/************************************************************************************************** MiniSat -- Copyright (c) 2005, Niklas Sorensson http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **************************************************************************************************/ // Modified to compile with MS Visual Studio 6.0 by Alan Mishchenko #ifndef satSolver2_h #define satSolver2_h #include #include #include #include #include "satVec.h" ABC_NAMESPACE_HEADER_START //#define USE_FLOAT_ACTIVITY2 //================================================================================================= // Public interface: struct sat_solver2_t; typedef struct sat_solver2_t sat_solver2; extern sat_solver2* sat_solver2_new(void); extern void sat_solver2_delete(sat_solver2* s); extern int sat_solver2_addclause(sat_solver2* s, lit* begin, lit* end); extern int sat_solver2_simplify(sat_solver2* s); extern int sat_solver2_solve(sat_solver2* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal); extern void sat_solver2_rollback(sat_solver2* s); extern void sat_solver2_setnvars(sat_solver2* s,int n); extern void Sat_Solver2WriteDimacs( sat_solver2 * p, char * pFileName, lit* assumptionsBegin, lit* assumptionsEnd, int incrementVars ); extern void Sat_Solver2PrintStats( FILE * pFile, sat_solver2 * p ); extern int * Sat_Solver2GetModel( sat_solver2 * p, int * pVars, int nVars ); extern void Sat_Solver2DoubleClauses( sat_solver2 * p, int iVar ); // trace recording extern void sat_solver2TraceStart( sat_solver2 * pSat, char * pName ); extern void sat_solver2TraceStop( sat_solver2 * pSat ); extern void sat_solver2TraceWrite( sat_solver2 * pSat, int * pBeg, int * pEnd, int fRoot ); // global variables extern int var_is_partA (sat_solver2* s, int v); extern void var_set_partA(sat_solver2* s, int v, int partA); // clause grouping (these two only work after creating a clause before the solver is called) extern int clause_is_partA (sat_solver2* s, int handle); extern void clause_set_partA(sat_solver2* s, int handle, int partA); // other clause functions extern int clause_id(sat_solver2* s, int h); // proof-based APIs extern void * Sat_ProofCore( sat_solver2 * s ); extern void * Sat_ProofInterpolant( sat_solver2 * s, void * pGloVars ); extern word * Sat_ProofInterpolantTruth( sat_solver2 * s, void * pGloVars ); extern void Sat_ProofReduce( sat_solver2 * s ); extern void Sat_ProofCheck( sat_solver2 * s ); //================================================================================================= // Solver representation: struct varinfo_t; typedef struct varinfo2_t varinfo2; struct sat_solver2_t { int size; // nof variables int cap; // size of varmaps int qhead; // Head index of queue. int qtail; // Tail index of queue. int root_level; // Level of first proper decision. int simpdb_assigns; // Number of top-level assignments at last 'simplifyDB()'. int simpdb_props; // Number of propagations before next 'simplifyDB()'. double random_seed; double progress_estimate; int verbosity; // Verbosity level. 0=silent, 1=some progress report, 2=everything // activities #ifdef USE_FLOAT_ACTIVITY2 double var_inc; // Amount to bump next variable with. double var_decay; // INVERSE decay factor for variable activity: stores 1/decay. float cla_inc; // Amount to bump next clause with. float cla_decay; // INVERSE decay factor for clause activity: stores 1/decay. double* activity; // A heuristic measurement of the activity of a variable. #else int var_inc; // Amount to bump next variable with. int cla_inc; // Amount to bump next clause with. unsigned* activity; // A heuristic measurement of the activity of a variable. #endif int fNotUseRandom; // do not allow random decisions with a fixed probability int fSkipSimplify; // set to one to skip simplification of the clause database int fProofLogging; // enable proof-logging // clauses veci clauses; // clause memory veci learnts; // learnt memory veci* wlists; // watcher lists (for