1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
|
from pyabc import *
import pyabc_split
import redirect
import sys
import os
import time
import math
import main
import filecmp
global G_C,G_T,latches_before_abs,latches_before_pba,n_pos_before,x_factor,methods,last_winner
global last_cex,JV,JP, cex_list,max_bmc, last_cx, pord_on, trim_allowed, temp_dec, abs_ratio, ifbip
global if_no_bip, gabs, gla, sec_options,last_gasp_time, abs_ref_time, bmcs1, total_spec_refine_time
global last_gap
"""
The functions that are currently available from module _abc are:
int n_ands();
int n_pis();
int n_pos();
int n_latches();
int n_bmc_frames();
int prob_status(); 1 = unsat, 0 = sat, -1 = unsolved
int cex_get()
int cex_put()
int run_command(char* cmd);
int n_nodes();
int n_levels();
bool has_comb_model();
bool has_seq_model();
bool is_true_cex();
bool is_valid_cex();
return 1 if the number of PIs in the current network and in the current counter-example are equal
int n_cex_pis();
return the number of PIs in the current counter-example
int n_cex_regs();
return the number of flops in the current counter-example
int cex_po();
returns the zero-based output PO number that is SAT by cex
int cex_frame();
return the zero-based frame number where the outputs is SAT
The last four APIs return -1, if the counter-example is not defined.
"""
#global variables
#________________________________________________
stackno_gabs = stackno_gore = stackno_greg= 0
STATUS_UNKNOWN = -1
STATUS_SAT = 0
STATUS_UNSAT = 1
RESULT = ('SAT', 'SAT', 'UNSAT', 'UNDECIDED', 'UNDECIDED', 'ERROR')
Sat = Sat_reg = 0
Sat_true = 1
Unsat = 2
Undecided = Undecided_reduction = 3
Undecided_no_reduction = 4
Error = 5
Restart = 6
xfi = x_factor = 1 #set this to higher for larger problems or if you want to try harder during abstraction
max_bmc = -1
last_time = 0
j_last = 0
seed = 113
init_simp = 1
temp_dec = True
ifpord1 = 1
K_backup = init_time = 0
last_verify_time = 20
last_cex = last_winner = 'None'
last_cx = 0
trim_allowed = True
pord_on = False
sec_sw = False
sec_options = ''
cex_list = []
TERM = 'USL'
last_gasp_time = 10000
last_gasp_time = 500
last_gasp_time = 900 #set to conform to hwmcc12
use_pms = True
#gabs = False #use the gate refinement method after vta
#abs_time = 100
####################################
#default abstraction methods
gabs = False #False = use gla refinement, True = use reg refinement.
gla = True #use gla_abs instead of vta_abs
##abs_time = 10000 #number of sec before initial abstraction terminates.
abs_time = 150
abs_time = 5000
abs_time = 500
abs_time = 100
abs_ref_time = 50 #number of sec. allowed for abstraction refinement.
total_spec_refine_time = 150
ifbip = 0 # sets the abtraction method to vta or gla, If = 1 then uses ,abs
if_no_bip = False #True sets it up so it can't use bip and reachx commands.
abs_ratio = .5 #this controls when abstraction is too big and gives up
#####################################
def abstr_a(t1=200,t2=200,absr=0):
global abs_time, abs_ref_time, abs_ratio
if not absr == 0:
abs_ratio_old = abs_ratio
abs_ratio = absr
abs_time = t1
abs_ref_time = t2
abstracta(False)
if not absr == 0:
abs_ratio = abs_ratio_old
t_init = 2 #initial time for poor man's concurrency.
def set_global(s=''):
global G_C,G_T,latches_before_abs,latches_before_pba,n_pos_before,x_factor,methods,last_winner
global last_cex,JV,JP, cex_list,max_bmc, last_cx, pord_on, trim_allowed, temp_dec, abs_ratio, ifbip
global if_no_bip, gabs, gla, sec_options,last_gasp_time,abs_ref_time, abs_time,use_pms
exec(s)
methods = ['PDR', 'INTRP', 'BMC', 'SIM', 'REACHX',
'PRE_SIMP', 'simple', 'PDRM', 'REACHM', 'BMC3','Min_Retime',
'For_Retime','REACHP','REACHN','PDR_sd','prove_part_2',
'prove_part_3','verify','sleep','PDRM_sd','prove_part_1',
'run_parallel','INTRPb', 'INTRPm', 'REACHY', 'REACHYc','RareSim','simplify', 'speculate',
'quick_sec', 'BMC_J', 'BMC2', 'extract -a', 'extract', 'PDRa', 'par_scorr', 'dsat', 'iprove']
#'0.PDR', '1.INTERPOLATION', '2.BMC', '3.SIMULATION',
#'4.REACHX', '5.PRE_SIMP', '6.simple', '7.PDRM', '8.REACHM', 9.BMC3'
# 10. Min_ret, 11. For_ret, 12. REACHP, 13. REACHN 14. PDRseed 15.prove_part_2,
#16.prove_part_3, 17.verify, 18.sleep, 19.PDRMm, 20.prove_part_1,
#21.run_parallel, 22.INTRP_bwd, 23. Interp_m 24. REACHY 25. REACHYc 26. Rarity Sim 27. simplify
#28. speculate, 29. quick_sec, 30 bmc3 -S, 31. BMC2 32. extract -a 33. extract 34. pdr_abstract
#35 par_scorr, 36. dsat, 37. iprove
win_list = [(0,.1),(1,.1),(2,.1),(3,.1),(4,.1),(5,-1),(6,-1),(7,.1)]
FUNCS = ["(pyabc_split.defer(pdr)(t))",
## "(pyabc_split.defer(abc)('&get;,pdr -vt=%f'%t))",
"(pyabc_split.defer(intrp)(t))",
## "(pyabc_split.defer(abc)('&get;,imc -vt=%f'%(t)))",
## "(pyabc_split.defer(abc)('&get;,imc-sofa -vt=%f'%(t)))",
"(pyabc_split.defer(bmc)(t))",
## "(pyabc_split.defer(abc)('&get;,bmc -vt=%f'%t))",
"(pyabc_split.defer(simulate)(t))",
"(pyabc_split.defer(reachx)(t))",
## "(pyabc_split.defer(abc)('reachx -t %d'%t))",
"(pyabc_split.defer(pre_simp)())",
## "(pyabc_split.defer(super_prove)(2))",
"(pyabc_split.defer(simple)(t))",
"(pyabc_split.defer(pdrm)(t))",
"(pyabc_split.defer(abc)('&get;&reachm -vcs -T %d'%t))",
"(pyabc_split.defer(bmc3)(t))",
## "(pyabc_split.defer(abc)('bmc3 -C 1000000 -T %f'%t))",
"(pyabc_split.defer(abc)('dretime;&get;&lcorr;&dc2;&scorr;&put;dretime'))",
"(pyabc_split.defer(abc)('dretime -m;&get;&lcorr;&dc2;&scorr;&put;dretime'))",
"(pyabc_split.defer(abc)('&get;&reachp -vr -T %d'%t))",
"(pyabc_split.defer(abc)('&get;&reachn -vr -T %d'%t))",
## "(pyabc_split.defer(abc)('&get;,pdr -vt=%f -seed=521'%t))",
"(pyabc_split.defer(pdrseed)(t))",
"(pyabc_split.defer(prove_part_2)())",
"(pyabc_split.defer(prove_part_3)())",
"(pyabc_split.defer(verify)(JV,t))",
"(pyabc_split.defer(sleep)(t))",
"(pyabc_split.defer(pdrmm)(t))",
"(pyabc_split.defer(prove_part_1)())",
"(pyabc_split.defer(run_parallel)(JP,t,'TERM'))",
"(pyabc_split.defer(abc)('&get;,imc -bwd -vt=%f'%t))",
## "(pyabc_split.defer(abc)('int -C 1000000 -F 10000 -K 2 -T %f'%t))",
"(pyabc_split.defer(intrpm)(t))",
## "(pyabc_split.defer(abc)('int -C 1000000 -F 10000 -K 1 -T %f'%t))",
"(pyabc_split.defer(reachy)(t))",
## "(pyabc_split.defer(abc)('&get;&reachy -v -T %d'%t))",
"(pyabc_split.defer(abc)('&get;&reachy -cv -T %d'%t))",
"(pyabc_split.defer(simulate2)(t))",
"(pyabc_split.defer(simplify)())",
"(pyabc_split.defer(speculate)())",
"(pyabc_split.defer(quick_sec)(t))",
"(pyabc_split.defer(bmc_j)(t))",
## "(pyabc_split.defer(abc)('bmc2 -C 1000000 -T %f'%t))",
"(pyabc_split.defer(bmc2)(t))",
"(pyabc_split.defer(extractax)('a'))",
"(pyabc_split.defer(extractax)())",
"(pyabc_split.defer(pdra)(t))",
"(pyabc_split.defer(pscorr)(t))",
"(pyabc_split.defer(dsat)(t))",
"(pyabc_split.defer(iprove)(t))"
]
## "(pyabc_split.defer(abc)('bmc3 -C 1000000 -T %f -S %d'%(t,int(1.5*max_bmc))))"
#note: interp given 1/2 the time.
## Similar engines below listed in the order of priority, high to low.
allreachs = [4,8,12,13,24,25]
allreachs = [24,4]
reachs = [24]
##allpdrs = [14,7,34,19,0]
allpdrs = [34,7,14,19,0]
allpdrs2 = [34,7,14,19,0]
pdrs = [34,7,14,0]
allbmcs = [9,30,2,31]
exbmcs = [2,9,31]
bmcs = [9,30]
bmcs1 = [9]
allintrps = [23,1,22]
bestintrps = [23]
##intrps = [23,1]
intrps = [23,1] #putting ,imc-sofa first for now to test
allsims = [26,3]
sims = [26]
allslps = [18]
slps = [18]
imc1 = [1]
pre = [5]
combs = [36,37]
JVprove = [7,23,4,24]
JV = pdrs+intrps+bmcs+sims #sets what is run in parallel '17. verify' above
JP = JV + [27] # sets what is run in '21. run_parallel' above 27 simplify should be last because it can't time out.
#_____________________________________________________________
# Function definitions:
# simple functions: ________________________________________________________________________
# set_globals, abc, q, x, has_any_model, is_sat, is_unsat, push, pop
# ALIASES
def initialize():
global xfi, max_bmc, last_time,j_last, seed, init_simp, K_backup, last_verify_time
global init_time, last_cex, last_winner, trim_allowed, t_init, sec_options, sec_sw
global n_pos_before, n_pos_proved, last_cx, pord_on, temp_dec, abs_time, gabs, gla,m_trace
global smp_trace,hist,init_initial_f_name, skip_spec, t_iter_start,last_simp, final_all, scorr_T_done
global last_gap
xfi = x_factor = 1 #set this to higher for larger problems or if you want to try harder during abstraction
max_bmc = -1
last_time = 0
j_last = 0
seed = 113
init_simp = 1
temp_dec = True
K_backup = init_time = 0
last_verify_time = 20
last_cex = last_winner = 'None'
last_cx = 0
trim_allowed = True
pord_on = False
t_init = 2 #this will start sweep time in find_cex_par to 2*t_init here
sec_sw = False
sec_options = ''
smp_trace = m_trace = []
cex_list = []
n_pos_before = n_pos()
n_pos_proved = 0
abs_time = 150
abs_ref_time = 50 #number of sec. allowed for abstraction refinement.
total_spec_refine_time = 150
abs_ratio = .5
hist = []
skip_spec = False
t_iter_start = 0
inf = 10000000
last_simp = [inf,inf,inf,inf]
final_all = 1
scorr_T_done = 0
last_gap = 0
## abs_time = 100
## gabs = False
## abs_time = 500
## gabs = True
def set_abs_method():
""" controls the way we do abstraction, 0 = no bip, 1 = old way, 2 use new bip and -dwr
see absab()
"""
global ifbip, abs_time,gabs,gla,if_no_bip
print 'current values ifbip = %d, abs_time = %d'%(ifbip,abs_time)
print 'Set method of abstraction: \n0 = vta for 500 and gla refin., \n1 = old way, \n2 = ,abs and -dwr, \n3 = vta for 100 followed by gla refine.,\n4 = vta for 500 then gla refine. but no bip methods gla refine., \n5 = gla and gla refine.'
s = raw_input()
s = remove_spaces(s)
if s == '1': #use the old way with ,abs but no dwr
ifbip = 1 #old way
abs_time = 100
if_no_bip = False
gabs = True
gla = False
elif s == '0':#use vta and gla refinement
ifbip = 0
abs_time = 500
if_no_bip = False
gabs = False
gla = False
elif s == '2': #use ,abc -dwr
ifbip = 2
abs_time = 100
if_no_bip = False
gabs = True #use register refinement
gla = False
elif s == '3': #use vta and gla refinement
ifbip = 0
abs_time = 100
if_no_bip = False
gabs = False
gla = False
elif s == '4': #use vta, gla refine. and no bip
ifbip = 0
abs_time = 100
if_no_bip = True
gabs = True
gla = False
elif s == '5': #use gla and gla_refinement
ifbip = 0
abs_time = 100
if_no_bip = False
gabs = False
gla = True
#should make any of the methods able to us no bip
print 'ifbip = %d, abs_time = %d, gabs = %d, if_no_bip = %d, gla = %d'%(ifbip,abs_time,gabs,if_no_bip,gla)
def ps():
print_circuit_stats()
def iprove(t=100):
abc('iprove')
def dsat(t=100):
abc('dsat')
def n_real_inputs():
"""This gives the number of 'real' inputs. This is determined by trimming away inputs that
have no connection to the logic. This is done by the ABC alias 'trm', which changes the current
circuit. In some applications we do not want to change the circuit, but just to know how may inputs
would go away if we did this. So the current circuit is saved and then restored afterwards."""
## abc('w %s_savetempreal.aig; logic; trim; st ;addpi'%f_name)
abc('w %s_savetempreal.aig'%f_name)
with redirect.redirect( redirect.null_file, sys.stdout ):
## with redirect.redirect( redirect.null_file, sys.stderr ):
reparam()
n = n_pis()
abc('r %s_savetempreal.aig'%f_name)
return n
def timer(t):
btime = time.clock()
time.sleep(t)
print t
return time.clock() - btime
def sleep(t):
## print 'Sleep time = %d'%t
time.sleep(t)
return Undecided
def abc(cmd):
abc_redirect_all(cmd)
def abc_redirect( cmd, dst = redirect.null_file, src = sys.stdout ):
"""This is our main way of calling an ABC function. Redirect, means that we suppress any output from ABC"""
with redirect.redirect( dst, src ):
return run_command( cmd )
def abc_redirect_all( cmd ):
"""This is our main way of calling an ABC function. Redirect, means that we suppress any output from ABC, including error printouts"""
with redirect.redirect( redirect.null_file, sys.stdout ):
with redirect.redirect( redirect.null_file, sys.stderr ):
return run_command( cmd )
##def convert(t):
## t = int(t*100)
## return str(float(t)/100)
def set_engines(N=0):
"""
Called only when read_file is called.
Sets the MC engines that are used in verification according to
if there are 4 or 8 processors. if if_no_bip = 1, we will not use any bip and reachx engines
"""
global reachs,pdrs,sims,intrps,bmcs,n_proc,abs_ratio,ifbip,bmcs1, if_no_bip, allpdrs,allbmcs
bmcs1 = [9] #BMC3
#for HWMCC we want to set N = 8
N = 8
if N == 0:
N = n_proc = 1+os.sysconf(os.sysconf_names["SC_NPROCESSORS_ONLN"])
## N = n_proc = 8 ### simulate 4 processors for HWMCC - turn this off a hwmcc.
else:
n_proc = N
## print 'n_proc = %d'%n_proc
if N <= 1:
reachs = [24]
pdrs = [7]
## bmcs = [30]
bmcs = [9]
intrps = []
sims = []
slps = [18]
elif N <= 2:
reachs = [24]
pdrs = [7]
bmcs = [30]
intrps = []
sims = []
slps = [18]
elif N <= 4:
reachs = [24] #reachy
pdrs = [7,34] #prdm pdr_abstract
if if_no_bip:
allpdrs = pdrs = [7,19] #pdrm pdrmm
bmcs = [9,30] #bmc3 bmc3 -S
intrps = [23] #unterp_m
sims = [26] #Rarity_sim
slps = [18] #sleep
# 0.PDR, 1.INTERPOLATION, 2.BMC, 3.SIMULATION,
# 4.REACHX, 5.PRE_SIMP, 6.simple, 7.PDRM, 8.REACHM, 9.BMC3
# 10.Min_ret, 11.For_ret, 12.REACHP, 13.REACHN 14.PDRseed 15.prove_part_2,
# 16.prove_part_3, 17.verify, 18.sleep, 19.PDRMm, 20.prove_part_1,
# 21.run_parallel, 22.INTRP_bwd, 23.Interp_m 24.REACHY 25.REACHYc 26.Rarity Sim 27.simplify
# 28.speculate, 29.quick_sec, 30.bmc3 -S, 31.BMC2 32.extract -a 33.extract 34.pdr_abstract
# 35.par_scorr, 36.dsat, 37.iprove
# BIPS = 0.PDR, 1.INTERPOLATION, 2.BMC, 14.PDRseed, 22.INTRP_bwd, 34.pdr_abstract
# also reparam which uses ,reparam
elif N <= 8: #used for HWMCC
reachs = [24] #REACHY
allpdrs = pdrs = [7,34,14] #PDRM pdr_abstract PDR_seed
intrps = [23,1] #Interp_m
allbmcs = bmcs = [9,30,31] #BMC3 bmc3 -S
if if_no_bip:
allpdrs = pdrs = [7,19] #PDRM PDRMm
intrps = allintrps = [23] #Interp_m
bmcs = allbmcs = [2]
sims = [26] #Rarity_Sim
slps = [18] #sleep
else:
reachs = [24,4] #REACHY REACHX
pdrs = [7,34,14,19,0] #PDRM pdr_abstract PDR_seed PDRMm PDR
intrps = [23,1] #Interp_m INTERPOLATION
bmcs = allbmcs
if if_no_bip:
allpdrs = pdrs = [7,19] #PDRM PDRMm
intrps = allintrps = [23] #Interp_m
reachs = [24] #REACHY
bmcs = [9,30] #BMC3 bmc3 -S
sims = [26] #Rarity_Sim
slps = [18] #sleep
def set_globals():
"""This sets global parameters that are used to limit the resources used by all the operations
bmc, interpolation BDDs, abstract etc. There is a global factor 'x_factor' that can
control all of the various resource limiting parameters"""
global G_C,G_T,x_factor
nl=n_latches()
na=n_ands()
np = n_pis()
#G_C = min(500000,(3*na+500*(nl+np)))
G_C = x_factor * min(100000,(3*na+500*(nl+np)))
#G_T = min(250,G_C/2000)
G_T = x_factor * min(75,G_C/2000)
G_T = max(1,G_T)
#print('Global values: BMC conflicts = %d, Max time = %d sec.'%(G_C,G_T))
def a():
"""this puts the system into direct abc input mode"""
print "Entering ABC direct-input mode. Type q to quit ABC-mode"
n = 0
while True:
print ' abc %d> '%n,
n = n+1
s = raw_input()
if s == "q":
break
run_command(s)
def remove_spaces(s):
y = ''
for t in s:
if not t == ' ':
y = y + t
return y
def seq_name(f):
names = []
f = f + '_'
names = []
while len(f)>0:
j = f.find('_')
if j == -1:
break
names = names + [f[:j]]
## print names
f = f[j+1:]
## print f
return names
def revert(f,n):
l = seq_name(f)
for j in range(n):
if len(l)>0:
l.pop()
name = construct(l)
return name
def n_eff_pos():
N=n_pos()
l=len(list_0_pos())
return N-l
def construct(l):
ll = l
name = ''
while len(l)>0:
name = '_'+ll.pop()+name
return name[1:]
def process_sat():
l = seq_name(f_name)
def add_trace(s):
global m_trace
m_trace = m_trace + [s]
def read_file_quiet_i(fname=None):
""" this preserves t_inter_start and is called internally by some functons."""
global t_iter_start
ts = t_iter_start
read_file_quiet(fname)
t_iter_start = ts
def read_file_quiet(fname=None):
"""This is the main program used for reading in a new circuit. The global file name is stored (f_name)
Sometimes we want to know the initial starting name. The file name can have the .aig extension left off
and it will assume that the .aig extension is implied. This should not be used for .blif files.
Any time we want to process a new circuit, we should use this since otherwise we would not have the
correct f_name."""
global max_bmc, f_name, d_name, initial_f_name, x_factor, init_initial_f_name, win_list,seed, sec_options
global win_list, init_simp, po_map, aigs, hist, init_initial_f_name
abc('fraig_restore') #clear out any residual fraig_store
set_engines() #temporary
init_simp = 1
win_list = [(0,.1),(1,.1),(2,.1),(3,.1),(4,.1),(5,-1),(6,-1),(7,.1)] #initialize winning engine list
po_map = range(n_pos())
initialize()
## x_factor = 1
## seed = 223
## max_bmc = -1
if fname is None:
print 'Type in the name of the aig file to be read in'
s = raw_input()
s = remove_spaces(s)
## print s
else:
s = fname
if s[-4:] == '.aig':
f_name = s[:-4]
elif s[-5:] == '.blif':
f_name = s[:-5]
else:
f_name = s
s = s+'.aig'
## run_command(s)
## print s
if s[-4:] == '.aig':
## run_command('&r %s;&put'%s) #warning: changes names to generic ones.
run_command('r %s'%s)
run_command('zero')
else: #this is a blif file
run_command('r %s'%s)
abc('st;&get;&put') #changes names to generic ones for doing cec later.
run_command('zero;w %s.aig'%f_name)
set_globals()
hist = []
init_initial_f_name = initial_f_name = f_name
run_command('fold') #only does something if some of the outputs are constraints.
aigs_pp('push','initial')
#aigs = create push/pop history of aigs
#aigs.push() put the initial aig on the aig list.
print 'Initial f_name = %s'%f_name
abc('addpi') #only does something if there are no PIs
#check_pos() #this removes constant outputs with a warning -
#needed when using iso. Need another fix for using iso.
ps()
return
def aigs_pp(op='push', typ='reparam'):
global hist,init_initial_f_name
## print hist
if op == 'push':
hist.append(typ)
abc('w %s_aigs_%d.aig'%(init_initial_f_name,len(hist)))
if op == 'pop':
abc('cexsave') #protect current cex from a read
abc('r %s_aigs_%d.aig'%(init_initial_f_name,len(hist)))
abc('cexload')
typ = hist.pop()
## print hist
return typ
def scl():
abc('&get;&scl;&put')
ps()
def cex_trim_g(F_init=0,tail=0,m=''):
abc('w %s_cex.aig'%f_name)
N=cex_frame()
G = N - tail
F = F_init
abc('cexsave')
while True:
print 'F = %d, G = %d'%(F,G)
abc('r %s_cex.aig'%f_name)
abc('cexload')
if m == '':
abc('cexcut -F %d -G %d'%(F,G))
else:
abc('cexcut -m -F %d -G %d'%(F,G))
## abc('drw')
## ps()
res = run_parallel(slps+bmcs,20)
## run_command('bmc2 -v -T 20')
## if is_sat(): #got a shortening of cex
if not res == Undecided:
Nb = cex_frame() #size of shortcut
abc('cexmerge -F %d -G %d'%(F,G))
abc('r %s_cex.aig'%f_name)
abc('cexload')
abc('testcex -a')
if cex_po() <0:
return 'ERROR2'
Nt=cex_frame() #current cex length
print 'Cex length reduced from %d to %d'%(N,Nt)
return
F = F + (G-F)/2
## G = N - i*delta
if F >= G:
return
def cex_trim(factor=1):
t_begin = time.time()
abc('w %s_cex.aig'%f_name)
N=cex_frame()
inc = min(N/10,100)
F = 0
G = inc
abc('cexsave')
abc('cexcut -n -F %d -G %d'%(F,G))
run_command('bmc2 -v -F %d -T 5'%(.9*inc))
inc = max(int(factor*n_bmc_frames()),2)
F = N - inc
G = N
print 'inc = %d'%inc
while True:
abc('r %s_cex.aig'%f_name)
abc('cexload')
abc('cexcut -n -F %d -G %d'%(F,G))
## abc('drw')
## ps()
## run_command('bmc2 -v -F %d -T 20'%(.9*inc))
run_parallel(slps+bmcs,10)
if not is_sat():
abc('cex_load') #leave current cex in buffer
Nb = inc
else:
Nb = cex_frame() #size of shortcut
abc('cexmerge -F %d -G %d'%(F,G))
abc('r %s_cex.aig'%f_name)
abc('cexload')
abc('testcex -a')
if cex_po() <0:
return 'ERROR2'
## abc('cexload')
Nt=cex_frame() #current cex length
print 'Cex length = %d'%Nt
G=F
F = max(0,F - inc)
print 'F = %d, G = %d'%(F,G)
if G <= 2:
abc('cexload')
print 'Time: %0.2f'%(time.time() - t_begin)
return
def read_file():
global win_list, init_simp, po_map
read_file_quiet()
## ps()
## init_simp = 1
## win_list = [(0,.1),(1,.1),(2,.1),(3,.1),(4,.1),(5,-1),(6,-1),(7,.1)] #initialize winning engine list
## po_map = range(n_pos())
def rf():
## set_engines(4) #temporary
read_file()
abc('zero')
def write_file(s):
"""this is the main method for writing the current circuit to an AIG file on disk.
It manages the name of the file, by giving an extension (s). The file name 'f_name'
keeps increasing as more extensions are written. A typical sequence is
name, name_smp, name_smp_abs, name_smp_abs_spec, name_smp_abs_spec_final"""
global f_name
"""Writes out the current file as an aig file using f_name appended with argument"""
f_name = '%s_%s'%(f_name,s)
ss = '%s.aig'%(f_name)
print 'WRITING %s: '%ss,
ps()
abc('w '+ss)
def bmc_depth():
""" Finds the number of BMC frames that the latest operation has used. The operation could be BMC, reachability
interpolation, abstract, speculate. max_bmc is continually increased. It reflects the maximum depth of any version of the circuit
including g ones, for which it is known that there is not cex out to that depth."""
global max_bmc
c = cex_frame()
if c > 0:
b = c-1
else:
b = n_bmc_frames()
if b > max_bmc:
max_bmc = b
report_bmc_depth(max_bmc)
return max_bmc
def null_status():
""" resets the status to the default values but note that the &space is changed"""
abc('&get;&put')
def set_max_bmc(b):
""" Keeps increasing max_bmc which is the maximum number of time frames for
which the current circuit is known to be UNSAT for"""
global max_bmc
if b > max_bmc:
max_bmc = b
report_bmc_depth(max_bmc)
def report_bmc_depth(m):
print 'u%d'%m
def print_circuit_stats():
"""Stardard way of outputting statistice about the current circuit"""
global max_bmc
i = n_pis()
o = n_pos()
l = n_latches()
a = n_ands()
s='ANDs'
if a == -1:
a = n_nodes()
s = 'Nodes'
## b = max(max_bmc,bmc_depth()) # don't want to do this because bmc_depth can change max_bmc
b = max_bmc
c = cex_frame()
if b>= 0:
if c>=0:
print 'PIs=%d,POs=%d,FF=%d,%s=%d,max depth=%d,CEX depth=%d'%(i,o,l,s,a,b,c)
elif is_unsat():
print 'PIs=%d,POs=%d,FF=%d,%s=%d,max depth = infinity'%(i,o,l,s,a)
else:
print 'PIs=%d,POs=%d,FF=%d,%s=%d,max depth=%d'%(i,o,l,s,a,b)
else:
if c>=0:
print 'PIs=%d,POs=%d,FF=%d,%s=%d,CEX depth=%d'%(i,o,l,s,a,c)
else:
print 'PIs=%d,POs=%d,FF=%d,%s=%d'%(i,o,l,s,a)
def is_unsat():
if prob_status() == 1:
return True
else:
return False
def is_sat():
if prob_status() == 0:
return True
else:
return False
def wc(file):
"""writes <file> so that costraints are preserved explicitly"""
abc('&get;&w %s'%file)
def rc(file):
"""reads <file> so that if constraints are explicit, it will preserve them"""
abc('&r -s %s;&put'%file)
#more complex functions: ________________________________________________________
#, abstract, pba, speculate, final_verify, dprove3
def timer(s):
btime = time.clock()
abc(s)
print 'time = %0.2f'%(time.clock() - btime)
def med_simp():
x = time.time()
abc("&get;&scl;&dc2;&lcorr;&dc2;&scorr;&fraig;&dc2;&put;dretime")
#abc("dc2rs")
ps()
print 'time = %0.2f'%(time.time() - x)
def simplify_old(M=0):
"""Our standard simplification of logic routine. What it does depende on the problem size.
For large problems, we use the &methods which use a simple circuit based SAT solver. Also problem
size dictates the level of k-step induction done in 'scorr' The stongest simplification is done if
n_ands < 20000. Then it used the clause based solver and k-step induction where |k| depends
on the problem size """
set_globals()
abc('&get;&scl;&lcorr;&put')
p_40 = False
n =n_ands()
if n >= 70000 and not '_smp' in f_name:
## abc('&get;&scorr -C 0;&put')
scorr_T(30)
ps()
n =n_ands()
if n >= 100000:
abc('&get;&scorr -k;&put')
ps()
if (70000 < n and n < 150000):
## print '1'
p_40 = True
abc("&get;&dc2;&put;dretime;&get;&lcorr;&dc2;&put;dretime;&get;&scorr;&fraig;&dc2;&put;dretime")
## print 2'
ps()
n = n_ands()
## if n<60000:
if n < 80000:
abc("&get;&scorr -F 2;&put;dc2rs")
ps()
else: # n between 60K and 100K
abc("dc2rs")
ps()
n = n_ands()
## if (30000 < n and n <= 40000):
if (60000 < n and n <= 70000):
if not p_40:
abc("&get;&dc2;&put;dretime;&get;&lcorr;&dc2;&put;dretime;&get;&scorr;&fraig;&dc2;&put;dretime")
abc("&get;&scorr -F 2;&put;dc2rs")
ps()
else:
abc("dc2rs")
ps()
n = n_ands()
## if n <= 60000:
if n <= 70000:
abc('scl -m;drw;dretime;lcorr;drw;dretime')
ps()
nn = max(1,n)
m = int(min( 70000/nn, 16))
if M > 0:
m = M
if m >= 1:
j = 1
while j <= m:
set_size()
if j<8:
abc('dc2')
else:
abc('dc2rs')
abc('scorr -C 1000 -F %d'%j) #was 5000 temporarily 1000
if check_size():
break
j = 2*j
print 'ANDs=%d,'%n_ands(),
if n_ands() >= .98 * nands:
break
continue
if not check_size():
print '\n'
return get_status()
def simplify(M=0,N=0):
"""Our standard simplification of logic routine. What it does depende on the problem size.
For large problems, we use the &methods which use a simple circuit based SAT solver. Also problem
size dictates the level of k-step induction done in 'scorr' The stongest simplification is done if
n_ands < 20000. Then it used the clause based solver and k-step induction where |k| depends
on the problem size
Does not change #PIs.
"""
global smp_trace
set_globals()
smp_trace = smp_trace + ['&scl;&lcorr']
abc('&get;&scl;&lcorr;&put')
p_40 = False
n =n_ands()
if N == 0 and n >= 70000 and not '_smp' in f_name:
## abc('&get;&scorr -C 0;&put')
## print 'Trying scorr_T'
scorr_T(30)
ps()
n =n_ands()
if n >= 100000:
smp_trace = smp_trace + ['&scorr']
abc('&get;&scorr -k;&put')
ps()
if (70000 < n and n < 150000):
p_40 = True
smp_trace = smp_trace + ['&dc2;dretime;&lcorr;&dc2;dretime;&scorr;&fraig;&dc2;dretime']
abc("&get;&dc2;&put;dretime;&get;&lcorr;&dc2;&put;dretime;&get;&scorr;&fraig;&dc2;&put;dretime")
ps()
n = n_ands()
## if (30000 < n and n <= 40000):
if (60000 < n and n <= 70000):
if not p_40:
smp_trace = smp_trace + ['&dc2;dretime;&lcorr;&dc2;dretime;&scorr;&fraig;&dc2;dretime']
abc("&get;&dc2;&put;dretime;&get;&lcorr;&dc2;&put;dretime;&get;&scorr;&fraig;&dc2;&put;dretime")
smp_trace = smp_trace + ['&scorr -F 2;dc2rs']
abc("&get;&scorr -F 2;&put;dc2rs")
ps()
else:
abc("dc2rs")
smp_trace = smp_trace + ['dc2rs']
ps()
n = n_ands()
## if n <= 60000:
if n <= 70000:
smp_trace = smp_trace + ['scl -m;drw;dretime;lcorr;drw;dretime']
abc('scl -m;drw;dretime;lcorr;drw;dretime')
ps()
nn = max(1,n)
m = int(min( 70000/nn, 16))
if M > 0:
m = M
if N == 0 and m >= 1:
j = 1
while j <= m:
set_size()
if j<8:
abc('dc2')
else:
abc('dc2rs')
smp_trace = smp_trace + ['scorr -F %d'%j]
abc('scorr -C 1000 -F %d'%j) #was 5000 temporarily 1000
if check_size():
break
j = 2*j
print 'ANDs=%d,'%n_ands(),
if n_ands() >= .98 * nands:
break
continue
if not check_size():
print '\n'
return get_status()
def simulate2(t=900):
"""Does rarity simulation. Simulation is restricted by the amount
of memory it might use. At first wide but shallow simulation is done, followed by
successively more narrow but deeper simulation.
seed is globally initiallized to 113 when a new design is read in"""
global x_factor, f_name, tme, seed
btime = time.clock()
tt = time.time()
diff = 0
while True:
f = 20
w = 64
b = 16
r = 700
for k in range(9): #this controls how deep we go
f = min(f*2, 3500)
w = max(((w+1)/2)-1,1)
abc('sim3 -F %d -W %d -N %d -R %d -B %d'%(f,w,seed,r,b))
seed = seed+23
if is_sat():
## print 'RareSim time = %0.2f at frame %d'%((time.time() - tt),cex_frame())
return 'SAT'
if ((time.clock()-btime) > t):
return 'UNDECIDED'
def simulate(t=900):
abc('&get')
result = eq_simulate(t)
return result
def eq_simulate(t):
"""Simulation is restricted by the amount
of memory it might use. At first wide but shallow simulation is done, followed by
successively more narrow but deeper simulation. The aig to be simulated must be in the & space
If there are equivalences, it will refine them. Otherwise it is a normal similation
seed is globally initiallized to 113 when a new design is read in"""
global x_factor, f_name, tme, seed
btime = time.clock()
diff = 0
while True:
f = 5
w = 255
for k in range(9):
f = min(f *2, 3500)
r = f/20
w = max(((w+1)/2)-1,1)
## abc('&sim3 -R %d -W %d -N %d'%(r,w,seed))
abc('&sim -F %d -W %d -N %d'%(f,w,seed))
seed = seed+23
if is_sat():
return 'SAT'
if ((time.clock()-btime) > t):
return 'UNDECIDED'
def generate_abs(n):
"""generates an abstracted model (gabs) from the greg file or gla. The gabs file is automatically
generated in the & space by &abs_derive or gla_derive. We store it away using the f_name of the problem
being solved at the moment. The f_name keeps changing with an extension given by the latest
operation done - e.g. smp, abs, spec, final, group. """
global f_name
#we have a cex and we use this generate a new gabs (gla) file
if gabs: #use the register refinement method
abc('&r -s %s_greg.aig; &abs_derive; &put; w %s_gabs.aig'%(f_name,f_name)) # do we still need the gabs file
else: #use the gate refinement method
run_command('&r -s %s_gla.aig; &gla_derive; &put'%f_name)
if n_ands() < 2000:
run_command('scl;scorr;dretime')
run_command('w %s_gabs.aig'%f_name)
if n == 1:
#print 'New abstraction: ',
ps()
return
def refine_with_cex():
"""Refines the greg or gla file (which contains the original problem with the set of FF's or gates
that have been abstracted).
