/**CFile**************************************************************** FileName [acecRe.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [CEC for arithmetic circuits.] Synopsis [Core procedures.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: acecRe.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "acecInt.h" #include "misc/vec/vecHash.h" #include "misc/util/utilTruth.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define Ree_ForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += pCut[0] + 2 ) //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Detecting FADDs in the AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ree_TruthPrecompute() { word Truths[8] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 }; word Truth; int i; for ( i = 0; i < 8; i++ ) { Truth = Truths[i]; Truth = Abc_Tt6SwapAdjacent( Truth, 1 ); Abc_TtPrintHexRev( stdout, &Truth, 3 ); printf( "\n" ); } printf( "\n" ); for ( i = 0; i < 8; i++ ) { Truth = Truths[i]; Truth = Abc_Tt6SwapAdjacent( Truth, 1 ); Truth = Abc_Tt6SwapAdjacent( Truth, 0 ); Abc_TtPrintHexRev( stdout, &Truth, 3 ); printf( "\n" ); } printf( "\n" ); } void Ree_TruthPrecompute2() { int i, b; for ( i = 0; i < 8; i++ ) { word Truth = 0xE8; for ( b = 0; b < 3; b++ ) if ( (i >> b) & 1 ) Truth = Abc_Tt6Flip( Truth, b ); printf( "%d = %X\n", i, 0xFF & (int)Truth ); } } /**Function************************************************************* Synopsis [Detecting FADDs in the AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Ree_ManCutMergeOne( int * pCut0, int * pCut1, int * pCut ) { int i, k; for ( k = 0; k <= pCut1[0]; k++ ) pCut[k] = pCut1[k]; for ( i = 1; i <= pCut0[0]; i++ ) { for ( k = 1; k <= pCut1[0]; k++ ) if ( pCut0[i] == pCut1[k] ) break; if ( k <= pCut1[0] ) continue; if ( pCut[0] == 3 ) return 0; pCut[1+pCut[0]++] = pCut0[i]; } assert( pCut[0] == 2 || pCut[0] == 3 ); if ( pCut[1] > pCut[2] ) ABC_SWAP( int, pCut[1], pCut[2] ); assert( pCut[1] < pCut[2] ); if ( pCut[0] == 2 ) return 1; if ( pCut[2] > pCut[3] ) ABC_SWAP( int, pCut[2], pCut[3] ); if ( pCut[1] > pCut[2] ) ABC_SWAP( int, pCut[1], pCut[2] ); assert( pCut[1] < pCut[2] ); assert( pCut[2] < pCut[3] ); return 1; } static inline int Ree_ManCutCheckEqual( Vec_Int_t * vCuts, int * pCutNew ) { int * pList = Vec_IntArray( vCuts ); int i, k, * pCut; Ree_ForEachCut( pList, pCut, i ) { for ( k = 0; k <= pCut[0]; k++ ) if ( pCut[k] != pCutNew[k] ) break; if ( k > pCut[0] ) return 1; } return 0; } static inline int Ree_ManCutFind( int iObj, int * pCut ) { if ( pCut[1] == iObj ) return 0; if ( pCut[2] == iObj ) return 1; if ( pCut[3] == iObj ) return 2; assert( 0 ); return -1; } static inline int