summaryrefslogtreecommitdiffstats
path: root/scripts/abc_common.py
blob: 891a918b981303648c085014e14d450f12078ce1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
from pyabc import *
import redirect
import sys
import os
import time
import math
global G_C,G_T,latches_before_abs,latches_before_pba,n_pos_before,x_factor

"""
The functions that are currently available from module _abc are:

int n_ands();
int n_pis();
int n_pos();
int n_latches();
int n_bmc_frames();
int prob_status(); 1 = unsat, 0 = sat, -1 = unsolved

int run_command(char* cmd);

bool has_comb_model();
bool has_seq_model();
bool is_true_cex();
bool is_valid_cex();
  return 1 if the number of PIs in the current network and in the current counter-example are equal
int  n_cex_pis();
  return the number of PIs in the current counter-example
int  n_cex_regs();
  return the number of flops in the current counter-example
int  cex_po();
  returns the zero-based output PO number that is SAT by cex
int  cex_frame();
  return the zero-based frame number where the outputs is SAT
The last four APIs return -1, if the counter-example is not defined. 
"""

#global variables

stackno_gabs = stackno_gore = stackno_greg= 0
STATUS_UNKNOWN = -1
STATUS_SAT = 0
STATUS_UNSAT = 1
RESULT = ('SAT' , 'SAT', 'UNSAT', 'UNDECIDED but reduced', 'UNDECIDED, no reduction', 'UNDCIDED but reduced'  )
Sat_reg = 0
Sat_true = 1
Unsat = 2
Undecided_reduction = 3
Undecided_no_reduction = 4
Error = 5
Restart = 6
xfi = x_factor = 1  #set this to higher for larger problems or if you want to try harder during abstraction
max_bmc = -1
last_time = 0

# Function definitions:
# simple functions: ________________________________________________________________________
# set_globals, abc, q, x, has_any_model, is_sat, is_unsat, push, pop

# ALIASES
def p():
    return prove()

def ps():
    print_circuit_stats()

def n_real_inputs():
    """This gives the number of 'real' inputs. This is determined by trimming away inputs that
    have no connection to the logic. This is done by the ABC alias 'trm', which changes the current
    circuit. In some applications we do not want to change the circuit, but just to know how may inputs
    would go away if we did this. So the current circuit is saved and then restored afterwards."""
    abc('w %s_savetempreal.aig; logic; trim; st'%f_name)
    n = n_pis()
    abc('r %s_savetempreal.aig'%f_name)
    return n

def long(t):
    if t<20:
        t = t
    else:
        t = 20+(t-20)/3
    return max(10,t)

def rif():
    """Not used"""
    global f_name
    print 'Type in the name of the aig file to be read in'
    s = raw_input()
    if s[-5:] == '.blif':
        f_name = s[:-5]
    else:
        f_name = s
        s = s+'.blif'
    run_command(s)
    x('st;constr -i')
    print_circuit_stats()
    a = n_ands()
    f = max(1,30000/a)
    f = min (f,16)
    x('scorr -c -F %d'%f)
    x('fold')
    print_circuit_stats()
    x('w %s_c.aig'%f_name)

def abc(cmd):
    abc_redirect_all(cmd)
    

def abc_redirect( cmd, dst = redirect.null_file, src = sys.stdout ):
    """This is our main way of calling an ABC function. Redirect, means that we suppress any output from ABC"""
    with redirect.redirect( dst, src ):
        return run_command( cmd )


def abc_redirect_all( cmd ):
    """This is our main way of calling an ABC function. Redirect, means that we suppress any output from ABC, including error printouts"""
    with redirect.redirect( redirect.null_file, sys.stdout ):
        with redirect.redirect( redirect.null_file, sys.stderr ):
            return run_command( cmd )

def set_globals():
    """This sets global parameters that are used to limit the resources used by all the operations
    bmc, interpolation BDDs, abstract etc. There is a global factor 'x_factor' that can
    control all of the various resource limiting parameters"""
    global G_C,G_T,x_factor
    nl=n_latches()
    na=n_ands()
    np = n_pis()
    #G_C = min(500000,(3*na+500*(nl+np)))
    G_C = x_factor * min(100000,(3*na+500*(nl+np)))
    #G_T = min(250,G_C/2000)
    G_T = x_factor * min(75,G_C/2000)
    G_T = max(1,G_T)
    #print('Global values: BMC conflicts = %d, Max time = %d sec.'%(G_C,G_T))
    
def a():
    """this puts the system into direct abc input mode"""
    print "Entering ABC direct-input mode. Type q to quit ABC-mode"
    n = 0
    while True:
        print '     abc %d> '%n,
        n = n+1
        s = raw_input()
        if s == "q":
            break
        run_command(s) 

def set_fname(name):
    """ Another way to set an f_name, but currently this is not used"""
    global f_name
    s = name
    if s[-4:] == '.aig':
        f_name = s[:-4]
    else:
        f_name = s
        s = s+'.aig'
    #read in file
    run_command(s)
    #print_circuit_stats()

def read_file_quiet(fname=None):
    """This is the main program used for reading in a new circuit. The global file name is stored (f_name)
    Sometimes we want to know the initial starting name. The file name can have the .aig extension left off
    and it will assume that the .aig extension is implied. This should not be used for .blif files.
    Any time we want to process a new circuit, we should use this since otherwise we would not have the
    correct f_name."""
    global max_bmc,  f_name, d_name, initial_f_name, x_factor, init_initial_f_name
    x_factor = 1
    max_bmc = -1
    
    if fname is None:
        print 'Type in the name of the aig file to be read in'
        s = raw_input()
    else:
        s = fname
        
    if s[-4:] == '.aig':
        f_name = s[:-4]
    else:
        f_name = s
        s = s+'.aig'
        
    run_command(s)
    initial_f_name = f_name
    init_initial_f_name = f_name
    
def read_file():
    read_file_quiet()
    print_circuit_stats()

def rf():
    read_file()

##def read_file():
##    """This is the main program used for reading in a new circuit. The global file name is stored (f_name)
##    Sometimes we want to know the initial starting name. The file name can have the .aig extension left off
##    and it will assume that the .aig extension is implied. This should not be used for .blif files.
##    Any time we want to process a new circuit, we should use this since otherwise we would not have the
##    correct f_name."""
##    global max_bmc,  f_name, d_name, initial_f_name, x_factor
##    x_factor = 1
##    max_bmc = -1
##    print 'Type in the name of the aig file to be read in'
##    s = raw_input()
##    if s[-4:] == '.aig':
##        f_name = s[:-4]
##    else:
##        f_name = s
##        s = s+'.aig'
##    run_command(s)
##    initial_f_name = f_name
##    print_circuit_stats()
##    
##def rf():
##    """just an alias for read_file"""
##    read_file()

def write_file(s):
    """this is the main method for writing the current circuit to an AIG file on disk.
    It manages the name of the file, by giving an extension (s). The file name 'f_name'
    keeps increasing as more extensions are written. A typical sequence is
    name, name_smp, name_smp_abs, name_smp_abs_spec, name_smp_abs_spec_final"""
    global f_name
    """Writes out the current file as an aig file using f_name appended with argument"""
    f_name = '%s_%s'%(f_name,s)
    ss = '%s.aig'%(f_name)
    print 'WRITING %s: '%ss,
    print_circuit_stats()
    abc('w '+ss)
    
def wf():
    """Not used"""
    print 'input type of file to be written'
    s = raw_input()
    write_file(s)

def bmc_depth():
    """ Finds the number of BMC frames that the latest operation has used. The operation could be BMC, reachability
    interpolation, abstract, speculate. max_bmc is continually increased. It reflects the maximum depth of any version of the circuit
    including abstract ones, for which it is known that there is not cex out to that depth."""
    global max_bmc
    b = n_bmc_frames()
    max_bmc = max(b,max_bmc)
    return max_bmc

def set_max_bmc(b):
    """ Keeps increasing max_bmc which is the maximum number of time frames for
    which the current circuit is known to be UNSAT for"""
    global max_bmc
    max_bmc = max(b,max_bmc)