This uses the current cex to modify the greg or gla file to reflect which regs(gates) are in the
new current abstraction"""
global f_name
if gabs:
abc('&r -s %s_greg.aig;&w %s_greg_before.aig'%(f_name,f_name))
run_command('&abs_refine -s; &w %s_greg.aig'%f_name)
else:
run_command('&r -s %s_gla.aig;&w %s_gla_before.aig'%(f_name,f_name))
run_command('&gla_refine; &w %s_gla.aig'%f_name)
return
def refine_with_cex_suffix():
"""Refines the greg or gla file (which contains the original problem with the set of FF's or gates
that have been abstracted).
This uses the current cex to modify the greg or gla file to reflect which regs(gates) are in the
new current abstraction"""
global f_name
return Undecided_no_reduction
t = 5
cexf = cex_frame()
suf = .9*cexf
run_command('write_status %s_temp.status'%f_name)
ub = int(cexf -min(10, .02*cexf))
lb = int(min(10,.02*cexf))
suf = int(.5*(ub-lb))
if_last = 0
N = 0
while True:
N = N+1
tt = time.time()
run_command('read_status %s_temp.status'%f_name)
print 'Refining using suffix %d with time = %d'%(suf,t)
run_command('&r -s %s_gla.aig;&w %s_gla_before.aig'%(f_name,f_name))
F = create_funcs([18],t) #create a timer function with timeout = t
F = F + [eval('(pyabc_split.defer(abc)("&gla_refine -F %d; &w %s_gla.aig"))'%(suf,f_name))]
for i,res in pyabc_split.abc_split_all(F): #need to do a binary search
if i == 0: #timeout
lb = int(suf)
dec = 'increasing'
break
elif same_abs(): #suffix did not refine - need to decrease suf
ub = int(suf)
dec = 'decreasing'
break
else: #refinement happened
print 'refinement happened.'
return
print 'ub = %.2f, lb = %.2f, suf = %.2f'%(ub,lb,suf)
suf = int(lb+.5*(ub-lb))
if (ub-lb)< (max(1.1,min(10,.02*cexf))) or if_last or N >=4: # not refining in time allowed, give up
print '(ub-lb) = %0.2f'%(ub-lb)
print 'could not refine in resources allowed'
return Undecided_no_reduction
def same_abs():
run_command('r %s_gabs.aig'%f_name)
set_size()
## ps()
run_command('&r -s %s_gla.aig; &gla_derive; &put'%f_name)
if n_ands() < 2000:
run_command('scl;scorr;dretime')
## ps()
return check_size()
def abstraction_refinement(latches_before,NBF,ratio=.75):
"""Subroutine of 'abstract' which does the refinement of the abstracted model,
using counterexamples found by BMC, BDD reachability, etc"""
global x_factor, f_name, last_verify_time, x, win_list, last_winner, last_cex, t_init, j_last, sweep_time
global cex_list, last_cx, abs_ref_time
sweep_time = 2
T1 = time.time()
if NBF == -1:
F = 2000
else:
F = 2*NBF
print '\nIterating abstraction refinement'
add_trace('abstraction refinement')
J = slps+intrps+pdrs+bmcs+sims
J=modify_methods(J)
print sublist(methods,J)
last_verify_time = t = x_factor*max(50,max(1,2.5*G_T))
## t = 1000 #temporary
t = abs_time
initial_verify_time = last_verify_time = t
reg_verify = True
print 'Verify time set to %d'%last_verify_time
while True: #cex based refinement
generate_abs(1) #generate new gabs file from refined greg or gla file
set_globals()
latches_after = n_latches()
if small_abs(ratio):
print 'abstraction too large'
return Undecided_no_reduction
if (time.time() - T1)> abs_ref_time:
print 'abstraction time ran out'
break
t = last_verify_time
yy = time.time()
abc('w %s_beforerpm.aig'%f_name)
rep_change = reparam() #new - must do reconcile after to make cex compatible
## if rep_change:
## add_trace('reparam')
abc('w %s_afterrpm.aig'%f_name)
## if reg_verify:
status = verify(J,t)
print 'status = ',
print status
## else:
## status = pord_1_2(t)
###############
if status[0] == Sat_true:
print 'Found true cex'
reconcile_a(rep_change)
## add_trace('SAT by %s'%status[1])
return Sat_true
if status[0] == Unsat:
## add_trace('UNSAT by %s'%status[1])
return Unsat
if status[0] == Sat:
## add_trace('SAT by %s'%status[1])
abc('write_status %s_after.status'%f_name)
reconcile_a(rep_change) # makes the cex compatible with original before reparam and puts original in work space
abc('write_status %s_before.status'%f_name)
if gabs: #global variable
refine_with_cex()
else:
result = refine_with_cex_suffix()
if result == Sat:
return Sat
## result = refine_with_cex()
if result == Undecided_no_reduction:
return result
if is_sat(): # if cex can't refine, status is set to Sat_true
print 'Found true cex in output %d'%cex_po()
return Sat_true
else:
continue
else:
break
print '**** Latches reduced from %d to %d'%(latches_before, n_latches())
return Undecided_reduction
def small_abs(ratio=.75):
""" tests is the abstraction is too large"""
## return ((rel_cost_t([pis_before_abs,latches_before_abs, ands_before_abs])> -.1)
## or (n_latches() >= ratio*latches_before_abs))
return (n_latches() >= ratio*latches_before_abs)
##def abstract(if_bip=True):
## global ratio
## if if_bip:
## return abstractb(True) #old method using abstraction refinement
## else:
## return abstractb(False) #not using bip and reachx
def abstractb():
""" abstracts using N Een's method 3 - cex/proof based abstraction. The result is further refined using
simulation, BMC or BDD reachability. abs_ratio is the the limit for accepting an abstraction"""
global G_C, G_T, latches_before_abs, x_factor, last_verify_time, x, win_list, j_last, sims
global latches_before_abs, ands_before_abs, pis_before_abs, abs_ratio
if ifbip < 1:
print 'using ,abs in old way'
tt = time.time()
j_last = 0
set_globals()
#win_list = []
latches_before_abs = n_latches()
ands_before_abs = n_ands()
pis_before_abs = n_real_inputs()
abc('w %s_before_abs.aig'%f_name)
print 'Start: ',
ps()
funcs = [eval('(pyabc_split.defer(initial_abstract)())')]
# fork off BMC3 and PDRm along with initial abstraction
t = 10000 #want to run as long as initial abstract takes.
## J = sims+pdrs+bmcs+intrps
J = slps+pdrs+bmcs+intrps
J = modify_methods(J,1)
## if n_latches() < 80:
## J = J + [4]
funcs = create_funcs(J,t) + funcs
mtds = sublist(methods,J) + ['initial_abstract'] #important that initial_abstract goes last
m,result = fork_last(funcs,mtds)
if is_sat():
print 'Found true counterexample in frame %d'%cex_frame()
return Sat_true
if is_unsat():
return Unsat
## set_max_bmc(NBF)
NBF = bmc_depth()
print 'Abstraction good to %d frames'%max_bmc
#note when things are done in parallel, the &aig is not restored!!!
abc('&r -s %s_greg.aig; &w initial_greg.aig; &abs_derive; &put; w initial_gabs.aig; w %s_gabs.aig'%(f_name,f_name))
set_max_bmc(NBF)
print 'Initial abstraction: ',
ps()
abc('w %s_init_abs.aig'%f_name)
latches_after = n_latches()
## if latches_after >= .90*latches_before_abs: #the following should match similar statement
## if ((rel_cost_t([pis_before_abs, latches_before_abs, ands_before_abs])> -.1) or
## (latches_after >= .75*latches_before_abs)):
if small_abs(abs_ratio):
abc('r %s_before_abs.aig'%f_name)
print "Too little reduction!"
print 'Abstract time wasted = %0.2f'%(time.time()-tt)
return Undecided_no_reduction
sims_old = sims
sims=sims[:1] #make it so that rarity sim is not used since it can't find a cex
result = abstraction_refinement(latches_before_abs, NBF,abs_ratio)
sims = sims_old
if result <= Unsat:
return result
## if n_latches() >= .90*latches_before_abs:
## if ((rel_cost_t([pis_before_abs, latches_before_abs, ands_before_abs])> -.1) or (latches_after >= .90*latches_before_abs)):
## if rel_cost_t([pis_before_abs,latches_before_abs, ands_before_abs])> -.1:
if small_abs(abs_ratio) or result == Undecided_no_reduction: #r is ratio of final to initial latches in abstraction. If greater then True
abc('r %s_before_abs.aig'%f_name) #restore original file before abstract.
print "Too little reduction! ",
print 'Abstract time wasted = %0.2f'%(time.time()-tt)
result = Undecided_no_reduction
return result
#new
else:
write_file('abs') #this is only written if it was not solved and some change happened.
print 'Abstract time = %0.2f'%(time.time()-tt)
return result
def initial_abstract_old():
global G_C, G_T, latches_before_abs, x_factor, last_verify_time, x, win_list
set_globals()
time = max(1,.1*G_T)
abc('&get;,bmc -vt=%f'%time)
set_max_bmc(bmc_depth())
c = 2*G_C
f = max(2*max_bmc,20)
b = min(max(10,max_bmc),200)
t = x_factor*max(1,2*G_T)
s = min(max(3,c/30000),10) # stability between 3 and 10
cmd = '&get;,abs -bob=%d -stable=%d -timeout=%d -vt=%d -depth=%d'%(b,s,t,t,f)
## print cmd
print 'Running initial_abstract with bob=%d,stable=%d,time=%d,depth=%d'%(b,s,t,f)
abc(cmd)
abc('&w %s_greg.aig'%f_name)
## ps()
def initial_abstract(t=100):
global G_C, G_T, latches_before_abs, x_factor, last_verify_time, x, win_list, max_bmc, ifbip
set_globals()
time = max(1,.1*G_T)
time = min(time,t)
abc('&get;,bmc -vt=%f'%time)
set_max_bmc(bmc_depth())
c = 2*G_C
f = max(2*max_bmc,20)
b = min(max(10,max_bmc),200)
t1 = x_factor*max(1,2*G_T)
t = max(t1,t)
s = min(max(3,c/30000),10) # stability between 3 and 10
cmd = '&get;,abs -bob=%d -stable=%d -timeout=%d -vt=%d -depth=%d'%(b,s,t,t,f)
if ifbip == 2:
cmd = '&get;,abs -bob=%d -stable=%d -timeout=%d -vt=%d -depth=%d -dwr=%s_vabs'%(b,s,t,t,f,f_name)
print 'Using -dwr=%s_vabs'%f_name
## print cmd
print 'Running initial_abstract with bob=%d,stable=%d,time=%d,depth=%d'%(b,s,t,f)
abc(cmd)
bmc_depth()
## pba_loop(max_bmc+1)
abc('&w %s_greg.aig'%f_name)
return max_bmc
def abs_m():
set_globals()
y = time.time()
nl = n_abs_latches() #initial set of latches
c = 2*G_C
t = x_factor*max(1,2*G_T) #total time
bmd = bmc_depth()
if bmd < 0:
abc('bmc3 -T 2') #get initial depth estimate
bmd = bmc_depth()
f = bmd
abc('&get')
y = time.time()
cmd = '&abs_cba -v -C %d -T %0.2f -F %d'%(c,.8*t,bmd) #initial absraction
## print '\n%s'%cmd
abc(cmd)
b_old = b = n_bmc_frames()
f = min(2*bmd,max(bmd,1.6*b))
print 'cba: latches = %d, depth = %d'%(n_abs_latches(),b)
## print n_bmc_frames()
while True:
if (time.time() - y) > .9*t:
break
nal = n_abs_latches()
cmd = '&abs_cba -v -C %d -T %0.2f -F %d'%(c,.8*t,f) #f is 2*bmd and is the maximum number of frames allowed
## print '\n%s'%cmd
abc(cmd)
## print n_bmc_frames()
b_old = b
b = n_bmc_frames()
nal_old = nal
nal = n_abs_latches() #nal - nal_old is the number of latches added by cba
#b - b_old is the additional time frames added by cba
f = min(2*bmd,max(bmd,1.6*b)) #may be this should just be bmd
f = max(f,1.5*bmd)
print 'cba: latches = %d, depth = %d'%(nal,b)
if ((nal == nal_old) and (b >= 1.5*b_old) and b >= 1.5*bmd):
"""
Went at least bmd depth and saw too many frames without a cex
(ideally should know how many frames without a cex)
"""
print 'Too many frames without cex'
break
if b > b_old: #if increased depth
continue
if nal > .9*nl: # try to minimize latches
## cmd = '&abs_pba -v -S %d -F %d -T %0.2f'%(b,b+2,.2*t)
cmd = '&abs_pba -v -F %d -T %0.2f'%(b+2,.2*t)
## print '\n%s'%cmd
abc(cmd)
b = n_bmc_frames()
nal_old = nal
nal = n_abs_latches()
print 'pba: latches = %d, depth = %d'%(nal,b)
## print n_bmc_frames()
if nal_old < nal: #if latches increased there was a cex
continue
if nal > .9*nl: # if still too big
return
continue
## b = n_bmc_frames()
cmd = '&abs_pba -v -F %d -T %0.2f'%(b+2,.2*t)
## print '\n%s'%cmd
abc(cmd)
b = n_bmc_frames()
print 'pba: latches = %d, depth = %d'%(n_abs_latches(),b)
## print n_bmc_frames()
print 'Total time = %0.2f'%(time.time()-y)
def n_abs_latches():
abc('&w pba_temp.aig') #save the &space
abc('&abs_derive;&put')
abc('&r -s pba_temp.aig')
return n_latches()
def pba_loop(F):
n = n_abs_latches()
while True:
run_command('&abs_pba -v -C 0 -F %d'%F)
abc('&w pba_temp.aig')
abc('&abs_derive;&put')
abc('&r -s pba_temp.aig')
N = n_latches()
## if n == N or n == N+1:
## break
## elif N > n:
if N > n:
print 'cex found'
break
def ssm(options=''):
""" Now this should be the same as super_prove(1) """
y = time.time()
result = prove_part_1() # simplify first
if result == 'UNDECIDED':
result = ss(options)
print 'Total time taken on file %s by function ssm(%s) = %d sec.'%(initial_f_name,options,(time.time() - y))
return result
def ssmg():
return ssm('g')
def ssmf():
return ssm('f')
def ss(options=''):
"""
Alias for super_sec
This is the preferred command if the problem (miter) is suspected to be a SEC problem
"""
global max_bmc, init_initial_f_name, initial_f_name,win_list, last_verify_time, sec_options
sec_options = options
print '\n*************Executing speculate************'
y = time.time()
abc('scl')
result = speculate()
# if result is 1 then it is a real SAT since we did not do anything before
if result > 2: #save the result and read in with /rf so that files are initialized correctly
if not '_spec' in f_name:
write_file('spec') #make sure we do not overwrite original file
read_file_quiet_i('%s'%f_name) #this resets f_name and initial_f_name etc.
print '\n*************Executing super_prove ************'
print 'New f_name = %s'%f_name
result = sp()
if result[0] == 'SAT':
result = 'UNDECIDED' #because speculation was done initially.
elif result[0] == 1:
result = 'SAT'
else:
result = RESULT[result]
print 'Total time taken on file %s by function ss(%s) = %d sec.'%(initial_f_name,options,(time.time() - y))
return result
def quick_sec(t):
## fb_name = f_name[:-3]+'New'
## abc('&get;&miter -s %s.aig;&put'%fb_name)
## abc('w %s.%s_miter.aig'%(f_name,fb_name))
quick_simp()
verify(slps+ pdrs+bmcs+intrps,t)
if is_unsat():
return 'UNSAT'
if is_sat():
return 'SAT'
else:
return'UNDECIDED'
def pre_sec():
""" put files to be compared into Old and New aigs. Simplify, but
turn off reparameterization so that PIs in Old and New match after simplification.
"""
global trim_allowed
## trim_allowed = False
## print 'trim allowed = ',trim_allowed
print 'First file: ',
read_file_quiet_i() #note - reads into & space and then does &put
ps()
prs(False)
ps()
abc('&w Old.aig')
print 'Second file: ',
read_file_quiet_i()
ps()
prs(False)
ps()
abc('&w New.aig')
def cec():
print 'Type in the name of the aig file to be compared against'
s = raw_input()
s = remove_spaces(s)
if not 'aig' in s:
s = s+'.aig'
run_command("&get;&cec -v %s"%s)
def sec(B_part,options):
"""
Use this for AB filtering and not sup_sec
Use pp_sec to make easy names for A and B, namely Old and New.
This assumes that the original aig (renamed A_name below) is already read into the working space.
Then we form a miter using &miter between two circuits, A_name, and B_name.
We then do speculate immediately. Optionally we could simplify A and B
and then form the miter and start from there. The only difference in speculate
is that &srm2 is used, which only looks at equivalences where one comes from A and
one from B. Options are -a and -b which says use only flops in A or in B or both. The
switch sec_sw controls what speculate does when it generates the SRM.
"""
global f_name,sec_sw, A_name, B_name, sec_options
yy = time.time()
A_name = f_name # Just makes it so that we can refer to A_name later in &srm2
B_name = B_part
run_command('&get; &miter -s %s.aig; &put'%B_name)
## abc('orpos')
f_name = A_name+'_'+B_name+'_miter' # reflect that we are working on a miter.
abc('w %s.aig'%f_name)
print 'Miter = ',
ps()
sec_options = options
if sec_options == 'ab':
sec_options = 'l' #it will be changed to 'ab' after &equiv
sec_sw = True
result = speculate()
sec_options = ''
sec_sw = False
if result <= Unsat:
result = RESULT[result]
else:
result = sp()
if result[0] == 'SAT':
result = 'UNDECIDED'
print 'Total time = %d'%(time.time() - yy)
return result
def filter(opts):
global A_name,B_name
## print 'Filtering with options = %s'%opts
""" This is for filter which effectively only recognizes options -f -g"""
if (opts == '' or opts == 'l'): #if 'l' this is used only for initial &equiv2 to get initial equiv creation
return
print 'filter = %s '%opts,
if opts == 'ab':
print A_name ,
print B_name
## run_command('&ps')
run_command('&filter -f %s.aig %s.aig'%(A_name,B_name))
return
#### if not opts == 'f':
#### opts = 'g'
## print 'filter = %
run_command('&filter -%s'%opts)
def check_if_spec_first():
global sec_sw, A_name, B_name, sec_options, po_map
set_globals()
t = max(1,.5*G_T)
r = max(1,int(t))
abc('w check_save.aig')
abc('&w check_and.aig')
abc("&get; &equiv3 -v -F 20 -T %f -R %d"%(t,5*r))
filter('g')
abc("&srm -A %s_gsrm.aig; r %s_gsrm.aig"%(f_name,f_name))
print 'Estimated # POs = %d for initial speculation'%n_pos()
result = n_pos() > max(50,.25*n_latches())
abc('r check_save.aig')
abc('&r -s check_and.aig')
return result
def initial_speculate(sec_opt=''):
global sec_sw, A_name, B_name, sec_options, po_map
set_globals()
if sec_options == '':
sec_options = sec_opt
# 1000 - 15, 5000 - 25, 10000 - 30, 50000 - 50
na = n_ands()
## t = max(1,G_T)
if na < 1000:
t =20
elif na < 5000:
t = 20 + ((na-1000)/4000)*20
elif na < 10000:
t = 40 + ((na-5000)/5000)*20
elif na < 50000:
t = 60 + ((na-40000)/40000)*15
else:
t = 75
r = max(1,int(t))
rounds = 30*r
print 'Initial sec_options = %s'%sec_options
## if sec_options == 'l':
## cmd = "&get; &equiv3 -lv -F 20 -T %f -R %d -S %d"%(3*t,rounds,rounds/20)
## else:
## cmd = "&get; &equiv3 -v -F 20 -T %f -R %d -S %d"%(3*t,rounds,rounds/20)
cmd = "&get; &equiv3 -v -F 20 -T %d -R %d -S %d"%(int(t),0,0) #####XXX
print cmd
abc(cmd)
## print 'AND space after &equiv3: ',
## run_command('&ps')
if (sec_options == 'l'):
if sec_sw:
sec_options = 'ab'
else:
sec_options = 'f'
## print 'A_name: ',
## run_command('r %s.aig;ps'%A_name)
## print 'B_name: ',
## run_command('r %s.aig;ps'%B_name)
print 'filtering'
filter(sec_options)
abc('&w initial_gore.aig')
## print 'Running &srm'
if sec_sw:
print 'miter: ',
run_command('&ps')
print 'A_name: ',
run_command('r %s.aig;ps'%A_name)
print 'B_name: ',
run_command('r %s.aig;ps'%B_name)
cmd = "&srm2 -%s %s.aig %s.aig; r gsrm.aig; w %s_gsrm.aig; &w %s_gore.aig"%(sec_options,A_name,B_name,f_name,f_name)
abc(cmd)
po_map = range(n_pos())
return sec_options
else:
## abc('&r %s_gore.aig; &srm ; r gsrm.aig; w %s_gsrm.aig'%(f_name,f_name))
cmd = "&srm -A %s_gsrm.aig; r %s_gsrm.aig; &w %s_gore.aig"%(f_name,f_name,f_name)
print 'Running %s'%cmd
abc(cmd)
print 'done with &srm'
po_map = range(n_pos())
if sec_options == '' or sec_options == 'g':
## if n_pos() > 10000:###temp
if n_eff_pos() > 1000: ##### Temporary
sec_options = 'g'
print 'sec_options set to %s'%'g'
abc('&r -s %s_gore.aig'%f_name)
filter(sec_options)
## print 'Running &srm'
cmd = "&srm -A %s_gsrm.aig; r %s_gsrm.aig; &w %s_gore.aig"%(f_name,f_name,f_name)
## print 'Running %s'%cmd
abc(cmd)
po_map = range(n_pos())
if n_eff_pos() > 500:
## if n_pos() > 20000:####temp
sec_options = 'f'
print 'sec_options set to %s'%'f'
abc('&r -s %s_gore.aig'%f_name)
filter(sec_options)
print 'Running &srm'
cmd = "&srm -A %s_gsrm.aig; r %s_gsrm.aig; &w %s_gore.aig"%(f_name,f_name,f_name)
print 'Running %s'%cmd
abc(cmd)
po_map = range(n_pos())
return sec_options
## if n_pos() > 2000:
## return sec_options
def test_against_original():
'''tests whether we have a cex hitting an original PO'''
abc('&w %s_save.aig'%f_name) #we preserve whatever was in the & space
abc('&r -s %s_gore.aig'%f_name) #This is the original
abc('testcex') #test the cex against the &space
PO = cex_po()
## print 'test_against original gives PO = %d'%PO
abc('&r -s %s_save.aig'%f_name)
if PO > -1:
## print 'cex fails an original PO'
return True
else:
abc('write_status %s_status.status'%f_name)
return False
def set_cex_po(n=0):
"""
if cex falsifies a non-real PO return that PO first,
else see if cex_po is one of the original, then take it next
else return -1 which means that the cex is not valid and hence an error.
parameter n = 1 means test the &-space
"""
global n_pos_before, n_pos_proved #these refer to real POs
if n == 0:
abc('testcex -a -O %d'%(n_pos_before-n_pos_proved)) #test regular AIG space
else:
abc('testcex -O %d'%(n_pos_before-n_pos_proved)) #test the &-AIG
PO = cex_po()
## print 'cex_po = %d, n_pos_before = %d, n_pos_proved = %d'%(PO, n_pos_before, n_pos_proved)
if PO >= (n_pos_before - n_pos_proved): #cex_po is not an original
## print '1. cex PO = %d'%PO
return PO # after original so take it.
if n == 0:
abc('testcex -a') #test regular
else:
abc('testcex') #test &space
PO = cex_po()
print '2. cex PO = %d'%PO
cx = cex_get()
if PO > -1:
if test_against_original(): #this double checks that it is really an original PO
cex_put(cx)
print 'test_against_original was valid'
return PO
else:
print '1. PO is not valid'
return -1 #error
if PO < 0 or PO >= (n_pos_before - n_pos_proved): # not a valid cex because already tested outside original.
## print 'cex_po = %d, n_pos_before = %d, n_pos_proved = %d'%(PO, n_pos_before, n_pos_proved)
print '2. PO is not valid'
PO = -1 #error
## print '3. cex PO = %d'%PO
return PO
def cex_stats():
print 'cex_pis = %d, cex_regs = %d, cex_po = %d, cex_frame = %d'%(n_cex_pis(),n_cex_regs(),cex_po(),cex_frame())
def speculate(t=0):
"""Main speculative reduction routine. Finds candidate sequential equivalences and refines them by simulation, BMC, or reachability
using any cex found. """
global G_C,G_T,n_pos_before, x_factor, n_latches_before, last_verify_time, trim_allowed, n_pos_before
global t_init, j_last, sec_sw, A_name, B_name, sec_options, po_map, sweep_time, sims, cex_list, n_pos_proved,ifpord1
global last_cx, total_spec_refine_time, skip_spec
## print 'sec_options = %s'%sec_options
if skip_spec:
return Undecided_no_reduction
add_trace('speculate')
if t > 0:
total_spec_refine_time = t
abc('scl') #make sure no dangling flops
abc('orpos')
last_cx = 0
ifpord1 = 1
initial_po_size = last_srm_po_size = n_pos()
initial_sizes = [n_pis(),n_pos(),n_latches(),n_ands()]
if sec_sw:
print 'A_name = %s, B_name = %s, f_name = %s, sec_options = %s'%(A_name, B_name, f_name, sec_options)
elif n_ands()> 36000 and sec_options == '':
## add_trace('sec options g')
sec_options = 'g'
print 'sec_options set to "g"'
## add_trace('sec_options ="g"')
def refine_with_cex():
"""Refines the gore file to reflect equivalences that go away because of cex"""
global f_name
abc('write_status %s_before_refine.status'%f_name)
abc('&r -s %s_gore.aig; &resim -m'%f_name)
## run_command('&ps')
## cex_stats()
filter(sec_options)
run_command('&w %s_gore.aig'%f_name)
return
def refine_without_cex(L=[]):
"""removes the POs in the current SRM in the list L. Alters the equivalence classes in the
gore file accordingly.
"""
global f_name
if L == []:
return
print 'Entered refine_without_cex'
abc('write_status %s_before_refine.status'%f_name)
create_abc_array(L)
print 'wrote array'
abc('&r -s %s_gore.aig; &equiv_filter'%f_name)
print 'filtered gore using L'
filter(sec_options)
print 'filtered with %s'%sec_options
run_command('&w %s_gore.aig'%f_name)
return
def set_cex(lst):
""" assumes only one in lst """
for j in range(len(lst)):
cx = lst[j]
if cx == None:
continue
else:
cex_put(cx)
break
def retry(t):
add_trace('retrying')
print 'retrying winner cex which did not refine'
abc('r %s_gsrm_before.aig'%f_name) #restore previous gsrm
abc('w %s_beforerpm.aig'%f_name)
rep_change = reparam() #must be paired with reconcile below if cex
if rep_change:
add_trace('reparam')
abc('w %s_afterrpm.aig'%f_name)
if last_winner == 'RareSim':
simulate2(t)
elif last_winner == 'PDR':
pdr(t)
elif last_winner == 'BMC':
bmc(t)
elif last_winner == 'INTRP':
intrp(t)
elif last_winner == 'PDRM':
pdrm(t)
elif last_winner == 'BMC3':
bmc3(t)
elif last_winner == 'PDR_sd':
pdrseed(t)
elif last_winner == 'PDRM_sd':
pdrmm(t)
elif last_winner == 'INTRPm':
intrpm(t)
elif last_winner == 'REACHY':
reachy(t)
elif last_winner == 'BMC_J':
bmc_j(t)
elif last_winner == 'PDRa':
pdra(t)
else:
reconcile(rep_change)
return False
reconcile(rep_change)
if not is_sat():
return False
abc('&r -s %s_gore_before.aig ;&w %s_gore.aig'%(f_name,f_name)) #restore old gore file
return True
def generate_srm():
"""generates a speculated reduced model (srm) from the gore file"""
global f_name, po_map, sec_sw, A_name, B_name, sec_options, n_pos_proved
## print 'Generating'
pos = n_pos()
ab = n_ands()
abc('w %s_oldsrm.aig'%f_name) #save for later purposes
if sec_sw:
run_command('&r -s %s_gore.aig; &srm2 -%s %s.aig %s.aig; r gsrm.aig; w %s_gsrm.aig'%(f_name,sec_options,A_name,B_name,f_name))
else:
abc('&r -s %s_gore.aig; &srm -A %s_gsrm.aig ; r %s_gsrm.aig'%(f_name,f_name,f_name)) #do we still need to write the gsrm file
## ps()
po_map = range(n_pos())
ps()
n_pos_proved = 0
return 'OK'
n_pos_before = n_pos()
n_pos_proved = 0
n_latches_before = n_latches()
set_globals()
## t = max(1,.5*G_T)#irrelevant
## r = max(1,int(t))
t = 1000
j_last = 0
J = slps+sims+pdrs+bmcs+intrps
J = modify_methods(J,1)
print 'sec_options = %s'%sec_options
funcs = [eval('(pyabc_split.defer(initial_speculate)("%s"))'%sec_options)]
funcs = create_funcs(J,10000)+funcs #want other functins to run until initial speculate stops
mtds = sublist(methods,J) + ['initial_speculate'] #important that initial_speculate goes last
print mtds
res = fork_last(funcs,mtds)
print 'init_spec return = ',
print res
if res[1] in ['f','g','']:
sec_options = res[1]
add_trace('sec_options = %s'%sec_options)
add_trace('Number of POs: %d'%n_pos())
## ps()
if is_unsat():
return Unsat
if is_sat():
return Sat_true
if n_pos_before == n_pos():
print 'No new outputs. Quitting speculate'
add_trace('de_speculate')
return Undecided_no_reduction # return result is unknown
if n_eff_pos() > 1999000:
print 'Too many POs'
add_trace('de_speculate')
return Undecided_no_reduction
print 'Initial speculation: ',
ps()
abc('w %s_initial_gsrm.aig'%f_name)
if n_pos() > 1000:
print 'Too many new outputs. Quitting speculate'
add_trace('de_speculate')
return Undecided_no_reduction # return result is unknown
if n_pos() <= n_pos_before + 2:
print 'Too few new outputs. Quitting speculate'
add_trace('de_speculate')
return Undecided_no_reduction # return result is unknown
if n_latches() == 0:
return check_sat()
if use_pms:
p,q,r=par_multi_sat(0)
q = indices(r,1)
print sumsize(r)
if count_less(r,1) < .25*len(r):
print 'too many POs are already SAT'
add_trace('de_speculate')
return Undecided_no_reduction
if sec_options == 'l' and sec_sw:
sec_options = 'ab' #finished with initial speculate with the 'l' option
print "sec_options set to 'ab'"
elif sec_options == 'l':
sec_options = 'f'
print "sec_options set to 'f'"
po_map = range(n_pos()) #we need this because the initial_speculate is done in parallel and po_map is not passed back.