Ree_ManCutNotFind( int iObj1, int iObj2, int * pCut ) { assert( pCut[0] == 3 ); if ( pCut[3] != iObj1 && pCut[3] != iObj2 ) return 0; if ( pCut[2] != iObj1 && pCut[2] != iObj2 ) return 1; if ( pCut[1] != iObj1 && pCut[1] != iObj2 ) return 2; assert( 0 ); return -1; } static inline int Ree_ManCutTruthOne( int * pCut0, int * pCut ) { int Truth0 = pCut0[pCut0[0]+1]; int fComp0 = (Truth0 >> 7) & 1; if ( pCut0[0] == 3 ) return Truth0; Truth0 = fComp0 ? ~Truth0 : Truth0; if ( pCut0[0] == 2 ) { if ( pCut[0] == 3 ) { int Truths[3][8] = { { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 }, // {0,1,-} { 0x00, 0x05, 0x0A, 0x0F, 0x50, 0x55, 0x5A, 0x5F }, // {0,-,1} { 0x00, 0x03, 0x0C, 0x0F, 0x30, 0x33, 0x3C, 0x3F } // {-,0,1} }; int Truth = Truths[Ree_ManCutNotFind(pCut0[1], pCut0[2], pCut)][Truth0 & 0x7]; return 0xFF & (fComp0 ? ~Truth : Truth); } assert( pCut[0] == 2 ); assert( pCut[1] == pCut0[1] && pCut[2] == pCut0[2] ); return pCut0[pCut0[0]+1]; } if ( pCut0[0] == 1 ) { int Truths[3] = { 0x55, 0x33, 0x0F }; int Truth = Truths[Ree_ManCutFind(pCut0[1], pCut)]; return 0xFF & (fComp0 ? ~Truth : Truth); } assert( 0 ); return -1; } static inline int Ree_ManCutTruth( Gia_Obj_t * pObj, int * pCut0, int * pCut1, int * pCut ) { int Truth0 = Ree_ManCutTruthOne( pCut0, pCut ); int Truth1 = Ree_ManCutTruthOne( pCut1, pCut ); Truth0 = Gia_ObjFaninC0(pObj) ? ~Truth0 : Truth0; Truth1 = Gia_ObjFaninC1(pObj) ? ~Truth1 : Truth1; return 0xFF & (Gia_ObjIsXor(pObj) ? Truth0 ^ Truth1 : Truth0 & Truth1); } #if 0 int Ree_ObjComputeTruth_rec( Gia_Obj_t * pObj ) { int Truth0, Truth1; if ( pObj->Value ) return pObj->Value; assert( Gia_ObjIsAnd(pObj) ); Truth0 = Ree_ObjComputeTruth_rec( Gia_ObjFanin0(pObj) ); Truth1 = Ree_ObjComputeTruth_rec( Gia_ObjFanin1(pObj) ); if ( Gia_ObjIsXor(pObj) ) return (pObj->Value = (Gia_ObjFaninC0(pObj) ? ~Truth0 : Truth0) ^ (Gia_ObjFaninC1(pObj) ? ~Truth1 : Truth1)); else return (pObj->Value = (Gia_ObjFaninC0(pObj) ? ~Truth0 : Truth0) & (Gia_ObjFaninC1(pObj) ? ~Truth1 : Truth1)); } void Ree_ObjCleanTruth_rec( Gia_Obj_t * pObj ) { if ( !pObj->Value ) return; pObj->Value = 0; if ( !Gia_ObjIsAnd(pObj) ) return; Ree_ObjCleanTruth_rec( Gia_ObjFanin0(pObj) ); Ree_ObjCleanTruth_rec( Gia_ObjFanin1(pObj) ); } int Ree_ObjComputeTruth( Gia_Man_t * p, int iObj, int * pCut ) { unsigned Truth, Truths[3] = { 0xAA, 0xCC, 0xF0 }; int i; for ( i = 1; i <= pCut[0]; i++ ) Gia_ManObj(p, pCut[i])->Value = Truths[i-1]; Truth = 0xFF & Ree_ObjComputeTruth_rec( Gia_ManObj(p, iObj) ); Ree_ObjCleanTruth_rec( Gia_ManObj(p, iObj) ); return Truth; } #endif /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ree_ManCutPrint( int * pCut, int Count, word Truth, int