def print_circuit_stats():
    """Stardard way of outputting statistice about the current circuit"""
    global max_bmc
    i = n_pis()
    o = n_pos()
    l = n_latches()
    a = n_ands()
    b = max(max_bmc,bmc_depth())
    c = cex_frame()
    if b>= 0:
        if c>=0:
            print 'PIs = %d, POs = %d, FF = %d, ANDs = %d, max depth = %d, CEX depth = %d'%(i,o,l,a,b,c)
        else:
            print 'PIs = %d, POs = %d, FF = %d, ANDs = %d, max depth = %d'%(i,o,l,a,b)
    else:
        if c>=0:
            print 'PIs = %d, POs = %d, FF = %d, ANDs = %d, CEX depth = %d'%(i,o,l,a,c)
        else:
            print 'PIs = %d, POs = %d, FF = %d, ANDs = %d'%(i,o,l,a)

def q():
    exit()

def x(s):
    """execute an ABC command"""
    print "RUNNING: ", s
    run_command(s)

def has_any_model():
    """ check if a satisfying assignment has been found"""
    res = has_comb_model() or has_seq_model()
    return res

def is_unsat():
    if prob_status() == 1:
        return True
    else:
        return False

def is_sat():
    if prob_status() == 0:
        return True
    else:
        return False

def wc(file):
    """writes <file> so that costraints are preserved explicitly"""
    abc('&get;&w %s'%file)

def rc(file):
    """reads <file> so that if constraints are explicit, it will preserve them"""
    abc('&r %s;&put'%file)                         

##def push(file):
##    """ saves <file>.aig in stack_x"""
##    global stackno_gabs, stackno_gsrm, stackno_greg
##    if 'gabs' in file:
##        snm = 'gabs'
##    elif 'gsrm' in file:
##        snm = 'gsrm'
##    elif 'x' in file:
##        snm = 'greg'
##    else:
##        print 'wrong file name'
##        return 
##    print snm
##    sn = 'stackno_%s'%snm
##    print sn
##    exec 'sn += sn'
##    print sn, eval(sn)
##    run_command("r %s.aig"%file)
##    run_command("w %s_%d.aig"%(file,eval(sn)))
##
##def pop(file):
##    """ reads top <file>.aig in stack_1 and saves it in <file>.aig"""
##    global stackno_gabs, stackno_gsrm, stackno_greg
##    if 'gabs' in file:
##        sn = 'gabs'
##    if 'gsrm' in file:
##        sn = 'gsrm'
##    if 'x' in file:
##        sn = 'greg'
##    else:
##        print 'wrong file name'
##        return 
##    run_command("r %s_%d.aig"%(file,eval(sn)))
##    run_command("w %s.aig"%file)
##    os.remove("%s_%d.aig"%(file,eval(sn))) 
##    exec 'sn = sn-1'
##    # need to protect against wrong stack count

def fast_int(n):
    """This is used to eliminate easy-to-prove outputs. Arg n is conflict limit to be used
    in the interpolation routine. Typically n = 1 or 10"""
    n_po = n_pos()
    abc('int -k -C %d'%n)
    print 'Reduced POs from %d to %d'%(n_po,n_pos())

def refine_with_cex():
    """Refines the greg (which contains the original problem with the set of FF's that have been abstracted).
    This generates a new abstraction (gabs) and modifies the greg file to reflect which regs are in the
    current abstraction"""
    global f_name
    print 'CEX in frame %d for output %d'%(cex_frame(),cex_po())
    abc('&r %s_greg.aig; &abs_refine; &w %s_greg.aig'%(f_name,f_name))
    return

def generate_abs(n):
    """generates an abstracted  model (gabs) from the greg file. The gabs file is automatically
    generated in the & space by &abs_derive. We store it away using the f_name of the problem
    being solved at the moment. The f_name keeps changing with an extension given by the latest
    operation done - e.g. smp, abs, spec, final, group. """
    global f_name
    #we have a cex and we use this generate a new gabs file
    abc('&r %s_greg.aig; &abs_derive; &put; w %s_gabs.aig'%(f_name,f_name)) # do we still need the gabs file
    if n == 1:
        print 'New abstraction: ',
        print_circuit_stats()
    return   

    
#more complex functions: ________________________________________________________
#, abstract, pba, speculate, final_verify, dprove3


def simplify():
    """Our standard simplification of logic routine. What it does depende on the problem size.
    For large problems, we use the &methods which use a simple circuit based SAT solver. Also problem
    size dictates the level of k-step induction done in 'scorr' The stongest simplification is done if
    n_ands < 20000. Then it used the clause based solver and k-step induction where |k| depends
    on the problem size """
    # set_globals()
##    print 'simplify initial ',
##    ps()
    abc('w t.aig')
    n=n_ands()
    abc('scl')
    if n > 30000:
        abc('&get;&scl;&put')
        n = n_ands()
        if n < 100000:
            abc("&dc2;&put;dr;&get;&lcorr;&dc2;&put;dr;&get;&scorr;&fraig;&dc2;&put;dr")
            run_command('ps')
            print '.',
            n = n_ands()
            if n<45000:
                abc("&get;&scorr -F 2;&put;dc2rs")
                print '.',
                #ps()
            else:
                abc("dc2rs")
                print '.',
                #ps()
            n = n_ands()
    n = n_ands()
    if n <= 30000:
        print '.',
        #ps()
        if n > 15000:
            abc("dc2rs")
            print '.',
        else:
            abc("scorr -F 2;dc2rs")
            print '.',
            #ps()
    n = max(1,n_ands())
    ps()
    if n < 20000:
        m = int(min( 60000/n, 16))
        #print 'm = %d'%m
        if m >= 4:
            j = 4
            while j <= m:
                set_size()
                #print 'j - %d'%j
                abc('scl;dr;dc2;scorr -C 5000 -F %d'%j)
                if check_size() == 1:
                    break
                j = 2*j
                #ps()
                continue
            print '.',


def iterate_simulation(latches_before):
    """Subroutine of 'abstract' which does the refinement of the abstracted model,
    using counterexamples found by simulation. Simulation is controlled by the amount
    of memory it might use. At first wide but shallow simulation is done, bollowed by
    successively more narrow but deeper simulation"""
    global x_factor, f_name
##    print 'RUNNING simulation iteratively'
    f = 5
    w = 255
    for k in range(9):
        f = min(f *2, 3500)
        w = max(((w+1)/2)-1,1)
        print '.',
        abc('sim -m -F %d -W %d'%(f,w))
        if not is_sat():
            continue
        while True:
            refine_with_cex()
            if is_sat():
                print 'cex failed to refine abstraction '
                return Sat_true
            generate_abs(0)
            latches_after = n_latches()
            print 'Latches increased to %d'%latches_after
            if latches_after >= .99*latches_before:
                abc('r %s_savetempabs.aig'%f_name)
                print "No reduction!."
                return Undecided_no_reduction
            abc('sim -m -F %d -W %d'%(f,w))
            if not is_sat():
                break