npi = n_pis()
set_globals()
if is_sat():
return Sat_true
simp_sw = init = True
add_trace('speculative refinement')
print '\nIterating speculation refinement'
sims_old = sims
sims = sims[:1]
J = slps+sims+pdrs+intrps+bmcs
J = modify_methods(J)
## print sublist(methods,J)
t = max(50,max(1,2*G_T))
last_verify_time = t
### temp
last_verify_time = total_spec_refine_time
###
print 'Verify time set to %d'%last_verify_time
reg_verify = True
ref_time = time.time()
sweep_time = 2
ifpord1=1
par_verify = re_try = False
## total_spec_refine_time = 150
while True: ##################### refinement loop
set_globals()
yy = time.time()
time_used = (yy-ref_time)
print 'Time_used = %0.2f'%time_used
if time_used > total_spec_refine_time:
print 'Allotted speculation refinement time is exceeded'
add_trace('de_speculate')
return Undecided_no_reduction
if not init:
abc('r %s_gsrm.aig'%f_name) #this is done only to set the size of the previous gsrm.
abc('w %s_gsrm_before.aig'%f_name)
set_size()
result = generate_srm()
if n_pos() <= n_pos_before + 1: #heuristic that if only have one equivalence, then not worth it
abc('r %s.aig'%f_name) #revert to previous aig
sims = sims_old
print 'UNDECIDED'
print 'Refinement time = %0.2f'%(time.time() - ref_time)
add_trace('de_speculate')
return Undecided_no_reduction
last_srm_po_size = n_pos()
yy = time.time()
# if the size of the gsrm did not change after generating a new gsrm
# and if the cex is valid for the gsrm, then the only way this can happen is if
# the cex_po is an original one.
if check_size(): #same size before and after
if check_cex(): #valid cex failed to refine possibly
if 0 <= cex_po() and cex_po() < (n_pos_before - n_pos_proved): #original PO
print 'Found cex in original output number = %d'%cex_po()
print 'Refinement time = %0.2f'%(time.time() - ref_time)
return Sat_true
elif check_same_gsrm(f_name): #if two gsrms are same, then failed to refine
print 'CEX failed to refine'
add_trace('de_speculate')
return Error
else:
print 'not a valid cex'
print 'Last winner = %s'%last_winner
print 're_try = %d'%re_try
if re_try:
add_trace('de_speculate')
return Error #abort speculation
re_try = True
else:
re_try = False # just got a valid refinement so reset.
if n_latches() == 0:
print 'Number of latches reduced to 0'
print 'CEX refined incorrectly'
abc('r %s.aig'%f_name) #revert to previous aig
sims = sims_old
add_trace('de_speculate')
return Error
init = False # make it so that next time it is not the first time through
if not t == last_verify_time: # heuristic that if increased last verify time,
# then try pord_all
t = last_verify_time
if reg_verify:
t_init = (time.time() - yy)/2 #start poor man's concurrency at last cex fime found
t_init = min(10,t_init)
t = last_verify_time
print 'Verify time set to %d'%t
if not re_try:
## abc('w %s_beforerpm.aig'%f_name)
## rep_change = reparam() #must be paired with reconcile below if cex
#### if rep_change:
#### add_trace('reparam')
## abc('w %s_afterrpm.aig'%f_name)
rep_change = False #TEMP
if reg_verify:
if par_verify:
S,L_sat_POs,s = par_multi_sat(120)
L_sat_POs = indices(s,1)
## L_sat_POs = L[1]
L=[]
for j in range(len(L_sat_POs)): #eliminate any of the original POs
if L_sat_POs[j] >= (n_pos_before-n_pos_proved):
L=L+[L_sat_POs[j]]
L_sat_POs = L
print L
if not L_sat_POs == []:
ress = [1,[['multi_sat']]]
add_trace(['multi_sat'])
else:
reg_verify = False
ress = pord_1_2(t)
add_trace(ress[1])
else:
ttt = time.time() #find time it takes to find a cex
ress = verify(J,t)
t_last_verify = time.time() - ttt
else:
ress = pord_1_2(t)
## print ress
add_trace(ress[1])
result = ress[0]
## add_trace(ress[1])
else:
if not retry(100):
add_trace('de_speculate')
return Error
result = get_status()
## print result
if result == Unsat:
add_trace('UNSAT by %s'%ress[1])
print 'UNSAT'
print 'Refinement time = %0.2f'%(time.time() - ref_time)
return Unsat
if result < Unsat:
abc('&r -s %s_gore.aig;&w %s_gore_before.aig'%(f_name,f_name)) #we are making sure that none of the original POs fail
if par_verify:
refine_without_cex(L_sat_POs)
print 'refining without cex done'
continue
if not reg_verify:
set_cex(cex_list)
## if not re_try:
#### rec = reconcile(rep_change) #end of pairing with reparam()TEMP
#### if rec == 'error':
#### add_trace('de_speculate')
#### return Error
## assert (npi == n_cex_pis()),'ERROR: #pi = %d, #cex_pi = %d'%(npi,n_cex_pis())
abc('&r -s %s_gore.aig;&w %s_gore_before.aig'%(f_name,f_name)) #we are making sure that none of the original POs fail
if reg_verify:
PO = set_cex_po(0) #testing the regular space
else:
abc('&r -s %s_gsrm.aig'%f_name)
PO = set_cex_po(1) # test against the &space.
print 'cex_PO is %d, '%PO,
if (-1 < PO and PO < (n_pos_before-n_pos_proved)):
print 'Found cex in original output = %d'%cex_po()
print 'Refinement time = %0.2f'%(time.time() - ref_time)
return Sat_true
if PO == -1:
add_trace('de_speculate')
return Error
refine_with_cex() #change the number of equivalences
if not par_verify and t_last_verify > 2500:
par_verify = True #switch to finding many POs at a time
continue
elif (is_unsat() or n_pos() == 0):
print 'UNSAT'
print 'Refinement time = %0.2f'%(time.time() - ref_time)
return Unsat
else: #if undecided, record last verification time
print 'Refinement returned undecided in %d sec.'%t
last_verify_time = t
#########################added
if reg_verify: #try one last time with parallel POs cex detection (find_cex_par) if not already tried
abc('r %s_beforerpm.aig'%f_name) # to continue refinement, need to restore original
t_init = min(last_verify_time,(time.time() - yy)/2) #start poor man's concurrency at last cex fime found
t_init = min(10,t_init)
reg_verify = False
t = last_verify_time # = 2*last_verify_time
abc('w %s_beforerpm.aig'%f_name)
rep_change = reparam() #must be paired with reconcile()below
abc('w %s_afterrpm.aig'%f_name)
ress = pord_1_2(t) #main call to verification
print ress
result = ress[0]
add_trace(ress[1])
if result == Unsat:
print 'UNSAT'
print 'Refinement time = %0.2f'%(time.time() - ref_time)
return Unsat
if is_sat() or result == Sat:
## assert result == get_status(),'result: %d, status: %d'%(result,get_status())
print 'result: %d, status: %d'%(result,get_status())
set_cex(cex_list)
rec = reconcile(rep_change)
if rec == 'error':
add_trace('de_speculate')
return Error
abc('&r -s %s_gsrm.aig'%f_name)
PO = set_cex_po(1) #testing the & space
if (-1 < PO and PO < (n_pos_before-n_pos_proved)):
print 'Found cex in original output = %d'%cex_po()
print 'Refinement time = %0.2f'%(time.time() - ref_time)
return Sat_true
if PO == -1:
add_trace('de_speculate')
return Error
refine_with_cex() #change the number of equivalences
continue
else: #if undecided, record last verification time
last_verify_time = t
print 'UNDECIDED'
break
################### added
else:
break
sims = sims_old
print 'UNDECIDED'
print 'Refinement time = %0.2f'%(time.time() - ref_time)
## if last_srm_po_size == initial_po_size: #essentially nothing happened. last_srm_po_size will be # POs in last srm.
if initial_sizes == [n_pis(),n_pos(),n_latches(),n_ands()]:
abc('r %s.aig'%f_name)
add_trace('de_speculate')
return Undecided_no_reduction #thus do not write spec file
else: #file was changed, so some speculation happened. If we find a cex later, need to know this.
write_file('spec')
return Undecided_reduction
def simple_sat(t=900):
"""
aimed at trying harder to prove SAT
"""
y = time.time()
bmcs2 = [9,31]
bmcs2 = [9,30]
J = allbmcs+pdrs+sims+[5]
## J = modify_methods(J)
## J = [14,2,7,9,30,31,26,5] #5 is pre_simp
funcs = create_funcs(J,t)
mtds =sublist(methods,J)
print mtds
fork_last(funcs,mtds)
result = get_status()
if result > Unsat:
write_file('smp')
result = verify(slps+allbmcs+pdrs+sims,t)
print 'Time for simple_sat = %0.2f'%(time.time()-y)
report_bmc_depth(max(max_bmc,n_bmc_frames()))
return [RESULT[result[0]]] + [result[1]]
def simple(t=10000,no_simp=0):
y = time.time()
## pre_simp()
if not no_simp:
prove_part_1()
if is_sat():
return ['SAT']+['pre_simp']
if is_unsat():
return ['UNSAT']+['pre_simp']
if n_latches() == 0:
return [RESULT[check_sat()]]+['pre_simp']
## J = slps+sims+bmcs+pdrs+intrps+pre
J = slps+sims+allbmcs+allpdrs+intrps
J = modify_methods(J)
result = verify(J,t)
## add_pord('%s by %s'%(result[0],result[1])
return [RESULT[result[0]]] + [result[1]]
def simple_bip(t=1000):
y = time.time()
J = [0,14,1,2,30,5] #5 is pre_simp
funcs = create_funcs(J,t)
mtds =sublist(methods,J)
fork_last(funcs,mtds)
result = get_status()
if result > Unsat:
write_file('smp')
result = verify(slps+[0,14,1,2,30],t)
print 'Time for simple_bip = %0.2f'%(time.time()-y)
return RESULT[result]
def check_same_gsrm(f):
## return False #disable the temporarily until can figure out why this is there
"""checks gsrm miters before and after refinement and if equal there is an error"""
global f_name
abc('r %s_gsrm.aig'%f)
## ps()
run_command('miter -c %s_gsrm_before.aig'%f)
## ps()
abc('&get; ,bmc -timeout=5')
result = True #if the same
if is_sat(): #if different
result = False
abc('r %s_gsrm.aig'%f)
## ps()
return result
def check_cex():
""" check if the last cex still asserts one of the outputs.
If it does then we have an error"""
global f_name
abc('read_status %s_before_refine.status'%f_name)
abc('&r -s %s_gsrm_before.aig'%f_name)
## abc('&r %s_gsrm.aig'%f_name)
run_command('testcex') #test the cex against the &-space aig.
## print 'cex po = %d'%cex_po()
return cex_po() >=0
def set_size():
"""Stores the problem size of the current design.
Size is defined as (PIs, POs, ANDS, FF)"""
global npi, npo, nands, nff, nmd
npi = n_pis()
npo = n_pos()
nands = n_ands()
nff = n_latches()
nmd = max_bmc
#print npi,npo,nands,nff
def check_size():
"""Assumes the problem size has been set by set_size before some operation.
This checks if the size was changed
Size is defined as (PIs, POs, ANDS, FF, max_bmc)
Returns TRUE is size is the same"""
global npi, npo, nands, nff, nmd
#print n_pis(),n_pos(),n_ands(),n_latches()
result = ((npi == n_pis()) and (npo == n_pos()) and (nands == n_ands()) and (nff == n_latches()) )
return result
def inferior_size():
"""Assumes the problem size has been set by set_size beore some operation.
This checks if the new size is inferior (larger) to the old one
Size is defined as (PIs, POs, ANDS, FF)"""
global npi, npo, nands, nff
result = ((npi < n_pis()) or (npo < n_pos()) or (nands < n_ands()) )
return result
##def quick_verify(n):
## """Low resource version of final_verify n = 1 means to do an initial
## simplification first. Also more time is allocated if n =1"""
## global last_verify_time
## trim()
## if n == 1:
## simplify()
## if n_latches == 0:
## return check_sat()
## trim()
## if is_sat():
## return Sat_true
## #print 'After trimming: ',
## #ps()
## set_globals()
## last_verify_time = t = max(1,.4*G_T)
## if n == 1:
## last_verify_time = t = max(1,2*G_T)
## print 'Verify time set to %d '%last_verify_time
## J = [18] + intrps+bmcs+pdrs+sims
## status = verify(J,t)
## return status
def process_status(status):
""" if there are no FF, the problem is combinational and we still have to check if UNSAT"""
if n_latches() == 0:
return check_sat()
return status
def get_status():
"""this simply translates the problem status encoding done by ABC
(-1,0,1)=(undecided,SAT,UNSAT) into the status code used by our
python code. -1,0,1 => 3,0,2
"""
if n_latches() == 0:
return check_sat()
status = prob_status() #interrogates ABC for the current status of the problem.
# 0 = SAT i.e. Sat_reg = 0 so does not have to be changed.
if status == 1:
status = Unsat
if status == -1: #undecided
status = Undecided
return status
def two_temp(t=20):
tt = time.time()
abc('tempor;scl;drw;&get;&rpm;&put;tempor;scl;drw;&get;&rpm;&put;scorr')
print 'Time for two_temp = %.2f'%(time.time()-tt)
return get_status()
def reparam_m():
"""eliminates PIs which if used in abstraction or speculation must be restored by
reconcile and the cex made compatible with file beforerpm
Uses the &-space
"""
abc('w %s_temp.aig'%f_name)
n = n_pis()
t1 = time.time()
## abc('&get;,reparam -aig=%s_rpm.aig; r %s_rpm.aig'%(f_name,f_name))
abc('&get;&rpm;&put')
tm = (time.time() - t1)
if n_pis() == 0:
print 'Number of PIs reduced to 0. Added a dummy PI'
abc('addpi')
nn = n_pis()
if nn < n:
print 'Reparam_m: PIs %d => %d, time = %.2f'%(n,nn,tm)
rep_change = True
else:
abc('r %s_temp.aig'%f_name)
rep_change = False
return rep_change
def reparam_e():
"""eliminates PIs which if used in abstraction or speculation must be restored by
reconcile and the cex made compatible with file beforerpm
Uses the &-space
"""
abc('w %s_temp.aig'%f_name)
n = n_pis()
t1 = time.time()
abc('&get;,reparam -aig=%s_rpm.aig; r %s_rpm.aig'%(f_name,f_name))
## abc('&get;&rpm;&put')
tm =(time.time() - t1)
if n_pis() == 0:
print 'Number of PIs reduced to 0. Added a dummy PI'
abc('addpi')
nn = n_pis()
if nn < n:
print 'Reparam_e: PIs %d => %d, time = %.2f'%(n,nn,tm)
rep_change = True
else:
abc('r %s_temp.aig'%f_name)
rep_change = False
return rep_change
def reparam():
## abc('w %s_temp.aig'%f_name)
## res = reparam_e()
## res = reparam_m()
res = reparam_e()
return res
##def try_and_rpm():
## abc('w %s_temp.aig'%f_name)
## n = n_pis()
## t1 = time.time()
## abc('&get;&rpm;&put')
## print 'time &rpm = %.2f'%(time.time() - t1)
## if n_pis() == 0:
## print '&rpm: Number of PIs reduced to 0. Added a dummy PI'
## abc('addpi')
## nn = n_pis()
## if nn < n:
## print '&rpm: Reparam: PIs %d => %d'%(n,nn)
#### rep_change = True
## abc('r %s_temp.aig'%f_name)
#### else:
#### abc('r %s_temp.aig'%f_name)
#### return False
def reconcile(rep_change):
"""used to make current cex compatible with file before reparam() was done.
However, the cex may have come
from extracting a single output and verifying this.
Then the cex_po is 0 but the PO it fails could be anything.
So testcex rectifies this."""
global n_pos_before, n_pos_proved
## print 'rep_change = %s'%rep_change
if rep_change == False:
return
abc('&r -s %s_beforerpm.aig; &w tt_before.aig'%f_name)
abc('write_status %s_after.status;write_status tt_after.status'%f_name)
abc('&r -s %s_afterrpm.aig;&w tt_after.aig'%f_name)
POa = set_cex_po(1) #this should set cex_po() to correct PO. A 1 here means it uses &space to check
abc('reconcile %s_beforerpm.aig %s_afterrpm.aig'%(f_name,f_name))
# reconcile modifies cex and restores work AIG to beforerpm
abc('write_status %s_before.status;write_status tt_before.status'%f_name)
POb = set_cex_po()#does not make sense if we are in absstraction refinement
if POa != POb:
abc('&r -s %s_beforerpm.aig; &w tt_before.aig'%f_name)
abc('&r -s %s_afterrpm.aig; &w tt_after.aig'%f_name)
print 'cex PO afterrpm = %d not = cex PO beforerpm = %d'%(POa,POb)
if POa < 0: #'cex did not assert any output'
return 'error'
def reconcile_a(rep_change):
""" This is the reconcile used in abstraction refinement
used to make current cex compatible with file before reparam() was done.
However, the cex may have come
from extracting a single output and verifying this.
Then the cex_po is 0 but the PO it fails could be anything.
So testcex rectifies this."""
global n_pos_before, n_pos_proved
## print 'rep_change = %s'%rep_change
if rep_change == False:
return
abc('&r -s %s_beforerpm.aig; &w tt_before.aig'%f_name)
abc('write_status %s_after.status;write_status tt_after.status'%f_name)
abc('&r -s %s_afterrpm.aig;&w tt_after.aig'%f_name)
POa = set_cex_po(1) #this should set cex_po() to correct PO. A 1 here means it uses &space to check
abc('reconcile %s_beforerpm.aig %s_afterrpm.aig'%(f_name,f_name))
# reconcile modifies cex and restores work AIG to beforerpm
abc('write_status %s_before.status;write_status tt_before.status'%f_name)
if POa < 0: #'cex did not assert any output'
return 'error'
def reconcile_all(lst, rep_change):
"""reconciles the list of cex's"""
global f_name, n_pos_before, n_pos_proved
if rep_change == False:
return lst
list = []
for j in range(len(lst)):
cx = lst[j]
if cx == None:
continue
cex_put(cx)
reconcile(rep_change)
list = list + [cex_get()]
return list
##def try_rpm():
## """rpm is a cheap way of doing reparameterization and is an abstraction method, so may introduce false cex's.
## It finds a minimum cut between the PIs and the main sequential logic and replaces this cut by free inputs.
## A quick BMC is then done, and if no cex is found, we assume the abstraction is valid. Otherwise we revert back
## to the original problem before rpm was tried."""
## global x_factor
## if n_ands() > 30000:
## return
## set_globals()
## pis_before = n_pis()
## abc('w %s_savetemp.aig'%f_name)
## abc('rpm')
## result = 0
## if n_pis() < .5*pis_before:
## bmc_before = bmc_depth()
## #print 'running quick bmc to see if rpm is OK'
## t = max(1,.1*G_T)
## #abc('bmc3 -C %d, -T %f'%(.1*G_C, t))
## abc('&get;,bmc -vt=%f'%t)
## if is_sat(): #rpm made it sat by bmc test, so undo rpm
## abc('r %s_savetemp.aig'%f_name)
## else:
## trim()
## print 'WARNING: rpm reduced PIs to %d. May make SAT.'%n_pis()
## result = 1
## else:
## abc('r %s_savetemp.aig'%f_name)
## return result
def verify(J,t):
"""This method is used for finding a cex during refinement, but can also
be used for proving the property. t is the maximum time to be used by
each engine J is the list of methods to run in parallel. See FUNCS for list"""
global x_factor, final_verify_time, last_verify_time, methods
set_globals()
t = int(max(1,t))
J = modify_methods(J)
mtds = sublist(methods,J)
print mtds
#print J,t
F = create_funcs(J,t)
(m,result) = fork_break(F,mtds,'US') #FORK here
## result = fork_break(F,mtds,'US') #FORK here
print result
## assert result[0] == get_status(),'result: %d, status: %d'%(result[0],get_status())
return result
def dsat_all(t=100,c=100000):
print 't=%d,c=%d'%(t,c)
N = n_pos()
abc('&get')
J = range(N)
ttt = time.time()
J.reverse()
abc('w %s_temp.aig'%f_name)
for j in J:
tt = time.time()
abc('r %s.aig'%f_name)
run_command('cone -O %d; dc2; dsat -C %d'%(j,c))
if is_unsat():
print 'Output %d is %s'%(j,RESULT[2]),
else:
print 'Output %d is %s'%(j,RESULT[3]),
T = time.time() -tt
print 'time = %0.2f'%T
if time.time() - tt > t:
break
print 'Total time = %0.2f'%(time.time() - ttt)
def check_sat(t=900):
"""This is called if all the FF have disappeared, but there is still some logic left. In this case,
the remaining logic may be UNSAT, which is usually the case, but this has to be proved. The ABC command 'dsat' is used fro combinational problems"""
global smp_trace
if not n_latches() == 0:
print 'circuit is not combinational'
return Undecided
## print 'Circuit is combinational - checking with dsat'
abc('&get') #save the current circuit
abc('orpos')
J = combs+slps
mtds = sublist(methods,J)
## print mtds
F = create_funcs(J,t)
(m,result) = fork_last(F,mtds) #FORK here
## print '%s: '%mtds[m],
## smp_trace = smp_trace + ['%s'%mtds[m]]
if is_sat():
abc('&put')
if n_pos() == 1:
return Sat_true
else:
return Undecided_no_reduction #some POs could be unsat.
elif is_unsat():
return Unsat
else:
abc('&put') #restore
return Undecided_no_reduction
def try_era(s):
"""era is explicit state enumeration that ABC has. It only works if the number of PIs is small,
but there are cases where it works and nothing else does"""
if n_pis() > 12:
return
cmd = '&get;&era -mv -S %d;&put'%s
print 'Running %s'%cmd
run_command(cmd)
def try_induction(C):
"""Sometimes proving the property directly using induction works but not very often.
For 'ind' to work, it must have only 1 output, so all outputs are or'ed together temporarily"""
return Undecided_reduction
print '\n***Running induction'
abc('w %s_temp.aig'%f_name)
abc('orpos; ind -uv -C %d -F 10'%C)
abc('r %s_savetemp.aig'%f_name)
status = prob_status()
if not status == 1:
return Undecided_reduction
print 'Induction succeeded'
return Unsat
def smp():
abc('smp')
write_file('smp')
def dprove():
abc('dprove -cbjupr')
def trim():
global trim_allowed,smp_trace
if not trim_allowed:
return False
result = reparam()
return result
def prs(x=True):
global trim_allowed, smp_trace
""" If x is set to False, no reparameterization will be done in pre_simp"""
global smp_trace
smp_trace = []
trim_allowed = x
print 'trim_allowed = ',trim_allowed
y = time.time()
result = pre_simp()
print 'Time = %0.2f'%(time.time() - y)
write_file('smp')
return RESULT[result[0]]
def check_push():
"""save the current aig if it has a different number of latches from last aig on lst"""
result = False
n = n_latches()
## ps()
abc('&get;cexsave') #save the current aig
## typ = hist[-1:]
## print hist
run_command('r %s_aigs_%d.aig'%(init_initial_f_name,len(hist)))
## typ = aigs_pp('pop')
## aigs.pop() #check latches in last aig.
nn = n_latches()
## ps()
## aigs.push() # put back last aig.
## aigs_pp('push',typ)
abc('&put;cexload') # restore current aig
## print 'check_push: current n=%d, previous nn=%d'%(n,nn)
if not n == nn: #if number of latches changes need to push the current aig so that reconcile can work.
## aigs.push()
## print 'n /= nn'
aigs_pp('push','reparam0') #default is push,reparam
result = True
return result
def dump():
""" get rid of the last aig on the list"""
abc('&get')
## aigs.pop()
aigs_pp('pop')
abc('&put')
def test_no_simp():
global last_simp
ri = float(n_pis())/float(last_simp[0])
ro = float(n_pos())/float(last_simp[1])
rl = float(n_latches())/float(last_simp[2])
ra = float(n_ands())/float(last_simp[3])
val = min(ri,ro,rl,ra)
if val < .95:
print 'simplification worthwhile'
return False
print 'simplification not worthwhile'
return True
def pre_simp(n=0,N=0):
"""This uses a set of simplification algorithms which preprocesses a design.
Includes forward retiming, quick simp, signal correspondence with constraints, trimming away
PIs, and strong simplify. If n not 0, then do not do phase abs"""
global trim_allowed, temp_dec
global smp_trace, aigs, last_simp
chk_sat = 0
smp_trace = []
while True:
if n_latches() == 0:
print 'Circuit is combinational'
chk_sat = 1
break
if test_no_simp():
break
ttime = time.time()
set_globals()
smp_trace = smp_trace + ['&scl']
abc('&get; &scl; &put')
if (n_ands() > 200000 or n_latches() > 50000 or n_pis() > 40000):
smp_trace = smp_trace + ['scorr_T']
scorr_T(50)
ps()
if ((n_ands() > 0) or (n_latches()>0)):
res =a_trim()
if n_latches() == 0:
break
status = get_status()
if (n == 0 and (not '_smp' in f_name) or '_cone' in f_name):
best_fwrd_min([10,11])
ps()
status = try_scorr_constr()
if ((n_ands() > 0) or (n_latches()>0)):
res = a_trim()
if n_latches() == 0:
break
status = process_status(status)
if status <= Unsat:
last_simp = [n_pis(),n_pos(),n_latches(),n_ands()]
return [status,smp_trace,hist]
print 'Starting simplify ',
simplify(n,N)
print 'Simplify: ',
ps()
if n_latches() == 0:
break
if trim_allowed and n == 0:
t = min(15,.3*G_T)
if (not '_smp' in f_name) or '_cone' in f_name: #try this only once on a design
tt = 25
if n_ands() > 500000:
tt = 30
res,F = try_temps(tt)
if res:
aigs_pp('push','tempor')
if n_latches() == 0:
break
if n == 0:
res,N = try_phases()
if res:
aigs_pp('push','phase')
if n_latches() == 0:
break
if ((n_ands() > 0) or (n_latches()>0)):
res = a_trim()
status = process_status(status)
print 'Simplification time = %0.2f'%(time.time()-ttime)
last_simp = [n_pis(),n_pos(),n_latches(),n_ands()]
return [status, smp_trace,hist]
last_simp = [n_pis(),n_pos(),n_latches(),n_ands()]
return [check_sat(),smp_trace,hist]
def try_scorr_constr():
set_size()
abc('w %s_savetemp.aig'%f_name)
status = scorr_constr()
if inferior_size():
abc('r %s_savetemp.aig'%f_name)
return status
def factors(n):
l = [1,]
nn = n
while n > 1:
for i in (2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53):
if not i <nn:
break
if n%i == 0:
l = l + [i,]
n = n/i
if not n == 1:
l = l + [n,]
break
return sorted(l)
def select(x,y):
z = []
for i in range(len(x)):
if x[i]:
z = z + [y[i],]
return z
def ok_phases(n):
""" only try those where the resulting n_ands does not exceed 60000"""
f = factors(n)
sp = subproducts(f)
s = map(lambda m:m*n_ands()< 120000,sp)
z = select(s,sp)
return z
def subproducts(ll):
ss = (product(ll),)
#print ll
n = len(ll)
if n == 1:
return ss
for i in range(n):
kk = drop(i,ll)
#print kk
ss = ss+(product(kk),)
#print ss
ss = ss+subproducts(kk)
#print ss
result =tuple(set(ss))
#result.sort()
return tuple(sorted(result))
def product(ll):
n = len(ll)
p = 1
if n == 1:
return ll[0]
for i in range(n):
p = p*ll[i]
return p
def drop(i,ll):
return ll[:i]+ll[i+1:]
def try_phases():
#### print 'entered try_phases ',
## ps()
no = n_pos()
res = try_phase()
## print 'after try_phase ',
## ps()
N = n_pos()/no
if N > 1:
res = True
else:
res = False
return res,N
def try_phase():
"""Tries phase abstraction. ABC returns the maximum clock phase it found using n_phases.
Then unnrolling is tried up to that phase and the unrolled model is quickly
simplified (with retiming to see if there is a significant reduction.
If not, then revert back to original"""
global init_simp, smp_trace,aigs
n = n_phases()
## if ((n == 1) or (n_ands() > 45000) or init_simp == 0):
if ((n == 1) or (n_ands() > 60000)):
return False
## init_simp = 0
res = a_trim()
print 'Trying phase abstraction - Max phase = %d'%n,
abc('w %s_phase_temp.aig'%f_name)
na = n_ands()
nl = n_latches()
ni = n_pis()
no = n_pos()
z = ok_phases(n)
print z,
if len(z) == 1:
return False
#p = choose_phase()
p = z[1]
abc('phase -F %d'%p)
if no == n_pos(): #nothing happened because p is not mod period
print 'Phase %d is incompatible'%p
abc('r %s_phase_temp.aig'%f_name)
if len(z)< 3:
return False
else:
p = z[2]
#print 'Trying phase = %d: '%p,
abc('phase -F %d'%p)
if no == n_pos(): #nothing happened because p is not mod period
print 'Phase %d is incompatible'%p
abc('r %s_phase_temp.aig'%f_name)
return False
else:
smp_trace = smp_trace + ['phase -F %d'%p]
abc('r %s_phase_temp.aig'%f_name)
abc('&get;&frames -o -F %d;&scl;&put'%p)
else:
abc('r %s_phase_temp.aig'%f_name)
abc('&get;&frames -o -F %d;&scl;&put'%p)
smp_trace = smp_trace + ['phase -F %d'%p]
print 'Simplifying with %d phases: => '%p,
smp_trace = smp_trace + ['simplify(1)']
simplify(1)
## res = a_trim() #maybe we don't need this because rel_cost uses n_real_inputs
ps()
cost = rel_cost([ni,nl,na])
print 'New relative cost = %f'%(cost)
if cost < -.01:
abc('w %s_phase_temp.aig'%f_name)
if ((n_latches() == 0) or (n_ands() == 0)):
return True
if n_phases() == 1: #this bombs out if no latches
return False
else:
result = try_phase()
return result
elif len(z)>2: #Try the next eligible phase.
abc('r %s_phase_temp.aig'%f_name)
if p == z[2]: #already tried this
return False
p = z[2]
print 'Trying phase = %d: => '%p,
abc('phase -F %d'%p)
if no == n_pos(): #nothing happened because p is not mod period
print 'Phase = %d is not compatible'%p
return False
abc('r %s_phase_temp.aig'%f_name)
abc('&get;&frames -o -F %d;&scl;&put'%p)
smp_trace = smp_trace + ['phase -F %d'%p]
print 'Simplify with %d phases: '%p,
simplify(1)
## res =a_trim() #maybe we don't need this because rel_cost uses n_real_inputs
cost = rel_cost([ni,nl,na])
print 'New relative cost = %f'%(cost)
if cost < -.01:
print 'Phase abstraction with %d phases obtained:'%p,
print_circuit_stats()
abc('w %s_phase_temp.aig'%f_name)
if ((n_latches() == 0) or (n_ands() == 0)):
return True
if n_phases() == 1: # this bombs out if no latches
return True
else:
result = try_phase()
return result
else:
smp_trace = smp_trace + ['de_phase']
abc('r %s_phase_temp.aig'%f_name)
return False
def try_temp(t=15):
global smp_trace,aigs
btime = time.clock()
## res = a_trim() #maybe we don't want this here.
print'Trying temporal decomposition - for max %0.2f sec. '%(t),
abc('w %s_best_temp.aig'%f_name)
## ni = n_pis()
ni = n_real_inputs()
nl = n_latches()
na = n_ands()
best = [ni,nl,na]
cost_best = 0
i_best = 0
n_done = 0
print 'best = ',
print best
F = create_funcs([18],t) #create a timer function
F = F + [eval('(pyabc_split.defer(struc_temp)())')]
F = F + [eval('(pyabc_split.defer(full_temp)())')]
F = F + [eval('(pyabc_split.defer(two_temp)())')]
for i,res in pyabc_split.abc_split_all(F):
## print i,res
if i == 0:
break
if n_latches() == 0:
return True
n_done = n_done+1
cost = rel_cost(best)
if cost<0:
nri=n_real_inputs()
best = (nri,n_latches(),n_ands())
abc('w %s_best_temp.aig'%f_name)
i_best = i
cost_best = cost
print 'cost = %.2f, best = '%cost,
print best
## if i == 1:
## smp_trace = smp_trace + ['tempor -s']
## if i == 2:
## smp_trace = smp_trace + ['tempor']
## if n_latches == 0:
## break
if n_done > 2:
break
## cost = rel_cost(best)
cost = cost_best
print 'cost = %0.2f'%cost
abc('r %s_best_temp.aig'%f_name)
## if cost < -.01:
if cost<0:
ps()
return True
else:
## smp_trace = smp_trace + ['de_tempor']
## abc('r %s_best_temp.aig'%f_name)
return False
def struc_temp():
abc('tempor -s;scr')
result = quick_simp()
if result == 'UNSAT':
return Unsat
elif result == 'SAT':
return Sat
return Undecided
def full_temp():
abc('tempor')
return simplify()
def try_temps(t=20):
""" need to modify something to be able to update cex"""
global smp_trace
abc('w %s_try_temps.aig'%f_name)
best = (n_pis(),n_latches(),n_ands())
npi = n_pis()
F = 1
while True:
res = try_temp(t)
ps()
if n_latches() == 0:
break
if res == False:
return False,F
if ((best == (n_pis(),n_latches(),n_ands())) or n_ands() > .9 * best[2] ):
break
else:
smp_trace = smp_trace + ['tempor']
best = (n_pis(),n_latches(),n_ands())
return True,n_pis()/npi
def rel_cost_t(J):
""" weighted relative costs versus previous stats."""
if (n_latches() == 0 and J[1]>0):
return -10
nli = J[0]+J[1]
na = J[2]
if ((nli == 0) or (na == 0)):
return 100
nri = n_real_inputs()
#ri = (float(nri)-float(ni))/float(ni)
rli = (float(n_latches()+nri)-float(nli))/float(nli)
ra = (float(n_ands())-float(na))/float(na)
cost = 10*rli + 1*ra #changed from .5 to 1 on ra
return cost
def rel_cost(J):
""" weighted relative costs versus previous stats."""
global f_name
if (n_latches() == 0 and J[1]>0):
return -10
nri = n_real_inputs()
ni = J[0]
nl = J[1]
na = J[2]
if (ni == 0 or na == 0 or nl == 0):
return 100
ri = (float(nri)-float(ni))/float(ni)
rl = (float(n_latches())-float(nl))/float(nl)
ra = (float(n_ands())-float(na))/float(na)
cost = 1*ri + 5*rl + .25*ra
## print 'Relative cost = %0.2f'%cost
return cost
def best_fwrd_min(J,t=30):
global f_name, methods,smp_trace
J=[18]+J
mtds = sublist(methods,J)
F = create_funcs(J,t)
(m,result) = fork_best(F,mtds) #FORK here
print '%s: '%mtds[m],
smp_trace = smp_trace + ['%s'%mtds[m]]
def try_forward():
"""Attempts most forward retiming, and latch correspondence there. If attempt fails to help simplify, then we revert back to the original design
This can be effective for equivalence checking problems where synthesis used retiming"""
abc('w %s_savetemp.aig'%f_name)
if n_ands() < 30000:
abc('dr')
abc('lcorr')
nl = n_latches()
na = n_ands()
abc('w %s_savetemp0.aig'%f_name)
abc('r %s_savetemp.aig'%f_name)
abc('dretime -m')
abc('lcorr')
abc('dr')
if ((n_latches() <= nl) and (n_ands() < na)):
print 'Forward retiming reduced size to: ',
print_circuit_stats()
return
else:
abc('r %s_savetemp0.aig'%f_name)
return
return
def qqsimp():
abc('&get;&scl;,reparam;&scorr -C 0;&scl;,reparam;&put')
shrink()
abc('w %ssimp.aig'%f_name)
ps()
def quick_simp():
"""A few quick ways to simplify a problem before more expensive methods are applied.