each literal) int hClausePivot; // the pivot among problem clause int hLearntPivot; // the pivot among learned clause int hLearntLast; // in proof-logging mode, the ID of the final conflict clause (conf_final) int iVarPivot; // the pivot among the variables veci claActs; // clause activities veci claProofs; // clause proofs // internal state varinfo2 * vi; // variable information int* levels; // char* assigns; // lit* trail; // sequence of assignment and implications int* orderpos; // Index in variable order. cla* reasons; // reason clauses cla* units; // unit clauses int* model; // If problem is solved, this vector contains the model (contains: lbool). veci tagged; // (contains: var) veci stack; // (contains: var) veci order; // Variable order. (heap) (contains: var) veci trail_lim; // Separator indices for different decision levels in 'trail'. (contains: int) veci temp_clause; // temporary storage for a CNF clause veci conf_final; // If problem is unsatisfiable (possibly under assumptions), // this vector represent the final conflict clause expressed in the assumptions. veci mark_levels; // temporary storage for labeled levels veci min_lit_order; // ordering of removable literals veci min_step_order; // ordering of resolution steps veci learnt_live; // remaining clauses after reduce DB // proof logging veci proofs; // sequence of proof records int iStartChain; // temporary variable to remember beginning of the current chain in proof logging int nUnits; // the total number of unit clauses // statistics stats_t stats; ABC_INT64_T nConfLimit; // external limit on the number of conflicts ABC_INT64_T nInsLimit; // external limit on the number of implications int nRuntimeLimit; // external limit on runtime }; typedef struct satset_t satset; struct satset_t { unsigned learnt : 1; unsigned mark : 1; unsigned partA : 1; unsigned nEnts : 29; int Id; lit pEnts[0]; }; static inline satset* satset_read (veci* p, cla h ) { return h ? (satset*)(veci_begin(p) + h) : NULL; } static inline cla satset_handle (veci* p, satset* c) { return (cla)((int *)c - veci_begin(p)); } static inline int satset_check (veci* p, satset* c) { return (int*)c > veci_begin(p) && (int*)c < veci_begin(p) + veci_size(p); } static inline int satset_size (int nLits) { return sizeof(satset)/4 + nLits; } static inline void satset_print (satset * c) { int i; printf( "{ " ); for ( i = 0; i < (int)c->nEnts; i++ ) printf( "%d ", (c->pEnts[i] & 1)? -(c->pEnts[i] >> 1) : c->pEnts[i] >> 1 ); printf( "}\n" ); } #define satset_foreach_entry( p, c, h, s ) \ for ( h = s; (h < veci_size(p)) && (((c) = satset_read(p, h)), 1); h += satset_size(c->nEnts) ) #define satset_foreach_entry_vec( pVec, p, c, i ) \ for ( i = 0; (i < veci_size(pVec)) && ((c) = satset_read(p, veci_begin(pVec)[i])); i++ ) #define satset_foreach_var( p, var, i, start ) \ for ( i = start; (i < (int)(p)->nEnts) && ((var) = lit_var((p)->pEnts[i])); i++ ) #define satset_foreach_lit( p, lit, i, start ) \ for ( i = start; (i < (int)(p)->nEnts) && ((lit) = (p)->pEnts[i]); i++ ) #define sat_solver_foreach_clause( s, c, h ) satset_foreach_entry( &s->clauses, c, h, 1 ) #define sat_solver_foreach_learnt( s, c, h ) satset_foreach_entry( &s->learnts, c, h, 1 ) //================================================================================================= // Public APIs: static inline int sat_solver2_nvars(sat_solver2* s) { return s->size; } static inline int sat_solver2_nclauses(sat_solver2* s) { return (int)s->stats.clauses; } static inline int sat_solver2_nconflicts(sat_solver2* s) { return (int)s->stats.conflicts; } static inline int sat_solver2_var_value( sat_solver2* s, int v ) { assert( v >= 0 && v < s->size ); return (int)(s->model[v] == l_True); } static inline int sat_solver2_var_literal( sat_solver2* s, int v ) { assert( v >= 0 && v < s->size ); return toLitCond( v, s->model[v] != l_True ); } static inline void sat_solver2_act_var_clear(sat_solver2* s) { int i; for (i = 0; i < s->size; i++) s->activity[i] = 