForEachLevel( vMonos, vLevel, i ) { printf( " %s2^%d", Vec_IntEntryLast(vLevel) > 0 ? "+":"-", Abc_AbsInt(Vec_IntEntryLast(vLevel))-1 ); Vec_IntForEachEntryStop( vLevel, Entry, k, Vec_IntSize(vLevel)-1 ) { printf( " * " ); if ( Entry < 0 ) printf( "i%d", -Entry-1 ); else printf( "o%d", Entry ); } printf( "\n" ); } } void Acec_ParseSignatureTest() { char * pSign = "(4*o1+2*o2+1*o3)*(4*i4+2*i5+1*i6)+(4*o4+2*o5+1*o6)"; Vec_Wec_t * vMonos = Acec_ParseSignature( pSign ); Acec_PrintSignature( vMonos ); Vec_WecFree( vMonos ); } /**Function************************************************************* Synopsis [Checks that items are unique and in order.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Vec_IntPushOrderAbs( Vec_Int_t * p, int Entry ) { int i; for ( i = 0; i < p->nSize; i++ ) assert( Entry != p->pArray[i] ); if ( p->nSize == p->nCap ) { if ( p->nCap < 16 ) Vec_IntGrow( p, 16 ); else Vec_IntGrow( p, 2 * p->nCap ); } p->nSize++; for ( i = p->nSize-2; i >= 0; i-- ) if ( Abc_AbsInt(p->pArray[i]) < Abc_AbsInt(Entry) ) p->pArray[i+1] = p->pArray[i]; else break; p->pArray[i+1] = Entry; } static inline void Vec_IntAppendMinusAbs( Vec_Int_t * vVec1, Vec_Int_t * vVec2, int fMinus ) { int Entry, i; Vec_IntClear( vVec1 ); Vec_IntForEachEntry( vVec2, Entry, i ) Vec_IntPushOrderAbs( vVec1, fMinus ? -Entry : Entry ); } static inline void Vec_IntCheckUniqueOrderAbs( Vec_Int_t * p ) { int i; for ( i = 1; i < p->nSize; i++ ) assert( Abc_AbsInt(p->pArray[i-1]) > Abc_AbsInt(p->pArray[i]) ); } static inline void Vec_IntCheckUniqueOrder( Vec_Int_t * p ) { int i; for ( i = 1; i < p->nSize; i++ ) assert( p->pArray[i-1] < p->pArray[i] ); } /**Function************************************************************* Synopsis [Prints polynomial.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Gia_PolynPrintMono( Vec_Int_t * vConst, Vec_Int_t * vMono, int Prev ) { int k, Entry; printf( "%c ", Prev != Abc_AbsInt(Vec_IntEntry(vConst, 0)) ? '|' : ' ' ); Vec_IntForEachEntry( vConst, Entry, k ) printf( "%s2^%d", Entry < 0 ? "-" : "+", Abc_AbsInt(Entry)-1 ); Vec_IntForEachEntry( vMono, Entry, k ) printf( " * i%d", Entry-1 ); printf( "\n" ); } void Gia_PolynPrint( Vec_Wec_t * vPolyn ) { Vec_Int_t * vConst, * vMono; int i, Prev = -1; printf( "Polynomial with %d monomials:\n", Vec_WecSize(vPolyn)/2 ); for ( i = 0; i < Vec_WecSize(vPolyn)/2; i++ ) { vConst = Vec_WecEntry( vPolyn, 2*i+0 ); vMono = Vec_WecEntry( vPolyn, 2*i+1 ); Gia_PolynPrintMono( vConst, vMono, Prev ); Prev = Abc_AbsInt( Vec_IntEntry(vConst, 0) ); } } void Gia_PolynPrintStats( Vec_Wec_t * vPolyn ) { Vec_Int_t * vConst, * vCountsP, * vCountsN; int i, Entry, Max = 0; printf( "Input signature with %d monomials:\n", Vec_WecSize(vPolyn)/2 ); for ( i = 0; i < Vec_WecSize(vPolyn)/2; i++ ) { vConst = Vec_WecEntry( vPolyn, 2*i+0 ); Max = Abc_MaxInt( Max, Abc_AbsInt(Abc_AbsInt(Vec_IntEntry(vConst, 0))) ); } vCountsP = Vec_IntStart( Max + 1 ); vCountsN = Vec_IntStart( Max + 1 ); for ( i = 0; i < Vec_WecSize(vPolyn)/2; i++ ) { vConst = Vec_WecEntry( vPolyn, 2*i+0 ); Entry = Vec_IntEntry(vConst, 0); if ( Entry > 0 ) Vec_IntAddToEntry( vCountsP, Entry, 1 ); else Vec_IntAddToEntry( vCountsN, -Entry, 1 ); } Vec_IntForEachEntry( vCountsN, Entry, i ) if ( Entry ) printf( " -2^%d appears %d times\n", Abc_AbsInt(i)-1, Entry ); Vec_IntForEachEntry( vCountsP, Entry, i ) if ( Entry ) printf( " +2^%d appears %d times\n", Abc_AbsInt(i)-1, Entry ); Vec_IntFree( vCountsP ); Vec_IntFree( vCountsN ); } /**Function************************************************************* Synopsis [Collects polynomial.] Description [Collects non-trivial monomials in the increasing order of the absolute value of the their first coefficients.] SideEffects [] SeeAlso [] ***********************************************************************/ int Gia_PolynGetResultCompare( int * p0, int * p1 ) { if ( p0[2] < p1[2] ) return -1; if ( p0[2] > p1[2] ) return 1; return 0; } Vec_Wec_t * Gia_PolynGetResult( Hsh_VecMan_t * pHashC, Hsh_VecMan_t * pHashM, Vec_Int_t * vCoefs ) { Vec_Int_t * vClass, * vLevel, * vArray; Vec_Wec_t * vPolyn, * vSorted; int i, k, iConst, iMono, iFirst; // find the largest int nLargest = 0, nNonConst = 0; Vec_IntForEachEntry( vCoefs, iConst, iMono ) { //Vec_IntPrint( Hsh_VecReadEntry(pHashM, iMono) ); if ( iConst == 0 ) continue; vArray = Hsh_VecReadEntry( pHashC, iConst ); nLargest = Abc_MaxInt( nLargest, Abc_AbsInt(Vec_IntEntry(vArray, 0)) ); nNonConst++; } // sort by the size of the largest coefficient vSorted = Vec_WecStart( nLargest+1 ); Vec_IntForEachEntry( vCoefs, iConst, iMono ) { if ( iConst == 0 ) continue; vArray = Hsh_VecReadEntry( pHashC, iConst ); vLevel = Vec_WecEntry( vSorted, Abc_AbsInt(Vec_IntEntry(vArray, 0)) ); vArray = Hsh_VecReadEntry( pHashM, iMono ); iFirst = Vec_IntSize(vArray) ? Vec_IntEntry(vArray, 0) : -1; Vec_IntPushThree( vLevel, iConst, iMono, iFirst ); } // reload in the given order vPolyn = Vec_WecAlloc( 2*nNonConst ); Vec_WecForEachLevel( vSorted, vClass, i ) { // sort monomials by the index of the first variable qsort( Vec_IntArray(vClass), (size_t)(Vec_IntSize(vClass)/3), 12, (int (*)(const void *, const void *))Gia_PolynGetResultCompare ); Vec_IntForEachEntryTriple( vClass, iConst, iMono, iFirst, k ) { vArray = Hsh_VecReadEntry( pHashC, iConst ); Vec_IntCheckUniqueOrderAbs( vArray ); vLevel = Vec_WecPushLevel( vPolyn ); Vec_IntGrow( vLevel, Vec_IntSize(vArray) ); Vec_IntAppend( vLevel, vArray ); vArray = Hsh_VecReadEntry( pHashM, iMono ); Vec_IntCheckUniqueOrder( vArray ); vLevel = Vec_WecPushLevel( vPolyn ); Vec_IntGrow( vLevel, Vec_IntSize(vArray) ); Vec_IntAppend( vLevel, vArray ); } } assert( Vec_WecSize(vPolyn) == 2*nNonConst ); Vec_WecFree( vSorted ); return vPolyn; } /**Function************************************************************* Synopsis [Derives new constant.