Uses & commands if problem is large. These commands use the new circuit based SAT solver"""
na = n_ands()
if na < 60000:
abc('scl -m;lcorr;drw')
else:
abc('&get;&scl;&lcorr;&put')
if n_ands() < 500000:
abc('drw')
print 'Using quick simplification',
status = process_status(get_status())
if status <= Unsat:
result = RESULT[status]
else:
ps()
result = 'UNDECIDED'
return result
def scorr_constr():
"""Extracts implicit constraints and uses them in signal correspondence
Constraints that are found are folded back when done"""
global aigs
na = max(1,n_ands())
n_pos_before = n_pos()
if ((na > 40000) or n_pos()>1):
return Undecided_no_reduction
abc('w %s_savetemp.aig'%f_name)
na = max(1,n_ands())
## f = 1
f = 18000/na #**** THIS can create a bug 10/15/11. see below
f = min(f,4)
f = max(1,f)
print 'Looking for constraints - ',
if n_ands() > 18000:
cmd = 'unfold -s -F 2'
else:
cmd = 'unfold -F %d -C 5000'%f
abc(cmd)
if n_pos() == n_pos_before:
print 'none found'
return Undecided_no_reduction
if (n_ands() > na): #no constraints found
abc('r %s_savetemp.aig'%f_name)
return Undecided_no_reduction
na = max(1,n_ands())
f = 1 #put here until bug is fixed.
print 'found %d constraints'%((n_pos() - n_pos_before))
abc('scorr -c -F %d'%f)
abc('fold')
res = a_trim()
print 'Constrained simplification: ',
ps()
return Undecided_no_reduction
def a_trim():
""" this is set up to put the aig on the aigs list if trim was successful"""
## print 'trimming'
## print 5.1
pushed = check_push() #checking if a push is needed and if so do it.
#It is not needed if flops match previous aig
## print 5.2
res = trim()
## print 5.3
if res:
aigs_pp()
## aigs.push() #store the aig after rpm if it did something
elif pushed: #since trim did not do anything, we don't need the last push done by check push
dump() #dump the last aig on the list
## print 5.4
return res
def try_scorr_c(f):
""" Trying multiple frames because current version has a bug."""
global aigs
set_globals()
abc('unfold -F %d'%f)
abc('scorr -c -F %d'%f)
abc('fold')
t = max(1,.1*G_T)
abc('&get;,bmc3 -vt=%f'%t)
if is_sat():
return 0
else:
res = a_trim()
return 1
def input_x_factor():
"""Sets the global x_factor according to user input"""
global x_factor, xfi
print 'Type in x_factor:',
xfi = x_factor = input()
print 'x_factor set to %f'%x_factor
def prove(a=0,abs_tried = False):
"""Proves all the outputs together. If ever an abstraction
was done then if SAT is returned,
we make RESULT return "undecided".
is a == 0 do smp and abs first
If a == 1 do smp and spec first
if a == 2 do quick simplification instead of full simplification, then abs first, spec second"""
global x_factor,xfi,f_name, last_verify_time,K_backup, t_init, sec_options, spec_found_cex
spec_first = False
max_bmc = -1
abs_found_cex_after_spec = spec_found_cex_after_abs = False
if not '_smp' in f_name: #if already simplified, then don't do again
if a == 2 : #do quick simplification
result = quick_simp() #does not write 'smp' file
## print result
else :
result = prove_part_1() #do full simplification here
if ((result == 'SAT') or (result == 'UNSAT')):
return result
if n_latches() == 0:
return 'UNDECIDED'
if a == 1:
spec_first = True
t_init = 2
abs_found_cex_before_spec = spec_found_cex_before_abs = False
## First phase
if spec_first:
result = prove_part_3() #speculation done here first
if result == 'UNDECIDED' and abs_tried and n_pos() <= 2:
add_trace('de_speculate')
return result
else:
abs_tried = True
result = prove_part_2() #abstraction done here first
if ((result == 'SAT') or (result == 'UNSAT')):
return result
## Second phase
if spec_first: #did spec already in first phase
t_init = 2
abs_tried = True
result = prove_part_2() #abstraction done here second
if result == 'SAT':
abs_found_cex_after_spec = True
else:
result = prove_part_3() #speculation done here second
if result == 'SAT':
if '_abs' in f_name:
spec_found_cex_after_abs = True
else:
return result
if result == 'UNSAT':
return result
status = get_status()
if result == 'ERROR':
status = Error
if ('_abs' in f_name and spec_found_cex_after_abs): #spec file should not have been written in speculate
f_name = revert(f_name,1) #it should be as if we never did abstraction.
add_trace('de_abstract')
print 'f_name = %s'%f_name
abc('r %s.aig'%f_name) #restore previous
t_init = 2
if not '_rev' in f_name:
print 'proving speculation first'
write_file('rev') #maybe can get by with just changing f_name
print 'f_name = %s'%f_name
result = prove(1,True) #1 here means do smp and then spec
if ((result == 'SAT') or (result == 'UNSAT')):
return result
elif ('_spec' in f_name and abs_found_cex_after_spec): #abs file should not have been written in abstract
f_name = revert(f_name,1) #it should be as if we never did speculation.
add_trace('de_speculate')
abc('r %s.aig'%f_name) #restore previous
t_init = 2
if not '_rev' in f_name:
print 'proving abstraction first'
write_file('rev') #maybe can get by with just changing f_name
result = prove(0)
if ((result == 'SAT') or (result == 'UNSAT')):
return result
else:
return 'UNDECIDED'
def prove_part_1():
global x_factor,xfi,f_name, last_verify_time,K_backup,aigs
print 'Initial: ',
ps()
x_factor = xfi
set_globals()
if n_latches() > 0:
## ps()
res = try_frames_2()
if res:
print 'frames_2: ',
ps()
aigs_pp('push','phase')
print '\n***Running pre_simp'
add_trace('pre_simp')
result = run_par_simplify()
status = result[0]
method = result[1]
if 'scorr' in method:
add_trace(method)
else:
print '\n***Circuit is combinational, running check_sat'
add_trace('comb_check')
status = check_sat()
if ((status <= Unsat) or (n_latches() == 0)):
return RESULT[status]
res =a_trim()
if not '_smp' in f_name:
write_file('smp') #need to check that this was not written in pre_simp
set_globals()
return RESULT[status]
def run_par_simplify():
set_globals()
t = 1000
funcs = [eval('(pyabc_split.defer(pre_simp)())')]
J = [35]+pdrs[:3]+bmcs[:3]+intrps[:1]+sims # 35 is par_scorr
J = modify_methods(J,1)
## J = J + bestintrps
funcs = create_funcs(J,t)+ funcs #important that pre_simp goes last
mtds =sublist(methods,J) + ['pre_simp']
print mtds
result = fork_last(funcs,mtds)
status = get_status()
return [status] + [result]
def try_frames_2():
abc('scl')
nl = n_latches()
if n_ands()> 35000:
return
abc('w %s_temp.aig'%f_name)
abc('&get;&frames -o -F 2;&scl;&put')
if n_latches() < .75*nl:
print 'frames_2: Number of latches reduced to %d'%n_latches()
add_trace('frames_2')
## res = reparam()
## xxxxx handle this
## if res:
## aigs.push()
return True
abc('r %s_temp.aig'%f_name)
return False
def prove_part_2(ratio=.75):
"""does the abstraction part of prove"""
global x_factor,xfi,f_name, last_verify_time,K_backup, trim_allowed,ifbip
print'\n***Running abstract'
## print 'ifbip = %d'%ifbip
status = abstract(ifbip) #ABSTRACTION done here
status = process_status(status)
print 'abstract done, status is %s'%str(status)
result = RESULT[status]
if status < Unsat:
print 'CEX in frame %d'%cex_frame()
return result #if we found a cex we do not want to trim.
return result
def prove_part_3():
"""does the speculation part of prove"""
global x_factor,xfi,f_name, last_verify_time,init_initial_f_name
global max_bmc, sec_options
## if ((n_ands() > 36000) and sec_options == ''):
## sec_options = 'g'
## print 'sec_options set to "g"'
print '\n***Running speculate on %s: '%f_name,
ps()
## add_trace('speculate')
status = speculate() #SPECULATION done here
status = process_status(status)
## print 'speculate done, status is %d'%status
result = RESULT[status]
if status < Unsat:
print 'CEX in frame %d'%cex_frame()
return result
return result
def prove_all(dir,t):
"""Prove all aig files in this directory using super_prove and record the results in results.txt
Not called from any subroutine
"""
## t = 1000 #This is the timeoout value
xtime = time.time()
## dir = main.list_aig('')
results = []
f =open('results_%d.txt'%len(dir), 'w')
for name in dir:
read_file_quiet_i(name)
print '\n **** %s:'%name,
ps()
F = create_funcs([18,6],t) #create timer function as i = 0 Here is the timer
for i,res in pyabc_split.abc_split_all(F):
break
tt = time.time()
if i == 0:
res = 'Timeout'
str = '%s: %s, time = %0.2f'%(name,res,(tt-xtime))
if res == 'SAT':
str = str + ', cex_frame = %d'%cex_frame()
str = str +'\n'
f.write(str)
f.flush()
results = results + ['%s: %s, time = %0.2f'%(name,res,(tt-xtime))]
xtime = tt
## print results
f.close()
return results
def remove_pos(lst):
"""Takes a list of pairs where the first part of a pair is the PO number and
the second is the result 1 = disproved, 2 = proved, 3 = unresolved. Then removes
the proved and disproved outputs and returns the aig with the unresolved
outputs"""
proved = disproved = unresolved = []
for j in range(len(lst)):
jj = lst[j]
if jj[1] == 2:
proved = proved + [jj[0]]
if (jj[1] == 1 or (jj[1] == 0)):
disproved = disproved +[jj[0]]
if jj[1] > 2:
unresolved = unresolved +[jj[0]]
print '%d outputs proved'%len(proved)
if not proved == []:
if ((max(proved)>n_pos()-1) or min(proved)< 0):
print proved
remove(proved,0)
#functions for proving multiple outputs in parallel
#__________________________________________________
def prove_only(j):
""" extract the jth output and try to prove it"""
global max_bmc, init_initial_f_name, initial_f_name, f_name,x
#abc('w %s__xsavetemp.aig'%f_name)
extract(j,j)
set_globals()
ps()
print '\nProving output %d'%(j)
f_name = f_name + '_%d'%j
result = prove_1()
#abc('r %s__xsavetemp.aig'%f_name)
if result == 'UNSAT':
print '******** PROVED OUTPUT %d ******** '%(j)
return Unsat
if result == 'SAT':
print '******** DISPROVED OUTPUT %d ******** '%(j)
return Sat
else:
print '******** UNDECIDED on OUTPUT %d ******** '%(j)
return Undecided
def verify_only(j,t):
""" extract the jth output and try to prove it"""
global max_bmc, init_initial_f_name, initial_f_name, f_name,x, reachs, last_cex, last_winner, methods
## ps()
## print 'Output = %d'%j
extract(j,j)
## ps()
set_globals()
if n_latches() == 0:
result = check_sat()
else:
f_name = f_name + '_%d'%j
# make it so that jabc is not used here
reachs_old = reachs
reachs = reachs[1:] #just remove jabc from this.
res = verify(slps+sims+pdrs+bmcs+intrps,t) #keep the number running at the same time as small as possible.
## res = verify(sims+pdrs+bmcs+intrps,t) #keep the number running at the same time as small as possible.
reachs = reachs_old
result = get_status()
assert res == result,'result: %d, status: %d'%(res,get_status())
if result > Unsat:
## print result
## print '******* %d is undecided ***********'%j
return result
elif result == Unsat:
## print '******** PROVED OUTPUT %d ******** '%(j)
return result
elif ((result < Unsat) and (not result == None)):
print '******** %s DISPROVED OUTPUT %d ******** '%(last_cex,j)
## print ('writing %d.status'%j), result, get_status()
abc('write_status %d.status'%j)
last_winner = last_cex
return result
else:
print '****** %d result is %d'%(j,result)
return result
def verify_range(j,k,t):
""" extract the jth thru kth output and try to prove their OR"""
global max_bmc, init_initial_f_name, initial_f_name, f_name,x, reachs, last_cex, last_winner, methods
extract(j,k)
abc('orpos')
set_globals()
if n_latches() == 0:
result = check_sat()
else:
f_name = f_name + '_%d'%j
# make it so that jabc is not used here
reachs_old = reachs
reachs = reachs[1:] #just remove jabc from this.
res = verify(sims+pdrs+bmcs+intrps,t) #keep the number running at the sme time as small as possible.
reachs = reachs_old
result = get_status()
assert res == result,'result: %d, status: %d'%(res,get_status())
if result > Unsat:
## print result
## print '******* %d is undecided ***********'%j
return result
elif result == Unsat:
## print '******** PROVED OUTPUT %d ******** '%(j)
return result
elif ((result < Unsat) and (not result == None)):
print '******** %s DISPROVED OUTPUT %d ******** '%(last_cex,j)
## print ('writing %d.status'%j), result, get_status()
abc('write_status %d.status'%j)
last_winner = last_cex
return result
else:
print '****** %d result is %d'%(j,result)
return result
def prove_n_par(n,j):
"""prove n outputs in parallel starting at j"""
F = []
for i in range(n):
F = F + [eval('(pyabc_split.defer(prove_only)(%s))'%(j+i))]
#print S
#F = eval(S)
result = []
print 'Proving outputs %d thru %d in parallel'%(j,j+n-1)
for i,res in pyabc_split.abc_split_all(F):
result = result +[(j+i,res)]
#print result
return result
def prove_pos_par(t,BREAK):
"""Prove all outputs in parallel and break on BREAK"""
return run_parallel([],t,BREAK)
def prove_pos_par0(n):
""" Group n POs grouped and prove in parallel until all outputs have been proved"""
f_name = initial_f_name
abc('w %s__xsavetemp.aig'%f_name)
result = []
j = 0
N = n_pos()
while j < N-n:
abc('r %s__xsavetemp.aig'%f_name)
result = result + prove_n_par(n,j)
j = j+n
if N > j:
result = result + prove_n_par(N-j,j)
abc('r %s__xsavetemp.aig'%initial_f_name)
ps()
## print result
remove_pos(result)
write_file('group')
return
def prop_decomp():
"""decompose a single property into multiple ones (only for initial single output),
by finding single and double literal primes of the outputs."""
if n_pos()>1:
return
run_command('outdec -v -L 2')
if n_pos()>1:
ps()
def distribute(N,div):
"""
we are going to verify outputs in groups
"""
n = N/div
rem = N - (div * (N/div))
result = []
for j in range(div):
if rem >0:
result = result +[n+1]
rem = rem -1
else:
result = result + [n]
return result
def extract(n1,n2):
"""Extracts outputs n1 through n2"""
no = n_pos()
if n2 > no:
return 'range exceeds number of POs'
abc('cone -s -O %d -R %d'%(n1, 1+n2-n1))
def remove_intrps(J):
global n_proc,ifbip
## print J
npr = n_proc
if 18 in J:
npr = npr+1
if len(J) <= npr:
## print J
return J
JJ = []
alli = [23,1,22] # if_no_bip, then this might need to be changed
l = len(J)-npr
alli = alli[l:]
## J.reverse() #strip off in reverse order.
for i in J:
if i in alli:
continue
else:
JJ = JJ+[i]
## print JJ
return JJ
def restrict(lst,v=0):
'''restricts the aig to the POs in the list'''
#this assumes that there are no const-1 POs. Warning, this will not remove any const-0 POs
N = n_pos()
lst1 = lst + [N]
r_lst = gaps(lst1) #finds POs not in lst
if len(r_lst) == N:
return
remove(r_lst,v)
def remove(lst,v=0):
"""Removes outputs in list
WARNING will not remove all POs even if in lst
"""
global po_map
n_before = n_pos()
zero(lst,v)
l=remove_const_pos(v)
assert len(lst) == (n_before - n_pos()),'Inadvertantly removed some const-0 POs.\nPO_before = %d, n_removed = %d, PO_after = %d'%(n_before, len(lst), n_pos())
print 'PO_before = %d, n_removed = %d, PO_after = %d'%(n_before, len(lst), n_pos())
def zero(list,v=0):
"""Zeros out POs in list"""
if v == 0:
cmd = 'zeropo -s -N ' #puts const-0 in PO
else:
cmd = 'zeropo -so -N ' #puts const-1 in PO
for j in list:
run_command('%s%d'%(cmd,j)) #-s prevents the strash after every zeropo
abc('st')
def listr_0_pos():
""" returns a list of const-0 pos and removes them
"""
L = range(n_pos())
L.reverse()
ll = []
for j in L:
i = is_const_po(j)
if i == 0:
abc('removepo -N %d'%j) #removes const-0 output
## print 'removed PO %d'%j
ll = [j] + ll
return ll
def list_0_pos():
""" returns a list of const-0 pos and removes them
"""
abc('w %s_savetemp.aig'%f_name)
L = range(n_pos())
L.reverse()
ll = []
for j in L:
i = is_const_po(j)
if i == 0:
abc('removepo -N %d'%j) #removes const-0 output
## print 'removed PO %d'%j
ll = [j] + ll
abc('r %s_savetemp.aig'%f_name)
return ll
def listr_1_pos():
""" returns a list of const-1 pos and removes them
"""
L = range(n_pos())
L.reverse()
ll = []
for j in L:
i = is_const_po(j)
if i == 1:
abc('removepo -z -N %d'%j) #removes const-1 output
## print n_pos()
ll = [j] + ll
return ll
def mark_const_pos(ll=[]):
""" creates an indicator of which PO are const-0 and which are const-1
does not change number of POs
"""
n=n_pos()
L = range(n)
ll = [-1]*n
for j in L:
ll[j] = is_const_po(j)
print sumsize(ind)
return ind
def remove_const_pos(n=-1):
global po_map
"""removes the const 0 or 1 pos according to n, but no pis because we might
get cexs and need the correct number of pis
"""
if n > -1:
run_command('&get; &trim -i -V %d; &put'%n) #V is 0 or 1
else:
run_command('&get; &trim -i; &put') #removes both constants
def unmap_cex():
""" aig before trim is put in reg-space and after trim in the &space
Before and after need to have same number of flops in order o reconcile
aigs list should be such that if before and after don't match in number of latches,
then some operation changed the flops and we just update the aig with the new number
reconcile leaves before aig in reg-space after cex has been updated so cex and aig
always match
"""
global aigs,hist
print hist
## while not aigs == []:
while not len(hist) == 0:
n = n_latches()
abc('&get') #save the current aig in &-space
print 'Number of PIs in cex = %d'%n_cex_pis()
typ = aigs_pp('pop')
print typ,
ps()
if typ == 'phase':
typ2 =aigs_pp('pop') #gets the aig before phase
abc('phase -c')
print 'Number of PIs in cex = %d, Number of frames = %d'%(n_cex_pis(),cex_frame())
run_command('testcex -a')
hist = hist + [typ2]
continue
if typ == 'tempor':
typ2 = aigs_pp('pop') #gets the aig before tempor
abc('tempor -c')
print 'Number of PIs in cex = %d, Number of frames = %d'%(n_cex_pis(),cex_frame())
run_command('testcex -a')
hist = hist + [typ2]
continue
if typ == 'reparam':
nn = n_latches()
abc('&get') #put 'after' in &space
typ2 = aigs_pp('pop') #get previous to put before in reg-space
run_command('reconcile')
print 'Number of PIs in cex = %d'%n_cex_pis()
## reconcile(True) #maps the cex from &-space aig to current aig
run_command('testcex -a')
if not typ2 == 'reparam0':
hist = hist + [typ2] #put back (aig iss still there so just have to restore hist
continue
#else we just leave the aig updated
else:
assert typ == 'initial','type is not initial'
size = str([n_pis(),n_pos(),n_latches(),n_ands()])
print 'cex length = %d'%cex_frame()
tr = ['cex length = %d'%cex_frame()] + ['cex matches original aig = %s'%size]
print 'cex matches original aig'
return tr
## print 'cex matches original aig'
def sp(n=0,t=900,check_trace=False):
"""Alias for super_prove, but also resolves cex to initial aig"""
global initial_f_name
print 'Executing super_prove'
result = super_prove(n,t)
print '%s is done and is %s'%(initial_f_name,result[0])
print 'sp: ',
print result
if result[0] == 'SAT' and check_trace:
res = unmap_cex()
result1 = result[1]+ res
result = ['SAT'] + result1
report_cex()
report_bmc_depth(max(max_bmc,n_bmc_frames()))
return result
def mp():
multi_prove_iter()
def report_cex():
abc('write_status %s_cex.status'%init_initial_f_name)
def sumsize(L):
d = count_less(L,0)
u = count_less(L,1)-d
s = count_less(L,2) - (d+u)
return 'SAT = %d, UNSAT = %d, UNDECIDED = %d'%(s,u,d)
def unmap(L,L2,map):
mx = max(list(map))
assert mx <= len(L2),'max of map = %d, length of L2 = %d'%(mx,len(L))
for j in range(len(map)):
L[j] = L2[map[j]] #expand results of L2 into L
return L
def unmap2(L2,map):
mx = max(list(map))
assert mx <= len(L2),'max of map = %d, length of L2 = %d'%(mx,len(L))
L=[-1]*len(map)
for j in range(len(map)):
L[j] = L2[map[j]] #expand results of L2 into L
return L
def create_map(L,N):
""" map equivalence classes into their representative."""
## print L
mapp = [-1]*N
m = -1
error = False
for j in range(len(L)):
lj = L[j]
for k in range(len(lj)):
mapp[lj[k]] = j
## print lj
mm = min(lj)
## print mm
if not mm == lj[0]: #check if rep is not first on list
print 'ERROR: rep is not first, mm = %d, lj[0] = %d'%(mm,lj[0])
error = True
if mm <= m: #check if iso_classes are in increasing order of representatives.
print 'ERROR: in iso map mm < m, mm = %d, m = %d'%(mm,m)
error = True
m = mm
assert not error,'ERROR'
return mapp
def weave(L1,lst0,lst1):
""" interleave values of L1 and with 1's in positions given in lst1,
and 0's in lst0. It is assumed that these lists are in num order..
Final list has len = len(L1)+len(lst0)+len(lst1)"""
L = [-1]*(len(L1)+len(lst0)+len(lst1))
## print len(L)
if lst0 == []:
if lst1 == []:
return L1
lst = lst1
v = 1
if lst1 == []:
lst = lst0
v = 0
l = k = 0
for j in range(len(L)):
## print L
if j == lst[l]:
L[j] = v
if l+1 < len(lst):
l = l+1
else: #put in value in L1
L[j] = L1[k]
if k+1 < len(L1):
k = k+1
return L
def quick_mp(t):
t1 =time.time()
l1 = list_0_pos()
S,l2,s = par_multi_sat(t)
l2 = indices(s,1)
remove(l2,1)
abc('scl')
simple()
ps()
print'time = %0.2f'%(time.time() - t1)
def indices(s,v):
"""return in indices of s that have value v"""
L = []
for i in range(len(s)):
if s[i]== v:
L = L+[i]
return L
def expand(s,ind,v):
"""expand s by inserting value v at indices ind"""
N = len(s)+len(ind)
ind1 = ind+[N]
g = gaps(ind1)
ss = [-1]*N
for i in ind:
ss[i] = v
j = 0
for i in g: #put original values in ss
ss[i] = s[j]
j = j+1
for j in ind:
assert ss[j] == v, 'ss = %s, ind = %s'%(str(ss),str(ind))
return ss
def remove_v(ss,v):
s = []
for i in range(len(ss)):
if ss[i] == v:
continue
else:
s = s + [ss[i]]
return s
def multi_prove(op='simple',tt=900,n_fast=0, final_map=[]):
"""two phase prove process for multiple output functions"""
global max_bmc, init_initial_f_name, initial_f_name,win_list, last_verify_time
global f_name_save,nam_save,_L_last,file_out
x_init = time.time()
abc('&get;&scl;,reparam -aig=%s_rpm.aig; r %s_rpm.aig')
print 'Initial after &scl and reparam = ',
ps()
abc('w %s_initial_save.aig'%init_initial_f_name)
#handle single output case differently
_L_last = [-1]*n_pos()
if n_pos() == 1:
result = sp(2000)
## abc('w %s_unsolved.aig'%init_initial_f_name)
rs=result[0]
if rs == 'SAT':
report_result(0,1)
L = [1]
elif rs == 'UNSAT':
report_result(0,0)
L = [0]
elif rs == 'UNDECIDED':
report_result(0,-1)
L = [-1]
else: #error
L = [2]
res = sumsize(L)
rr = '\n@@@@ Time = %d '%(time.time() - t_iter_start) + res
print rr
file_out.write(rr+ '\n')
file_out.flush()
return L
## print 'Removing const-0 POs'
NNN = n_pos()
lst0 = listr_0_pos() #remove const-0 POs and record
## print lst0
lst0.sort()
N = n_pos()
L = [-1]*N
print 'Removed %d const-0 POs'%len(lst0)
res = 'SAT = 0, UNSAT = %d, UNDECIDED = %d'%(len(lst0),N)
rr = '\n@@@@ Time = %.2f: '%(time.time() - t_iter_start)
report_L(lst0,0) ##########
rr = rr + res
print rr
file_out.write(rr + '\n')
file_out.flush()
ttt = n_ands()/1000
if ttt < 10:
ttt=10
elif ttt<20:
ttt = 20
elif ttt< 30:
ttt = 30
else:
ttt = 50
S,lst1,s = par_multi_sat(ttt,1,1,1) #run engines in parallel looking for SAT outputs
lst1 = indices(s,1)
## print S,lst1
#put 0 values into lst0
lst10 = indices(s,0) #new unsat POs in local indices (with lst0 removed)
if not lst10 == []:
print 'lst10 = %s'%str(lst10)
lst11 = indices(s,1) #local variables
ss = expand(s,lst0,0) #ss will reflect original indices
report_s(ss)
lst0_old = lst0
lst0 = indices(ss,0) #additional unsat POs added to initial lst0 (in original indices)
print 'lst0 = %s'%str(lst0)
assert len(lst0) == len(lst0_old)+len(lst10), 'lst0 = %s, lst0_old = %s, lst10 = %s'%(str(lst0),str(lst0_old),str(lst10))
sss = remove_v(ss,0) #remove the 0's from ss
assert len(sss) == len(ss)-len(lst0), 'len(sss) = %d, len(ss) = %d, len(lst0) = %d'%(len(sss),len(ss),len(lst0))
lst1_1 = indices(sss,1) #The sats now reflect the new local indices.
#It makes it as if the newly found unsat POs were removed initially
#done with new code
assert len(lst1_1) == len(lst1), 'mismatch, lst1 = %d, lst1_1 = %d'%(len(lst1),len(lst1_1))
lst1 = lst1_1 #lst1 should be in original minus lst0
print 'Found %d SAT POs'%len(lst1)
print 'Found %d UNSAT POs'%len(lst10)
res = 'SAT = %d, UNSAT = %d, UNDECIDED = %d'%(len(lst1),len(lst0),NNN-(len(lst1)+len(lst0)))
rr = '\n@@@@ Time = %.2f: '%(time.time() - t_iter_start)
rr = rr + res
print rr
file_out.write(rr + '\n')
file_out.flush()
N = n_pos()
print len(lst10),n_pos()
if not len(lst10) == n_pos() and len(lst10) > 0:
remove(lst10,1) #remove 0 POs
print 'Removed %d UNSAT POs'%len(lst10)
N = n_pos()
elif len(lst10) == n_pos():
N = 0 #can't remove all POs. Must proceed as if there are no POs. But all POs are UNSAT.
print len(lst1),N,S #note: have not removed the lst1 POs.
if len(lst1) == N or S == 'UNSAT' or N == 0: #all POs are SAT
L = [0]*N #could just put L as all 1's. If N = 0, all POs are UNSAT and lst1 = []
for i in range(len(lst1)): #put 1's in SAT POs
L[lst1[i]]=1
L = weave(L,lst0,[]) #expand L, and put back 0 in L.
report_results(L)
print sumsize(L)
print 'Time = %.2f'%(time.time() - x_init)
return L
## print 'removing them'
if not len(lst1)== n_pos():
remove(lst1,1) #here we removed all POs in lst1 (local indices)
abc('&get;&scl;&put')
## lst1 = bmcj_ss_r(2) #find easy cex outputs
## write_file('bmc1')
print 'Removed %d SAT POs'%len(lst1)
N = n_pos()
else:
N = 0
if N == 1: #this was wrong. Need to report in original indices???
result = sp(2000)
rs=result[0]
#need to find out original index of remaining PO
if rs == 'SAT':
v = 1
elif rs == 'UNSAT':
v = 0
elif rs == 'UNDECIDED':
v = -1
else: #error should not happen, but be conservative
v = -1
L = [v]*N
L = weave(list(L),[],lst1) #put back 1 in L
L = weave(list(L),lst0,[]) #put back 0 in L
report_results(L)
res = sumsize(L)
rr = '\n@@@@ Time = %d '%(time.time() - t_iter_start) + res
print rr
file_out.write(rr+ '\n')
file_out.flush()
return L
L1 =L = [-1]*N
if N > 1 and N < 10000 and n_ands() < 500000: #keeps iso in
## if N > 1 and N < 10000 and False: #temporarily disable iso
print 'Mapping for first isomorphism: '
res = iso() #reduces number of POs
if res == True:
abc('&get;&scl;&put')
write_file('iso1')
leq = eq_classes()
## print leq
map1 = create_map(leq,N) #creates map into original
## print map1
if not count_less(L,0) == N:
print L
L1 = [-1]*n_pos()
## L1 = pass_down(L,list(L1),map1) # no need to pass down because L will have no values at this point.
else:
map1 =range(N)
else:
map1 = range(N)
N = n_pos()
## print 4
r = pre_simp() #pre_simp
write_file('smp1')
NP = n_pos()/N #if NP > 1 then NP unrollings were done in pre_simp.
if NP > 1:
L1 = duplicate_values(L1,NP) # L1 has only -1s here. Put in same valuess for iso POs
if n_pos() > N:
assert NP>=2, 'NP not 2, n_pos = %d, N = %d, NP = %d'%(n_pos(),N,NP)
print 'pre_simp done. NP = %d\n\n'%NP
#WARNING: if phase abstraction done, then number of POs changed.
if r[0] == Unsat:
print 'example is UNSAT'
L1 = [0]*N #all outputs are UNSAT
print sumsize(L1)
print 'unmapping for iso'
L = unmap(list(L),L1,map1)
print "putting in easy cex's and easy unsat's"
L = weave(list(L),[],lst1) #put back 1 in L
L = weave(list(L),lst0,[]) #put back 0 in L
print sumsize(L)
print 'Time = %.2f'%(time.time() - x_init)
report_results(L)
return L
f_name_save = f_name
nam_save = '%s_initial_save.aig'%f_name
#########do second iso here
N = n_pos()
if N == 1:
map2 = [0]
L2=[-1]
## write_file('1')
## L = output(list(L),list(L1),L2,map1,map2,lst0,lst1,NP)
L = output2(list(L2),map1,map2,lst0,lst1,NP)
result = simple(2000,1)
Ss = rs = result[0]
if rs == 'SAT':
L2 = [1]
if rs == 'UNSAT':
L2 = [0]
else:
## if False and N < 10000: #temp disable iso
if N < 10000 and n_ands() < 500000:
print 'Mapping for second isomorphism: '
res = iso() #second iso - changes number of POs
if res == True:
abc('&get;&scl;&put')
map2 = create_map(eq_classes(),N) #creates map into previous
else:
map2 = range(n_pos())
else:
map2 = range(n_pos())
write_file('iso2')
print 'entering par_multi_sat'
S,lbmc,s = par_multi_sat(2*ttt,1,1,1) #look for SAT POs
lmbc = indices(s,1)
print 'par_multi_sat ended'
if len(lmbc)>0:
print 'found %d SAT POs'%len(lmbc)
L2 = s
## #first mprove for 10-20 sec.
ps()
print 'Before first mprove2, L2 = %s'%sumsize(L2)
DL = output2(list(L2),map1,map2,lst0,lst1,NP) #reporting intermediate results
## DDL = output3(range(len(L2)),map1,map2,lst0,lst1,NP)
## print 'DDL = %s'%str(DDL)
if n_fast == 1:
abc('w %s_unsolved.aig'%init_initial_f_name)
return DL
NN=n_ands()
#create timeout time for first mprove2
ttt = 10
if NN >30000:
ttt = 15
if NN > 50000:
ttt = 20
abc('w %s_before_mprove2.aig'%f_name)
print '%s_before_mprove2.aig written'%f_name
print 'L2 = %s'%str(L2)
print 'Entering first mprove2 for %d sec.'%ttt,
Ss,L2 = mprove2(list(L2),op,ttt,1) #populates L2 with results
## print Ss,L2
if Ss == 'SAT':
print 'At least one PO is SAT'
if Ss == 'ALL_SOLVED':
if count_less(L2,0)>0:
print 'ERROR'
## L = output(list(L),list(L1),L2,map1,map2,lst0,lst1,NP) # final report of results.
L = output2(list(L2),map1,map2,lst0,lst1,NP)
return L
print 'After first mprove2: %s'%sumsize(L2)
time_left = tt - (time.time()-x_init)
N = count_less(L2,0)
if N > 0 and n_fast == 0:
## output(list(L),list(L1),L2,map1,map2,lst0,lst1,NP) #reporting new intermediate results
L = output2(list(L2),map1,map2,lst0,lst1,NP)
t = max(100,time_left/N)
t_all = 100
S = sumsize(L2)
T = '%.2f'%(time.time() - x_init)
print '%s in time = %s'%(S,T)
abc('w %s_unsolved.aig'%init_initial_f_name)
N = n_pos()
ttime = 100
J = slps+intrps+pdrs+bmcs+sims
#do each output for ttime sec.