def iterate_abstraction_refinement(latches_before,NBF):
    """Subroutine of 'abstract' which does the refinement of the abstracted model,
    using counterexamples found by BMC or BDD reachability"""
    global x_factor, f_name
    if NBF == -1:
        F = 2000
    else:
        F = 2*NBF
    print '\nIterating BMC or BDD reachability'
    reach_sw = 0
    always_reach = 0
    cexf = 0
    reach_failed = 0
    while True:
        #print 'Generating problem abstraction'
        generate_abs(1)
        set_globals()
        latches_after = n_latches()
        if latches_after >= .98*latches_before:
##            print 'No reduction'
##            abc('r &s_savetemp.aig'%f_name)
            break
        ri = n_real_inputs() # No. of inputs after trm
        nlri = n_latches()+ri
        #reach_allowed = ((nlri<150) or (((cexf>250))&(nlri<300)))
        reach_allowed = ((nlri<75) or (((cexf>250))&(nlri<300)))
        t = max(1,G_T)
        if not F == -1:
            F = int(1.5*max_bmc)
        if (((reach_allowed  or  (reach_sw ==1)) and not reach_failed)):
            #cmd = 'reach -B 200000 -F 3500 -T %f'%t
            #cmd = 'reachx -e %d -t %d'%(int(long(t)),max(10,int(t)))
            cmd = 'reachx -t %d'%max(10,int(t))
            reach_sw = 1
        else:
            reach_sw = 0
            cmd = 'bmc3 -C %d -T %f -F %d'%(G_C,t,F)
        print 'RUNNING %s'%cmd
        abc(cmd)
        if prob_status() == 1:
            print 'Reachability went to %d frames, '%n_bmc_frames()
            print 'UNSAT'
            return Unsat
        cexf = cex_frame()
        set_max_bmc(cexf -1)
        if ((not is_sat()) and (reach_sw == 1)):
            reach_failed = 1 # if ever reach failed, then we should not try it again on more refined models
        if is_sat():
            set_max_bmc(cex_frame()-1)
            refine_with_cex() # if cex can't refine, status is set to Sat_true
            if is_sat():
                print 'cex did not refine. Implies true_sat'
                return Sat_true
        else:
            print "No CEX found in %d frames"%n_bmc_frames()
            if reach_sw == 0:
                break
            else:
                continue
    latches_after = n_latches()
    if latches_after >= .98*latches_before:
        abc('r %s_savetempabs.aig'%f_name)
        print "No reduction!"
        return Undecided_no_reduction
    else:
        print 'Latches reduced from %d to %d'%(latches_before, n_latches())
        return Undecided_reduction


def abstract():
    """ abstracts using N Een's method 3 - cex/proof based abstraction. The result is further refined using
    simulation, BMC or BDD reachability"""
    global G_C, G_T, latches_before_abs, x_factor
    set_globals()
    latches_before_abs = n_latches()
    abc('w %s_savetempabs.aig'%f_name)
    print 'Start: ',
    print_circuit_stats()
    c = 1.5*G_C
    #c = 20000
    t = max(1,1.25*G_T)
    method = 3
    if n_ands() > 100000:
        method = 0
    s = min(max(3,c/30000),10) # stability between 3 and 10
    if max_bmc == -1:
        time = max(1,.01*G_T)
        abc('bmc3 -C %d -T %f -F 165'%(.01*G_C, time))
        set_max_bmc(bmc_depth())
    f = min(250,1.5*max_bmc)
    f = max(20, f)
    f = 10*f
    if not method == 0:
        b = 10
        b = max(b,max_bmc+2)
        b = b*2**(x_factor-1)
        b = 2*b
        print 'Neen abstraction params: Bob = %d, Method #%d, %d conflicts, %d stable, %d sec., %d frames'%(b,method,c/3,s,t,f)
        abc('&get; &abs_newstart -v -B %f -A %d -C %d -S %d -V %f -F %d'%(b,method,c/3,s,t,f))
    else:
        abc('&get;&abs_start -v -C 500000 -R 1')
    #abc('w abstemp.aig')
    if is_sat():
        print 'Found true counterexample in frame %d'%cex_frame()
        return Sat_true
    NBF = bmc_depth()
    print 'Abstraction good to %d frames'%n_bmc_frames()
    set_max_bmc(NBF)
    abc('&w %s_greg.aig; &abs_derive; &put; w %s_gabs.aig'%(f_name,f_name))
    print 'First abstraction: ',
    print_circuit_stats()
    latches_after = n_latches()
    #if latches_before_abs == latches_after:
    if latches_after >= .98*latches_before_abs:
        abc('r %s_savetempabs.aig'%f_name)
        print "No reduction!"
        return Undecided_no_reduction    
    # refinement loop
    if (n_ands() + n_latches() + n_pis()) < 15000:
        print 'Running simulation iteratively'
        for i in range(5):
            result = iterate_simulation(latches_before_abs)
            if result == Restart:
                return result
            if result == Sat_true:
                return result
    result = iterate_abstraction_refinement(latches_before_abs, NBF)
    #if the result is 'Restart' we return and the calling routine increase
    #x_factor to try one more time.
    return result

def absv(n,v):
    """This is a version of 'abstract' which can control the methods used in Een's abstraction code (method = n)
    as well as whether we want to view the output of this (v = 1)"""
    global G_C, G_T, latches_before_abs, x_factor
    #input_x_factor()
    #x_factor = 3
    set_globals()
    latches_before_abs = n_latches()
    print 'Start: ',
    print_circuit_stats()
    c = 1.5*G_C
    t = max(1,1.25*G_T)
    s = min(max(3,c/30000),10) # stability between 3 and 10
    if max_bmc == -1:
        time = max(1,.01*G_T)
        abc('bmc3 -C %d -T %f -F 165'%(.01*G_C, time))
        set_max_bmc(bmc_depth())
    f = min(250,1.5*max_bmc)
    f = max(20, f)
    f = 10*f
    b = x_factor*20
    if not n == 0:
        b = 10
        b = max(b,max_bmc+2)
        b = b*2**(x_factor-1)
        b = 2*b
    print 'Neen abstraction params: Method #%d, %d conflicts, %d stable, %f sec.'%(n,c/3,s,t)
    if v == 1:
        run_command('&get; &abs_newstart -v -B %f -A %d -C %d -S %d -V %f'%(b,n,c/3,s,t))
    else:
        abc('&get; &abs_newstart -v -B %f -A %d -C %d -S %d -T %f'%(b,n,c/3,s,t))
    set_max_bmc(n_bmc_frames())
    print 'Abstraction good to %d'%n_bmc_frames()
    abc('&w %s_greg.aig; &abs_derive; &put; w %s_gabs.aig'%(f_name,f_name))
    print 'Final abstraction: ',
    print_circuit_stats()
    latches_after = n_latches()    
    if latches_after >= .98*latches_before_abs:
        print "No reduction!"
        return Undecided_no_reduction
    return Undecided_reduction

def spec():
    """Main speculative reduction routine. Finds candidate sequential equivalences and refines them by simulation, BMC, or reachability
    using any cex found. """
    input_x_factor()
    global G_C,G_T,n_pos_before, x_factor, n_latches_before
    set_globals()
    n_pos_before = n_pos()
    n_latches_before = n_latches()    
    set_globals()
    t = max(1,.5*G_T)
    r = max(1,int(t))
    print 'Running &equiv2 with C = %d, T = %f sec., F = %d -S 1 -R %d'%(G_C,t,200,r)
    abc("&get; &equiv2 -C %d -F 200 -T %f -S 1 -R %d; &semi -F 50; &speci -F 20 -C 1000;&srm; r gsrm.aig; w %s_gsrm.aig; &w %s_gore.aig"%((G_C),t,r,f_name,f_name))
    print 'Initial speculation: ',
    print_circuit_stats()
    print 'Speculation good to %d frames'%n_bmc_frames()
    return

def speculate():
    """Main speculative reduction routine. Finds candidate sequential equivalences and refines them by simulation, BMC, or reachability
    using any cex found. """
    
    global G_C,G_T,n_pos_before, x_factor, n_latches_before
    set_globals()
    n_pos_before = n_pos()
    
    def refine_with_cex():
        """Refines the gore file to reflect equivalences that go away because of cex"""
        global f_name
        print 'CEX in frame %d for output %d'%(cex_frame(),cex_po())
        abc('&r %s_gore.aig; &resim -m; &w %s_gore.aig'%(f_name,f_name))
        #abc('&r %s_gore.aig; &equiv2 -vx ; &w %s_gore.aig'%(f_name,f_name))
        return
    
    def generate_srm(n):
        """generates a speculated reduced model (srm) from the gore file"""
        global f_name
        pos = n_pos()
        ab = n_ands()
        abc('&r %s_gore.aig; &srm ; r gsrm.aig; w %s_gsrm.aig'%(f_name,f_name)) #do we still need to write the gsrm file
        if n == 0:
            if ((pos == n_pos()) and (ab == n_ands())):
                print 'Failed to refine'
                return 'failed'
        if n == 1:
            print 'Spec. Red. Miter: ',
            print_circuit_stats()
        return 'OK'