iObj ) { int c; printf( "%d : %d : ", Count, iObj ); for ( c = 1; c <= pCut[0]; c++ ) printf( "%3d ", pCut[c] ); for ( ; c <= 4; c++ ) printf( " " ); printf( "0x" ); Abc_TtPrintHexRev( stdout, &Truth, 3 ); printf( "\n" ); } void Ree_ManCutMerge( Gia_Man_t * p, int iObj, int * pList0, int * pList1, Vec_Int_t * vCuts, Hash_IntMan_t * pHash, Vec_Int_t * vData, Vec_Int_t * vXors ) { int fVerbose = 0; int i, k, c, Value, Truth, TruthC, * pCut0, * pCut1, pCut[6], Count = 0; int iXor2 = -1, iXor3 = -1; if ( fVerbose ) printf( "Object %d\n", iObj ); Vec_IntFill( vCuts, 2, 1 ); Vec_IntPush( vCuts, iObj ); Vec_IntPush( vCuts, 0xAA ); Ree_ForEachCut( pList0, pCut0, i ) Ree_ForEachCut( pList1, pCut1, k ) { if ( !Ree_ManCutMergeOne(pCut0, pCut1, pCut) ) continue; if ( Ree_ManCutCheckEqual(vCuts, pCut) ) continue; Truth = TruthC = Ree_ManCutTruth(Gia_ManObj(p, iObj), pCut0, pCut1, pCut); //assert( Truth == Ree_ObjComputeTruth(p, iObj, pCut) ); if ( Truth & 0x80 ) Truth = 0xFF & ~Truth; if ( Truth == 0x66 && iXor2 == -1 ) iXor2 = Vec_IntSize(vCuts); else if ( Truth == 0x69 && iXor3 == -1 ) iXor3 = Vec_IntSize(vCuts); Vec_IntAddToEntry( vCuts, 0, 1 ); for ( c = 0; c <= pCut[0]; c++ ) Vec_IntPush( vCuts, pCut[c] ); Vec_IntPush( vCuts, TruthC ); if ( (Truth == 0x66 || Truth == 0x11 || Truth == 0x22 || Truth == 0x44 || Truth == 0x77) && pCut[0] == 2 ) { assert( pCut[0] == 2 ); Value = Hsh_Int3ManInsert( pHash, pCut[1], pCut[2], 0 ); Vec_IntPushThree( vData, iObj, Value, TruthC ); } else if ( Truth == 0x69 || Truth == 0x17 || Truth == 0x2B || Truth == 0x4D || Truth == 0x71 ) { assert( pCut[0] == 3 ); Value = Hsh_Int3ManInsert( pHash, pCut[1], pCut[2], pCut[3] ); Vec_IntPushThree( vData, iObj, Value, TruthC ); } if ( fVerbose ) Ree_ManCutPrint( pCut, ++Count, TruthC, iObj ); } if ( !vXors ) return; if ( iXor2 > 0 ) pCut0 = Vec_IntEntryP( vCuts, iXor2 ); else if ( iXor3 > 0 ) pCut0 = Vec_IntEntryP( vCuts, iXor3 ); else return; Vec_IntPush( vXors, iObj ); for ( c = 1; c <= pCut0[0]; c++ ) Vec_IntPush( vXors, pCut0[c] ); if ( pCut0[0] == 2 ) Vec_IntPush( vXors, 0 ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Ree_ManDeriveAdds( Hash_IntMan_t * p, Vec_Int_t * vData, int fVerbose ) { int i, j, k, iObj, iObj2, Value, Truth, Truth2, CountX, CountM, Index = 0; int nEntries = Hash_IntManEntryNum(p); Vec_Int_t * vAdds = Vec_IntAlloc( 1000 ); Vec_Int_t * vXors = Vec_IntStart( nEntries + 1 ); Vec_Int_t * vMajs = Vec_IntStart( nEntries + 1 ); Vec_Int_t * vIndex = Vec_IntStartFull( nEntries + 1 ); Vec_Int_t * vIndexRev = Vec_IntAlloc( 1000 ); Vec_Wec_t * vXorMap, * vMajMap; Vec_IntForEachEntryTriple( vData, iObj, Value, Truth, i ) { assert( Value <= nEntries ); if ( Truth == 0x66 || Truth == 0x99 || Truth == 0x69 || Truth == 0x96 ) Vec_IntAddToEntry( vXors, Value, 1 ); else Vec_IntAddToEntry( vMajs, Value, 1 ); } // remap these into indexes Vec_IntForEachEntryTwo( vXors, vMajs, CountX, CountM, i ) if ( CountX && CountM ) { Vec_IntPush( vIndexRev, i ); Vec_IntWriteEntry( vIndex, i, Index++ ); } Vec_IntFree( vXors ); Vec_IntFree( vMajs ); //if ( fVerbose ) // printf( "Detected %d shared cuts among %d hashed cuts.\n", Index, nEntries ); // collect nodes vXorMap = Vec_WecStart( Index ); vMajMap = Vec_WecStart( Index ); Vec_IntForEachEntryTriple( vData, iObj, Value, Truth, i ) { Index = Vec_IntEntry( vIndex, Value ); if ( Index == -1 ) continue; if ( Truth == 0x66 || Truth == 0x99 || Truth == 0x69 || Truth == 0x96 ) Vec_IntPushTwo( Vec_WecEntry(vXorMap, Index), iObj, Truth ); else Vec_IntPushTwo( Vec_WecEntry(vMajMap, Index), iObj, Truth ); } Vec_IntFree( vIndex ); // create pairs Vec_IntForEachEntry( vIndexRev, Value, i ) { Vec_Int_t * vXorOne = Vec_WecEntry( vXorMap, i ); Vec_Int_t * vMajOne = Vec_WecEntry( vMajMap, i ); Hash_IntObj_t * pObj = Hash_IntObj( p, Value ); Vec_IntForEachEntryDouble( vXorOne, iObj, Truth, j ) Vec_IntForEachEntryDouble( vMajOne, iObj2, Truth2, k ) { int SignAnd[8] = {0x88, 0x44, 0x22, 0x11, 0x77, 0xBB, 0xDD, 0xEE}; int SignMaj[8] = {0xE8, 0xD4, 0xB2, 0x71, 0x8E, 0x4D, 0x2B, 0x17}; int n, SignXor = (Truth == 0x99 || Truth == 0x69) << 3; for ( n = 0; n < 8; n++ ) if ( Truth2 == SignMaj[n] ) break; if ( n == 8 ) for ( n = 0; n < 8; n++ ) if ( Truth2 == SignAnd[n] ) break; assert( n < 8 ); Vec_IntPushThree( vAdds, pObj->iData0, pObj->iData1, pObj->iData2 ); Vec_IntPushThree( vAdds, iObj, iObj2, SignXor | n ); } } Vec_IntFree( vIndexRev ); Vec_WecFree( vXorMap ); Vec_WecFree( vMajMap ); return vAdds; } int Ree_ManCompare( int * pCut0, int * pCut1 ) { if ( pCut0[3] < pCut1[3] ) return -1; if ( pCut0[3] > pCut1[3] ) return 1; if ( pCut0[4] < pCut1[4] ) return -1; if ( pCut0[4] > pCut1[4] ) return 1; return 0; } Vec_Int_t * Ree_ManComputeCuts( Gia_Man_t * p, Vec_Int_t ** pvXors, int fVerbose ) { extern void Ree_ManRemoveTrivial( Gia_Man_t * p, Vec_Int_t * vAdds ); extern void Ree_ManRemoveContained( Gia_Man_t * p, Vec_Int_t * vAdds ); Gia_Obj_t * pObj; int * pList0, * pList1, i, nCuts = 0; Hash_IntMan_t * pHash = Hash_IntManStart( 1000 ); Vec_Int_t * vAdds; Vec_Int_t * vTemp = Vec_IntAlloc( 1000 ); Vec_Int_t * vData = Vec_IntAlloc( 1000 ); Vec_Int_t * vCuts = Vec_IntAlloc( 30 * Gia_ManAndNum(p) ); Vec_IntFill( vCuts, Gia_ManObjNum(p), 0 ); Gia_ManCleanValue( p ); Gia_ManForEachCi( p, pObj, i ) { Vec_IntWriteEntry( vCuts, Gia_ObjId(p, pObj), Vec_IntSize(vCuts) ); Vec_IntPush( vCuts, 