Nn = count_less(L2,0)
## assert N == len(L2),'n_pos() = %d, len(L2) = %d'%(N,len(L2))
if Nn > 0:
found_sat = 0
print 'final_all = %d, Ss = %s'%(final_all,str(Ss))
if final_all and not Ss == 'SAT':
print 'Trying to prove all %d remaining POs at once with super_prove'%Nn
remove_proved_pos(L2)
result = super_prove()
if result[0] == 'UNSAT': #all remaining POs are UNSAT
for i in range(len(L2)):
if L2[i] < 0:
L2[i] = 0
## L = output(list(L),list(L1),L2,map1,map2,lst0,lst1,NP) # final report of results.
L = output2(list(L2),map1,map2,lst0,lst1,NP)
return L
if result == 'SAT':
found_sat = 1
if found_sat or not final_all or Ss == 'SAT':
print 'Trying each remaining PO for %d sec.'%ttime
found_sat = 0
## ttime = 10
for i in range(N):
if L2[i] > -1:
continue
print '\n**** cone %d ****'%i
abc('r %s_unsolved.aig'%init_initial_f_name)
abc('cone -s -O %d'%i)
abc('&get;&scl;&lcorr;&put')
result = verify(J,ttime)
r = result[0]
if r > 2:
continue
elif r == 2:
L2[i] = 0
else:
L2[i] = 1
found_sat = 1
## output(list(L),list(L1),L2,map1,map2,lst0,lst1,NP)
L = output2(list(L2),map1,map2,lst0,lst1,NP)
if Ss == 'SAT' and found_sat: #previous solve_all was SAT and found at least 1 PO SAT
abc('r %s_unsolved.aig'%init_initial_f_name)
if not count_less(L2,0) == 0:
remove_proved_pos(L2)
simplify()
write_file('save')
result = simple(2000,1)
if_found = False
if result[0] == 'UNSAT':
for i in range(N):
if L2[i] == -1:
L2[i] = 0
elif result[0] == 'SAT' and n_pos() == 1:
for i in range(N):
if L2[i] == -1:
if if_found == True:
print 'Error: more that 1 UNDECIDED remained in L2'
break
L2[i] = 1
if_found = True
else:
if result[0] == 'SAT':
print 'at least 1 unsolved PO is SAT'
## L = output(list(L),list(L1),L2,map1,map2,lst0,lst1,NP) # final report of results.
L = output2(list(L2),map1,map2,lst0,lst1,NP)
return L
def create_unsolved(L):
abc('r %s_initial_save.aig'%init_initial_f_name)
lst = []
assert len(L) == n_pos(),'lengths of L and n_pos = %d,%d'%(len(L),n_pos())
for i in range(len(L)):
if L[i] > -1: #solved PO
lst = lst + [i]
assert max(lst) < n_pos(), 'error in lengths'
assert count_less(L,0) == n_pos() - len(lst),'mismatch'
remove(lst,-1) # remove solved
def multi_prove_iter():
global t_iter_start,file_out,ff_name
ff_name = init_initial_f_name
file_out = open('%s_time_results.txt'%init_initial_f_name, 'w') #
t_iter_start = time.time()
L = multi_prove()
d = count_less(L,0)
u = count_less(L,1)-d
s = count_less(L,2) - (d+u)
rr = '\n@@@@@ %s: Final time = %.2f '%(init_initial_f_name,(time.time() - t_iter_start))
rr = rr + 'SAT = %d, UNSAT = %d, UNDECIDED = %d '%(s,u,d)
print rr
file_out.write(rr)
res = PO_results(L)
file_out.write(res)
## print res
file_out.flush()
file_out.close()
#at this point could restrict to SAT(UNSAT) POs and invoke solver to verify all POs are SAT(UNSAT)
return
def restrict_v(L,v):
""" L is a list of 0,1,-1"""
lst = []
for j in range(len(L)):
if L[j] == v:
lst = lst + [j]
restrict(lst)
return lst
def PO_results(L):
global ff_name
S=U=UD=[]
for j in range(len(L)):
ll = L[j]
if ll == -1:
UD = UD + [j]
elif ll == 0:
U = U + [j]
elif ll == 1:
S = S + [j]
else:
print 'error, L contains a non -1,0,1'
res = "[[SAT = %s], [UNSAT = %s], [UNDECIDED = %s]"%(str(S),str(U),str(UD))
#restore initial unsolved POs
abc('r %s.aig'%ff_name)
if not UD == []:
restrict(UD,0)
abc('w %s_UNSOLVED.aig'%ff_name)
print 'Unsolved POs restored as %s_UNSOLVED.aig'%ff_name
else:
print 'All POs were solved'
abc('r %s.aig'%ff_name) #what if original had constraints.
abc('fold')
if not U == []:
restrict(U,1) #we use 1 here because do not want to remove const-0 POs which should be in U
abc('w %s_UNSAT.aig'%ff_name)
print 'Unsat POs restored as %s_UNSAT.aig'%ff_name
abc('r %s.aig'%ff_name)
abc('fold')
if not S == []:
restrict(S,0)
abc('w %s_SAT.aig'%ff_name)
print 'Sat POs restored as %s_SAT.aig'%ff_name
return res
def syn3():
t = time.clock()
run_command('&get;&b; &jf -K 6; &b; &jf -K 4; &b;&put')
ps()
print 'time = %.2f'%(time.clock() - t)
def syn4():
t = time.clock()
abc('&get;&b; &jf -K 7; &fx; &b; &jf -K 5; &fx; &b;&put')
ps()
print 'time = %.2f'%(time.clock() - t)
def solve_parts(n):
global t_iter_start,file_out
r=range(n)
r.reverse()
name = init_initial_f_name
results = []
for i in r:
file_out.write('\n@@@@ Starting part%d: \n'%i)
file_out.flush()
abc('r %s_part%d.aig'%(name,i))
print '\nPart%d: '%i
L = multi_prove()
rr = '\n@@@@ Time = %.2f '%(time.time() - t_iter_start)
rr = rr + 'Part%d: '%i
ssl = sumsize(L)
rr = rr + ssl
results = results + [[ssl]]
print rr
file_out.write(rr + '\n')
file_out.flush()
return results
def cp(n=10):
return chop_prove(n)
def chop_prove(n=10,t=100):
global t_iter_start,file_out
tm = time.time()
abc('w %s_chop_temp.aig'%f_name)
N = max(5,n_pos()/n)
J = 0
total = []
np = n_pos()
while J < np:
abc('r %s_chop_temp.aig'%f_name)
E = J+N-1
R = N
if E > np-1:
R = N - (E - (np -1))
abc('cone -s -O %d -R %d'%(J,R))
npp = n_pos()
print '\n\n***** solving outputs %d to %d *****'%(J,(J+R-1))
f_map = str([J]*R + range(R))
funcs = create_funcs(slps,t)
funcs = funcs + [eval('(pyabc_split.defer(mp)(simple,%s,1,%s))'%(t,f_map))] #1 means do fast mp
## funcs = funcs + [eval('(pyabc_split.defer(sp)())')]
for i,res in pyabc_split.abc_split_all(funcs):
print 'Method %d returned first with result = %s'%(i,res)
if i == 0:
res = 'SAT = 0, UNSAT = 0, UNDECIDED = %d'%npp
rr = '\n@@@@ Time = %.2f: '%(time.time() - t_iter_start)
rr = rr + 'chop%d: '%i
rr = rr + res
print rr
file_out.write(rr + '\n')
file_out.flush()
break
if i == 1:
rr = '\n@@@@ Time = %.2f: '%(time.time() - t_iter_start)
rr = rr + 'chop%d: '%i
rr = rr + res
file_out.write(rr + '\n')
file_out.flush()
## print res
break
else:
if res == 'UNSAT':
res = 'SAT = 0, UNSAT = %d, UNDECIDED = 0'%npp
rr = '\n@@@@ Time = %.2f: '%(time.time() - t_iter_start)
rr = rr + 'chop%d: '%i
rr = rr + res
print rr
file_out.write(rr + '\n')
file_out.flush()
break
else:
res = 'SAT = 0, UNSAT = 0, UNDECIDED = %d'%npp
rr = '\n@@@@ Time = %.2f: '%(time.time() - t_iter_start)
rr = rr + 'chop%d: '%i
rr = rr + res
print rr
file_out.write(rr + '\n')
file_out.flush()
break
## print res
total = total + [[res]]
print total
J = J + R
c = get_counts(total)
tm = time.time() - tm
rr = '\n@@@@ Total time for chop = %.2f, SAT = %d, UNSAT = %d, UNDECIDED = %d'%(tm,c[0],c[1],c[2])
file_out.write(rr + '\n')
file_out.flush()
print rr
return total
def get_counts(L):
s=u=d=0
for i in range(len(L)):
li = L[i][0]
## print li
j1=li.find('=')
j2 = li.find(',')
num = int(li[j1+1:j2])
s = s+num
li = li[j2+1:]
j1=li.find('=')
j2 = li.find(',')
num = int(li[j1+1:j2])
u = u+num
li = li[j2+1:]
j1=li.find('=')
j2 = li.find(',')
num = int(li[j1+1:])
d = d+num
return [s,u,d]
def output(L,L1,L2,map1,map2,lst0,lst1,NP,final_map=[]):
global t_iter_start
print_all(L,L1,L2,map1,map2,lst0,lst1,NP,final_map=[])
#print 'L = %s, L1 = %s, L2 = %s'%(sumsize(L),sumsize(L1),sumsize(L2))
L1 = unmap(list(L1),L2,map2)
print 'L1 after map2 = %s'%sumsize(L1)
if NP > 1: #an unrolling was done
L1 = check_and_trim_L(NP,list(L1))#map into reduced size before unrolling was done by phase.
print 'L1 = %s'%sumsize(L1)
L = unmap(list(L),L1,map1)
print 'L after map1 = %s'%sumsize(L)
L = weave(list(L),[],lst1) #put back 1 in L
print 'L after lst1 = %s'%sumsize(L)
L = weave(list(L),lst0,[]) #put back 0 in L
print 'L after lst0= %s'%sumsize(L)
report_results(list(L),final_map)
return L
def output2(L2,map1,map2,lst0,lst1,NP,final_map=[]):
global t_iter_start
## print_all(L,L1,L2,map1,map2,lst0,lst1,NP,final_map=[])
#print 'L = %s, L1 = %s, L2 = %s'%(sumsize(L),sumsize(L1),sumsize(L2))
L1 = unmap2(L2,map2)
print 'L1 after map2 = %s'%sumsize(L1)
## if NP > 1: #an unrolling was done
## L1 = check_and_trim_L(NP,list(L1))#map into reduced size before unrolling was done by phase.
## print 'L1 = %s'%sumsize(L1)
L = unmap2(L1,map1)
print 'L after map1 = %s'%sumsize(L)
L = weave(list(L),[],lst1) #put back 1 in L
print 'L after lst1 = %s'%sumsize(L)
L = weave(list(L),lst0,[]) #put back 0 in L
print 'L after lst0= %s'%sumsize(L)
report_results(list(L),final_map)
return L
def output3(L2,map1,map2,lst0,lst1,NP,final_map=[]):
""" find out where results came from"""
global t_iter_start
L1 = unmap2(L2,map2)
L = unmap2(L1,map1)
L = weave(list(L),[],lst1) #put back 1 in L
L = weave(list(L),lst0,[]) #put back 0 in L
return L
def print_all(L,L1,L2,map1,map2,lst0,lst1,NP,final_map=[]):
## return
print 'L = ',
print L
print 'L1 = ',
print L1
print 'L2 = ',
print L2
print 'map1 = ',
print map1
print 'map2 = ',
print map2
print 'lst0 = ',
print lst0
print 'lst1 = ',
print lst1
def rnge(n,m):
""" return interval n+range(m)"""
N = []
for j in range(m):
N = N + [n + j]
return N
def create_cluster(n=0,p=1,L=100):
"""n is the start node and p is the multiplier on the # of POs to extract
ll is the limit on the number of latches to include"""
clstr=rem = [] #make a list of nodes to remove because not compatible
N = 0 #number of end skips
init = False
skip=0 #number of initial skips
abc('w temp.aig')
np = n_pos()
for i in range(np):
if n + p*(i+1-skip) > np:
if n_latches() > L:
bp = n_pos()-p
remove(rnge(bp,p),1) #remove last p
abc('scl')
return clstr
abc('r temp.aig')
abc('cone -s -O %d -R %d;scl'%(n,p*(i+1-skip)))
xx = n_pos()
if n_latches() > L:
if not init: #have not found start point yet
n=n+p #increase start point
print 'n,FF = %d,%d'%(n,n_latches())
skip = skip + 1
continue
else:
if not init:
## nn=p*(i-skip)
## clstr = clstr + rnge(nn,p*(i+1-skip))
## print clstr #initial cluster
init = True
## abc('w old.aig')
remove(rem,1)
abc('scl')
ps()
if n_latches() > L:
x = xx - p #remove last p POs
rem = rem + rnge(x,p)
## print len(rem)
print 'x,len(rem) = %d,%d,%d'%(x,len(rem))
N = N+1
else:
bn=p*(i-skip)
nr=rnge(bn,p)
clstr = clstr + nr
if N > 100: #don't do more than 10 end-skips
bp = n_pos()-p
remove(rnge(bp,p),1) #put last p on remove list
abc('scl')
return clstr
def generate_clusters(b=0,inc=10,end=100):
abc('w temp_gen_clstr.aig')
abc('w t_gen_cl.aig')
clusters = []
while True:
abc('r t_gen_cl.aig')
clstr = create_cluster(b,inc,end)
clusters = clusters + [clstr]
abc('r t_gen_cl.aig')
if clstr == []:
return clusters
remove(clstr,1)
abc('w t_gen_cl.aig')
def map_clusters_to_original(cl):
L = range(n_pos())
Clstrs = []
k = 0
for j in range(len(cl)):
c = cl[j]
cc = pick(L,c)
Clstrs = Clstrs + [cc]
L = pick_not(L,cc)
return Clstrs
def pick(L,c):
""" computes L(c) """
x=[]
for i in range(len(c)):
x = x + [L[c[i]]]
return x
def pick_not(L,c):
""" computes L(~c)"""
x = []
for i in range(len(L)):
if not i in c:
x = x + [L[i]]
return x
def report_L(lst=[],v=0):
"""lst must refer to original PO numbering"""
global _L_last
if lst == []:
return
for j in lst:
if _L_last[j] == -1: #means not reported yet
_L_last[j] = v
report_result(j,v)
def report_s(s):
"""s must refer to original PO numbering
Differs from above """
global _L_last
assert len(s) == len(_L_last), 'two lengths are not equal'
if s == []:
return
for j in range(len(s)):
if not _L_last[j] == s[j]: #means not reported yet
assert _L_last[j] == -1, 'j = %d, _L_last[j] = %d, s[j] = %d'%(j,_L_last[j],s[j])
if _L_last[j] == -1:
_L_last[j] = s[j]
report_result(j,s[j])
def report_results(L,final_map=[],if_final=False):
global _L_last,t_iter_start,file_out
out = '\n@@@@ Time = %.2f: results = %s'%((time.time()- t_iter_start),sumsize(L))
print out
file_out.write(out + '\n')
file_out.flush()
for j in range(len(L)):
if not L[j] == _L_last [j]:
assert _L_last[j] == -1, '_L_last[j] = %d, L[j] = %d'%(_L_last[j],L[j])
report_result(j,L[j])
_L_last = list(L) #update _L_last
## print 'report: _L_last = %s'%sumsize(_L_last)
print '\n'
def report_result(POn, REn, final_map=[]):
if final_map == []:
print 'PO = %d, Result = %d: '%(POn, REn),
else:
print 'PO = %d, Result = %d: '%(final_map[POn], REn),
def scorr_T(t=10000):
global smp_trace, scorr_T_done
if scorr_T_done:
return
scorr_T_done = 1
print 'Trying scorr_T (scorr -C 2, &scorr, &scorr -C 0)'
funcs = [eval('(pyabc_split.defer(abc)("scorr -C 2"))')]
funcs = funcs + [eval('(pyabc_split.defer(abc)("&get;&scorr;&put"))')]
funcs = funcs + [eval('(pyabc_split.defer(abc)("&get;&scorr -C 0;&put"))')]
funcs = create_funcs(slps,t)+funcs
mtds = sublist(methods,slps) + ['scorr2','&scorr','&scorr0']
best = n_ands()
abc('w %s_best_T.aig'%f_name)
name1 = '%s_sc1.aig'%f_name
if os.access(name1,os.R_OK):
os.remove(name1)
name2 = '%s_sc2.aig'%f_name
if os.access(name2,os.R_OK):
os.remove(name2)
name3 = '%s_sc3.aig'%f_name
if os.access(name3,os.R_OK):
os.remove(name3)
N=m_best = 0
for i,res in pyabc_split.abc_split_all(funcs):
if i == 0:
break
if i == 1:
abc('w %s_sc1.aig'%f_name)
print 'scorr: ',
ps()
N=N+1
if N == 3 or n_latches() == 0:
break
if i == 2 or n_latches() == 0:
abc('w %s_sc2.aig'%f_name)
print '&scorr: ',
ps()
N=N+1
if N == 3:
break
if i == 3 or n_latches() == 0:
abc('w %s_sc3.aig'%f_name)
print '&scorr0: ',
ps()
N=N+1
if N == 3:
break
if os.access(name1,os.R_OK):
abc('r %s'%name1)
if n_ands() < best:
best = n_ands()
m_best = 1
abc('w %s_best_T.aig'%f_name)
if os.access(name2,os.R_OK):
abc('r %s'%name2)
if n_ands() < best:
m_best = 2
best = n_ands()
abc('w %s_best_T.aig'%f_name)
if os.access(name3,os.R_OK):
abc('r %s'%name3)
if n_ands() < best:
m_best = 3
best = n_ands()
abc('w %s_best_T.aig'%f_name)
smp_trace = smp_trace + ['%s'%mtds[m_best]]
abc('r %s_best_T.aig'%f_name)
def pscorr(t=900):
result = par_scorr(t)
if n_ands() == 0:
return result
else:
return 'UNDECIDED'
def par_scorr(t=30,ratio = 1):
t_init = time.time()
## abc('dr -m;drw')
abc('dretime;dc2')
funcs = [eval('(pyabc_split.defer(abc)("scorr -vq -F 1"))')]
funcs = funcs + [eval('(pyabc_split.defer(abc)("scorr -vq -F 2"))')]
funcs = funcs + [eval('(pyabc_split.defer(abc)("scorr -vq -F 4"))')]
funcs = funcs + [eval('(pyabc_split.defer(abc)("scorr -vq -F 8"))')]
funcs = funcs + [eval('(pyabc_split.defer(abc)("scorr -vq -F 16"))')]
funcs = create_funcs(slps,t)+funcs
mtds = sublist(methods,slps) + ['scorr1','scorr2', 'scorr4', 'scorr8', 'scorr16']
best = n_ands()
print 'par_scorr: best = %d'%best
abc('w %s_best.aig'%f_name)
idone = []
for i,res in pyabc_split.abc_split_all(funcs):
## print i,res
if i == 0: #timeout
break
else:
idone = idone + [i]
if n_ands() <= ratio * best:
best = n_ands()
## print 'par_scorr: best = %d, method = %s'%(best, mtds[i])
abc('w %s_best.aig'%f_name)
if best == 0 or len(idone) >= 5:
mtd = mtds[i]
break
else:
break
## print 'Time: %.2f'%(time.time() - t_init)
abc('r %s_best.aig'%f_name)
## if best == 0:
## print mtd
return mtd
def par_scorr_q(t=10000,ratio = 1):
abc('dretime;dc2')
abc('bmc2 -T 5')
depth = n_bmc_frames()
mtds = funcs = []
n=1
while True:
funcs = funcs + [eval('(pyabc_split.defer(abc)("scorr -vq -F %d"))'%n)]
mtds = mtds + ['scorr%d'%n]
n = 2* n
if n > max(1,min(depth,16)):
break
funcs = create_funcs(slps,t)+funcs
mtds = sublist(methods,slps) + mtds
best = n_ands()
print 'best = %d'%best
abc('w %s_best.aig'%f_name)
idone = []
for i,res in pyabc_split.abc_split_all(funcs):
## print i,res
if i == 0:
break
else:
idone = idone + [i]
if n_ands() <= ratio * best:
best = n_ands()
print 'best = %d, method = %s'%(best, mtds[i])
abc('w %s_best.aig'%f_name)
if best == 0 or len(idone) >= len(mtds)-1:
break
else:
break
abc('r %s_best.aig'%f_name)
def indicate_0_pos(L2):
"""
puts 0's in L2 where the corresponding output is driven by a const-0
"""
## assert n_pos() == len(L2), 'list L2=%d and n_pos=%d in current AIG dont match'%(len(L2),n_pos())
for j in range(n_pos()):
i=is_const_po(j)
if i == 0:
L2[j]=0
return L2
def list_0_pos():
"""
returns indices of outputs driven by const-0
"""
L = []
for j in range(n_pos()):
i=is_const_po(j) #returns const value of PO if const. Else -1
if i == 0:
L = L + [j]
return L
def mprove2(L=0,op='simple',t=100,nn=0):
global _L_last, f_name, skip_spec
print 'mprove2 entered' ,
if L == 0:
L = [-1]*n_pos()
ps()
print 'mprove2 entered with L = ',
print sumsize(L)
abc('w %s_mp2.aig'%f_name) #save aig before pos removed
old_f_name = f_name #we may call sp() which can change f_name
n = count_less(L,0)
ind = []
for j in range(len(L)):
if L[j] > -1:
ind = ind +[j]
if len(ind) == n_pos(): #all POs already solved
return 'ALL_SOLVED',L
remove(ind,-1) #remove solved POs
if len(ind)>0:
print 'Removed %d proved POs'%len(ind)
if n_pos() == 0:
f_name = old_f_name
abc('r %s_mp2.aig'%f_name)
return 'ALL_SOLVED',L
ps()
N = n_pos()
if N == 1: #only one PO left
v = -1
skip_spec_old = skip_spec
skip_spec = True
result = simple(2000,1)
ff_name == f_name
result = sp(0,2000) #warning sp() can change f_name. 0 means simplify
f_name = ff_name
skip_spec = skip_spec_old
res = result[0]
print 'result of sp = ',
print res
#### print result
if res == 'SAT':
v = 1
if res == 'UNSAT':
v = 0
i = L.index(-1)
## print 'i=%d,v=%d,L=%s'%(i,v,str(L))
L[i] = v
f_name = old_f_name #if sp() changed f_name need to revert to old f_name
abc('r %s_mp2.aig'%f_name)
print 'reverting %s_mp2.aig'%f_name,
ps()
print sumsize(L)
if v > -1:
res = 'ALL_SOLVED'
return res,L
r = pre_simp()
NP = n_pos()/N
L1 = [-1]*n_pos()
Llst0 = []
if r[0] == Unsat:
L1 = [0]*N
else:
Llst0 = list_0_pos()
Llst0.sort()
print 'Llst0 = %s'%str(Llst0)
n_0 = len(Llst0)
if n_0 > 0:
## print 'Found %d const-0 POs'%n_0
remove(Llst0,0)
print 'Removed %d const-0 POs'%len(Llst0)
if NP > 1: # we want to do iso here because more than one phase was found.
iso() # additional iso - changes number of POs
map3 = create_map(eq_classes(),N) #creates map into previous
## tb = min(n_pos(),20)
N = n_pos()
tb = min(N,50)
## print 'Trying par_multi_sat for %d sec.'%tb
S,lst1,s = par_multi_sat(tb,1,1,0) #this gives a list of SAT POs
L2 = s10 = s
n_solved = n_pos() - count_less(s10,0)
if 1 in s10 or 0 in s10: #something solved
if n_solved < N: #not all solved
rem = indices(s,0)+indices(s,1)
rem.sort()
remove(rem,1)
""" if lst1 > 1 element, simplify and run par_multi_sat again to get lst2
then merge lst1 and lst2 appropriately to create new lst1 for below.
"""
tb = tb+25
gap = max(15,.2*tb)
if len(rem) > 0:
s210 = s10
#iterate here as long as more than 1 PO is found SAT
n_solved = n_pos() - count_less(s210,0)
while n_solved > 0:
gap = int(1+1.2*gap)
print 'gap = %.2f'%gap
pre_simp(1) #warning this may create const-0 pos
S,lst2,s = par_multi_sat(tb,gap,1,0) #this can find UNSAT POs
s210 = s
n_solved = n_pos() - count_less(s210,0)
s10 = put(s210,list(s10)) #put the new values found into s10
if count_less(s10,0) == 0 or n_solved == 0: #all solved or nothing solved
break #s10 has the results
else:
out = '\n@@@@ Time = %.2f: additional POs found SAT = %d'%((time.time()- t_iter_start),len(lst2))
print out
file_out.write(out + '\n')
file_out.flush()
rem = indices(s210,0)+indices(s210,1)
rem.sort()
remove(rem,1) #this zeros the l210 and then removes ALL const-1 POs.
#If there are more than lst2 removed, it fires an assertion.
continue
L2 = s10 #put results in s10
else: #lst1 is empty or S == SAT'
print 'no cex found or S = UNSAT'
else: #all solved
print 'all POs solved'
print 'Removed %d solved POs'%(len(s10) - count_less(s10,0))
else:
print 'nothing solved'
write_file('bmc2')
if -1 in s10:
print 'Entering solve_all ',
ps()
S,s210 = solve_all([-1]*n_pos(),900) #solve_all calls sp() or simple but preserves the aig and f_name
## else: zzz
if -1 in s210: #then no POs were solved by solve_all
## abc('r %s_smp2_2.aig'%f_name)
if n_pos() < 50:
print 'Entering mprove with %d sec. for each cone'%t,
ps()
print 'L2 before mprove: %s'%sumsize(L2)
s210 = mprove([-1]*n_pos(),op,t) #proving each output separately
else:
s210 = [-1]*n_pos()
print 's210 after mprove and before inject 1 %s:'%sumsize(s210)
L2 = put(s210,s10)
print 'L2 after inject 1 %s:'%sumsize(L2)
else: #all POs solved
L2 = s10
assert NP == 1, 'NP > 1: ERROR'
if NP>1:
print 'NP = %d'%NP
print 'L1 before unmap3: %s'%sumsize(L1) #L1 should be all -1's of length before iso
L1 = unmap(list(L1),L2,map3)
print 'L1 after unmap of map3: ',
print sumsize(L1)
else:
print 'L2 = %s'%str(L2)
L1 = L2
L1 = inject(list(L1),Llst0,0)
print 'L1 after inject of Llst0 0s: %s:'%sumsize(L1)
if NP >1:
L1 = check_and_trim_L(NP,L1)
assert len(L1)<=len(L),"L1 = %d larger than L = %d"%(len(L1),len(L))
## print 'L = %s'%str(L)
L = insert(L1,list(L)) # replace -1s in L with values in L1. Size of L1<=L L is really L2
print sumsize(L)
f_name = old_f_name
abc('r %s_mp2.aig'%f_name) #restore aig
if 1 in L:
S = 'SAT'
if not -1 in L:
S = 'ALL_PROVED'
return S,L
def merge(L1,L2,n=0):
"""L2 refers to POs that were solved after POs in L1 were removed
modifies L2 to refer to the original POs.
if n=0 adds in L1 and sorts
"""
if L1 == []:
return L2
if L2 == []:
if n == 0:
return L1
else:
return []
m = max(L1)
LL1 = L1 + [3+m+max(L2)] #this makes sure that there are enough gaps
g = gaps(LL1)
## print g
L = []
for i in range(len(L2)):
l2i=L2[i]
assert l2i < len(g),'ERROR, L2 = %s,g = %s'%(str(L2),str(g))
L = L + [g[l2i]]
## print L
if n == 0:
L = L + L1
L.sort()
return L #L is already sorted
def put(s2,s11):
""" put in the values of s2 into where there are -1's in s1 into s1
return s2 """
s1 = list(s11)
k = 0
assert len(s2) == count_less(s1,0),'mismatch in put'
for j in range(len(s1)):
if s1[j] == -1:
s1[j] = s2[k]
k=k+1
return s1
def gaps(L1):
"""L2 refers to POs that were solved after POs in L1 were removed
modifies L2 to refer to the original POs.
if n=0 adds in L1 and sorts
"""
if L1 == [] or max(L1)+1 == len(L1):
return []
L1_gaps = []
i=0
for j in range(len(L1)):
lj=L1[j]
## print lj,i
if lj == i:
i = i+1
continue
assert lj > i,'Error'
while lj > i:
L1_gaps = L1_gaps + [i]
i = i+1
## print L1_gaps
i=i+1
return L1_gaps
## j=i=0
## L = []
## L1.sort()
## L2.sort()
## LL1 = L1 + [10000000] #make sure list L2 is processed to the end
#### print 'L1 and L2 is sorted %d, %d: '%(len(L1),len(L2))
## if not L2 == []:
## while True:
## ## print i,j
## if LL1[i] <= L2[j]:
## i = i+1
## else:
## L= L + [L2[j] + i]
## ## print L
## j = j+1
## if j == len(L2):
## break
## if n == 0:
## L = L + L1
## L.sort()
## return L #L is already sorted
def solve_all(L2,t):
global f_name, skip_spec
abc('w %s_solve_all.aig'%f_name)
old_f_name = f_name
## abc('orpos')
## print 'solve_all for %.2f sec.: '%t,
## ps()
skip_spec_old = skip_spec
skip_spec = True
tt = max(t,900)
print 'Entering simple for %d sec.'%tt
result = simple(tt,1) #### temporary 1 means do not simplify
## result = sp(0,t) #warning sp() may change f_name
skip_spec = skip_spec_old
## print 'solve_all: result = %s'%result
if result[0] == 'UNSAT':
L2 = [0]*len(L2)
f_name = old_f_name
abc('r %s_solve_all.aig'%f_name)
return result[0],L2
def inject(L,lst,v):
"""
expends the len(L) by len(lst). puts value v in expanded position
Preserves values in L
"""
k = i = j = 0 #i indexes L, j indexes lst, and k is total length of LL
if lst == []:
return L
LL = []
N = len(L) + len(lst)
while True:
if lst[j] == k:
LL= LL + [v]
if j < len(lst)-1:
j = j+1
else:
LL = LL + [L[i]]
if i < len(L)-1:
i = i+1
k = k+1
if k >= N:
break
return LL
def insert(L1,L):
""" insert L1 in L and return L"""
k=0
for j in range(len(L)):
if L[j] > -1:
continue
else:
L[j] = L1[k]
k = k+1
if k >= len(L1):
break
return L
def duplicate_values(L1,NP):
""" append values """
## L=L1*NP
L = L1
for j in range(NP-1):
L = L+[-1]*len(L1)
return L
##def duplicate_values2(L1,NP):
## """ interleave values """
## L = []
## for j in range(len(L1)):
## v = L1[j]
## L = L + [v]*NP
## return L
def check_and_trim_L(NP,L):
"""This happens when an unrolling creates additional POs
We want to check that L[j] = L[j+kN] etc to make sure the PO results agree
in all phases, i.e. sat, unsat, or undecided. if one is sat then make all L[j+kN] sat,
If one is unsat, then all L[j+kN] must be unsat. If not then make L[j]=-1.
Return first N of L.