    def run_simulation(n):
        f = 5
        w = (256/n)-1
        for k in range(9):
            f = min(f * 2, 3500)
            w = max(((w+1)/2)-1,1)
            print '.',
            #generate_srm(0)
            abc('sim -m -F %d -W %d'%(f,w))
            if not is_sat():
                continue                
            if cex_po() < n_pos_before:
                print 'Sim found true cex: Output = %d, Frame = %d'%(cex_po(),cex_frame())
                return Sat_true                    
            refine_with_cex()
            if n_pos_before == n_pos():            
                return Undecided_no_reduction
            while True:
                result = generate_srm(0)
                if result == 'failed':
                    return Sat_true
                abc('sim -m -F %d -W %d'%(f,w))
                if not is_sat():
                    break                
                if cex_po() < n_pos_before:
                    print 'Sim found true cex: Output = %d, Frame = %d'%(cex_po(),cex_frame())
                    return Sat_true                    
                refine_with_cex()
                if n_pos_before == n_pos():            
                    return Undecided_no_reduction
        return Undecided_no_reduction
    
    n_pos_before = n_pos()
    n_latches_before = n_latches()    
    set_globals()
    t = max(1,.5*G_T)
    r = max(1,int(t))
    print 'Running &equiv2 with C = %d, T = %f sec., F = %d -S 1 -R %d'%(G_C,t,200,r)
    abc("&get; &equiv2 -C %d -F 200 -T %f -S 1 -R %d; &semi -F 50; &speci -F 20 -C 1000;&srm; r gsrm.aig; w %s_gsrm.aig; &w %s_gore.aig"%((G_C),t,r,f_name,f_name))
    print 'Initial speculation: ',
    print_circuit_stats()
    print 'Speculation good to %d frames'%n_bmc_frames()
    #simplify()
    if n_pos_before == n_pos():
        print 'No new outputs. Quitting speculate'
        return Undecided_no_reduction # return result is unknown
    if is_sat():
        #print '\nWARNING: if an abstraction was done, need to refine it further\n'
        return Sat_true
    k = n_ands() + n_latches() + n_pis()
    n = 0
    if k < 15000:
        n = 1
    elif k < 30000:
        n = 2
    elif k < 60000:
        n = 4
    elif k < 120000:
        n = 8
    if n > 0: # simulation can run out of memory for too large designs, so be careful
        print 'RUNNING simulation iteratively'          
        for i in range(5):
            result = run_simulation(n)
            if result == Sat_true:
                return result
    simp_sw = 1
    int_sw = 1
    reach_sw = 0
    cexf = 0
    reach_failed = 0
    init = 1
    print '\nIterating BMC or BDD reachability'
    while True: # now try real hard to get the last cex.
        set_globals()
        if not init:
            set_size()
            result = generate_srm(1)
            if check_size() == True:
                print 'Failed to refine'
                return Error
            if result == 'failed':
                return Sat_true
            if simp_sw == 1:
                na = n_ands()
                simplify()
                if n_ands() > .7*na: #if not significant reduction, stop simplification
                    simp_sw = 0
            if n_latches() == 0:
                return check_sat()
        init = 0 # make it so that next time it is not the first time through
        time = max(1,G_T/(5*n_pos()))
        if int_sw ==1:
            npo = n_pos()
            if n_pos() > .5*npo:  # if not sufficient reduction, turn this off
                int_sw = 0
        if is_sat():        #if fast interpolation found a cex
            cexf = cex_frame()
            set_max_bmc(cexf - 1)
            if cex_po() < n_pos_before:
                print 'Int found true cex: Output = %d, Frame = %d'%(cex_po(),cex_frame())
                return Sat_true
            refine_with_cex()
            if n_pos_before == n_pos():            
                return Undecided_no_reduction
            if is_sat():
                print '1. cex failed to refine abstraction'
                return Sat_true
            continue
        else:
            if n_latches() == 0:
                return check_sat()
            ri = n_real_inputs()  #seeing how many inputs would trm get rid of
            nlri = n_latches() + ri
            reach_allowed = ((nlri<75) or (((cexf>250)) and (nlri<300)))
            if (((reach_allowed  or  (reach_sw == 1)) and not reach_failed)):
                t = max(1,1.2*G_T)
                f = max(3500, 2*max_bmc)
                cmd = 'reachx -t %d'%max(10,int(t))
                reach_sw = 1
            else:
                t = max(1,1.5*G_T)
                if max_bmc == -1:
                    f = 200
                else:
                    f = max_bmc
                f = int(1.5*f)
                cmd = 'bmc3 -C %d -T %f -F %f'%(1.5*G_C,1.2*t,f)
                reach_sw = 0            
            print 'Running %s'%cmd
            abc(cmd)
            if is_sat():
                cexf = cex_frame()
                set_max_bmc(cexf  - 1)
                #This is a temporary fix since reachx always reports cex_ps = 0
                if ((cex_po() < n_pos_before) and (cmd[:3] == 'bmc')):
                    print 'BMC found true cex: Output = %d, Frame = %d'%(cex_po(),cex_frame())
                    return Sat_true
                #End of temporary fix
                refine_with_cex()#change the number of equivalences
                if n_pos_before == n_pos():            
                    return Undecided_no_reduction
                continue
            else:
                set_max_bmc(bmc_depth())
                print 'No cex found in %d frames'%n_bmc_frames()
                if reach_sw == 0:
                    break
                else:
                    if prob_status() == 1:
                        print 'Reachability converged in %d frames'%n_bmc_frames()
                        return Unsat
                    reach_failed = 1
                    init = 1
                    continue
    if n_pos_before == n_pos():
        return Undecided_no_reduction 
    else:
        return Undecided_reduction

def set_size():
    """Stores  the problem size of the current design. Size is defined as (PIs, POs, ANDS, FF, max_bmc)""" 
    global npi, npo, nands, nff, nmd
    npi = n_pis()
    npo = n_pos()
    nands = n_ands()
    nff = n_latches()
    nmd = max_bmc

def check_size():
    """Assumes the problem size has been set by set_size before some operation. This checks if the size was changed
    Size is defined as (PIs, POs, ANDS, FF, max_bmc)
    Returns TRUE is size is the same""" 
    global npi, npo, nands, nff, nmd
    result = ((npi == n_pis()) and (npo == n_pos()) and (nands == n_ands()) and (nff == n_latches()) and (nmd == max_bmc))
##    if result == 1:
##        print 'Size unchanged'
    return result

def inferior_size():
    """Assumes the problem size has been set by set_size beore some operation.
    This checks if the new size is inferior (larger) to the old one 
    Size is defined as (PIs, POs, ANDS, FF)""" 
    global npi, npo, nands, nff
    result = ((npi < n_pis()) or (npo < n_pos()) or (nands < n_ands()) )
    return result

def quick_verify(n):
    """Low resource version of final_verify n = 1 means to do an initial simplification first"""
    abc('trm')
    if n == 1:
        simplify()
        if n_latches == 0:
            return check_sat()
        abc('trm')
    print 'After trimming: ',
    print_circuit_stats()
    #try_rpm()
    set_globals()
    if is_sat():
        return Sat_true   
    c = max(G_C/10, 1000)
    t = max(1,.4*G_T)
    print 'RUNNING interpolation with %d conflicts, max %d sec and 100 frames'%(c,t)
    abc('int -v -F 100 -C %d -T %f'%(c,t))
    status = get_status()
    if status <= Unsat:
        print 'Interpolation went to %d frames, '%n_bmc_frames(),
        print RESULT[status]
        return status
    N = bmc_depth()
    L = n_latches()
    I = n_real_inputs()
    if ( ((I+L<200)&(N>100))  or  (I+L<125)  or  L < 51 ): #heuristic that if bmc went deep, then reachability might also
        t = max(1,.4*G_T)
        cmd = 'reachx -t %d'%max(10,int(t))
        print 'Running %s'%cmd
        abc(cmd)        
        status = get_status()
        if status <= Unsat:
            print 'Reachability went to %d frames, '%n_bmc_frames()
            print RESULT[status]
            return status
        print 'BDD reachability aborted'
    simplify() #why is this here
    if n_latches() == 0:
        print 'Simplified to 0 FF'
        return check_sat()
    set_max_bmc(bmc_depth()) # doesn't do anything
    print 'No success, max_depth = %d'%max_bmc
    return Undecided_reduction