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Gia_PolynMergeConstOne( Vec_Int_t * vConst, int New ) { int i, Old; assert( New != 0 ); Vec_IntForEachEntry( vConst, Old, i ) { assert( Old != 0 ); if ( Old == New ) // A == B { Vec_IntDrop( vConst, i ); Gia_PolynMergeConstOne( vConst, New > 0 ? New + 1 : New - 1 ); return; } if ( Abc_AbsInt(Old) == Abc_AbsInt(New) ) // A == -B { Vec_IntDrop( vConst, i ); return; } if ( Old + New == 1 || Old + New == -1 ) // sign(A) != sign(B) && abs(abs(A)-abs(B)) == 1 { int Value = Abc_MinInt( Abc_AbsInt(Old), Abc_AbsInt(New) ); Vec_IntDrop( vConst, i ); Gia_PolynMergeConstOne( vConst, (Old + New == 1) ? Value : -Value ); return; } } Vec_IntPushOrderAbs( vConst, New ); } static inline void Gia_PolynMergeConst( Vec_Int_t * vTempC, Hsh_VecMan_t * pHashC, int iConstAdd ) { int i, New; Vec_Int_t * vConstAdd = Hsh_VecReadEntry( pHashC, iConstAdd ); Vec_IntForEachEntry( vConstAdd, New, i ) { Gia_PolynMergeConstOne( vTempC, New ); vConstAdd = Hsh_VecReadEntry( pHashC, iConstAdd ); } Vec_IntCheckUniqueOrderAbs( vConstAdd ); //Vec_IntPrint( vConstAdd ); } static inline int Gia_PolynBuildAdd( Hsh_VecMan_t * pHashC, Hsh_VecMan_t * pHashM, Vec_Int_t * vCoefs, Vec_Wec_t * vLit2Mono, Vec_Int_t * vTempC, Vec_Int_t * vTempM ) { int i, iLit, iConst, iConstNew; int iMono = Hsh_VecManAdd(pHashM, vTempM); if ( iMono == Vec_IntSize(vCoefs) ) // new monomial { // map monomial into a constant assert( Vec_IntSize(vTempC) > 0 ); iConst = Hsh_VecManAdd( pHashC, vTempC ); Vec_IntPush( vCoefs, iConst ); // map literals into monomial assert( Vec_IntSize(vTempM) > 0 ); Vec_IntForEachEntry( vTempM, iLit, i ) Vec_WecPush( vLit2Mono, iLit, iMono ); //printf( "New monomial: \n" ); //Gia_PolynPrintMono( vTempC, vTempM ); return 1; } // this monomial exists iConst = Vec_IntEntry( vCoefs, iMono ); if ( iConst ) Gia_PolynMergeConst( vTempC, pHashC, iConst ); iConstNew = Hsh_VecManAdd( pHashC, vTempC ); Vec_IntWriteEntry( vCoefs, iMono, iConstNew ); //printf( "Old monomial: \n" ); //Gia_PolynPrintMono( vTempC, vTempM ); if ( iConst && !iConstNew ) return -1; if ( !iConst && iConstNew ) return 1; return 0; } /**Function************************************************************* Synopsis [Computing for literals.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Gia_PolynHandleOne( Hsh_VecMan_t * pHashC, Hsh_VecMan_t * pHashM, Vec_Int_t * vCoefs, Vec_Wec_t * vLit2Mono, Vec_Int_t * vTempC, Vec_Int_t * vTempM, int iMono, int iLitOld, int iLitNew0, int iLitNew1 ) { int status, iConst = Vec_IntEntry( vCoefs, iMono ); Vec_Int_t * vArrayC = Hsh_VecReadEntry( pHashC, iConst ); Vec_Int_t * vArrayM = Hsh_VecReadEntry( pHashM, iMono ); // create new monomial Vec_IntClear( vTempM ); Vec_IntAppend( vTempM, vArrayM ); status = Vec_IntRemove( vTempM, iLitOld ); assert( status ); // create new monomial if ( iLitNew0 == -1 && iLitNew1 == -1 ) // no new lit - the same const Vec_IntAppendMinusAbs( vTempC, vArrayC, 0 ); else if ( iLitNew0 > -1 && iLitNew1 == -1 ) // one new lit - opposite const { Vec_IntAppendMinusAbs( vTempC, vArrayC, 1 ); Vec_IntPushUniqueOrder( vTempM, iLitNew0 ); } else if ( iLitNew0 > -1 && iLitNew1 > -1 ) // both new lit - the same const { Vec_IntAppendMinusAbs( vTempC, vArrayC, 0 ); Vec_IntPushUniqueOrder( vTempM, iLitNew0 ); Vec_IntPushUniqueOrder( vTempM, iLitNew1 ); } else assert( 0 ); return Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM ); } Vec_Wec_t * Gia_PolynBuildNew2( Gia_Man_t * pGia, Vec_Int_t * vRootLits, int nExtra, Vec_Int_t * vLeaves, Vec_Int_t * vNodes, int fSigned, int fVerbose, int fVeryVerbose ) { abctime clk = Abc_Clock(); Vec_Wec_t * vPolyn; Vec_Wec_t * vLit2Mono = Vec_WecStart( 2 * Gia_ManObjNum(pGia) ); // mapping AIG literals into monomials Hsh_VecMan_t * pHashC = Hsh_VecManStart( 1000 ); // hash table for constants Hsh_VecMan_t * pHashM = Hsh_VecManStart( 1000 ); // hash table for monomials Vec_Int_t * vCoefs = Vec_IntAlloc( 1000 ); // monomial coefficients Vec_Int_t * vTempC = Vec_IntAlloc( 10 ); // temporary array Vec_Int_t * vTempM = Vec_IntAlloc( 10 ); // temporary array int i, k, iObj, iLit, iMono, nMonos = 0, nBuilds = 0; // add 0-constant and 1-monomial Hsh_VecManAdd( pHashC, vTempC ); Hsh_VecManAdd( pHashM, vTempM ); Vec_IntPush( vCoefs, 0 ); // create output signature Vec_IntForEachEntry( vRootLits, iLit, i ) { int Value = 1 + Abc_MinInt( i, Vec_IntSize(vRootLits)-nExtra ); Vec_IntFill( vTempC, 1, (fSigned && i == Vec_IntSize(vRootLits)-1-nExtra) ? -Value : Value ); Vec_IntFill( vTempM, 1, iLit ); nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM ); nBuilds++; } // perform construction for internal nodes Vec_IntForEachEntryReverse( vNodes, iObj, i ) { Gia_Obj_t * pObj = Gia_ManObj( pGia, iObj ); int iLits[2] = { Abc_Var2Lit(iObj, 0), Abc_Var2Lit(iObj, 1) }; int iFans[2] = { Gia_ObjFaninLit0(pObj, iObj), Gia_ObjFaninLit1(pObj, iObj) }; // add inverter Vec_Int_t * vArray = Vec_WecEntry( vLit2Mono, iLits[1] ); Vec_IntForEachEntry( vArray, iMono, k ) if ( Vec_IntEntry(vCoefs, iMono) > 0 ) { nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[1], -1, -1 ); nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[1], iLits[0], -1 ); Vec_IntWriteEntry( vCoefs, iMono, 0 ); nMonos--; nBuilds++; nBuilds++; } // add AND gate vArray = Vec_WecEntry( vLit2Mono, iLits[0] ); Vec_IntForEachEntry( vArray, iMono, k ) if ( Vec_IntEntry(vCoefs, iMono) > 0 ) { nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[0], iFans[0], iFans[1] ); Vec_IntWriteEntry( vCoefs, iMono, 0 ); nMonos--; nBuilds++; } //printf( "Obj %5d : nMonos = %6d nUsed = %6d\n", iObj, nBuilds, nMonos ); } // complement leave nodes Vec_IntForEachEntry( vLeaves, iObj, i ) { int iLits[2] = { Abc_Var2Lit(iObj, 0), Abc_Var2Lit(iObj, 1) }; // add inverter Vec_Int_t * vArray = Vec_WecEntry( vLit2Mono, iLits[1] ); Vec_IntForEachEntry( vArray, iMono, k ) if ( Vec_IntEntry(vCoefs, iMono) > 0 ) { nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[1], -1, -1 ); nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[1], iLits[0], -1 ); Vec_IntWriteEntry( vCoefs, iMono, 0 ); nMonos--; nBuilds++; } } // get the results vPolyn = Gia_PolynGetResult( pHashC, pHashM, vCoefs ); printf( "HashC = %d. HashM = %d. Total = %d. Left = %d. Used = %d. ", Hsh_VecSize(pHashC), Hsh_VecSize(pHashM), nBuilds, nMonos, Vec_WecSize(vPolyn)/2 ); Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); Vec_IntFree( vTempC ); Vec_IntFree( vTempM ); Vec_IntFree( vCoefs ); Vec_WecFree( vLit2Mono ); Hsh_VecManStop( pHashC ); Hsh_VecManStop( pHashM ); return vPolyn; } /**Function************************************************************* Synopsis [Computing for objects.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Gia_PolynPrepare2( Vec_Int_t * vTempC[2], Vec_Int_t * vTempM[2], int iObj, int iCst ) { Vec_IntFill( vTempC[0], 1, iCst ); Vec_IntFill( vTempC[1], 1, -iCst ); Vec_IntClear( vTempM[0] ); Vec_IntFill( vTempM[1], 1, iObj ); } static inline void Gia_PolynPrepare4( Vec_Int_t * vTempC[4], Vec_Int_t * vTempM[4], Vec_Int_t * vConst, Vec_Int_t * vMono, int iObj, int iFan0, int iFan1 ) { int i, k, Entry; for ( i = 0; i < 4; i++ ) Vec_IntAppendMinusAbs( vTempC[i], vConst, i & 1 ); for ( i = 0; i < 4; i++ ) Vec_IntClear( vTempM[i] ); Vec_IntForEachEntry( vMono, Entry, k ) if ( Entry != iObj ) for ( i = 0; i < 4; i++ ) Vec_IntPush( vTempM[i], Entry ); Vec_IntPushUniqueOrder( vTempM[1], iFan0 ); Vec_IntPushUniqueOrder( vTempM[2], iFan1 ); Vec_IntPushUniqueOrder( vTempM[3], iFan0 ); Vec_IntPushUniqueOrder( vTempM[3], iFan1 ); } Vec_Wec_t * Gia_PolynBuildNew( Gia_Man_t * pGia, Vec_Wec_t * vSign, Vec_Int_t * vRootLits, int nExtra, Vec_Int_t * vLeaves, Vec_Int_t * vNodes, int fSigned, int fVerbose, int fVeryVerbose ) { abctime clk = Abc_Clock(); Vec_Wec_t * vPolyn; Vec_Wec_t * vLit2Mono = Vec_WecStart( Gia_ManObjNum(pGia) ); // mapping AIG literals into monomials Hsh_VecMan_t * pHashC = Hsh_VecManStart( 1000 ); // hash table for constants Hsh_VecMan_t * pHashM = Hsh_VecManStart( 1000 ); // hash table for monomials Vec_Int_t * vCoefs = Vec_IntAlloc( 1000 ); // monomial coefficients Vec_Int_t * vTempC[4], * vTempM[4]; // temporary array int i, k, iObj, iLit, iMono, iConst, nMonos = 0, nBuilds = 0; for ( i = 0; i < 4; i++ ) vTempC[i] = Vec_IntAlloc( 10 ); for ( i = 0; i < 4; i++ ) vTempM[i] = Vec_IntAlloc( 10 ); // add 0-constant and 1-monomial Hsh_VecManAdd( pHashC, vTempC[0] ); Hsh_VecManAdd( pHashM, vTempM[0] ); Vec_IntPush( vCoefs, 0 ); if ( nExtra ) printf( "Assigning %d outputs from %d to %d rank %d.