"""
N = len(L)/NP #original number of POs
for j in range(N):
if L[j] == 1:
continue
for k in range(NP)[1:]: #k = 1,2,...,NP-1
if L[j+k*N] == 1:
L[j] = 1
break
elif L[j] == -1:
continue #we have to continue to look for a 1
elif L[j] == 0:
if L[j+k*N] == -1:
print 'some copies of PO unsat and some undecided'
L[j] = -1
break
continue #have to make sure that all phases are 0
return L[:N]
def pass_down(L,L1,map):
"""map maps L into L1.Populate L1 with values in L"""
## print len(L),len(L1),len(map),max(map)
## print sumsize(L)
## print sumsize(L1)
for j in range(len(map)):
if L[j] == -1:
continue
assert L1[map[j]] == -1 or L1[map[j]] == L[j], 'L1=%d, L = %d'%(L1[map[j]],L[j])
L1[map[j]] = max(L[j],L1[map[j]])
return L1
def mpr():
tt = time.time()
N=n_pos()
r = pre_simp()
if r == Unsat:
L = [0]*N
else:
L = mprove([-1]*n_pos(),'simple',100)
L = L[:N]
print sumsize(L)
print 'Time = %.2f'%(time.time() - tt)
return L
def mprove(L,op='simple',tt=1000):
""" 0 = unsat, 1 = sat, -1 = undecided"""
global max_bmc, init_initial_f_name, initial_f_name,win_list, last_verify_time
global f_name_save, nam_save, temp_dec, f_name
f_name_save = f_name
nam_save = '%s_mp_save.aig'%f_name
abc('w %s'%nam_save)
N = len(L)
print 'Length L = %d, n_pos() = %d'%(len(L),n_pos())
t = tt #controls the amount of time spent on each cone
funcs = [eval('(pyabc_split.defer(%s)())'%op)]
funcs = create_funcs(slps,t)+funcs
mtds = sublist(methods,slps) + [op]
res = L
NN = count_less(L,0)
rr = range(N)
rr.reverse()
init_name = init_initial_f_name
for j in rr:
if L[j] > -1:
continue #already solved
print '\n************** No. Outputs = %d ******************************'%NN
abc('r %s'%nam_save) #restore original function
## ps()
x = time.time()
name = '%s_cone_%d.aig'%(f_name,j)
print '________%s(%s)__________'%(op,name)
abc('cone -s -O %d;scl'%j)
abc('w %s_cone.aig'%f_name)
## ps()
read_file_quiet_i('%s_cone.aig'%f_name) #needed to reset initial settings
## ps()
temp_dec = False
i,result = fork_last(funcs,mtds)
## print '\ni = %d, result = %s'%(i,str(result))
f_name = f_name_save #restore original f_name
T = '%.2f'%(time.time() - x)
out = get_status()
## print '\nout= %d, result = %s'%(out,str(result))
rslt = Undecided
if not out == result:
print 'out = %d, result = %d'%(out,result)
## assert out == result,'out = %d, result = %d'%(out,result)
if out == Unsat or result == 'UNSAT' or result == Unsat:
res[j] = 0
rslt = Unsat
if out < Unsat:
res[j] = 1
rslt = Sat
print '\n%s: %s in time = %s'%(name,RESULT[rslt],T)
abc('r %s'%nam_save) #final restore of original function for second mprove if necessary.
init_initial_f_name = init_name
## print res
return res
##def sp1(options = ''):
## global sec_options
## sec_options = options
## return super_prove(1)
def super_prove(n=0,t=900):
"""Main proof technique now. Does original prove and if after speculation there are multiple output left
if will try to prove each output separately, in reverse order. It will quit at the first output that fails
to be proved, or any output that is proved SAT
n controls call to prove(n)
is n == 0 do smp and abs first, then spec
if n == 1 do smp and spec first then abs
if n == 2 just do quick simplification instead of full simplification, then abs first, spec second
"""
global max_bmc, init_initial_f_name, initial_f_name,win_list, last_verify_time, f_name
## print 'sec_options = %s'%sec_options
## init_initial_f_name = initial_f_name
size = str([n_pis(),n_pos(),n_latches(),n_ands()])
add_trace('[%s: size = %s ]'%(f_name,size))
if x_factor > 1:
print 'x_factor = %f'%x_factor
input_x_factor()
max_bmc = -1
x = time.time()
add_trace('prove')
result = prove(n)
print 'prove result = ',
print result
tt = time.time() - x
if ((result == 'SAT') or (result == 'UNSAT')):
print '%s: total clock time taken by super_prove = %0.2f sec.'%(result,tt)
add_trace('%s'%result)
add_trace('Total time = %.2f'%tt)
print m_trace
return [result]+[m_trace]
elif ((result == 'UNDECIDED') and (n_latches() == 0)):
add_trace('%s'%result)
add_trace('Total time = %.2f'%tt)
print m_trace
return [result]+[m_trace]
print '%s: total clock time taken by super_prove so far = %0.2f sec.'%(result,(time.time() - x))
y = time.time()
print 'Entering BMC_VER_result'
add_trace('BMC_VER_result')
result = BMC_VER_result() #this does backing up if cex is found
print 'Total clock time taken by last gasp verification = %0.2f sec.'%(time.time() - y)
tt = time.time() - x
print 'Total clock time for %s = %0.2f sec.'%(init_initial_f_name,tt)
add_trace('%s'%result)
add_trace('Total time for %s = %.2f'%(init_initial_f_name,tt))
## print m_trace
return [result]+[m_trace]
def reachm(t):
x = time.clock()
abc('&get;&reachm -vcs -T %d'%t)
print 'reachm done in time = %f'%(time.clock() - x)
return get_status()
def reachp(t):
x = time.clock()
abc('&get;&reachp -rv -T %d'%t)
print 'reachm2 done in time = %f'%(time.clock() - x)
return get_status()
def scorr():
run_command('scorr')
ps()
def select_undecided(L):
res = []
for j in range(len(L)):
l = L[j]
if l[1] == 'UNDECIDED':
res = res + [l[0]]
return res
####def execute(L,t):
#### """
#### run the files in the list L using ss, sp, ssm each for max time = t
#### """
#### funcs1 = [eval('(pyabc_split.defer(ss)())')]
#### funcs1 = create_funcs(slps,t)+funcs1
#### mtds1 =sublist(methods,slps) + ['ss']
#### funcs2 = [eval('(pyabc_split.defer(sp)())')]
#### funcs2 = create_funcs(slps,t)+funcs2
#### mtds2 =sublist(methods,slps) + ['sp']
#### funcs3 = [eval('(pyabc_split.defer(ssm)())')]
#### funcs3 = create_funcs(slps,t)+funcs3
#### mtds3 =sublist(methods,slps) + ['ssm']
#### for j in range(len(L)):
#### name = L[j]
#### print '\n\n\n\n________ss__________'
#### read_file_quiet(name)
#### print '****ss****'
#### fork_last(funcs1,mtds1)
#### print '***Done with ss on %s\n'%name
#### print '\n\n******ssm************'
#### read_file_quiet(name)
#### print '****ssm****'
#### fork_last(funcs3,mtds3)
#### print '***Done with ssm on %s \n'%name
def execute_op(op,L,t):
"""
run the files in the list L using operation "op", each for max time = t
"""
global res
funcs = [eval('(pyabc_split.defer(%s)())'%op)]
funcs = create_funcs(slps,t)+funcs
mtds =sublist(methods,slps) + [op]
res = []
for j in range(len(L)):
x = time.time()
name = L[j]
print '\n\n\n\n________%s__________'%op
read_file_quiet_i(name)
m,result = fork_last(funcs,mtds)
if result == Undecided:
result = RESULT[result]
T = '%.2f'%(time.time() - x)
new_res = [name,result,T]
res = res + [new_res]
print '\n%s'%new_res
return res
def x_ops(ops,L,t):
""" execute each op in the set of ops on each file in the set of files of L, each for time t"""
result = []
for j in range(len(ops)):
op = ops[j]
result.append('Result of %s'%op)
result.append(execute_op(op,L,t))
return result
def iso(n=0):
if n_ands() > 500000:
return False
if n_pos() < 2:
print 'no more than 1 output'
return False
npos=n_pos()
if n == 0:
abc('&get;&iso -q;&put')
if n_pos() == npos:
print 'no reduction'
return False
else:
run_command('&get;&iso;iso;&put')
if n_pos() == npos:
print 'no reduction'
return False
print 'Reduced n_pos from %d to %d'%(npos,n_pos())
return True
def check_iso(N):
ans = get_large_po()
if ans == -1:
return 'no output found'
n_iso = count_iso(N)
return n_iso
def count_iso(N):
abc('&get;write_aiger -u file1.aig') #put this cone in & space and write file1
## print 'PO %d is used'%i
n_iso = 0 #start count
for i in range(N):
abc('permute;write_aiger -u file2.aig')
n = filecmp.cmp('file1.aig','file2.aig')
print n,
n_iso = n_iso+n
print 'the number of isomorphisms was %d out of %d'%(n_iso,N)
return n_iso
def get_large_po():
## remove_const_pos() #get rid of constant POs
NL = n_latches()
NO = n_pos()
abc('&get') #put the in & space
n_latches_max = 0
nl = imax = -1
for i in range(NO): #look for a big enough PO
abc('&put;cone -s -O %d;scl'%i)
nl = n_latches()
if nl >.15*NL:
imax = i
## print 'cone %d has %d FF'%(i,nl)
break
if nl> n_latches_max:
n_latches_max = nl
imax = i
print i,nl
if i == NO-1:
print 'no PO is big enough'
return -1
print 'PO_cone = %d, n_latches = %d'%(imax,nl)
def scorro():
run_command('scorr -o')
l = remove_const_pos(0)
ps()
def drw():
run_command('drw')
ps()
def dc2rs():
abc('dc2rs')
ps()
def reachn(t):
x = time.clock()
abc('&get;&reachn -rv -T %d'%t)
print 'reachm3 done in time = %f'%(time.clock() - x)
return get_status()
def reachx(t=900):
x = time.time()
abc('reachx -t %d'%t)
print 'reachx done in time = %f'%(time.time() - x)
return get_status()
def reachy(t=900):
x = time.clock()
abc('&get;&reachy -v -T %d'%t)
## print 'reachy done in time = %f'%(time.clock() - x)
return get_status()
def create_funcs(J,t):
"""evaluates strings indexed by J in methods given by FUNCS
Returns a list of lambda functions for the strings in FUNCs
If J = [], then create provers for all POs"""
funcs = []
for j in range(len(J)):
k=J[j]
funcs = funcs + [eval(FUNCS[k])]
return funcs
def check_abs():
global init_initial_f_name
abc('w %s_save.aig'%init_initial_f_name)
ni = n_pis()
nl = n_latches()
na = n_ands()
abc('r %s_smp_abs.aig'%init_initial_f_name)
if ((ni == n_pis()) and (nl == n_latches()) and (na == n_ands())):
return True
else:
abc('r %s_save.aig'%init_initial_f_name)
return False
def modify_methods(J,dec=0):
""" adjusts the engines to reflect number of processors"""
N = bmc_depth()
L = n_latches()
I = n_real_inputs()
npr = n_proc - dec
reachi = reachs
if 18 in J: #if sleep in J add 1 more processor
npr = npr+1
if ( ((I+L<550)&(N>100)) or (I+L<400) or (L<80) ):
if not 24 in J: #24 is reachy
if L < 70 and not 4 in reachs:
reachi = [4]+reachs #[4] = reachx
J = reachi+J # add all reach methods
if len(J)>npr:
J = remove_intrps(J) #removes only if len(J)<n_processes
if len(J)< npr: #if not using all processors, add in pdrs
for j in range(len(allpdrs)):
if allpdrs[j] in J: #leave it in
continue
else: #add it in
J = J + [allpdrs[j]]
if len(J) == npr:
break
if len(J)>npr:
J = remove_intrps(J)
return J
def BMC_VER():
""" a special version of BMC_VER_result that just works on the current network
Just runs engines in parallel - no backing up
"""
global init_initial_f_name, methods, last_verify_time, n_proc,last_gasp_time
xt = time.time()
result = 5
t = max(2*last_verify_time,last_gasp_time) ####
print 'Verify time set to %d'%t
J = slps + pdrs + bmcs + intrps
J = modify_methods(J)
F = create_funcs(J,t)
mtds = sublist(methods,J)
print mtds
(m,result) = fork_break(F,mtds,'US')
result = RESULT[result]
print 'BMC_VER result = %s'%result
return result
def BMC_VER_result(t=0):
## return 'UNDECIDED' #TEMP
global init_initial_f_name, methods, last_verify_time,f_name,last_gasp_time
xt = time.time()
result = 5
abc('r %s.aig'%f_name)
abc('scl')
print '\n***Running proof on %s after scl:'%f_name,
ps()
if t == 0:
t = max(2*last_verify_time,last_gasp_time) #each time a new time-out is set t at least 1000 sec.
print 'Verify time set to %d'%t
J = slps + allpdrs2 + bmcs + intrps + sims
last_name = seq_name(f_name).pop()
if not last_name in ['abs','spec']:
J = slps +allpdrs2 +bmcs + intrps + sims
## if 'smp' == last_name or last_name == f_name: # then we try harder to prove it.
J = modify_methods(J) #if # processors is enough and problem is small enough then add in reachs
F = create_funcs(J,t)
mtds = sublist(methods,J)
print '%s'%mtds
(m,result) = fork(F,mtds)
result = get_status()
if result == Unsat:
return 'UNSAT'
## if last_name == 'smp' or last_name == f_name: # can't backup so just return result
if not last_name in ['abs','spec']:
if result < Unsat:
return 'SAT'
if result > Unsat: #still undecided
return 'UNDECIDED'
else: # (last_name == 'spec' or last_name == 'abs') - the last thing we did was an "abstraction"
if result < Unsat:
if last_name == 'abs':
add_trace('de_abstract')
if last_name == 'spec':
add_trace('de_speculate')
f_name = revert(f_name,1) # revert the f_name back to previous
abc('r %s.aig'%f_name)
abc('scl')
return BMC_VER_result() #recursion here.
else:
return 'UNDECIDED'
def try_split():
abc('w %s_savetemp.aig'%f_name)
na = n_ands()
split(3)
if n_ands()> 2*na:
abc('r %s_savetemp.aig'%f_name)
def time_diff():
global last_time
new_time = time.clock()
diff = new_time - last_time
last_time = new_time
result = 'Lapsed time = %.2f sec.'%diff
return result
def prove_all_ind():
"""Tries to prove output k by induction, using other outputs as constraints.
If ever an output is proved
it is set to 0 so it can't be used in proving another output to break circularity.
Finally all zero'ed outputs are removed.
Prints out unproved outputs Finally removes 0 outputs
"""
global n_pos_proved, n_pos_before
print 'n_pos_proved = %d'%n_pos_proved
n_proved = 0
N = n_pos()
## l=remove_const_pos()
## print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
if n_pos() == 1:
return
abc('w %s_osavetemp.aig'%f_name)
lst = range(n_pos())
## lst.reverse()
## list.reverse()
## for j in list[1:]:
for j in lst:
## abc('zeropo -N 0')
abc('swappos -N %d'%j)
## l=remove_const_pos() #may not have to do this if constr works well with 0'ed outputs
abc('constr -N %d'%(n_pos()-1))
abc('fold')
n = max(1,n_ands())
f = max(1,min(40000/n,16))
f = int(f)
## abc('ind -C 10000 -F %d'%f)
abc('ind -C 1000 -F %d'%f)
## run_command('print_status')
status = get_status()
abc('r %s_osavetemp.aig'%f_name) #have to restore original here
if status == Unsat:
## print '+',
abc('zeropo -N %d'%j)
abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
if j < n_pos_before - n_pos_proved:
n_proved = n_proved + 1 # keeps track of real POs proved.
elif status < Unsat:
print '-%d'%j,
else:
print '*%d'%j,
l=remove_const_pos(0)
n_pos_proved = n_pos_proved + n_proved
print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
print 'n_pos_proved = %d'%n_pos_proved
#return status
def remove_iso(L):
global n_pos_proved, n_pos_before
lst = []
for j in range(len(L)):
ll = L[j][1:]
if len(ll) == 0:
continue
else:
lst = lst + ll
zero(lst)
n_pos_proved = n_pos_proved + count_less(lst,n_pos_before - n_pos_proved)
print 'The number of POs removed by iso was %d'%len(lst)
l=remove_const_pos(0) #can an original PO be zero?
def prove_all_iso():
"""Tries to prove output k by isomorphism. Gets number of iso-eq_classes as an array of lists.
Updates n_pos_proved
"""
global n_pos_proved, n_pos_before
n_proved = 0
N = n_pos()
if n_pos() == 1:
return
print 'n_pos_proved = %d'%n_pos_proved
## run_command('&get;&iso;&put')
abc('&get;&iso')
L = eq_classes()
## print L
remove_iso(L)
print '\nThe number of POs reduced by iso was from %d to %d'%(N,n_pos())
def count_less(L,n):
count = 0
for j in range(len(L)):
if L[j] < n:
count = count + 1
return count
def prove_all_mtds(t):
"""
Tries to prove output k with multiple methods in parallel,
using other outputs as constraints. If ever an output is proved
it is set to 0 so it can't be used in proving another output to break circularity.
Finally all zero'ed ooutputs are removed.
"""
N = n_pos()
## l=remove_const_pos()
## print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
abc('w %s_osavetemp.aig'%f_name)
list = range(n_pos())
for j in list:
run_command('swappos -N %d'%j)
## l=remove_const_pos() #may not have to do this if constr works well with 0'ed outputs
abc('constr -N %d'%(n_pos()-1))
abc('fold')
## cmd = '&get;,pdr -vt=%d'%t #put in parallel.
## abc(cmd)
verify(pdrs+bmcs+intrps+sims,t)
status = get_status()
abc('r %s_osavetemp.aig'%f_name)
if status == Unsat:
print '+',
abc('zeropo -N %d'%j)
abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
print '%d'%j,
assert not is_sat(), 'one of the POs is SAT' #we can do better than this
l=remove_const_pos(0)
print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
#return status
def prove_all_pdr(t):
"""Tries to prove output k by pdr, using other outputs as constraints. If ever an output is proved
it is set to 0 so it can't be used in proving another output to break circularity.
Finally all zero'ed outputs are removed. """
N = n_pos()
## l=remove_const_pos()
print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
abc('w %s_osavetemp.aig'%f_name)
list = range(n_pos())
for j in list:
abc('swappos -N %d'%j)
## l=remove_const_pos() #may not have to do this if constr works well with 0'ed outputs
abc('constr -N %d'%(n_pos()-1))
abc('fold')
cmd = '&get;,pdr -vt=%d'%t #put in parallel.
abc(cmd)
status = get_status()
abc('r %s_osavetemp.aig'%f_name)
if status == Unsat:
print '+',
abc('zeropo -N %d'%j)
abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
print '%d'%j,
l=remove_const_pos(0)
print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
#return status
def prove_each_ind():
"""Tries to prove output k by induction, """
N = n_pos()
l=remove_const_pos(0)
print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
abc('w %s_osavetemp.aig'%f_name)
list = range(n_pos())
for j in list:
abc('cone -s -O %d'%j)
n = max(1,n_ands())
f = max(1,min(40000/n,16))
f = int(f)
abc('ind -u -C 10000 -F %d'%f)
status = get_status()
abc('r %s_osavetemp.aig'%f_name)
if status == Unsat:
print '+',
abc('zeropo -N %d'%j)
abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
print '%d'%j,
l=remove_const_pos(0)
print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
#return status
def prove_each_pdr(t):
"""Tries to prove output k by PDR. If ever an output is proved
it is set to 0. Finally all zero'ed ooutputs are removed. """
N = n_pos()
l=remove_const_pos(0)
print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
abc('w %s_osavetemp.aig'%f_name)
list = range(n_pos())
for j in list:
abc('cone -O %d -s'%j)
abc('scl -m')
abc('&get;,pdr -vt=%d'%t)
status = get_status()
abc('r %s_osavetemp.aig'%f_name)
if status == Unsat:
print '+',
abc('zeropo -N %d'%j)
abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
print '%d'%j,
l=remove_const_pos(0)
print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
#return status
def disprove_each_bmc(t):
"""Tries to prove output k by PDR. If ever an output is proved
it is set to 0. Finally all zero'ed ooutputs are removed. """
N = n_pos()
l=remove_const_pos(0)
print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
abc('w %s_osavetemp.aig'%f_name)
list = range(n_pos())
for j in list:
abc('cone -O %d -s'%j)
abc('scl -m')
abc('bmc3 -T %d'%t)
status = get_status()
abc('r %s_osavetemp.aig'%f_name)
if status == Sat:
print '+',
abc('zeropo -N %d'%j)
abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
print '%d'%j,
l=remove_const_pos(0)
print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
#return status
def add_pord(s):
global pord_trace
pord_trace = pord_trace + [s]
def pord_1_2(t):
""" two phase pord. First one tries with 10% of the time. If not solved then try with full time"""
global n_pos_proved, ifpord1, pord_on, pord_trace
#first eliminate easy POs
ttt = n_ands()/1000
if ttt < 100:
ttt=100
elif ttt<200:
ttt = 200
elif ttt< 300:
ttt = 300
else:
ttt = 500
S,lst,L = par_multi_sat(ttt,1,1,1)
lst = indices(L,1)
if 1 in L:
return [Sat]+[['par_multi_sat: SAT']]
if -1 in L:
restrict_v(L,-1)
else: return [Unsat] + [['par_multi_sat: UNSAT']]
pord_trace = []
pord_on = True # make sure that we do not reparameterize after abstract in prove_2
n_pos_proved = 0
if n_pos()<4:
return [Undecided] +[pord_trace]
if ifpord1:
add_pord('pord1')
t_time = .1*t
print 'Trying each output for %0.2f sec'%(.1*t)
result = pord_all(.1*t) #we want to make sure that there is no easy cex.
if (result <= Unsat):
return [result] + [pord_trace]
return [Undecided] + [pord_trace]
def pord_all(t,n=4):
"""Tries to prove or disprove each output j by PDRM BMC3 or SIM. in time t"""
global cex_list, n_pos_proved, last_cx, pord_on, ifpord1,pord_trace
print 'last_cx = %d, time = %0.2f'%(last_cx,t)
btime = time.time()
N = n_pos()
prove_all_ind() ############ change this to keep track of n_pos_proved
nn = n_pos()
abc('w %s_osavetemp.aig'%f_name)
if nn < n or nn*t > 300: #Just cut to the chase immediately.
return Undecided
lst = range(n_pos())
proved = disproved = []
abc('&get') #using this space to save original file.
### Be careful that & space is not changed.
cx_list = []
n_proved = 0
lcx = last_cx + 1
lst = lst[lcx:]+lst[:lcx]
lst.reverse()
n_und = 0
for j in lst:
print '\ncone %s. '%j,
abc('&r -s %s_osavetemp.aig'%f_name) #for safety
abc('&put; cone -s -O %d'%j) #puts the &space into reg-space and extracts cone j
#requires that &space is not changed. &put resets status. Use &put -s to keep status
abc('scl -m')
ps()
## print 'running sp2'
###
result = run_sp2_par(t)
if result == 'UNDECIDED':
n_und = n_und + 1
status = Undecided
if ((n_und > 1) and not ifpord1):
break
elif result == 'SAT':
status = Sat
disproved = disproved + [j]
last_cx = j
cx = cex_get()
cx_list = cx_list + [cx]
assert len(cx_list) == len(disproved), cx_list
if len(cx_list) > 0:
break
else: #is unsat here
status = Unsat
proved = proved + [j]
if j < n_pos_before - n_pos_proved:
n_proved = n_proved +1
## n_pos_proved = n_pos_proved + n_proved. #this should not be here because we should start fresh
print '\nProved %d outputs'%len(proved)
print 'Disproved %d outputs'%len(disproved)
print 'Time for pord_all was %0.2f'%(time.time() - btime)
NN = len(proved+disproved)
cex_list = cx_list
if len(disproved)>0:
assert status == Sat, 'status = %d'%status
n_pos_proved = 0 #we want to reset this because of a bad speculation
return Sat
else:
n_pos_proved = n_pos_proved + n_proved
if nn == n_pos_proved:
return Unsat
abc('r %s_osavetemp.aig'%f_name)
## abc('&put') # returning original to work spece
remove(proved,0)
print '\nThe number of unproved POs reduced from %d to %d'%(N,n_pos()),
ps()
if n_pos() > 0:
return Undecided
else:
return Unsat
def bmc_ss(t):
"""
finds a set cexs in t seconds starting at 2*N where N is depth of bmc -T 1
The cexs are put in the global cex_list
"""
global cex_list
x = time.time()
abc('bmc3 -a -C 1000000 -T %f'%(t))
if is_sat():
cex_list = cex_get_vector() #does this get returned from a concurrent process?
n = count_non_None(cex_list)
L = list_non_None(cex_list)
print '%d cexs found in %0.2f sec'%(n,(time.time()-x))
## remove_disproved_pos(cex_list)
else:
L = []
return L
def iso_slp(t=30):
F = [eval('pyabc_split.defer(sleep)(t))')]
F = F = F+[eval('(pyabc_split.defer(iso)())')]
for i,res in pyabc_split.abc_split_all(F):
if i == 0:
return
##def iter_par_multi_sat(t=10,m=1):
## while True:
## abc('w %s_save.aig'%f_name)
## S,lst1 = par_multi_sat(t,m) #run 3 engines in parallel looking for SAT outputs
## lst1.sort()
## print 'Found %d SAT POs'%len(lst1)
## abc('r %s_save.aig'%f_name)
## if len(lst1)==0:
## break
## remove(lst1,1)
## pre_simp(1,1)
## iso()
def show_partitions(L):
for i in range(len(L)):
abc('&r -s %s.aig'%L[i])
print '\nSize = ',
run_command('&ps')
abc('&popart')
eqs = eq_classes()
N = len(eqs)
print 'No. of partitions = %d'%N
if N == 1:
continue
l = []
for j in range(N):
l=l + [len(eqs[j])]
print l
def r_part(name):
read_file_quiet_i(name)
abc('&get;&scl;&scorr -C 2;&put')
res1 = reparam()
res2 = False
npos = n_pos()
## if n_pos() < 100:
## res2 = iso()
## ps()
if n_pos() < 1000:
iso()
if n_pos() < 500:
abc('r %s.aig'%name)
abc('w %s_leaf.aig'%name)
return
## abc('w %s_leaf.aig'%name)
## return
res = two_eq_part()
if res == False:
abc('r %s.aig'%name)
abc('w %s_leaf.aig'%name)
return
elif min(res) < .2*max(res) and min(res) < 500:
abc('r %s.aig'%name)
abc('w %s_leaf.aig'%name)
return
else: #recur
r_part('%s_p0'%name)
r_part('%s_p1'%name)
return
def two_eq_part():
abc('&get;&popart')
part = eq_classes()
if len(part) == 1:
print 'Partition has only one part'
return False
abc('w %s_save.aig'%f_name)
nn = n_pos()
p1=p0 = []
init = True
for i in range(len(part)): #union first half together together
if init == True:
p0=p0 + part[i]
if len(p0)>nn/2:
init = False
else:
p1 = p1 + part[i]
p0.sort()
p1.sort()
abc('&get')
remove(p1,1)
n0=n_pos()
## print 'writing %s_p0.aig'%f_name
abc('w %s_p0.aig'%f_name)
abc('r %s_save.aig'%f_name)
remove(p0,1)
## print 'writing %s_p1.aig'%f_name
n1=n_pos()
abc('w %s_p1.aig'%f_name)
return [n0,n1]
def merge_parts(p,n):
parts = []
end = []
for i in range(len(p)):
if len(p[i]) > n:
parts = parts + [p[i]]
else:
end =end + p[i]
parts = parts + [end]
return parts
def extract_parts(S=11):
abc('&get;&popart -S %d'%S)
part = eq_classes()
if len(part) == 1:
print 'Partition has only one part'
return 1
parts = merge_parts(part,2)
lp=len(parts)
print 'Found %d parts'%lp
abc('w %s_save.aig'%f_name)
for i in range(lp):
abc('r %s_save.aig'%f_name)
p=[]
for j in range(lp):
if i == j:
continue
else:
p = p + parts[j]
remove(p,1)
abc('&get;&scl;&lcorr;&put')
abc('w %s_part%d.aig'%(f_name,i))
return len(parts)
def two_part():
abc('&get;&popart')
part = eq_classes()
if len(part) == 1:
print 'Partition has only one part'
return False
part1 = part[1:] #all but the 0th
p1=[]
for i in range(len(part1)): #union together
p1=p1 + part1[i]
p1.sort()
abc('w %s_p.aig'%f_name)
remove(p1,1)
## print 'writing %s_p0.aig'%f_name
abc('w %s_p0.aig'%f_name)
n0=n_pos()
abc('r %s_p.aig'%f_name)
p0 = part[0]
p0.sort()
remove(p0,1)
## print 'writing %s_p1.aig'%f_name
n1=n_pos()
abc('w %s_p1.aig'%f_name)
return [n0,n1]
def set_t_gap(t1,t2):
nam = max(30000,n_ands())
ratio = 1+float(nam-30000)/float(70000)
gp = .5*ratio*t2
gp = min(100,gp)
t = min(100,ratio*t1)
return (t,gp)
def par_multi_sat(t=10,gap=0,m=1,H=0):
""" m = 1 means multiple of 1000 to increment offset"""
global last_gap
abc('w %s_save.aig'%f_name)
if not t == 0:
if gap == 0:
gap = max(.2,.2*t)
gap = max(15,gap)
if gap > t:
t=gap
t,gt = set_t_gap(t,gap)
gt = max(15,gt)
if gt <= last_gap:
gt = 1.2*last_gap
else:
t = gt = 5
if gt > t:
t = gt
last_gap = gt
## H = max(100, t/n_pos()+1)
if not H == 0:
H = (gt*1000)/n_pos()
H = max(min(H,1000*gt),100)
tme = time.time()
list0 = listr_0_pos() #reduces POs
list0.sort()
## print 'list0 = %s'%str(list0)
if len(list0)>0:
print 'temporarily removed %d cost-0 POs'%len(list0)
ps()
if len(list0)> 0:
print 'Found %d const-0 POs, but not removed'%len(list0)
## print ll
print 'par_multi_sat entered for %.2f sec. and gap = %.2f sec., H = %.2f'%(t,gt,H)
base = m*1000
if not m == 1:
offset = (m-1)*32000
abc('&get;&cycle -F %d;&put'%offset)
mx = 1000000000/max(1,n_latches())
N = n_pos()
na = n_ands()
F = [eval('(pyabc_split.defer(bmc3az)(t,gt,%d,H))'%(0*base))]
## if na < 50000:
F = F + [eval('(pyabc_split.defer(pdraz)(t,gt,H))')] #need pdr in??
F = F + [eval('(pyabc_split.defer(sim3az)(t,gt,%d,4,0))'%(0*base))]
F = F + [eval('(pyabc_split.defer(sleep)(t))')]
F = F + [eval('(pyabc_split.defer(sim3az)(t,gt,%d,4,0))'%(100))]
F = F + [eval('(pyabc_split.defer(bmc3az)(t,gt,%d,0))'%(100))]
if mx > 1*base:
F = F + [eval('(pyabc_split.defer(sim3az)(t,gt,%d,1,97))'%(1*base))]
F = F + [eval('(pyabc_split.defer(bmc3az)(t,gt,%d,0))'%(1*base))]
## if mx > 2*base:
## F = F + [eval('(pyabc_split.defer(sim3az)(t,gt,%d))'%(2*base))]
## F = F + [eval('(pyabc_split.defer(bmc3az)(t,gt,%d,0))'%(2*base))]
if mx > 4*base and na < 400000:
F = F + [eval('(pyabc_split.defer(sim3az)(t,gt,%d,4,23))'%(4*base))]
F = F + [eval('(pyabc_split.defer(bmc3az)(t,gt,%d,0))'%(4*base))]
## if mx > 8*base and na < 300000:
## F = F + [eval('(pyabc_split.defer(sim3az)(t,gt,%d,3,53))'%(8*base))]
## F = F + [eval('(pyabc_split.defer(bmc3az)(t,gt,%d,0))'%(8*base))]
## if mx > 16*base and na < 200000 :
## F = F + [eval('(pyabc_split.defer(sim3az)(t,gt,%d,2,79))'%(16*base))]
## F = F + [eval('(pyabc_split.defer(bmc3az)(t,gt,%d,0))'%(16*base))]
## if mx > 32*base and na < 100000:
## F = F + [eval('(pyabc_split.defer(sim3az)(t,gt,%d,1,97))'%(32*base))]
## F = F + [eval('(pyabc_split.defer(bmc3az)(t,gt,%d,0))'%(32*base))]
ss=LL=L = []
S = 'UNDECIDED'
zero_done = two_done = False
s=ss = [-1]*n_pos()
ii = []
nn = len(F)
for i,res in pyabc_split.abc_split_all(F):
ii = ii + [i]
if len(ii) == len(F)-1: #all done but sleep
break
if i == 3: #sleep timeout
print 'sleep timeout'
break
## if i == 1:
## print 'PDR produced: %s'%str(res)
#### print i
if i == 0:
zero_done = True # bmc with start at 0 is done
if i == 2:
two_done = True
if res == None: #this can happen if one of the methods bombs out
print 'Method %d returned None'%i
continue
## print res
s1 = switch(res[1]) #res[1]= s
s = merge_s(list(s),s1)
print sumsize(s)
ss = ss + [s1]
## LL = LL + [res[0]]
## L = L + res[0]
## L = [x for x in set(L)] #uniquefy
if count_less(s,0) == 0:
S = 'UNSAT'
break
# if i == 1 and is_unsat() and na < 50000: #pdr can return unsat.
## if i == 1 and is_unsat(): #pdr can return unsat.
## print 'Method pdr proved remaining POs UNSAT'
## S = 'UNSAT'
## L = res[0]
## break
## if not -1 in s:
## S = 'UNSAT'
## break
if len(ss)>1 and zero_done and two_done:
ss2 = ss[-2:] #checking if last 2 results agree
r = ss2[0]
if r == ss2[1] and count_less(r,1) < len(r): #at least 1 SAT PO found
break
## if len(LL) > 1 and zero_done and two_done:
## ll2 = LL[-2:] #checking if last 2 results agree
## if ll2[0] == ll2[1] and ll2[0] > 0:
## break
print 'Found %d SAT POs in '%(len(L)),
print 'time = %.2f'%(time.time()-tme)
print sumsize(s)
## L.sort()
## print 'L_before = %s'%(str(L))
#### check_None_status(L,s,1) #now 1 in s means sat. s can have 0 in it, meaning it found some POs unsat.
## L = merge(list(list0),list(L),1) #shift L according to list0 but do not include list0.
## print 'L_shifted = %s'%(str(L))
## # Need to return only SAT POs have to do the same for s
print 'len(s) = %d, len(list0) = %d'%(len(s),len(list0))
ss = expand(s,list0,0)
## assert list0 == indices(ss,0)
print sumsize(ss)
## assert check_consistancy(L,ss), 'inconsistant'
abc('r %s_save.aig'%f_name)
return S,[],ss
def check_consistancy(L,s):
""" L is list of SAT's found. s is index of all"""
consistant = True
print 'checking s[L]'
for j in L: #make sure that s[L] = 1
## print j,
## print s[j]
if not s[j] == 1:
print j,
consistant = False
print 'checking s=1 => L'
for j in range(len(s)): #make sure that there are no other 1's
if s[j] == 1:
if not j in L:
print j,
consistant = False
return consistant
def check_s(s1,s2):
assert len(s1) == len(s2),'lengths do not match'
miss = []
for i in range(len(s1)):
if (s1[i] == 0 and s2[i] == 1) or (s1[i] == 1 and s2[i] == 0):
miss = miss + [i]
print miss
def merge_s(s1,s2):
assert len(s1) == len(s2), 'error in lengths, s1 = %s, s2 = %s'%(str(s1),str(s2))
s = [-1]*len(s1)
for i in range(len(s1)):
if not s1[i] == s2[i]:
if s1[i] == -1 or s2[i] == -1:
s[i] = max(s1[i],s2[i])
else:
print 'error: conflict in values at i = %d'%i
print 's1[i]=%d,s2[i]=%d'%(s1[i],s2[i])
else: #put in common value
s[i] = s1[i]
return s
def switch(ss):
""" This changes the convention of SAT and UNSAT to SAT = 1, UNSAT = 0"""
s1 = ss
for i in range(len(ss)):
si = ss[i]
if si == 0:
s1[i] = 1
elif si == 1:
s1[i] = 0
return s1
def pdr_ss_r(t):
"""
assumes that 0 POs have been removed
finds a set cexs in t seconds. Returns list of SAT POs found
"""
global cex_list
x = time.time()
abc('pdr -az -T %f'%(t))
if is_sat():
print 'entering cex get vector'
cex_list = cex_get_vector() #does this get returned from a concurrent process?