1 ); Vec_IntPush( vCuts, 1 ); Vec_IntPush( vCuts, Gia_ObjId(p, pObj) ); Vec_IntPush( vCuts, 0xAA ); } if ( pvXors ) *pvXors = Vec_IntAlloc( 1000 ); Gia_ManForEachAnd( p, pObj, i ) { pList0 = Vec_IntEntryP( vCuts, Vec_IntEntry(vCuts, Gia_ObjFaninId0(pObj, i)) ); pList1 = Vec_IntEntryP( vCuts, Vec_IntEntry(vCuts, Gia_ObjFaninId1(pObj, i)) ); Ree_ManCutMerge( p, i, pList0, pList1, vTemp, pHash, vData, pvXors ? *pvXors : NULL ); Vec_IntWriteEntry( vCuts, i, Vec_IntSize(vCuts) ); Vec_IntAppend( vCuts, vTemp ); nCuts += Vec_IntEntry( vTemp, 0 ); } if ( fVerbose ) printf( "AIG nodes = %d. Cuts = %d. Cuts/Node = %.2f. Ints/Node = %.2f.\n", Gia_ManAndNum(p), nCuts, 1.0*nCuts/Gia_ManAndNum(p), 1.0*Vec_IntSize(vCuts)/Gia_ManAndNum(p) ); Vec_IntFree( vTemp ); Vec_IntFree( vCuts ); vAdds = Ree_ManDeriveAdds( pHash, vData, fVerbose ); qsort( Vec_IntArray(vAdds), (size_t)(Vec_IntSize(vAdds)/6), 24, (int (*)(const void *, const void *))Ree_ManCompare ); if ( fVerbose ) printf( "Adders = %d. Total cuts = %d. Hashed cuts = %d. Hashed/Adders = %.2f.\n", Vec_IntSize(vAdds)/6, Vec_IntSize(vData)/3, Hash_IntManEntryNum(pHash), 6.0*Hash_IntManEntryNum(pHash)/Vec_IntSize(vAdds) ); Vec_IntFree( vData ); Hash_IntManStop( pHash ); Ree_ManRemoveTrivial( p, vAdds ); Ree_ManRemoveContained( p, vAdds ); //Ree_ManPrintAdders( vAdds, 1 ); return vAdds; } /**Function************************************************************* Synopsis [Highlight nodes inside FAs.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ree_CollectInsiders_rec( Gia_Man_t * pGia, int iObj, Vec_Bit_t * vVisited, Vec_Bit_t * vInsiders ) { if ( Vec_BitEntry(vVisited, iObj) ) return; Vec_BitSetEntry( vVisited, iObj, 1 ); Ree_CollectInsiders_rec( pGia, Gia_ObjFaninId0p(pGia, Gia_ManObj(pGia, iObj)), vVisited, vInsiders ); Ree_CollectInsiders_rec( pGia, Gia_ObjFaninId1p(pGia, Gia_ManObj(pGia, iObj)), vVisited, vInsiders ); Vec_BitSetEntry( vInsiders, iObj, 1 ); } Vec_Bit_t * Ree_CollectInsiders( Gia_Man_t * pGia, Vec_Int_t * vAdds ) { Vec_Bit_t * vVisited = Vec_BitStart( Gia_ManObjNum(pGia) ); Vec_Bit_t * vInsiders = Vec_BitStart( Gia_ManObjNum(pGia) ); int i, Entry1, Entry2, Entry3; for ( i = 0; 6*i < Vec_IntSize(vAdds); i++ ) { if ( Vec_IntEntry(vAdds, 6*i+2) == 0 ) // HADD continue; // mark inputs Entry1 = Vec_IntEntry( vAdds, 6*i + 0 ); Entry2 = Vec_IntEntry( vAdds, 6*i + 1 ); Entry3 = Vec_IntEntry( vAdds, 6*i + 2 ); Vec_BitWriteEntry( vVisited, Entry1, 1 ); Vec_BitWriteEntry( vVisited, Entry2, 1 ); Vec_BitWriteEntry( vVisited, Entry3, 1 ); // traverse from outputs Entry1 = Vec_IntEntry( vAdds, 6*i + 3 ); Entry2 = Vec_IntEntry( vAdds, 6*i + 4 ); Ree_CollectInsiders_rec( pGia, Entry1, vVisited, vInsiders ); Ree_CollectInsiders_rec( pGia, Entry2, vVisited, vInsiders ); } Vec_BitFree( vVisited ); return vInsiders; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ // removes HAs whose AND2 is part of XOR2 without additional fanout void Ree_ManRemoveTrivial( Gia_Man_t * p, Vec_Int_t * vAdds ) { Gia_Obj_t * pObjX, * pObjM; int i, k = 0; ABC_FREE( p->pRefs ); Gia_ManCreateRefs( p ); for ( i = 0; 6*i < Vec_IntSize(vAdds); i++ ) { if ( Vec_IntEntry(vAdds, 6*i+2) == 0 ) // HADD { pObjX = Gia_ManObj( p, Vec_IntEntry(vAdds, 6*i+3) ); pObjM = Gia_ManObj( p, Vec_IntEntry(vAdds, 6*i+4) ); // rule out if MAJ is a fanout of XOR //if ( pObjX == Gia_ObjFanin0(pObjM) || pObjX == Gia_ObjFanin1(pObjM) ) // continue; // rule out if MAJ is a fanin of XOR and has no other fanouts if ( (pObjM == Gia_ObjFanin0(pObjX) || pObjM == Gia_ObjFanin1(pObjX)) && Gia_ObjRefNum(p, pObjM) == 1 ) continue; } memmove( Vec_IntArray(vAdds) + 6*k++, Vec_IntArray(vAdds) + 6*i, 6*sizeof(int) ); } assert( k <= i ); Vec_IntShrink( vAdds, 6*k ); } // removes HAs fully contained inside FAs void Ree_ManRemoveContained( Gia_Man_t * p, Vec_Int_t * vAdds ) { Vec_Bit_t * vInsiders = Ree_CollectInsiders( p, vAdds ); int i, k = 0; for ( i = 0; 6*i < Vec_IntSize(vAdds); i++ ) { if ( Vec_IntEntry(vAdds, 6*i+2) == 0 ) // HADD if ( Vec_BitEntry(vInsiders, Vec_IntEntry(vAdds, 6*i+3)) && Vec_BitEntry(vInsiders, Vec_IntEntry(vAdds, 6*i+4)) ) continue; memmove( Vec_IntArray(vAdds) + 6*k++, Vec_IntArray(vAdds) + 6*i, 6*sizeof(int) ); } assert( k <= i ); Vec_IntShrink( vAdds, 6*k ); Vec_BitFree( vInsiders ); } int Ree_ManCountFadds( Vec_Int_t * vAdds ) { int i, Count = 0; for ( i = 0; 6*i < Vec_IntSize(vAdds); i++ ) if ( Vec_IntEntry(vAdds, 6*i+2) != 0 ) Count++; return Count; } void Ree_ManPrintAdders( Vec_Int_t * vAdds, int fVerbose ) { int i; for ( i = 0; 6*i < Vec_IntSize(vAdds); i++ ) { //if ( Vec_IntEntry(vAdds, 6*i+2) == 0 ) // continue; if ( !fVerbose ) continue; printf( "%6d : ", i ); printf( "%6d ", Vec_IntEntry(vAdds, 6*i+0) ); printf( "%6d ", Vec_IntEntry(vAdds, 6*i+1) ); printf( "%6d ", Vec_IntEntry(vAdds, 6*i+2) ); printf( " -> " ); printf( "%6d ", Vec_IntEntry(vAdds, 6*i+3) ); printf( "%6d ", Vec_IntEntry(vAdds, 6*i+4) ); printf( " (%d)", Vec_IntEntry(vAdds, 6*i+5) ); printf( "\n" ); } } void Ree_ManComputeCutsTest( Gia_Man_t * p ) { abctime clk = Abc_Clock(); Vec_Int_t * vAdds = Ree_ManComputeCuts( p, NULL, 1 ); int nFadds = Ree_ManCountFadds( vAdds ); Ree_ManPrintAdders( vAdds, 1 ); printf( "Detected %d FAs and %d HAs. ", nFadds, Vec_IntSize(vAdds)/6-nFadds ); Vec_IntFree( vAdds ); Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END