def get_status():
    """this simply translates the problem status encoding done by ABC (-1,0,1)=(undecided,SAT,UNSAT) into the status code used by our python code."""
    status = prob_status() #interrogates ABC for the current status of the problem.
    # 0 = SAT
    if status == 1:
        status = Unsat
    if status == -1: #undecided
        status = Undecided_no_reduction
    return status

def try_rpm():
    """rpm is a cheap way of doing reparameterization and is an abstraction method, so may introduce false cex's.
    It finds a minimum cut between the PIs and the main sequential logic and replaces this cut by free inputs.
    A quick BMC is then done, and if no cex is found, we assume the abstraction is valid. Otherwise we revert back
    to the original problem before rpm was tried."""
    global x_factor
    if n_ands() > 30000:
        return
    set_globals()
    pis_before = n_pis()
    abc('w %s_savetemp.aig'%f_name)
    abc('rpm')
    result = 0
    if n_pis() < .5*pis_before:
        bmc_before = bmc_depth()
        #print 'running quick bmc to see if rpm is OK'
        t = max(1,.1*G_T)
        abc('bmc3 -C %d, -T %f'%(.1*G_C, t))
        if is_sat(): #rpm made it sat by bmc test, so undo rpm
            abc('r %s_savetemp.aig'%f_name)
        else:
            abc('trm')
            print 'WARNING: rpm reduced PIs to %d. May make SAT.'%n_pis()
            result = 1
    else:
        abc('r %s_savetemp.aig'%f_name)
    return result
            
def final_verify():
    """This is the final method for verifying anything is nothing else has worked. It first tries BDD reachability
    if the problem is small enough. If this aborts or if the problem is too large, then interpolation is called."""
    global x_factor
    set_globals()
##    simplify()
##    if n_latches() == 0:
##        return check_sat()
##    abc('trm')
    #rpm_result = try_rpm()
    set_globals()
    N = bmc_depth()
    L = n_latches()
    I = n_real_inputs()
    #try_induction(G_C)
    if ( ((I+L<250)&(N>100))  or  (I+L<200) or (L<51) ): #heuristic that if bmc went deep, then reachability might also
        t = max(1,1.5*G_T)
        #cmd = 'reach -v -B 1000000 -F 10000 -T %f'%t
        #cmd = 'reachx -e %d'%int(long(t))
        #cmd = 'reachx -e %d -t %d'%(int(long(t)),max(10,int(t)))
        cmd = 'reachx -t %d'%max(10,int(t))
        print 'Running %s'%cmd
        abc(cmd)        
        status = get_status()
        if status <= Unsat:
            print 'Reachability went to %d frames, '%n_bmc_frames(),
            print RESULT[status]
            return status
        print 'BDD reachability aborted'          
    #f = max(100,bmc_depth())
    c = max(G_C/5, 1000)
    t = max(1,G_T)
    print '\nRUNNING interpolation with %d conflicts, %d sec, max 100 frames'%(c,t)
    abc('int -v -F 100 -C %d -T %f'%(c,t))
    status = get_status()
    if status <= Unsat:
        print 'Interpolation went to %d frames, '%n_bmc_frames(),
        print RESULT[status]
        return status
    simplify()
    if n_latches() == 0:
        return check_sat()
    print 'Undecided'
    return Undecided_reduction

def check_sat():
    """This is called if all the FF have disappeared, but there is still some logic left. In this case,
    the remaining logic may be UNSAT, which is usually the case, but this has to be proved. The ABC command 'dsat' is used fro combinational problems"""
##    if n_ands() == 0:
##        return Unsat
    abc('dsat -C %d'%G_C)
    if is_sat():
        return Sat_true
    elif is_unsat():
        return Unsat
    else:
        return Undecided_no_reduction

def try_era(s):
    """era is explicit state enumeration that ABC has. It only works if the number of PIs is small,
    but there are cases where it works and nothing else does"""
    if n_pis() > 12:
        return
    cmd = '&get;&era -mv -S %d;&put'%s
    print 'Running %s'%cmd
    run_command(cmd)

def try_induction(C):
    """Sometimes proving the property directly using induction works but not very often.
    For 'ind' to work, it must have only 1 output, so all outputs are or'ed together temporarily"""
    return Undecided_reduction
    print '\nTrying induction'
    abc('w %s_temp.aig'%f_name)
    abc('orpos; ind -uv -C %d -F 10'%C)
    abc('r %s_savetemp.aig'%f_name)
    status = prob_status()
    if not status == 1:
        return Undecided_reduction
    print 'Induction succeeded'
    return Unsat

def final_verify_recur(K):
    """During prove we make backups as we go. These backups have increasing abstractions done, which can cause
    non-verification by allowing false counterexamples. If an abstraction fails with a cex, we can back up to
    the previous design before the last abstraction and try to proceed from there. K is the backup number we
    start with and this decreases as the backups fails. For each backup, we just try final_verify.
    If ever we back up to 0, which is the backup just after simplify, we then try speculate on this. This often works
    well if the problem is a SEC problem where there are a lot of equivalences across the two designs."""
    for j in range(K):
        i = K-(j+1)
        if i == 0: #don't try final verify on original
            status = 3
            break
        print '\nVerifying backup number %d:'%i,
        abc('r %s_backup_%d.aig'%(initial_f_name,i))
        print_circuit_stats()
        status = final_verify()
        if status >= Unsat:
            return status
        if  i > 0:
            print 'SAT returned, trying less abstract backup'
            continue
        break
    if ((i == 0) and (status > Unsat) and (n_ands() > 0)):
        print '\nTrying speculate on initial backup number %d:'%i,
        abc('r %s_backup_%d.aig'%(initial_f_name,i))
        ps()
        if n_ands() < 20000:
            status = speculate()
            if ((status <= Unsat) or (status == Error)):
                return status
        status = final_verify()
    if status == Unsat:
        return status
    else:
        return Undecided_reduction
        

def pre_simp():
    """This uses a set of simplification algorithms which preprocesses a design.
    Includes forward retiming, quick simp, signal correspondence with constraints, trimming away
    PIs, and strong simplify"""
    set_globals()
    #print 'trying forward'
    try_forward()
    #print 'trying quick simp'
    quick_simp()
    #print 'trying_scorr_constr'
    status = try_scorr_constr()
    #status = 3
    #print 'trying trm'
    if ((n_ands() > 0) or (n_latches()>0)):
        abc('trm')
    print 'Forward, quick_simp, scorr_constr,: ',
    print_circuit_stats()
    status = process_status(status)
    if status <= Unsat:
        return status
    simplify()
    print 'Simplify: ',
    print_circuit_stats()
    if n_latches() == 0:
        return check_sat()
    try_phase()
    if n_latches() == 0:
        return check_sat()
    #abc('trm')
    if ((n_ands() > 0) or (n_latches()>0)):
        abc('trm')
    status = process_status(status)
    if status <= Unsat:
        return status
    status = try_scorr_constr()
    abc('trm')
    return process_status(status)

def try_scorr_constr():
    set_size()
    abc('w %s_savetemp.aig'%f_name)
    status = scorr_constr()
    if inferior_size():
        abc('r %s_savetemp.aig'%f_name)
    return status

def process(status):
    """Checks if there are no FF and if so checks if the remaining combinational
    problem is UNSAT"""
    if n_latches() == 0:
        return check_sat()
    return status