## n = count_non_None(cex_list)
print len(cex_list)
L = list_non_None(cex_list)
n = len(L)
print '%d cexs found in %0.2f sec.'%(n,(time.time()-x))
if n == len(cex_list):
print 'all remaining POs are SAT'
## return L
else:
remove_disproved_pos(cex_list) #note that this will not remove all POs
else:
L = []
print 'T = %0.2f'%(time.time()-x)
return L
def bmc_ss_r(t):
"""
assumes that 0 POs have been removed
finds a set cexs in t seconds. Returns list of SAT POs found
"""
global cex_list
x = time.time()
abc('bmc3 -az -C 1000000 -T %f'%(t))
if is_sat():
print 'entering cex get vector'
cex_list = cex_get_vector() #does this get returned from a concurrent process?
## n = count_non_None(cex_list)
L = list_non_None(cex_list)
n= len(L)
print '%d cexs found in %0.2f sec.'%(n,(time.time()-x))
if n == len(cex_list):
print 'all remaining POs are SAT'
## return L
else:
remove_disproved_pos(cex_list) #note that this will not remove all POs
else:
L = []
print 'T = %0.2f'%(time.time()-x)
return L
def sim_ss_r(t):
"""
assumes that 0 POs have been removed
finds a set cexs in t seconds. Returns list of SAT POs found
"""
global cex_list
x = time.time()
run_command('sim3 -az -T %f'%(t))
if is_sat():
print 'entering cex get vector'
cex_list = cex_get_vector() #does this get returned from a concurrent process?
## n = count_non_None(cex_list)
L = list_non_None(cex_list)
n = len(L)
print '%d cexs found in %0.2f sec.'%(n,(time.time()-x))
if n == len(cex_list):
print 'all remaining POs are SAT'
## return L
else:
remove_disproved_pos(cex_list) #note that this will not remove all POs
else:
L = []
print 'T = %0.2f'%(time.time()-x)
return L
def check_None_status(L,s=[],v=0):
""" L is the PO numbers that had non_None in
0 means sat and 1 means unsat is
v tells which value means sat"""
if s == []:
s = status_get_vector()
error = False
for j in L:
if s[j] == v:
continue
else:
error = True
for i in range(len(s)):
if s[i] == v:
if i in L:
continue
else:
error = True
if error:
print 'status and non_None do not agree'
print 'L = %d'%L
print 'SAT and UNSAT counts switched'
print sumsize(s)
def list_non_None(lst):
""" return [i for i,s in enumerate(cex_list) if not s == None]"""
L = []
for i in range(len(lst)):
if not lst[i] == None:
L = L + [i]
return L
def count_non_None(lst):
#return len([i for i,s in enumerate(cex_list) if not s == None]
count = 0
for i in range(len(lst)):
if not lst[i] == None:
count = count + 1
return count
def remove_disproved_pos(lst):
for i in range(len(lst)):
if not lst[i] == None:
abc('zeropo -N %d'%i)
l=remove_const_pos(0)
def remove_proved_pos(lst):
for i in range(len(lst)):
if lst[i] > -1:
abc('zeropo -N %d'%i)
remove_const_pos(0)
def bmc_j(t=900):
""" finds a cex in t seconds starting at 2*N where N is depth of bmc -T 1"""
x = time.time()
tt = min(5,max(1,.05*t))
abc('bmc3 -T %0.2f'%tt)
if is_sat():
## print 'cex found in %0.2f sec at frame %d'%((time.time()-x),cex_frame())
return get_status()
## abc('bmc3 -T 1')
N = n_bmc_frames()
N = max(1,N)
## print bmc_depth()
## abc('bmc3 -C 1000000 -T %f -S %d'%(t,int(1.5*max(3,max_bmc))))
cmd = 'bmc3 -J 2 -D 4000 -C 1000000 -T %f -S %d'%(t,2*N)
## print cmd
abc(cmd)
## if is_sat():
## print 'cex found in %0.2f sec at frame %d'%((time.time()-x),cex_frame())
return RESULT[get_status()]
def pdrseed(t=900):
"""uses the abstracted version now"""
## abc('&get;,treb -rlim=60 -coi=3 -te=1 -vt=%f -seed=521'%t)
abc('&get;,treb -rlim=100 -vt=%f -seed=521'%t)
return RESULT[get_status()]
def pdrold(t):
abc('&get; ,pdr -vt=%f'%t)
return RESULT[get_status()]
def pdr(t=900):
abc('&get; ,treb -vt=%f'%t)
return RESULT[get_status()]
def pdr0(t=900):
abc('&get; ,pdr -rlim=100 -vt=%f'%t)
return RESULT[get_status()]
def pdra(t=900):
## abc('&get; ,treb -rlim=100 -ssize -pre-cubes=3 -vt=%f'%t)
abc('&get; ,treb -abs -rlim=100 -sat=abc -vt=%f'%t)
return RESULT[get_status()]
def pdrm(t=900):
abc('pdr -C 0 -T %f'%t)
return RESULT[get_status()]
def pdrmm(t):
abc('pdr -C 0 -M 298 -T %f'%t)
return RESULT[get_status()]
def bmc2(t):
abc('bmc2 -C 1000000 -T %f'%t)
return RESULT[get_status()]
def bmc(t=900):
abc('&get; ,bmc -vt=%d'%t)
return RESULT[get_status()]
def intrp(t=900):
abc('&get; ,imc -vt=%d'%t)
return RESULT[get_status()]
def bmc3az(t=900,gt=10,C=999,H=0):
t_init = time.time()
if C > 999:
abc('&get; &cycle -F %d; &put'%C)
abc('bmc3 -az -C 1000000 -T %d -G %d -H %.2f'%(t,gt,H))
cex_list = cex_get_vector()
L = list_non_None(cex_list)
## check_None_status(L)
print 'bmc3az(%.2f,%.2f,%d,%d): CEXs = %d, time = %.2f'%(t,gt,C,H,len(L),(time.time()-t_init))
## s = status_get_vector()
s = [-1]*n_pos()
for j in L:
s[j]=0 #0 here means SAT. It will be switched in par_multi_sat
return L,s
def pdraz(t=900,gt=10,H=0):
print 'pdraz entered with t = %.2f, gt = %.2f, H = %.2f'%(t,gt,H)
t_init = time.time()
run_command('pdr -az -T %d -G %d -H %.2f'%(t,gt,H))
cex_list = cex_get_vector()
L = list_non_None(cex_list)
## check_None_status(L)
s = status_get_vector()
if s == None:
print "status_get_vector returned None"
else:
print 'Number of UNSAT POs = %d'%(len(s) - count_less(s,1))
print 'pdraz(%.2f,%.2f,%d): CEXs = %d, time = %.2f'%(t,gt,H,len(L),(time.time()-t_init))
return L,s
def sim3az(t=900,gt=10,C=1000,W=5,N=0):
""" N = random seed, gt is gap time, W = # words, F = #frames"""
t_init = time.time()
if C > 1000:
abc('&get; &cycle -F %d; &put'%C)
abc('sim3 -az -T %.2f -G %.2f -F 40 -W %d -N %d'%(t,gt,W,N))
cex_list = cex_get_vector()
L = list_non_None(cex_list)
## check_None_status(L)
s = [-1]*n_pos()
for i in L:
s[i] = 0 #0 indicates SAT here
print 'sim3az(%.2f,%.2f,%d,%d,%d): CEXs=%d, time = %.2f'%(t,gt,C,W,N,len(L),(time.time()-t_init))
return L,s
def bmc3(t=900):
abc('bmc3 -C 1000000 -T %d'%t)
return RESULT[get_status()]
def intrpm(t=900):
abc('int -C 1000000 -F 10000 -K 1 -T %d'%t)
print 'intrpm: status = %d'%get_status()
return RESULT[get_status()]
def split(n):
global aigs
abc('orpos;&get')
abc('&posplit -v -N %d;&put;dc2'%n)
res =a_trim()
def keep_splitting():
for j in range(5):
split(5+j)
no = n_pos()
status = prove_g_pos_split()
if status <= Unsat:
return status
if no == n_pos():
return Undecided
def drill(n):
run_command('&get; &reachm -vcs -H 5 -S %d -T 50 -C 40'%n)
def pre_reduce():
x = time.clock()
pre_simp()
write_file('smp')
abstract(ifbip)
#### write_file('abs')
print 'Time = %0.2f'%(time.clock() - x)
def sublist(L,I):
# return [s for i,s in enumerate(L) if i in I]
z = []
for i in range(len(I)):
s = L[I[i]],
s = list(s)
z = z + s
return z
#PARALLEL FUNCTIONS
""" funcs should look like
funcs = [pyabc_split.defer(abc)('&get;,bmc -vt=50;&put'),pyabc_split.defer(super_prove)()]
After this is executed funcs becomes a special list of lambda functions
which are given to abc_split_all to be executed as in below.
It has been set up so that each of the functions works on the current aig and
possibly transforms it. The new aig and status is always read into the master when done
"""
def tf():
result = top_fork()
return result
def top_fork(J,t):
global x_factor, final_verify_time, last_verify_time, methods
set_globals()
mtds = sublist(methods,J)
F = create_funcs(J,t)
print 'Running %s in parallel for max %d sec.'%(mtds,t)
(m,result) = fork_last(F,mtds) #FORK here
return get_status()
def run_sp2_par(t):
""" Runs the single method simple, timed for t seconds."""
global cex_list,methods, pord_trace
J = slps+[6] #6 is the 'simple' method
## mtds = sublist(methods,J)
## print mtds,
print 'time = %0.2f'%t
funcs = create_funcs(J,t)
y = time.time()
for i,res in pyabc_split.abc_split_all(funcs):
## print 'i,res = %d,%s'%(i,res)
T = time.time()-y
if i == 0:
print 'Timer expired in %0.2f'%T
return 'UNDECIDED'
else:
## print i,res
#note simple returns a vector
mtd = res[1]
ress = res[0]
if ress == 'UNSAT':
print 'simple proved UNSAT in %0.2f sec.'%T
add_pord('UNSAT by %s'%mtd)
return 'UNSAT'
elif ress == 'UNDECIDED':
print 'simple returned UNDECIDED in %0.2f sec.'%T
return 'UNDECIDED'
if ress == 'SAT':
print 'simple found cex in %0.2f sec.'%T
add_pord('SAT by %s'%mtd)
return 'SAT'
else:
assert False, 'ress = %s'%ress
def run_parallel(J,t,BREAK='US'):
""" Runs the listed methods J, each for time = t, in parallel and
breaks according to BREAK = subset of '?USLB'"""
global cex_list, methods
mtds = sublist(methods,J)
F = create_funcs(J,t) #if J = [] we are going to create functions that process each output separately.
#if 18, then these are run in parallel with sleep
if ((J == []) ):
result = fork_break(F,mtds,BREAK)
## #redirect here to suppress printouts.
## with redirect.redirect( redirect.null_file, sys.stdout ):
## with redirect.redirect( redirect.null_file, sys.stderr ):
## result = fork_break(F,mtds,BREAK)
elif 'L' in BREAK:
result = fork_last(F,mtds)
elif 'B' in BREAK:
result = fork_best(F,mtds)
else:
result = fork_break(F,mtds,BREAK)
return result
def fork_all(funcs,mtds):
"""Runs funcs in parallel and continue running until all are done"""
global methods
y = time.time()
for i,res in pyabc_split.abc_split_all(funcs):
status = prob_status()
t = time.time()-y
if not status == -1: #solved here
if status == 1: #unsat
print '%s proved UNSAT in %f sec.'%(mtds[i],t)
else:
print '%s found cex in %f sec. - '%(mtds[i],t),
if not mtds[i] == 'REACHM':
print 'cex depth at %d'%cex_frame()
else:
print ' '
continue
else:
print '%s was undecided in %f sec. '%(mtds[i],t)
return i,res
def fork_break(funcs,mtds,BREAK):
"""
Runs funcs in parallel and breaks according to BREAK <= '?US'
If mtds = 'sleep' or [], we are proving outputs in parallel
Saves cex's found in cex_list in case we are proving POs.
"""
global methods,last_verify_time,seed,cex_list,last_winner,last_cex
seed = seed + 3 # since parallel processes do not chenge the seed in the prime process, we need to change it here
cex_list = lst = []
y = time.time() #use wall clock time because parent fork process does not use up compute time.
for i,res in pyabc_split.abc_split_all(funcs):
status = get_status()
t = time.time()-y
lm = len(mtds)
if ((lm < 2) and not i == 0): # the only single mtds case is where it is 'sleep'
M = 'Output %d'%(i-lm)
else:
M = mtds[i]
last_winner = M
if M == 'sleep':
print 'sleep: time expired in %0.2f sec.'%(t)
## return 0,[Undecided]+[M]
## assert status >= Unsat,'status = %d'%status
break
if ((status > Unsat) and '?' in BREAK): #undecided
break
elif status == Unsat or res == 'UNSAT': #unsat
print '%s: UNSAT in %0.2f sec.'%(M,(t))
status = Unsat
if 'U' in BREAK:
break
elif status < Unsat or res == 'SAT': #status == 0 - cex found
status = Sat
if M in methods:
if methods.index(M) in exbmcs+allreachs+allpdrs+[1]: #set the known best depth so far. [1] is interp
set_max_bmc(n_bmc_frames())
last_cex = M
print '%s: -- cex in %0.2f sec. at depth %d => '%(M,t,cex_frame()),
cex_list = cex_list+[cex_get()] #accumulates multiple cex's and puts them on list.
if len(cex_list)>1:
print 'len(cex_list): %d'%len(cex_list)
if 'S' in BREAK:
break
else:
continue
add_trace('%s by %s'%(RESULT[status],M))
return i,[status]+[M]
def fork_best(funcs,mts):
""" fork the functions, If not solved, take the best result in terms of AIG size"""
global f_name
n = len(mts)-1
r = range(len(mts))
y = time.time()
m_best = -1
best_size = [n_pis(),n_latches(),n_ands()]
## print best_size
abc('w %s_best_aig.aig'%f_name)
for i,res in pyabc_split.abc_split_all(funcs):
if mts[i] == 'sleep':
m_best = i
break
r = delete(r,i)
if len(r) == 1:
if mts[r[0]] == 'sleep':
break
status = prob_status()
if not status == -1: #solved here
m = i
t = time.time()-y
if status == 1: #unsat
print '%s proved UNSAT in %f sec.'%(mts[i],t)
else:
print '%s found cex in %f sec. - '%(mts[i],t),
break
else:
cost = rel_cost(best_size)
if cost < 0:
best_size = [n_pis(),n_latches(),n_ands()]
m_best = i
abc('w %s_best_aig.aig'%f_name)
abc('r %s_best_aig.aig'%f_name)
add_trace('%s'%mts[m_best])
return m_best,res
def delete(r,i):
""" remove element in the list r that corresponds to i """
ii = r.index(i)
z = []
for i in range(len(r)):
if i == ii:
continue
else:
z = z + [r[i]]
return z
def take_best(funcs,mts):
""" fork the functions, If not solved, take the best result in terms of AIG size"""
global f_name
n = len(mts)-1
y = time.time()
m_best = -1
best_size = 1000000
abc('w %s_best_aig.aig'%f_name)
for i,res in pyabc_split.abc_split_all(funcs):
if n_ands() < best_size:
best_size = n_ands()
m_best = i
abc('w %s_best_aig.aig'%f_name)
abc('r %s_best_aig.aig'%f_name)
return m_best,res
def fork_last(funcs,mtds):
""" fork the functions, and take first definitive answer, but
if last method ends first, then kill others"""
global m_trace,hist,sec_options
n = len(mtds)-1
m = -1
y = time.time()
sres =lst = ''
## print mtds
#print 'starting fork_last'
for i,res in pyabc_split.abc_split_all(funcs):
## print i,res
status = prob_status()
if mtds[i] == 'par_scorr' and n_ands() == 0:
add_trace('UNSAT by %s'%res)
return i,Unsat
if not status == -1 or res in ['SAT','UNSAT']: #solved here
m = i
t = int(time.time()-y)
if status == 1 or res == 'UNSAT': #unsat
sres = str(res)
res = Unsat
print '%s proved UNSAT in %d sec.'%(mtds[i],t)
else:
res = Sat
print '%s found cex in %0.2f sec. - '%(mtds[i],(t)),
break
elif i == n:
## print res
if mtds[i] == 'pre_simp':
m_trace = m_trace + [res[1]]
hist = res[2]
t = int(time.time()-y)
m = i
if mtds[i] == 'initial_speculate':
return m,res
else:
print '%s: UNDECIDED in %d sec.'%(mtds[i],t)
res = Undecided
ps()
break
elif mtds[i] == 'sleep':
res = Undecided
t = time.time()-y
print 'Timer expired in %0.2f'%t
break
lst = lst + ', '+mtds[i]
## sres = str(res)
if sres[:5] == 'scorr':
add_trace('UNSAT by %s'%sres)
return m,Unsat
add_trace('%s by %s'%(RESULT[res],mtds[i]))
return m,res
def fork(funcs,mtds):
""" runs funcs in parallel This keeps track of the verify time
when a cex was found, and if the time to find
the cex was > 1/2 allowed time, then last_verify_time is increased by 2"""
global win_list, methods, last_verify_time,seed
beg_time = time.time()
i,res = fork_break(funcs,mtds,'US') #break on Unsat of Sat.
t = time.time()-beg_time #wall clock time because fork does not take any compute time.
if t > .4*last_verify_time:
## if t > .15*last_verify_time: ##### temp
t = last_verify_time = last_verify_time + .1*t
#print 'verify time increased to %s'%convert(t)
assert res[0] == get_status(),'res: %d, status: %d'%(res,get_status())
## add_trace('%s by %s'%(RESULT[res[0]],mtds[i]))
return i,res
def save_time(M,t):
global win_list,methods
j = methods.index(M)
win_list = win_list + [(j,t)]
#print win_list
def summarize(lst):
result = [0]*10
for j in range(len(lst)):
k = lst[j]
result[k[0]]=result[k[0]]+k[1]
return result
def top_n(lst,n):
result = []
ll = list(lst) #makes a copy
m = min(n,len(ll))
for i in range(m):
mx_index = ll.index(max(ll))
result = result + [mx_index]
ll[mx_index] = -1
return result
def super_pre_simp():
while True:
nff = n_latches()
print 'Calling pre_simp'
pre_simp()
if n_latches() == nff:
break
#______________________________
#new synthesis command
####def synculate(t):
#### """
#### Finds candidate sequential equivalences and refines them by simulation, BMC, or reachability
#### using any cex found. If any are proved, then they are used to reduce the circuit. The final aig
#### is a new synthesized circuit where all the proved equivalences are merged.
#### If we put this in a loop with increasing verify times, then each time we work with a simpler model
#### and new equivalences. Should approach srm. If in a loop, we can remember the cex_list so that we don't
#### have to deal with disproved equivalences. Then use refine_with_cexs to trim the initial equivalences.
#### If used in synthesis, need to distinguish between
#### original outputs and new ones. Things to take care of: 1. a PO should not go away until it has been processes by merged_proved_equivalences
#### 2. Note that &resim does not use the -m option where as in speculation - m is used. It means that if
#### an original PO isfound to be SAT, the computation quits becasue one of the output
#### miters has been disproved.
#### """
#### global G_C,G_T,n_pos_before, x_factor, n_latches_before, last_verify_time, f_name,cex_list, max_verify_time
####
####
#### def refine_with_cexs():
#### """Refines the gores file to reflect equivalences that go away because of cexs in cex_list"""
#### global f_name
#### abc('&r %s_gores.aig'%f_name)
#### for j in range(len(cex_list)):
#### cex_put(cex_list[j])
#### run_command('&resim') #put the jth cex into the cex space and use it to refine the equivs
#### abc('&w %s_gores.aig'%f_name)
#### return
####
#### def generate_srms():
#### """generates a synthesized reduced model (srms) from the gores file"""
#### global f_name, po_map
#### abc('&r %s_gores.aig; &srm -sf; r gsrms.aig; w %s_gsrms.aig'%(f_name,f_name))
#### print 'New srms = ',ps()
#### po_map = range(n_pos())
#### return 'OK'
####
#### def merge_proved_equivalences():
#### #this only changes the gores file.
#### run_command('&r %s_gores.aig; &equiv_mark -vf %s_gsrms.aig; &reduce -v; &w %s_gores.aig'%(f_name,f_name,f_name))
#### return
####
#### def generate_equivalences():
#### set_globals()
#### t = max(1,.5*G_T)
#### r = max(1,int(t))
#### cmd = "&get; &equiv2 -C %d -F 200 -T %f -S 1 -R %d"%((G_C),t,r)
#### abc(cmd)
#### #run_command('&ps')
#### eq_simulate(.5*t)
#### #run_command('&ps')
#### cmd = '&semi -W 63 -S 5 -C 500 -F 20 -T %d'%(.5*t)
#### abc(cmd)
#### #run_command('&ps')
#### run_command('&w %s_gores.aig'%f_name)
####
#### l=remove_const_pos() #makes sure no 0 pos to start
#### cex_list = []
#### n_pos_before = n_pos()
#### n_latches_before = n_latches()
###### print 'Generating equivalences'
#### generate_equivalences()
###### print 'Generating srms file'
#### generate_srms() #this should not create new 0 pos
###### if n_pos()>100:
###### removed
#### l=remove_const_pos()
#### n_pos_last = n_pos()
#### if n_pos_before == n_pos():
#### print 'No equivalences found. Quitting synculate'
#### return Undecided_no_reduction
#### print 'Initial synculation: ',ps()
###### ps()
#### set_globals()
#### simp_sw = init = True
#### simp_sw = False #temporary
#### print '\nIterating synculation refinement'
#### abc('w initial_sync.aig')
#### max_verify_time = t
#### print 'max_verify_time = %d'%max_verify_time
#### """
#### in the following loop we increase max_verify_time by twice time spent to find last cexs or Unsat's
#### We iterate only when we have proved cex + unsat > 1/2 n_pos. Then we update srms and repeat.
#### """
#### while True: # refinement loop
#### t = max_verify_time #this may have been increased since the last loop
###### print 'max_verify_time = %d'%max_verify_time
#### set_globals()
#### if not init:
#### generate_srms() #generates a new gsrms file and leaves it in workspace
###### print 'generate_srms done'
#### if n_pos() == n_pos_before:
#### break
#### if n_pos() == n_pos_last: #if nothing new, then quit if max_verification time is reached.
#### if t > max_verify_time:
#### break
#### if simp_sw: #Warning: If this holds then simplify could create some 0 pos
#### na = n_ands()
#### simplify()
#### while True:
#### npo = n_pos()
###### print 'npos = %d'%npo
#### merge_proved_equivalences() #So we need to merge them here. Can merging create more???
#### generate_srms()
#### if npo == n_pos():
#### break
#### if n_ands() > .7*na: #if not significant reduction, stop simplification
#### simp_sw = False #simplify only once.
#### if n_latches() == 0:
#### return check_sat()
#### n_pos_last = n_pos()
#### init = False # make it so that next time it is not the first time through
#### syn_par(t)
#### if (len(cex_list)+len(result)) == 0: #nothing happened aand ran out of time.
#### break
#### abc('w %s_gsrms.aig'%f_name)
#### #print 'No. of cexs after syn_parallel = %d'%len(cex_list)
#### merge_proved_equivalences() #changes the underlying gores file by merging fanouts of proved eqs
#### #print 'merge done'
#### refine_with_cexs() #changes the gores file by refining the equivalences in it using cex_list.
#### #print 'refine_with_cexs done'
#### continue
#### extract(0,n_pos_before) #get rid of unproved outputs
#### return
####
####def syn_par(t):
#### """prove n outputs at once and quit at first cex. Otherwise if no cex found return aig
#### with the unproved outputs"""
#### global trim_allowed,max_verify_time, n_pos_before
#### global cex_list, result
#### b_time = time.time()
#### n = n_pos()
#### if n == n_pos_before:
#### return
#### mx = n_pos()
#### if n_pos() - n_pos_before > 50:
#### mx = n_pos_before + 50
#### r = range(n_pos_before, mx)
#### N = max(1,(mx-n_pos_before)/2)
#### abc('w %s__ysavetemp.aig'%f_name)
#### F = [eval(FUNCS[18])] #create a timer function
#### #print r
#### for i in r:
#### F = F + [eval('(pyabc_split.defer(verify_only)(%d,%d))'%(i,t))]
#### cex_list = result = []
#### outcome = ''
#### #redirect printout here
###### with redirect.redirect( redirect.null_file, sys.stdout ):
###### with redirect.redirect( redirect.null_file, sys.stderr ):
#### for i,res in pyabc_split.abc_split_all(F):
#### status = get_status()
###### print i
#### if i == 0: #timed out
#### outcome = 'time expired after = %d'%(time.time() - b_time)
#### break
#### if status < Unsat:
#### cex_list = cex_list + [cex_get()]
#### if status == Unsat:
#### result = result + [r[i-1]]
#### if (len(result)+len(cex_list))>= N:
#### T = time.time() - b_time
#### if T > max_verify_time/2:
#### max_verify_time = 2*T
#### break
#### continue
#### if not outcome == '':
#### print outcome
###### print 'cex_list,prove_list = ',cex_list,result
#### abc('r %s__ysavetemp.aig'%f_name) #restore initial aig so that pos can be 0'ed out
#### if not result == []: # found some unsat's
###### min_r = min(result)
###### max_r = max(result)
###### no = n_pos()
###### assert (0 <= min_r and max_r < no), 'min_r, max_r, length = %d, %d, %d'%(min_r,max_r,len(result))
#### zero(result)
#### return
#### #print "Number PO's proved = %d"%len(result)
####
####def absec(n):
#### #abc('w t.aig')
#### for j in range(n):
#### print '\nFrame %d'%(j+1)
#### run_command('absec -F %d'%(j+1))
#### if is_unsat():
#### print 'UNSAT'
#### break
####
####
####"""
#### we might be proving some original pos as we go, and on the other hand we might have some equivalences that we
#### can't prove. There are two uses, in verification
#### verification - we want to remove the proved pos whether they are original or not. But if a cex for an original, then need to
#### remember this.
#### synthesis - the original outputs need to be kept and ignored in terms of cex's - supposedly they can't be proved.
####"""
####
####""" Experimental"""
####
####def csec():
#### global f_name
#### if os.path.exists('%s_part0.aig'%f_name):
#### os.remove('%s_part0.aig'%f_name)
#### run_command('demiter')
#### if not os.path.exists('%s_part0.aig'%f_name):
#### return
#### run_command('r %s_part0.aig'%f_name)
#### ps()
#### run_command('comb')
#### ps()
#### abc('w %s_part0comb.aig'%f_name)
#### run_command('r %s_part1.aig'%f_name)
#### ps()
#### run_command('comb')
#### ps()
#### abc('w %s_part1comb.aig'%f_name)
#### run_command('&get; &cec %s_part0comb.aig'%(f_name))
#### if is_sat():
#### return 'SAT'
#### if is_unsat():
#### return 'UNSAT'
#### else:
#### return 'UNDECIDED'
###########################
#### we will verify outputs ORed in groups of g[i]
#### here we take div = N so no ORing
## div = max(1,N/1)
## g = distribute(N,div)
## if len(g) <= 1:
## t = tt
## g.reverse()
#### print g
## x = 0
## G = []
## for i in range(div):
## y = x+g[i]
## F = F + [eval('(pyabc_split.defer(verify_range)(%d,%d,%s))'%(x,y,convert(t)))]
## G = G + [range(x,y)]
## x = y
#### print G
###########################
""" These commands map into luts and leave the result in mapped format. To return to aig format, you
have to do 'st'
"""
def sop_balance(k=4):
'''minimizes LUT logic levels '''
## kmax = k
kmax=min(k+2,15)
abc('st; if -K %d;ps'%kmax)
print nl(),
## for i in range(1):
## abc('st; if -K %d;ps'%kmax)
## run_command('ps')
kmax=min(k+2,15)
abc('st; if -g -C %d -K %d -F 2;ps'%(10,kmax)) #balance
print nl(),
for i in range(1):
abc('st;dch; if -C %d -K %d;ps'%(10,kmax))
print nl(),
def speedup(k=4):
run_command('speedup;if -K %d'%k)
print nl()
def speed_tradeoff(k=4):
print nl(),
best = n_nodes()
abc('write_blif %s_bestsp.blif'%f_name)
L_init = n_levels()
while True:
L_old = n_levels()
L = L_old -1
abc('speedup;if -D %d -F 2 -K %d -C 11'%(L,k))
if n_nodes() < best:
best = n_nodes()
abc('write_blif %s_bestsp.blif'%f_name)
if n_levels() == L_old:
break
print nl(),
continue
abc('r %s_bestsp.blif'%f_name)
return
def area_tradeoff(k=4):
print nl(),
best = n_nodes()
abc('write_blif %s_bestsp.blif'%f_name)
L_init = n_levels()
while True:
L_old = n_levels()
L = L_old +1
n_nodes_old = n_nodes()
abc('speedup;if -a -D %d -F 2 -K %d -C 11'%(L,k))
if n_nodes() < best:
best = n_nodes()
abc('write_blif %s_bestsp.blif'%f_name)
## if n_levels() == L_old:
if n_nodes == n_nodes_old:
break
print nl(),
continue
abc('r %s_bestar.blif'%f_name)
return
def map_lut_dch(k=4):
'''minimizes area '''
abc('st; dch; if -a -F 2 -K %d -C 11; mfs2 -a -L 50 ; lutpack -L 50'%k)
def map_lut_dch_iter(k=8):
## print 'entering map_lut_dch_iter with k = %d'%k
best = n_nodes()
abc('write_blif %s_best.blif'%f_name)
## abc('st;dch;if -a -K %d -F 2 -C 11; mfs -a -L 1000; lutpack -L 1000'%k)
## if n_nodes() < best:
## abc('write_blif %s_best.blif'%f_name)
## best = n_nodes()
## print nl(),
## else:
## abc('r %s_best.blif'%f_name)
## best = n_nodes()
## abc('write_blif %s_best.blif'%f_name)
## print 'best = %d'%best
n=0
while True:
map_lut_dch(k)
if n_nodes()< best:
best = n_nodes()
## print 'best=%d'%best
n = 0
abc('write_blif %s_best.blif'%f_name)
print nl(),
continue
else:
n = n+1
if n>2:
break
abc('r %s_best.blif'%f_name)
def dmitri_iter(k=8):
best = 100000
n=0
while True:
dmitri(k)
if n_nodes()< best:
best = n_nodes()
## print '\nbest=%d'%best
n = 0
abc('write_blif %s_best.blif'%f_name)
continue
else:
n = n+1
if n>2:
break
abc('r %s_best.blif'%f_name)
## run_command('cec -n %s.aig'%f_name)
print nl()
def shrink():
tm = time.time()
best = n_ands()
while True:
abc('&get;&if -K 4 -F 1 -A 0 -a;&shrink;&put')
print n_ands(),
if n_ands()< .99*best:
best = n_ands()
continue
break
print 't = %.2f, '%(time.time()-tm),
ps()
def shrink_lut():
tm = time.time()
abc('&get;&if -K 4 -F 1 -A 0 -a;&put')
best = n_nodes()
print best,
abc('&shrink')
while True:
abc('&if -K 4 -F 1 -A 0 -a;&put')
print n_nodes(),
if n_nodes() < .99*best:
best = n_nodes()
abc('&shrink')
continue
break
abc('&put')
print 'time = %.2f, '%(time.time()-tm),
ps()
def map_lut(k=4):
'''minimizes edge count'''
for i in range(5):
abc('st; if -e -K %d; ps; mfs ;ps; lutpack -L 50; ps'%(k))
print nl(),
def extractax(o=''):
abc('extract -%s'%o)
def nl():
return [n_nodes(),n_levels()]
def dc2_iter(th=.999):
abc('st')
tm = time.time()
while True:
na=n_ands()
abc('dc2')
print n_ands(),
## print nl(),
if n_ands() > th*na:
break
print 't = %.2f, '%(time.time()-tm),
ps()
## print n_ands()
def drw_iter(th=.999):
abc('st')
tm = time.time()
while True:
na=n_ands()
abc('drw')
print n_ands(),
## print nl(),
if n_ands() > th*na:
break
print 't = %.2f, '%(time.time()-tm),
ps()
## print n_ands()
def adc2_iter(th=.999):
abc('st;&get')
while True:
na=n_ands()
abc('&dc2;&put')
## print n_ands(),
if n_ands() > th*na:
break
print n_ands()
def try_extract():
## abc('dc2;dc2')
print 'Initial: ',
ps()
na = n_ands()
## abc('w %s_savetemp.aig'%f_name)
#no need to save initial aig since fork_best will return initial if best.