\n", nExtra, Vec_IntSize(vRootLits)-nExtra, Vec_IntSize(vRootLits)-1, Vec_IntSize(vRootLits)-nExtra ); // create output signature if ( vSign ) { Vec_Int_t * vLevel; int Entry, OutLit; Vec_WecForEachLevel( vSign, vLevel, i ) { OutLit = -1; Vec_IntClear( vTempM[0] ); Vec_IntFill( vTempC[0], 1, Vec_IntEntryLast(vLevel) ); Vec_IntForEachEntryStop( vLevel, Entry, k, Vec_IntSize(vLevel)-1 ) { if ( Entry < 0 ) // input Vec_IntPushUniqueOrder( vTempM[0], Vec_IntEntry(vLeaves, -1-Entry) ); else // output { assert( OutLit == -1 ); // only one output literal is expected OutLit = Vec_IntEntry(vRootLits, Entry); } } if ( OutLit == -1 ) nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[0] ); // mono without out else if ( !Abc_LitIsCompl(OutLit) ) // positive literal { Vec_IntPushUniqueOrder( vTempM[0], Abc_Lit2Var(OutLit) ); nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[0] ); // mono with pos out } else // negative literal { // first monomial nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[0] ); // mono without out // second monomial Vec_IntFill( vTempC[0], 1, -Vec_IntEntryLast(vLevel) ); Vec_IntPushUniqueOrder( vTempM[0], Abc_Lit2Var(OutLit) ); nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[0] ); // mono with neg out } nBuilds++; } } else Vec_IntForEachEntry( vRootLits, iLit, i ) { int Value = 1 + Abc_MinInt( i, Vec_IntSize(vRootLits)-nExtra ); Gia_PolynPrepare2( vTempC, vTempM, Abc_Lit2Var(iLit), Value ); if ( fSigned && i >= Vec_IntSize(vRootLits)-nExtra-1 ) { if ( fVeryVerbose ) printf( "Out %d : Negative Value = %d\n", i, Value-1 ); if ( Abc_LitIsCompl(iLit) ) { nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[0] ); // -C nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[1] ); // C * Driver nBuilds++; } else nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[1] ); // -C * Driver } else { if ( fVeryVerbose ) printf( "Out %d : Positive Value = %d\n", i, Value-1 ); if ( Abc_LitIsCompl(iLit) ) { nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[0] ); // C nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[1] ); // -C * Driver nBuilds++; } else nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[1] ); // C * Driver } nBuilds++; } // perform construction for internal nodes Vec_IntForEachEntryReverse( vNodes, iObj, i ) { Gia_Obj_t * pObj = Gia_ManObj( pGia, iObj ); Vec_Int_t * vArray = Vec_WecEntry( vLit2Mono, iObj ); Vec_IntForEachEntry( vArray, iMono, k ) if ( (iConst = Vec_IntEntry(vCoefs, iMono)) > 0 ) { Vec_Int_t * vArrayC = Hsh_VecReadEntry( pHashC, iConst ); Vec_Int_t * vArrayM = Hsh_VecReadEntry( pHashM, iMono ); Gia_PolynPrepare4( vTempC, vTempM, vArrayC, vArrayM, iObj, Gia_ObjFaninId0(pObj, iObj), Gia_ObjFaninId1(pObj, iObj) ); if ( Gia_ObjIsXor(pObj) ) { } else if ( Gia_ObjFaninC0(pObj) && Gia_ObjFaninC1(pObj) ) // C * (1 - x) * (1 - y) { nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[0] ); // C * 1 nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[1] ); // -C * x nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[3], vTempM[2] ); // -C * y nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[2], vTempM[3] ); // C * x * y nBuilds += 3; } else if ( Gia_ObjFaninC0(pObj) && !Gia_ObjFaninC1(pObj) ) // C * (1 - x) * y { nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[2] ); // C * y nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[3] ); // -C * x * y nBuilds += 2; } else if ( !Gia_ObjFaninC0(pObj) && Gia_ObjFaninC1(pObj) ) // C * x * (1 - y) { nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[1] ); // C * x nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[3] ); // -C * x * y nBuilds++; } else nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[3] ); // C * x * y Vec_IntWriteEntry( vCoefs, iMono, 0 ); nMonos--; nBuilds++; } //printf( "Obj %5d : nMonos = %6d nUsed = %6d\n", iObj, nBuilds, nMonos ); } // get the results vPolyn = Gia_PolynGetResult( pHashC, pHashM, vCoefs ); printf( "HashC = %d. HashM = %d. Total = %d. Left = %d. Used = %d. ", Hsh_VecSize(pHashC), Hsh_VecSize(pHashM), nBuilds, nMonos, Vec_WecSize(vPolyn)/2 ); Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); for ( i = 0; i < 4; i++ ) Vec_IntFree( vTempC[i] ); for ( i = 0; i < 4; i++ ) Vec_IntFree( vTempM[i] ); Vec_IntFree( vCoefs ); Vec_WecFree( vLit2Mono ); Hsh_VecManStop( pHashC ); Hsh_VecManStop( pHashM ); return vPolyn; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Gia_PolynBuild2Test( Gia_Man_t * pGia, char * pSign, int nExtra, int fSigned, int fVerbose, int fVeryVerbose ) { Vec_Wec_t * vPolyn; Vec_Int_t * vRootLits = Vec_IntAlloc( Gia_ManCoNum(pGia) ); Vec_Int_t * vLeaves = Vec_IntAlloc( Gia_ManCiNum(pGia) ); Vec_Int_t * vNodes = Vec_IntAlloc( Gia_ManAndNum(pGia) ); Gia_Obj_t * pObj; Vec_Wec_t * vMonos = NULL; int i; if ( pSign != NULL && (vMonos = Acec_ParseSignature(pSign)) == NULL ) { printf( "Canont parse the output signatures.\n" ); return; } if ( vMonos && fVerbose ) Acec_PrintSignature( vMonos ); // print logic level if ( nExtra == -1 ) { int LevelMax = -1, iMax = -1; Gia_ManLevelNum( pGia ); Gia_ManForEachCo( pGia, pObj, i ) if ( LevelMax < Gia_ObjLevel(pGia, pObj) ) { LevelMax = Gia_ObjLevel(pGia, pObj); iMax = i; } nExtra = Gia_ManCoNum(pGia) - iMax - 1; printf( "Determined the number of extra outputs to be %d.\n", nExtra ); } Gia_ManForEachObj( pGia, pObj, i ) if ( Gia_ObjIsCi(pObj) ) Vec_IntPush( vLeaves, i ); else if ( Gia_ObjIsAnd(pObj) ) Vec_IntPush( vNodes, i ); else if ( Gia_ObjIsCo(pObj) ) Vec_IntPush( vRootLits, Gia_ObjFaninLit0p(pGia, pObj) ); vPolyn = Gia_PolynBuildNew( pGia, vMonos, vRootLits, nExtra, vLeaves, vNodes, fSigned, fVerbose, fVeryVerbose ); //printf( "Polynomial has %d monomials.\n", Vec_WecSize(vPolyn)/2 ); if ( fVerbose || fVeryVerbose ) Gia_PolynPrintStats( vPolyn ); if ( fVeryVerbose ) Gia_PolynPrint( vPolyn ); Vec_WecFree( vPolyn ); Vec_IntFree( vRootLits ); Vec_IntFree( vLeaves ); Vec_IntFree( vNodes ); Vec_WecFreeP( &vMonos ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END