def try_phase():
    """Tries phase abstraction. ABC returns the maximum clock phase it found using n_phases.
    Then unnrolling is tried up to that phase and the unrolled model is quickly
    simplified (with retiming to see if there is a significant reduction.
    If not, then revert back to original""" 
    n = n_phases()
    if ((n == 1) or (n_ands() > 30000)):
        return
    print 'Number of possible phases = %d'%n
    abc('w %s_savetemp.aig'%f_name)
    na = n_ands()
    nl = n_latches()
    ni = n_pis()
    no = n_pos()
    cost_init = (1*n_pis())+(2*n_latches())+.05*n_ands()
    cost_min = cost_init
    cost = cost_init
    abc('w %s_best.aig'%f_name)
    for j in range(4):
        abc('r %s_savetemp.aig'%f_name)
        p = 2**(j+1)
        if p > n:
            break
        abc('phase -F %d'%p)
        if na == n_ands():
            break
        abc('scl;rw')
        if n_latches() > nl: #why would this ever happen
            break
        #print_circuit_stats()
        abc('rw;lcorr;trm')
        #print_circuit_stats()
        cost = (1*n_pis())+(2*n_latches())+.05*n_ands()
        if cost < cost_min:
            cost_min = cost
            abc('w %s_best.aig'%f_name)
        else:
            break
    if cost < cost_init:
        abc('r %s_best.aig'%f_name)
        simplify()
        abc('trm')
        print 'Phase abstraction obtained :',
        print_circuit_stats()
        return
    abc('r %s_savetemp.aig'%f_name)
    return       

def try_forward():
    """Attempts most forward retiming, and latch correspondence there. If attempt fails to help simplify, then we revert back to the original design
    This can be effective for equivalence checking problems where synthesis used retiming"""
    abc('w %s_savetemp.aig'%f_name)
    if n_ands() < 30000:
        abc('dr')
        abc('lcorr')
        nl = n_latches()
        na = n_ands()
        abc('w %s_savetemp0.aig'%f_name)
        abc('r %s_savetemp.aig'%f_name) 
        abc('dr -m')
        abc('lcorr')
        abc('dr')
        if ((n_latches() <= nl) and (n_ands() < na)):
            print 'Forward retiming reduced size to: ',
            print_circuit_stats()
            return
        else:
            abc('r %s_savetemp0.aig'%f_name)
            return
    return       

def quick_simp():
    """A few quick ways to simplify a problem before more expensive methods are applied.
    Uses & commands if problem is large. These commands use the new circuit based SAT solver"""
    na = n_ands()
    if na < 30000:
        abc('scl;rw')
    elif na < 80000:
        abc('&get;&scl;&put;rw')

def scorr_constr():
    #return Undecided_no_reduction #temporarily disable the for the moment
    """Extracts implicit constraints and uses them in signal correspondence
    Constraints that are found are folded back when done"""
    na = max(1,n_ands())
    if ((na > 40000) or n_pos()>1):
        return Undecided_no_reduction
    f = 40000/na
    f = min(f,16)
    n_pos_before = n_pos()
    f = 1 #temporary until bug fixed.
    abc('w %s_savetemp.aig'%f_name)
    if n_ands() < 3000:
        cmd = 'unfold -a -F 2'
    else:
        cmd = 'unfold'
    abc(cmd)
    if ((n_ands() > na) or (n_pos() == 1)):
        abc('r %s_savetemp.aig'%f_name)
        return Undecided_no_reduction
    print_circuit_stats()
    print 'Number of constraints = %d'%(n_pos() - n_pos_before)
    abc('scorr -c -F %dd'%f)
    if n_pos_before == 1:
        #abc('cone -s -O 0') #don't fold constraints back in
        abc('fold')
    else:
        abc('fold')
##    abc('fold')
    return Undecided_no_reduction

def process_status(status):
    """ if there are no FF, the problem is combinational and we still have to check if UNSAT"""
    if n_latches() == 0:
        return check_sat()
    return status

def input_x_factor():
    """Sets the global x_factor according to user input"""
    global x_factor, xfi
    print 'Type in x_factor:',
    xfi = x_factor = input()
    print 'x_factor set to %f'%x_factor

def prove(a):
    """Proves all the outputs together. If ever an abstraction was done then if SAT is returned,
        we make RESULT return "undecided".
        if a = 0 we skip the first quick_verify"""
    global x_factor,xfi,f_name
    x = time.clock()
    max_bmc = -1
    K = 0
    print 'Initial: ',
    print_circuit_stats()
    x_factor = xfi
    print 'x_factor = %f'%x_factor
    print '\nRunning pre_simp'
    set_globals()
    status = pre_simp()
    if status <= Unsat:
        print 'Time for proof = %f sec.'%(time.clock() - x)
        return RESULT[status]
    if n_ands() == 0:
        abc('bmc3 -T 2')
        if is_sat():
            return 'SAT'
    abc('trm')
    write_file('smp')
    abc('w %s_backup_%d.aig'%(initial_f_name,K))
    K = K +1
    set_globals()
    if ((n_ands() < 30000) and (a == 1) and (n_latches() < 300)):
        print '\nRunning quick_verify'
        status = quick_verify(0)
        if status <= Unsat:
            if not status == Unsat:
                print 'CEX in frame %d'%cex_frame()
            print 'Time for proof = %f sec.'%(time.clock() - x)
            return RESULT[status]
        if n_ands() == 0:
            abc('bmc3 -T 2')
            if is_sat():
                return 'SAT'
    print'\nRunning abstract'
    nl_b = n_latches()
    status = abstract()
    abc('trm')
    write_file('abs')
    status = process_status(status)
    if ((status <= Unsat)  or  status == Error):
        if  status < Unsat:
            print 'CEX in frame %d'%cex_frame()
##            status = final_verify_recur(K)
##            write_file('final')
            print 'Time for proof = %f sec.'%(time.clock() - x)
            return RESULT[status]
        print 'Time for proof = %f sec.'%(time.clock() - x)
        return RESULT[status]
    abc('w %s_backup_%d.aig'%(initial_f_name,K))
    K = K +1
    if status == Undecided_reduction:
        print '\nRunning quick_verify'
        status = quick_verify(1)
        status = process_status(status)
        if status <= Unsat:
            if  status < Unsat:
                print 'CEX in frame %d'%cex_frame()
                #print 'Time for proof = %f sec.'%(time.clock() - x)
                status = final_verify_recur(K-1)
            abc('trm')
            write_file('final')
            print 'Time for proof = %f sec.'%(time.clock() - x)
            return RESULT[status]
    if n_ands() > 20000:
        print 'Speculation skipped because too large'
        K = 2
    elif n_ands() == 0:
        print 'Speculation skipped because no and nodes'
        K = 2
    else:
        print '\nRunning speculate'
        status = speculate()
        abc('trm')
        write_file('spec')
        status = process_status(status)
        if status == Unsat:
            print 'Time for proof = %f sec.'%(time.clock() - x)
            return RESULT[status]
        if ((status < Unsat) or (status == Error)):
            print 'CEX in frame %d'%cex_frame()
            K = K-1 #if spec found a true cex, then result of abstract was wrong
        else:
            abc('w %s_backup_%d.aig'%(initial_f_name,K))
            K = K +1
    status = final_verify_recur(K)
    abc('trm')
    write_file('final')
    print 'Time for proof = %f sec.'%(time.clock() - x)
    return RESULT[status]