0;//.0; s->var_inc = 1.0; } static inline void sat_solver2_compress(sat_solver2* s) { if ( s->qtail != s->qhead ) { int RetValue = sat_solver2_simplify(s); assert( RetValue != 0 ); } } static inline int sat_solver2_final(sat_solver2* s, int ** ppArray) { *ppArray = s->conf_final.ptr; return s->conf_final.size; } static inline int sat_solver2_set_runtime_limit(sat_solver2* s, int Limit) { int nRuntimeLimit = s->nRuntimeLimit; s->nRuntimeLimit = Limit; return nRuntimeLimit; } static inline int sat_solver2_set_random(sat_solver2* s, int fNotUseRandom) { int fNotUseRandomOld = s->fNotUseRandom; s->fNotUseRandom = fNotUseRandom; return fNotUseRandomOld; } static inline int sat_solver2_bookmark(sat_solver2* s) { s->hLearntPivot = veci_size(&s->learnts); s->hClausePivot = veci_size(&s->clauses); s->iVarPivot = s->size; } static inline int sat_solver2_add_const( sat_solver2 * pSat, int iVar, int fCompl, int fMark ) { lit Lits[1]; int Cid; assert( iVar >= 0 ); Lits[0] = toLitCond( iVar, fCompl ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 1 ); if ( fMark ) clause_set_partA( pSat, Cid, 1 ); return 1; } static inline int sat_solver2_add_buffer( sat_solver2 * pSat, int iVarA, int iVarB, int fCompl, int fMark ) { lit Lits[2]; int Cid; assert( iVarA >= 0 && iVarB >= 0 ); Lits[0] = toLitCond( iVarA, 0 ); Lits[1] = toLitCond( iVarB, !fCompl ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 2 ); if ( fMark ) clause_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVarA, 1 ); Lits[1] = toLitCond( iVarB, fCompl ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 2 ); if ( fMark ) clause_set_partA( pSat, Cid, 1 ); return 2; } static inline int sat_solver2_add_and( sat_solver2 * pSat, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1, int fMark ) { lit Lits[3]; int Cid; Lits[0] = toLitCond( iVar, 1 ); Lits[1] = toLitCond( iVar0, fCompl0 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 2 ); if ( fMark ) clause_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVar, 1 ); Lits[1] = toLitCond( iVar1, fCompl1 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 2 ); if ( fMark ) clause_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVar, 0 ); Lits[1] = toLitCond( iVar0, !fCompl0 ); Lits[2] = toLitCond( iVar1, !fCompl1 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 3 ); if ( fMark ) clause_set_partA( pSat, Cid, 1 ); return 3; } static inline int sat_solver2_add_xor( sat_solver2 * pSat, int iVarA, int iVarB, int iVarC, int fCompl, int fMark ) { lit Lits[3]; int Cid; assert( iVarA >= 0 && iVarB >= 0 && iVarC >= 0 ); Lits[0] = toLitCond( iVarA, !fCompl ); Lits[1] = toLitCond( iVarB, 1 ); Lits[2] = toLitCond( iVarC, 1 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 3 ); if ( fMark ) clause_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVarA, !fCompl ); Lits[1] = toLitCond( iVarB, 0 ); Lits[2] = toLitCond( iVarC, 0 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 3 ); if ( fMark ) clause_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVarA, fCompl ); Lits[1] = toLitCond( iVarB, 1 ); Lits[2] = toLitCond( iVarC, 0 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 3 ); if ( fMark ) clause_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVarA, fCompl ); Lits[1] = toLitCond( iVarB, 0 ); Lits[2] = toLitCond( iVarC, 1 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 3 ); if ( fMark ) clause_set_partA( pSat, Cid, 1 ); return 4; } static inline int sat_solver2_add_constraint( sat_solver2 * pSat, int iVar, int iVar2, int fCompl, int fMark ) { lit Lits[2]; int Cid; assert( iVar >= 0 ); Lits[0] = toLitCond( iVar, fCompl ); Lits[1] = toLitCond( iVar2, 0 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 2 ); if ( fMark ) clause_set_partA( pSat, Cid, 1 ); Lits[0] = toLitCond( iVar, fCompl ); Lits[1] = toLitCond( iVar2, 1 ); Cid = sat_solver2_addclause( pSat, Lits, Lits + 2 ); if ( fMark ) clause_set_partA( pSat, Cid, 1 ); return 2; } ABC_NAMESPACE_HEADER_END #endif