J = [32,33]
mtds = sublist(methods,J)
F = create_funcs(J,0)
(m,result) = take_best(F,mtds) #FORK here
if not m == -1:
print 'Best extract is %s: '%mtds[m],
ps()
## if (n_ands() < na):
## return
## else:
## abc('r %s_savetemp.aig'%f_name)
def speedup_iter(k=8):
abc('st;if -K %d'%k)
run_command('ps')
abc('write_blif %s_bests.blif'%f_name)
run_command('ps')
best = n_levels()
print 'n_levels before speedup = %d'%n_levels()
n=0
while True:
nl()
abc('speedup;if -K %d'%k)
if n_levels() < best:
best = n_levels()
abc('write_blif %s_bests.blif'%f_name)
n=0
else:
n = n+1
if n>2:
break
abc('r %s_bests.blif'%f_name)
print 'n_levels = %d'%n_levels()
def jog(n=16):
""" applies to a mapped blif file"""
run_command('eliminate -N %d;fx'%n)
run_command('if -K %d'%(n/2))
run_command('fx')
def perturb_f(k=4):
abc('st;dch;if -g -K %d'%(k))
## snap()
abc('speedup;if -K %d -C 10'%(k))
jog(5*k)
## snap()
## abc('if -a -K %d -C 11 -F 2;mfs -a -L 50;lutpack -L 50'%k
def perturb(k=4):
abc('st;dch;if -g -K %d'%k)
## snap()
abc('speedup;if -K %d -C 10'%(k))
def preprocess(k=4):
n_initial = n_nodes()
abc('write_blif %s_temp_initial.blif'%f_name)
## abc('st;dc2')
abc('w %s_temp_initial.aig'%f_name)
ni = n_pis() + n_latches()
res = 1
if ni >= 101:
abc('st;if -a -F 2 -K %d'%k)
return res
## dc2_iter()
abc('st;if -a -K %d'%k) # to get plain direct map
if n_nodes() > n_initial:
abc('r %s_temp_initial.blif'%f_name)
res = 1
#plain
n_plain = n_nodes()
## print nl()
abc('write_blif %s_temp_plain.blif'%f_name)
#clp
abc('st;clp; if -a -K %d'%k)
## print nl()
abc('write_blif %s_temp_clp.blif'%f_name)
n_clp = n_nodes()
#clp_lutmin
abc('r %s_temp_initial.blif'%f_name)
abc('st;clp;lutmin -K %d;'%k)
abc('write_blif %s_temp_clp_lut.blif'%f_name)
n_clp_lut = n_nodes()
## print nl()
if n_plain <= min(n_clp,n_clp_lut):
abc('r %s_temp_plain.blif'%f_name)
res = 1
elif n_clp < n_clp_lut:
abc('r %s_temp_clp.blif'%f_name)
res = 1
else:
abc('r %s_temp_clp_lut.blif'%f_name)
res = 1
## print nl()
return res
def snap():
## abc('fraig;fraig_store')
abc('fraig_store')
def snap_bestk(k):
abc('write_blif %s_temp.blif'%f_name)
unsave_bestk(k)
snap()
abc('r %s_temp.blif'%f_name)
def cec_it():
""" done because &r changes the names. Can't use -n because rfraig_store reorders pis and pos."""
abc('write_blif %s_temp.blif'%f_name)
abc('&r -s %s.aig;&put'%f_name)
run_command('cec %s_temp.blif'%f_name)
abc('r %s_temp.blif'%f_name)
def save_bestk(b,k):
## if os.access('%s_best%d.blif'%(f_name,k),os.R_OK):
## res = get_bestk(k)
## else:
""" saves the best, returns bestk and if not best, leaves blif unchanged"""
res = b
if n_nodes() < res:
res = n_nodes()
abc('write_blif %s_best%d.blif'%(f_name,k))
print 'best%d = %d'%(k,res)
return res
## unsave_bestk(k)
def unsave_bestk(k):
abc('r %s_best%d.blif'%(f_name,k))
def unsnap(k=4):
## snap()
abc('fraig_restore')
map_lut_dch(k)
## abc('fraig_restore;if -a -F 2 -C 11 -K %d'%k)
def map_until_conv(k=4):
kk = 2*k
# make sure that no residual results are left over.
if os.access('%s_best%d.blif'%(f_name,k),os.R_OK):
os.remove('%s_best%d.blif'%(f_name,k))
if os.access('%s_best%d.blif'%(f_name,kk),os.R_OK):
os.remove('%s_best%d.blif'%(f_name,kk))
tt = time.time()
#get initial map and save
map_lut_dch(k)
bestk = save_bestk(100000,k)
print nl()
## snap()
res = preprocess() #get best of initial, clp, and lutmin versions
print nl()
## map_lut_dch(k)
## ###
## bestk = save_bestk(bestk,k)
## map_iter(k)
## bestk = save_bestk(bestk,k)
## ###
map_lut_dch_iter(kk) #initialize with mapping with 2k input LUTs
bestkk = save_bestk(100000,kk)
snap()
unsnap(k) #have to do snap first if want current result snapped in.
# unsnap fraigs snapshots and does map_lut_dch at end
print nl()
bestk = save_bestk(bestk,k)
abc('r %s_bestk%d.blif'%(f_name,k))
map_iter(k) #1
bestk = save_bestk(bestk,k)
while True:
print 'Perturbing with %d-Lut'%kk
## snap()
map_lut_dch_iter(kk)
## snap()
bestkk_old = bestkk
bestkk = save_bestk(bestkk,kk)
if bestkk >= bestkk_old:
break
## snap()
## jog(kk)
## perturb_f(k)
## snap()
## perturb_f(k)
## snap()
## unsave_bestk(k)
## map_lut_dch(k+1)
## snap()
## snap_bestk(k)
snap()
unsnap(k) #fraig restore and map
## bestk = save_bestk(bestk,k)
## snap()
bestk_old = bestk
map_iter(k)
bestk = save_bestk(bestk,k)
if bestk >= bestk_old:
break
continue
abc('fraig_restore') #dump what is left in fraig_store
unsave_bestk(k)
print '\nFinal size = ',
print nl()
print 'time for %s = %.02f'%(f_name,(time.time()-tt))
## cec_it()
def get_bestk(k=4):
abc('write_blif %s_temp.blif'%f_name)
unsave_bestk(k)
res = n_nodes()
abc('r %s_temp.blif'%f_name)
return res
def map_iter(k=4):
tt = time.time()
bestk = get_bestk(k)
## bestk = n_nodes()
## bestk = save_bestk(bestk,k)
## abc('st;dch;if -a -F 2 -K %d -C 11; mfs -a -L 1000; lutpack -L 1000'%k)#should be same as Initial
## map_lut_dch_iter(k) ####
map_lut_dch(k)
bestk = save_bestk(bestk,k)
n=0
unsave_bestk(k)
while True:
## snap()
perturb(k) #
## snap()
perturb(k)
## snap_bestk(k)
## unsnap(k)
## bestk = save_bestk(bestk,k)
## snap()
## map_lut_dch(k+1)
## abc('if -K %d'%(k+1))
## snap()
## unsnap(k)
old_bestk = bestk
## print old_bestk
map_lut_dch_iter(k)
bestk = save_bestk(bestk,k)
print bestk
if bestk < old_bestk:
n=0 # keep it up
continue
elif n == 2: #perturb
break
else:
n = n+1
print '%d-perturb'%n
## snap()
## unsave_bestk(k)
unsave_bestk(k)
def map_star(k=4):
tt = time.time()
map_until_conv(k)
abc('write_blif %s_best_star.blif'%f_name)
best = n_nodes()
while True:
jog(2*k)
map_until_conv(k)
if n_nodes() >= best:
break
else:
best = n_nodes()
abc('write_blif %s_best_star.blif'%f_name)
abc('r %s_best_star.blif'%f_name)
print 'SIZE = %d, TIME = %.2f for %s'%(n_nodes(),(time.time() - tt),f_name)
def decomp_444():
abc('st; dch; if -K 10 -S 444')
abc('write_blif -S 444 %s_temp.blif; r %s_temp.blif'%(f_name,f_name))
def dmitri(k=8):
## abc('w t.aig')
## dc2_iter()
## print 'first iter done: %d'%n_ands()
## abc('dc2rs')
#### dc2_iter()
## print 'second iter done: %d'%n_ands()
## sop_balance(k)
## abc('w t_before.aig')
## run_command('cec -n t.aig')
## speedup_iter(k)
## print 'n_levels after speedup = %d'%n_levels()
## abc('write_blif %s_save.blif'%f_name)
## nn=n_levels()
abc('st;dch; if -g -K %d'%(k))
## print 'n_levels after sop balance = %d'%n_levels()
## if n_levels() > nn:
## run_command('r %s_save.blif'%f_name)
## print 'n_levels = %d'%n_levels()
## print 'final n_levels = %d'%n_levels()
## print 'sop_balance done: ',
## print nl()
## run_command('st;w t_after.aig')
## run_command('cec -n t.aig')
abc('if -G %d '%k)
## print 'after if -G %d: '%k,
## print nl()
## run_command('cec -n t.aig')
abc('cubes')
## print 'after cubes: ',
## print nl()
## run_command('cec -n t.aig')
abc('addbuffs -v')
## print 'after addbuffs: ',
print nl(),
## run_command('cec -n t.aig')
def lut():
dc2_iter()
abc('extract -a')
print nl()
dc2_iter()
## ps()
sop_balance(6)
map_lut_dch()
map_lut()
print nl()
## run_command('ps')
################################## gate level abstraction
"""
Code for using
for abstraction
"""
def bip_abs(t=100):
""" t is ignored here"""
set_globals()
time = max(1,.1*G_T)
abc('&get;,bmc -vt=%f'%time)
set_max_bmc(bmc_depth())
c = 2*G_C
f = max(2*max_bmc,20)
b = min(max(10,max_bmc),200)
t1 = x_factor*max(1,2*G_T)
t = max(t1,t)
s = min(max(3,c/30000),10) # stability between 3 and 10
## cmd = '&get;,abs -bob=%d -stable=%d -timeout=%d -vt=%d -depth=%d -dwr=vabs'%(b,s,t,t,f)
cmd = '&get;,abs -timeout=%d -vt=%d -dwr=%s_vabs'%(t,t,f_name)
print 'Running %s'%cmd
## abc(cmd)
run_command(cmd)
bmc_depth()
abc('&w %s_greg.aig'%f_name)
return max_bmc
def check_frames():
abc('read_status vta.status')
return n_bmc_frames()
def vta_abs(t):
""" Do gate-level abstraction for F frames """
r = 100 *(1 - abs_ratio)
## abc('orpos; &get;&vta -dv -A %s_vabs.aig -P 2 -T %d -R %d; &vta_gla;&w %s_gla.aig;&gla_derive; &put; w %s_gabs.aig'%(f_name,t,r,f_name,f_name))
abc('orpos; &get;&vta -dv -A %s_vabs.aig -P 2 -T %d -R %d; &vta_gla;&w %s_gla.aig'%(f_name,t,r,f_name))
## write_file('abs')
def sizeof():
return [n_pis(),n_pos(),n_latches(),n_ands()]
def abstract(ifb=2):
global abs_ratio
## print 'ifb = %d'%ifb
if ifb == 0: #new way using vta_abs and no bip
add_trace('abstracta')
return abstracta(False)
elif ifb == 1: #old way using ,abs
assert ifb == ifbip, 'call to abstract has ifb not = global ifbip'
add_trace('abstractb')
return abstractb()
else:
#new way using ,abs -dwr -- (bip_abs)
add_trace('abstracta')
return abstracta(True)
def abstracta(if_bip=True):
"""
if_bip = 0 it uses a new abstraction based on &vta (gate level abstraction) and no bip operations
Right now, if we do not prove it with abstraction in the time allowed,
we abandon abstraction and go on with speculation
if_bip = 1, we use ,abs -dwr
"""
global G_C, G_T, latches_before_abs, x_factor, last_verify_time, x, win_list, j_last, sims
global latches_before_abs, ands_before_abs, pis_before_abs, abs_ratio
## n_vabs = 0
latches_before_abs = n_latches()
ands_before_abs = n_ands()
pis_before_abs = n_real_inputs()
tt = time.time()
print 'using abstracta, ',
## print 'if_bip = %d'%if_bip
## latch_ratio = abs_ratio
## t = 100
t = 1000 #temporary
t = abs_time
if if_bip == 0:
t = 1000 #timeout on vta
t = abs_time
tt = time.time()
if n_pos() > 1 and if_bip == 0:
abc('orpos')
print 'POs ORed together, ',
initial_size = sizeof()
abc('w %s_before_abs.aig'%f_name)
# 25 below means that it will quit if #FF+#ANDS > 75% of original
## funcs = [eval("(pyabc_split.defer(abc)('orpos;&get;&vta -d -R 25'))")] #right now we need orpos
if if_bip:
print 'using bip_abs'
mtds = ['bip_abs']
funcs = [eval('(pyabc_split.defer(bip_abs)(t))')]
else:
if gla:
print 'using gla_abs_iter for %0.2f sec.'%(t-2)
mtds = ['gla_abs_iter']
add_trace('gla_abs')
funcs = [eval('(pyabc_split.defer(gla_abs_iter)(t-2))')]
else:
print 'using vta_abs for %0.2f sec.'%(t-2)
mtds = ['vta_abs']
funcs = [eval('(pyabc_split.defer(vta_abs)(t-2))')]
funcs = funcs + [eval('(pyabc_split.defer(monitor_and_prove)())')]
## J = [34,30]
J = pdrs[:1]+bmcs[:1] #just use one pdr and one bmc here.
## J = pdrs+bmcs
## J = modify_methods(J,2)
funcs = funcs + create_funcs(J,1000)
mtds = mtds + ['monitor_and_prove'] + sublist(methods,J)
print 'methods = ',
print mtds
vta_term_by_time=0
for i,res in pyabc_split.abc_split_all(funcs):
## print i,res
if i == 0: #vta or gla ended first
print 'time taken = %0.2f'%(time.time() - tt)
if is_sat():
print 'vta/gla abstraction found cex in frame %d'%cex_frame()
add_trace('SAT by gla')
return Sat
if is_unsat():
print 'vta/gla abstraction proved UNSAT'
add_trace('UNSAT by gla')
return Unsat
else: #undecided
if if_bip:
abc('&r -s %s_greg.aig; &abs_derive; &put; w %s_gabs.aig'%(f_name,f_name))
else:
abc('&r -s %s_gla.aig;&gla_derive; &put; w %s_gabs.aig'%(f_name,f_name))
if time.time() - tt < .95*t:
print 'abstraction terminated but not by timeout'
vta_term_by_time = 0
break
else:
print 'abstraction terminated by a timeout of %0.2f'%t
## print 'final abstraction: ',
## ps()
vta_term_by_time=1
break
if i == 1: #monitor and prove ended first (sleep timed out)
print 'monitor_and_prove: '
## print i,res
if res == None:
print 'monitor and prove had an error'
continue
result = res[0]
if res[0] > Undecided: #we abandon abstraction
add_trace('de_abstract')
print 'monitor and prove timed out or too little reduction'
abc('r %s_before_abs.aig'%f_name)
return Undecided_no_reduction
if res[0] == Undecided:
break
else:
if not initial_size == sizeof(): #monitor and prove should not return SAT in this case'
assert not is_sat(), 'monitor_and_prove returned SAT on abstraction!'
print 'time taken = %0.2f'%(time.time() - tt)
if is_unsat() or res[0] == 'UNSAT' or res[0] == Unsat:
add_trace('UNSAT by %s'%res[1])
return Unsat
elif is_sat() or res[0] < Unsat:
add_trace('SAT by %s'%res[1])
return Sat
else:
abc('r %s_before_abs.aig'%f_name)
return Undecided_no_reduction
else: #one of the engines got an answer
print 'time taken = %0.2f'%(time.time() - tt)
## add_trace('initial %s'%mtds[i])
if is_unsat():
print 'Initial %s proved UNSAT'%mtds[i]
add_trace('UNSAT by initial %s'%mtds[i])
return Unsat
if is_sat():
print 'Initial %s proved SAT'%mtds[i]
add_trace('SAT by initial %s'%mtds[i])
return Sat
else: # an engine failed here
print 'Initial %s terminated without result'%mtds[i]
add_trace('method %s failed'%mtds[i])
## return Undecided
continue
if vta_term_by_time == 0 and if_bip == 0 and gabs: #vta timed out itself
print 'Trying to verify final abstraction',
ps()
result = verify([7,9,19,23,24,30],100)
if result[0] == Unsat:
add_trace('UNSAT by %s'%result[1])
print 'Abstraction proved valid'
return result[0]
# should do abstraction refinement here if if_bip==1
if if_bip == 0 and gabs: # thus using vta or gla abstraction and no refinement
print 'abstraction no good - restoring initial simplified AIG',
abc('r %s_before_abs.aig'%f_name)
add_trace('de_abstract')
ps()
return Undecided_no_reduction
else: # thus using bip_abs (ifbip=1) or gate abstraction (ifbip=0&gabs=False) and refinement
if is_sat():
print 'Found true counterexample in frame %d'%cex_frame()
add_trace('SAT')
return Sat_true
if is_unsat():
add_trace('UNSAT')
return Unsat
## set_max_bmc(NBF)
NBF = bmc_depth()
print 'Abstraction good to %d frames'%max_bmc
#note when things are done in parallel, the &aig is not restored!!!
if if_bip:
abc('&r -s %s_greg.aig; &w initial_greg.aig; &abs_derive; &put; w initial_gabs.aig; w %s_gabs.aig'%(f_name,f_name))
else:
run_command('&r -s %s_gla.aig; &w initial_gla.aig; &gla_derive; &put; w initial_gabs.aig; w %s_gabs.aig'%(f_name,f_name))
set_max_bmc(NBF)
print 'Initial abstraction: ',
ps()
abc('w %s_init_abs.aig'%f_name)
latches_after = n_latches()
## if latches_after >= .90*latches_before_abs: #the following should match similar statement
## if ((rel_cost_t([pis_before_abs, latches_before_abs, ands_before_abs])> -.1) or
## (latches_after >= .75*latches_before_abs)):
if small_abs(abs_ratio):
abc('r %s_before_abs.aig'%f_name)
print "Too little reduction!"
print 'Abstract time wasted = %0.2f'%(time.time()-tt)
add_trace('de_abstract')
return Undecided_no_reduction
sims_old = sims
sims=sims[:1] #make it so that rarity sim is not used since it can't find a cex
## result = Undecided_no_reduction
print 'small_abs = %.2f, vta_term_by_time = %d'%(small_abs(abs_ratio),vta_term_by_time)
if not vta_term_by_time:
print 'Entering abstraction_refinement'
result = abstraction_refinement(latches_before_abs, NBF,abs_ratio)
sims = sims_old
if result <= Unsat:
return result
if small_abs(abs_ratio): #r is ratio of final to initial latches in absstraction. If greater then True
## if small_abs(abs_ratio) or result == Undecided_no_reduction or vta_term_by_time: #r is ratio of final to initial latches in absstraction. If greater then True
abc('r %s_before_abs.aig'%f_name) #restore original file before abstract.
print "Too little reduction! ",
print 'Abstract time wasted = %0.2f'%(time.time()-tt)
add_trace('de_abstract')
return Undecided_no_reduction
elif vta_term_by_time:
abc('r %s_gabs.aig'%f_name)
print 'Simplifying and testing abstraction'
reparam()
result = simplify()
assert result >= Unsat, 'simplify returned SAT'
if result > Unsat: #test if abstraction is unsat
result = simple()
res = result[0]
if res == 'UNSAT':
return Unsat
else:
abc('r %s_before_abs.aig'%f_name) #restore original file before abstract.
print "Timed out with bad abstraction",
print 'Abstract time wasted = %0.2f'%(time.time()-tt)
add_trace('de_abstract')
return Undecided_no_reduction
## if res == 'SAT':
#### result = Sat #this was an error
## result = Undecided_no_reduction
## elif res == 'UNSAT':
## result = Unsat
## else:
## result = Undecided_no_reduction
## return result
else:
write_file('abs') #this is only written if it was not solved and some change happened.
print 'Abstract time = %0.2f'%(time.time()-tt)
return result
def gla_abs_iter(t):
""" this iterates &gla every x sec and checks if it should be stopped or continued.
Uses the fact that when &gla ends
it leaves the result in the &-space showing which elements are abstracted.
cex_abs_depth, time_abs_prev and time_abs come from monitor_and_prove
gla_abs_iter and monitor_and_prove are run in parallel
"""
global cex_abs_depth, abs_depth, abs_depth_prev, time_abs_prev, time_abs
it_interval = 10000
total = t
tt = time.time()
run_command('orpos;&get')
## run_command('&w %s_gla.aig'%f_name)
abs_depth = abs_depth_prev = 0
## while True:
r = 100 *(1 - abs_ratio)
q = 99 #############TEMP
## run_command('&r %s_gla.aig'%f_name)
time_remain = total - (time.time() - tt) #time remaining
it = min(it_interval,time_remain)
## if it < 2:
## break
#gla and vabs are the file with the abstraction info and gabs is the derived file.
cmd = '&gla -mvs -B 1 -A %s_vabs.aig -T %d -R %d -Q %d -S %d'%(f_name,it,r,q,abs_depth)
print 'Executing %s'%cmd
name = '%s_vabs.aig'%f_name
run_command(cmd)
if os.access(name,os.R_OK):
run_command('&r -s %s_vabs.aig'%f_name) #get the last abstraction result
run_command('&w %s_gla.aig'%f_name) #saves the result of abstraction.
else:
run_command('&r -s %s_abs_old.aig'%f_name) #get the last abstraction result
run_command('&w %s_gla.aig'%f_name) #saves the result of abstraction.
print 'wrote %s_gla file'%f_name
run_command('&gla_derive;&put')
run_command('w %s_gabs.aig'%f_name)
## break
## abs_depth_prev = abs_depth
## abs_depth = n_bmc_frames()
## print 'abs_depth = %d'%abs_depth
## #test here if done
## if (time.time()-tt) > total:
## break
## print 'reading abs_values'
## read_abs_values()
## print 'values read'
## if abs_done(time_remain):
## print 'abs_done'
## break
## else:
## continue
def read_abs_values():
"""here we read in the abs values written by monitor and prove"""
global cex_abs_depth, abs_depth, abs_depth_prev, time_abs_prev, time_abs
if not os.access('%s_ab.txt'%f_name,os.R_OK):
print '%s_ab.txt does not exist'%f_name
return #file does not exist so do nochange values
## print '%s_ab.txt file exists and is readable'%f_name
ab = open('%s_ab.txt'%f_name,'r')
print '%s_ab.txt is opened'%f_name
s = ab.readline()
## print s
cex_abs_depth = int(s)
s = ab.readline()
## print s
time_abs_prev = float(s)
s = ab.readline()
## print s
time_abs = float(s)
s = ab.readline()
## print s
abs_depth_prev = float(s)
s = ab.readline()
## print s
abs_depth = float(s)
ab.close()
## print 'read: ',
## print cex_abs_depth,time_abs_prev,time_abs,abs_depth_prev,abs_depth
## print 'it is closed'
def write_abs_values():
global cex_abs_depth, abs_depth, abs_depth_prev, time_abs_prev, time_abs
"""here we write in the abs values written by monitor and prove"""
## print 'write: ',
## print cex_abs_depth,time_abs_prev,time_abs,abs_depth_prev,abs_depth
ab = open('%s_ab.txt'%f_name,'w')
ab.write(str(cex_abs_depth)+'\n')
ab.write(str(time_abs_prev)+'\n')
ab.write(str(time_abs)+'\n')
ab.write(str(abs_depth_prev)+'\n')
ab.write(str(abs_depth))
ab.close()
def abs_done(time_remain):
""" heuristic to see if we are not making any progress and should quit
look at frame of last cex found (cex_abs_depth) for current abstraction using a parallel engine
look at depth of current abstraction (abs_depth) and last abstraction (abs_deptth_prev)
look at time between new abstractions time_abs - time_abs_prev.
compute approximate frames_per_sec
if frames_to_next_cex > frames_per_sec * time_remain
then won't get there is the time allowed.
We have to pass all the information along when we are doing things in parallel by writing a file
with this info in it and reading it in later. This is because monitor_and prove
runs in parallel and global variables are not passed around.
"""
global cex_abs_depth, abs_depth, abs_depth_prev, time_abs_prev, time_abs
## print 'checking if abs has enough time to next cex'
frames_to_next_cex = cex_abs_depth - abs_depth
div = time_abs - time_abs_prev
div = max(.1,div)
frames_per_sec = (abs_depth - abs_depth_prev)/div
if frames_per_sec <= 0:
return False #something wrong
print 'frames_per_sec = %0.2f, frames_to_next_cex = %d, time remaining = %0.2f'%(frames_per_sec, frames_to_next_cex, time_remain)
if frames_to_next_cex > 0.2*(frames_per_sec * time_remain): #later frames will take longer so factor of 5 here
print 'not enough abs time to next cex'
return True
return False
##def gla_abs(t):
## """ Do gate-level abstraction for F frames """
## r = 100 *(1 - abs_ratio)
## run_command('orpos; &get;&gla -dv -A %s_vabs.aig -T %d -R %d; &w %s_gla.aig'%(f_name,t,r,f_name))
def monitor_and_prove():
"""
monitor and prove. Runs in parallel with abstraction method.
It looks for a new vabs and if found, will try to verify it in parallel
We want to write a file that has variables
cex_abs_depth, abs_depth, abs_depth_prev, time_abs_prev, time_abs
which will be used by abs_done called by gla_abs_iter which is to replace gla_abs
"""
global ifbip
global cex_abs_depth, abs_depth, abs_depth_prev, time_abs_prev, time_abs
#write the current aig as vabs.aig so it will be regularly verified at the beginning.
name = '%s_vabs.aig'%f_name
if os.access('%s'%name,os.R_OK): #make it so that there is no initial abstraction
os.remove('%s'%name)
initial_size = sizeof()
print 'initial size = ',
print initial_size
time_abs = time_abs_prev = time.time()
cex_abs_depth = 0
abs_depth = abs_depth_prev = 0
write_abs_values()
## if read_and_sleep(5): # wait until first abstraction when res is False
## #time has run out as controlled by abs_time
## return [Undecided_no_reduction] + ['read_and_sleep']
t = abs_time +10
tt = time.time()
## print 'first read and sleep done'
#a return of Undecided means that abstraction might be good and calling routine will check this
while True: #here we iterate looking for a new abstraction and trying to prove it
time_done = abs_bad = 0
funcs = [eval('(pyabc_split.defer(read_and_sleep)())')]
J = sims+intrps+pdrs+bmcs
J = modify_methods(J,1)
funcs = funcs + create_funcs(J,t)
mtds = ['read_and_sleep'] + sublist(methods,J)
print 'methods = %s'%mtds
for i,res in pyabc_split.abc_split_all(funcs):
## print 'Mon. & Pr.: ,
## print i,res
if i == 0: # read_and_sleep terminated
if res == False: #found new abstraction
read_abs_values()
time_abs_prev = time_abs
time_abs = time.time()
print 'time between new abstractions = %0.2f'%(time_abs - time_abs_prev)
write_abs_values()
abs_bad = 0 #new abs starts out good.
if not initial_size == sizeof() and n_latches() > abs_ratio * initial_size[2]:
return [Undecided_no_reduction]+['read_and_sleep']
else:
break
elif res == True: # read and sleep timed out
time_done = 1
print 'read_and_sleep timed out'
if abs_bad:
return [Undecided_no_reduction]+['read_and_sleep']
else: #abs is still good. Let other engines continue
return [Undecided]+['read_and_sleep'] #calling routine handles >Unsat all the same right now.
else:
assert False, 'something wrong. read and sleep did not return right thing'
if i > 0: #got result from one of the verify engines
print 'monitor_and_prove: Method %s terminated'%mtds[i],
## print i,res
if res == None:
print 'Method %s failed'%mtds[i]
continue
## print 'method %s found SAT in frame %d'%(mtds[i],cex_frame())
if is_unsat() or res == Unsat or res == 'UNSAT':
print '\nParallel %s proved UNSAT on current abstr\n'%mtds[i]
return [Unsat] + [mtds[i]]
elif is_sat() or res < Unsat or res == 'SAT': #abstraction is not good yet.
print 'method = %s'%mtds[i]
if not mtds[i] == 'RareSim': #the other engines give a better estimate of true cex depth
read_abs_values()
cex_abs_depth = cex_frame()
write_abs_values()
print '\nParallel %s found SAT on current abstr in frame %d\n'%(mtds[i],cex_frame())
## print 'n_vabs = %d'%n_vabs
if initial_size == sizeof():# the first time we were working on an aig before abstraction
print initial_size == abstraction_size
return [Sat]+[mtds[i]]
## print 'current abstraction invalid'
abs_bad = 1
break #this kills off other verification engines working on bad abstraction
else: #one of the engines undecided for some reason - failed?
print '\nParallel %s terminated without result on current abstr\n'%mtds[i]
continue
if abs_bad and not time_done: #here we wait until have a new vabs.
time_remain = t -(time.time() - tt)
abc('r %s_abs.aig'%f_name) #read in the abstraction to destroy is_sat().
if abs_done(time_remain):
return [Undecided]+['timeout']
res = read_and_sleep(5) #this will check every 5 sec, until abs_time sec has passed without new abs
if res == False: #found new vabs. Now continue if vabs small enough
## print 'n_vabs = %d'%n_vabs
if (not initial_size == sizeof()) and n_latches() > abs_ratio * initial_size[2]:
return [Undecided_no_reduction]+['no reduction']
else:
continue
elif res ==True: #read_and_sleep timed out
## print 'read_and_sleep timed out'
return [Undecided_no_reduction]+['no reduction']
else:
break #this should not happen
elif abs_bad and time_done:
## print 'current abstraction bad, time has run out'
return [Undecided_no_reduction]+['no reduction']
elif time_done: #abs is good here
## print 'current abstraction still good, time has run out'
return [Undecided]+['reduction'] #this will cause calling routine to try to verify the final abstraction
#right now handles the same as Undecided_no_reduction-if time runs out we quit abstraction
else: #abs good and time not done
continue
## print 'current abstraction still good, time has not run out'
return [len(funcs)]+['error']
def read_and_sleep(t=5):
"""
keep looking for a new vabs every 5 seconds. This is usually run in parallel with
&vta -d or &gla
Returns False when new abstraction is found, and True when time runs out.
"""
global cex_abs_depth, abs_depth, abs_depth_prev, time_abs_prev, time_abs
#t is not used at present
tt = time.time()
T = 1000 #if after the last abstraction, no answer, then terminate
T = abs_time + 10
set_size()
name = '%s_vabs.aig'%f_name
## if ifbip > 0:
## name = '%s_vabs.aig'%f_name
## print 'name = %s'%name
sleep(5)
while True:
if time.time() - tt > T: #too much time between abstractions
## print 'read_and_sleep timed out in %d sec.'%T
return True
if os.access(name,os.R_OK):
#possible race condition
run_command('&r -s %s; &w %s_vabs_old.aig'%(name,f_name))
## print '%s exists'%name
if not os.access(name,os.R_OK): #if not readable now then what was read in might not be OK.
print '%s does not exist'%name
continue
## print '%s is read'%name
## run_command('&r %s;read_status %s_vabs.status'%(name,f_name)) #need to use & space to keep the abstraction information
os.remove(name)
run_command('read_status %s_vabs.status'%f_name)
## print '%s and %s_vabs.status have been read'%(name,f_name)
## print 'reading %s_vabs.status'%f_name
#name is the derived model (not the model with abstraction info
run_command('&r -s %s_vabs_old.aig'%f_name)
run_command('&w %s_gla.aig'%f_name)
run_command('&gla_derive;&put')
run_command('w %s_gabs.aig'%f_name)
## print '%s is removed'%name
read_abs_values()
time_abs_prev = time_abs
time_abs = time.time()
## print 'abs values has been read'
run_command('read_status %s_vabs.status'%f_name)
abs_depth_prev = abs_depth
abs_depth = n_bmc_frames()
write_abs_values()
## print 'abs values has been written'
time_remain = T - (time.time() - tt)
if abs_done(time_remain):
return True
## if not check_size():
if True:
print '\nNew abstraction: ',
ps()
## print 'Time = %0.2f'%(time.time() - tt)
set_size()
abc('w %s_abs.aig'%f_name)
return False
#if same size, keep going.
print '.',
sleep(5)
####################################################
|