def prove_g_pos(a):
    """Proves the outputs clustered by a parameter a. 
    a is the disallowed increase in latch support Clusters must be contiguous
    If a = 0 then outputs are proved individually. Clustering is done from last to first
    Output 0 is attempted to be proved inductively using other outputs as constraints.
    Proved outputs are removed if all the outputs have not been proved.
    If ever one of the proofs returns SAT, we stop and do not try any other outputs."""
    global f_name, max_bmc,x_factor
    x = time.clock()
    #input_x_factor()
    init_f_name = f_name
    #fast_int(1)
    print 'Beginning prove_g_pos'
    result = prove_all_ind()
    print 'Number of outputs reduced to %d by induction and fast interpolation'%n_pos()
    print '\n************Trying second level prove****************\n'
    try_rpm()
    result = prove(0)
    #result = prove_0_ind()
    if result == 'UNSAT':
        print 'Second prove returned UNSAT'
        return result
    if result == 'SAT':
        print 'CEX found'
        return result
    print '\n********** Proving each output separately ************'
    result = prove_all_ind()
    print 'Number of outputs reduced to %d by induction and fast interpolation'%n_pos()
    f_name = init_f_name
    abc('w %s_osavetemp.aig'%f_name)
    n = n_pos()
    print 'Number of outputs = %d'%n
    #count = 0
    pos_proved = []
    J = 0
    jnext = n-1
    while jnext >= 0:
        max_bmc = -1
        f_name = init_f_name
        abc('r %s_osavetemp.aig'%f_name)
        #Do in reverse order
        jnext_old = jnext
        if a == 0: # do not group
            extract(jnext,jnext)
            jnext = jnext -1 
        else:
            jnext = group(a,jnext)
        if jnext_old > jnext+1:
            print '\nProving outputs [%d-%d]'%(jnext + 1,jnext_old)
        else:
            print '\nProving output %d'%(jnext_old)
        #ps()
        #fast_int(1)
        f_name = f_name + '_%d'%jnext_old
        result = prove_1()
        if result == 'UNSAT':
            if jnext_old > jnext+1:
                print '\n********  PROVED OUTPUTS [%d-%d]  ******** \n\n'%(jnext+1,jnext_old)
            else:
                print '\n********  PROVED OUTPUT %d  ******** \n\n'%(jnext_old)
            pos_proved = pos_proved + range(jnext +1,jnext_old+1)
            continue
        if result == 'SAT':
            print 'One of output in (%d to %d) is SAT'%(jnext + 1,jnext_old)
            return result
        else:
            print '\n********  UNDECIDED on OUTPUTS %d thru %d  ******** \n\n'%(jnext+1,jnext_old)
    f_name = init_f_name
    abc('r %s_osavetemp.aig'%f_name)
    if not len(pos_proved) == n:
        print 'Eliminating %d proved outputs'%(len(pos_proved))
        remove(pos_proved)
        abc('trm')
        write_file('group')
        result = 'UNDECIDED'
    else:
        print 'Proved all outputs. The problem is proved UNSAT'
        result = 'UNSAT'
    print 'Total time for prove_g_pos = %f sec.'%(time.clock() - x)
    return result

def prove_pos():
    """Proves the outputs clustered by a parameter a. 
    a is the disallowed increase in latch support Clusters must be contiguous
    If a = 0 then outputs are proved individually. Clustering is done from last to first
    Output 0 is attempted to be proved inductively using other outputs as constraints.
    Proved outputs are removed if all the outputs have not been proved.
    If ever one of the proofs returns SAT, we stop and do not try any other outputs."""
    global f_name, max_bmc,x_factor
    a=0
    x = time.clock()
    #input_x_factor()
    init_f_name = f_name
    #fast_int(1)
    print 'Beginning prove_g_pos'
    result = prove_all_ind()
    print 'Number of outputs reduced to %d by induction and fast interpolation'%n_pos()
    print '\n********** Proving each output separately ************'
    f_name = init_f_name
    abc('w %s_osavetemp.aig'%f_name)
    n = n_pos()
    print 'Number of outputs = %d'%n
    #count = 0
    pos_proved = []
    J = 0
    jnext = n-1
    while jnext >= 0:
        max_bmc = -1
        f_name = init_f_name
        abc('r %s_osavetemp.aig'%f_name)
        #Do in reverse order
        jnext_old = jnext
        if a == 0: # do not group
            extract(jnext,jnext)
            jnext = jnext -1 
        else:
            jnext = group(a,jnext)
        if jnext_old > jnext+1:
            print '\nProving outputs [%d-%d]'%(jnext + 1,jnext_old)
        else:
            print '\nProving output %d'%(jnext_old)
        #ps()
        #fast_int(1)
        f_name = f_name + '_%d'%jnext_old
        result = prove_1()
        if result == 'UNSAT':
            if jnext_old > jnext+1:
                print '\n********  PROVED OUTPUTS [%d-%d]  ******** \n\n'%(jnext+1,jnext_old)
            else:
                print '\n********  PROVED OUTPUT %d  ******** \n\n'%(jnext_old)
            pos_proved = pos_proved + range(jnext +1,jnext_old+1)
            continue
        if result == 'SAT':
            print 'One of output in (%d to %d) is SAT'%(jnext + 1,jnext_old)
            return result
        else:
            print '\n********  UNDECIDED on OUTPUTS %d thru %d  ******** \n\n'%(jnext+1,jnext_old)
    f_name = init_f_name
    abc('r %s_osavetemp.aig'%f_name)
    if not len(pos_proved) == n:
        print 'Eliminating %d proved outputs'%(len(pos_proved))
        remove(pos_proved)
        abc('trm')
        write_file('group')
        result = 'UNDECIDED'
    else:
        print 'Proved all outputs. The problem is proved UNSAT'
        result = 'UNSAT'
    print 'Total time for prove_g_pos = %f sec.'%(time.clock() - x)
    return result


def prove_g_pos_split():
    """like prove_g_pos but quits when any output is undecided"""
    global f_name, max_bmc,x_factor
    x = time.clock()
    #input_x_factor()
    init_f_name = f_name
    #fast_int(1)
    print 'Beginning prove_g_pos_split'
    result = prove_all_ind()
    print 'Number of outputs reduced to %d by induction and fast interpolation'%n_pos()
    try_rpm()
    print '\n********** Proving each output separately ************'  
    f_name = init_f_name
    abc('w %s_osavetemp.aig'%f_name)
    n = n_pos()
    print 'Number of outputs = %d'%n
    pos_proved = []
    J = 0
    jnext = n-1
    while jnext >= 0:
        max_bmc = -1
        f_name = init_f_name
        abc('r %s_osavetemp.aig'%f_name)
        jnext_old = jnext
        extract(jnext,jnext)
        jnext = jnext -1
        print '\nProving output %d'%(jnext_old)
        f_name = f_name + '_%d'%jnext_old
        result = prove_1()
        if result == 'UNSAT':
            if jnext_old > jnext+1:
                print '\n********  PROVED OUTPUTS [%d-%d]  ******** \n\n'%(jnext+1,jnext_old)
            else:
                print '\n********  PROVED OUTPUT %d  ******** \n\n'%(jnext_old)
            pos_proved = pos_proved + range(jnext +1,jnext_old+1)
            continue
        if result == 'SAT':
            print 'One of output in (%d to %d) is SAT'%(jnext + 1,jnext_old)
            return result
        else:
            print '\n********  UNDECIDED on OUTPUTS %d thru %d  ******** \n\n'%(jnext+1,jnext_old)
            print 'Eliminating %d proved outputs'%(len(pos_proved))
            # remove outputs proved and return
            f_name = init_f_name
            abc('r %s_osavetemp.aig'%f_name)
            remove(pos_proved)
            abc('trm')
            write_file('group')            
            return 'UNDECIDED'
    f_name = init_f_name
    abc('r %s_osavetemp.aig'%f_name)
    if not len(pos_proved) == n:
        print 'Eliminating %d proved outputs'%(len(pos_proved))
        remove(pos_proved)
        abc('trm')
        write_file('group')
        result = 'UNDECIDED'
    else:
        print 'Proved all outputs. The problem is proved UNSAT'
        result = 'UNSAT'
    print 'Total time = %f sec.'%(time.clock() - x)
    return result



def group(a,n):
    """Groups together outputs beginning at output n and any contiguous preceeding output
    that does not increase the latch support by a or more"""
    global f_name, max_bmc
    nlt = n_latches()
    extract(n,n)
    nli = n_latches()
    if n == 0:
        return n-1
    for J in range(1,n+1):
        abc('r %s_osavetemp.aig'%f_name)
        j = n-J
        #print 'trying %d to %d'%(j,n)
        extract(j,n)
        #print 'n_latches = %d'%n_latches()
        #if n_latches() >= nli + (nlt - nli)/2:
        if n_latches() == nli:
            continue
        if n_latches() > nli+a:
            break
    abc('r %s_osavetemp.aig'%f_name)
##    if j == 1:
##        j = j-1
    print 'extracting [%d-%d]'%(j,n)
    extract(j,n)
    ps()
    return j-1
        
def extract(n1,n2):
    """Extracts outputs n1 through n2"""
    no = n_pos()
    if n2 > no:
        return 'range exceeds number of POs'
    abc('cone -s -O %d -R %d'%(n1, 1+n2-n1))
    abc('scl')

def prove_0_ind():
    """Uses all other outputs as constraints to try to prove output 0 by induction"""
    abc('w %s_osavetemp.aig'%f_name)
    #ps()
    abc('constr -N %d'%(n_pos()-1))
    #ps()
    abc('fold')
    #ps()
    abc('ind -u -C 1000000 -F 20')
    status = get_status()
    abc('r %s_osavetemp.aig'%f_name)
    return status

def remove(list):
    """Removes outputs in list as well as easy output proved by fast interpolation"""
    zero(list)
    abc('scl')
    fast_int(1)

def zero(list):
    """Zeros out POs in list"""
    for j in list:
        run_command('zeropo -N %d'%j)

def sp():
    """Alias for super_prove"""
    print 'Executing super_prove'
    result = super_prove()
    return result

def super_prove():
    """Main proof technique now. Does original prove and if after speculation there are multiple output left
    if will try to prove each output separately, in reverse order. It will quit at the first output that fails
    to be proved, or any output that is proved SAT"""
    global max_bmc, init_initial_f_name, initial_f_name
    init_initial_f_name = initial_f_name
    if x_factor > 1:
        print 'x_factor = %d'%x_factor
        input_x_factor()
    max_bmc = -1
    x = time.clock()
    result = prove(0)
    k = 1
    print result
    if not result[:3] == 'UND':
        print 'Total time taken by super_prove = %f sec.'%(time.clock() - x)
        return result
    if n_pos() > 1:
        result = prove_g_pos(0)
        print result
        if result == 'UNSAT':
            print 'Total time taken by super_prove = %f sec.'%(time.clock() - x)
            return result
        if result == 'SAT':
            k = 0 #Don't try to prove UNSAT on an abstraction that had SAT
                    # should go back to backup 1 since probably spec was bad.
    y = time.clock()
    result = BMC_VER_result(k)
    print 'Total time taken by last gasp verification = %f sec.'%(time.clock() - y)
    print 'Total time for %s = %f sec.'%(init_initial_f_name,(time.clock() - x))
    return result

def reachm(t):
    run_command('&get;&reach -vcs -T %d;&put'%t)


def BMC_VER_result(n):
    global init_initial_f_name
    #print init_initial_f_name
    if n == 0:
        print '\nTrying proof on initial simplified and abstracted circuit\n'
        abc('r %s_smp.abs.aig'%init_initial_f_name)
        ps()
    x = time.clock()
    result = 5
    N = 0
    T = 150
    if (n_pis()+n_latches() < 250):
        print ' Trying deep Reachability'
        run_command('reachx -t 150')
        #run_command('&get;&reach -vcs -T %d'%T)
        result = get_status()
        if result == Unsat:
            return 'UNSAT'
        if ((result < Unsat) and (n == 0)):
            N = 1
    if ((result >= Unsat) and (N == 0)):
        print 'Trying deep interpolation'
        run_command('int -v -F 30000 -C 1000000 -T %d'%T)
        result = get_status()
        if result == Unsat:
            return 'UNSAT'
##    try_split()
##    if n_pos() > 1:  
##        result = prove_g_pos_split()
##        if result[:5] == 'UNSAT':
##            return result
    #ps()
    abc('r %s_smp.aig'%init_initial_f_name)
    ps()
    if N == 1:
        print '\nTrying deep interpolation on initial simplified circuit\n'
        run_command('int -v -F 30000 -C 1000000 -T %d'%T)
        result = get_status()
        if result == Unsat:
            return 'UNSAT'
        if result < Unsat:
            return 'SAT'
    print '\nTrying deep BMC on initial simplified circuit\n'
    run_command('bmc3 -v -T %d -F 200000 -C 1000000'%T)
    result = get_status()
    if result < Unsat:
        result = 'SAT'
        print ' CEX found in frame %d'%cex_frame()
    else:
        result = 'UNDECIDED'
    print 'Additional time taken by BMC/ability = %f sec.'%(time.clock() - x)
    return result

def try_split():
    abc('w %s_savetemp.aig'%f_name)
    na = n_ands()
    split(3)
    if n_ands()> 2*na:
        abc('r %s_savetemp.aig'%f_name)
    

def time_diff():
    global last_time
    new_time = time.clock()
    diff = new_time - last_time
    last_time = new_time
    result = 'Lapsed time = %.2f sec.'%diff
    return result
                         
def prove_all_ind():
    """Tries to prove output k by induction, using outputs > k as constraints. Removes proved outputs from POs."""
    abc('w %s_osavetemp.aig'%f_name)
    plist = []
    for j in range(n_pos()):
        abc('r %s_osavetemp.aig'%f_name)
        extract(j,n_pos())
        abc('constr -N %d'%(n_pos()-1))
        abc('fold')
        n = max(1,n_ands())
        f = max(1,min(40000/n,16))
        f = int(f)
        abc('ind -u -C 10000 -F %d'%f)
        status = get_status()
        if status == Unsat:
            plist = plist + [j]
        print '%d'%j,
    print '\nOutputs proved inductively = ',
    print plist
    abc('r %s_osavetemp.aig'%f_name)
    remove(plist) #remove the outputs proved
    return status

def split(n):
    abc('orpos;&get')
    abc('&posplit -v -N %d;&put;dc2;trm'%n)

def keep_splitting():
    for j in range(5):
        split(5+j)
        no = n_pos()
        status = prove_g_pos_split(0)
        if status <= Unsat:
            return status
        if no == n_pos():
            return Undecided

def drill(n):
    run_command('&get; &reach -vcs -H 5 -S %d -T 50 -C 40'%n)

def prove_1():
    """Proves all the outputs together. If ever an abstraction was done then if SAT is returned,
        we make RESULT return "undecided".
        """
    a = 1
    global x_factor,xfi,f_name
    x = time.clock()
    max_bmc = -1
    K = 0
    print 'Initial: ',
    print_circuit_stats()
    x_factor = xfi
    print 'x_factor = %f'%x_factor
    print '\nRunning pre_simp'
    set_globals()
    status = pre_simp()
    if status <= Unsat:
        print 'Time for proof = %f sec.'%(time.clock() - x)
        return RESULT[status]
    abc('trm')
    write_file('smp')
    abc('w %s_backup_%d.aig'%(initial_f_name,K))
    K = K +1
    set_globals()
    if ((n_ands() < 30000) and (a == 1) and (n_latches() < 300)):
        print '\nRunning quick_verify'
        status = quick_verify(0)
        if status <= Unsat:
            if not status == Unsat:
                print 'CEX in frame %d'%cex_frame()
            print 'Time for proof = %f sec.'%(time.clock() - x)
            return RESULT[status]
    print'\nRunning abstract'
    nl_b = n_latches()
    status = abstract()
    abc('trm')
    write_file('abs')
    status = process_status(status)
    if ((status <= Unsat)  or  status == Error):
        if  status < Unsat:
            print 'CEX in frame %d'%cex_frame()
            print 'Time for proof = %f sec.'%(time.clock() - x)
            return RESULT[status]
        print 'Time for proof = %f sec.'%(time.clock() - x)
        return RESULT[status]
    abc('w %s_backup_%d.aig'%(initial_f_name,K))
    status = final_verify_recur(2)
    abc('trm')
    write_file('final')
    print 'Time for proof = %f sec.'%(time.clock() - x)
    return RESULT[status]

def qprove():
    global x_factor
    x = time.clock()
    x_factor = 3
    print '\n*********pre_simp**********\n'
    pre_simp()
    print '\n*********absv**********\n'
    result = absv(3,1)
    x_factor = 2
    print '\n*********absv**********\n'
    result = absv(3,1)
    print '\n*********speculate**********\n'
    result = speculate()
    if result <= Unsat:
        return RESULT[result]
    print '\n*********absv**********\n'
    result = absv(3,1)
    print '\n*********prove_pos**********\n'
    result = prove_pos()
    if result == 'UNDECIDED':
        print '\n*********BMC_VER_result**********\n'
        result = BMC_VER_result(1)
    print 'Time for proof = %f sec.'%(time.clock() - x)
    return result