summaryrefslogtreecommitdiffstats
path: root/src/aig/gia/giaAbsGla2.c
blob: 7edacf3cdd86322e259f98b8136fb7c36a1be6f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
/**CFile****************************************************************

  FileName    [gia.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Scalable AIG package.]

  Synopsis    [Scalable gate-level abstraction.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: gia.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "gia.h"
#include "giaAbsRef.h"
#include "sat/cnf/cnf.h"
#include "sat/bsat/satSolver2.h"
#include "base/main/main.h"

ABC_NAMESPACE_IMPL_START

//#if 0

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

#define GA2_BIG_NUM 0x3FFFFFFF

typedef struct Ga2_Man_t_ Ga2_Man_t; // manager
struct Ga2_Man_t_
{
    // user data
    Gia_Man_t *    pGia;         // working AIG manager
    Gia_ParVta_t * pPars;        // parameters
    // markings 
    int            nMarked;      // total number of marked nodes and flops
    Vec_Ptr_t *    vCnfs;        // for each object: CNF0, CNF1
    // abstraction
    Vec_Int_t *    vIds;         // abstraction ID for each object
    Vec_Int_t *    vAbs;         // array of abstracted objects
    Vec_Int_t *    vValues;      // array of objects with SAT numbers assigned
    int            LimAbs;       // limit value for starting abstraction objects
    int            LimPpi;       // limit value for starting PPI objects
    // refinement
    Rnm_Man_t *    pRnm;         // refinement manager
    // SAT solver and variables
    Vec_Ptr_t *    vId2Lit;      // mapping, for each timeframe, of object ID into SAT literal
    sat_solver2 *  pSat;         // incremental SAT solver
    int            nSatVars;     // the number of SAT variables
    int            nProofIds;    // the counter of proof IDs
    // temporaries
    Vec_Int_t *    vLits;
    Vec_Int_t *    vIsopMem;
    char * pSopSizes, ** pSops;  // CNF representation
    int            nCexes;       // the number of counter-examples
    int            nObjAdded;    // objs added during refinement
    // statistics  
    clock_t        timeStart;
    clock_t        timeInit;
    clock_t        timeSat;
    clock_t        timeUnsat;
    clock_t        timeCex;
    clock_t        timeOther;
};

static inline int         Ga2_ObjOffset( Gia_Man_t * p, Gia_Obj_t * pObj )       { return Vec_IntEntry(p->vMapping, Gia_ObjId(p, pObj));                                                    }
static inline int         Ga2_ObjLeaveNum( Gia_Man_t * p, Gia_Obj_t * pObj )     { return Vec_IntEntry(p->vMapping, Ga2_ObjOffset(p, pObj));                                                }
static inline int *       Ga2_ObjLeavePtr( Gia_Man_t * p, Gia_Obj_t * pObj )     { return Vec_IntEntryP(p->vMapping, Ga2_ObjOffset(p, pObj) + 1);                                           }
static inline unsigned    Ga2_ObjTruth( Gia_Man_t * p, Gia_Obj_t * pObj )        { return (unsigned)Vec_IntEntry(p->vMapping, Ga2_ObjOffset(p, pObj) + Ga2_ObjLeaveNum(p, pObj) + 1);       }
static inline int         Ga2_ObjRefNum( Gia_Man_t * p, Gia_Obj_t * pObj )       { return (unsigned)Vec_IntEntry(p->vMapping, Ga2_ObjOffset(p, pObj) + Ga2_ObjLeaveNum(p, pObj) + 2);       }
static inline Vec_Int_t * Ga2_ObjLeaves( Gia_Man_t * p, Gia_Obj_t * pObj )       { static Vec_Int_t v; v.nSize = Ga2_ObjLeaveNum(p, pObj), v.pArray = Ga2_ObjLeavePtr(p, pObj); return &v;  }

static inline int         Ga2_ObjId( Ga2_Man_t * p, Gia_Obj_t * pObj )           { return Vec_IntEntry(p->vIds, Gia_ObjId(p->pGia, pObj));                                                  }
static inline void        Ga2_ObjSetId( Ga2_Man_t * p, Gia_Obj_t * pObj, int i ) { Vec_IntWriteEntry(p->vIds, Gia_ObjId(p->pGia, pObj), i);                                                 }

static inline Vec_Int_t * Ga2_ObjCnf0( Ga2_Man_t * p, Gia_Obj_t * pObj )         { assert(Ga2_ObjId(p,pObj)); return Vec_PtrEntry(p->vCnfs, (Ga2_ObjId(p,pObj) << 1)  );                    }
static inline Vec_Int_t * Ga2_ObjCnf1( Ga2_Man_t * p, Gia_Obj_t * pObj )         { assert(Ga2_ObjId(p,pObj)); return Vec_PtrEntry(p->vCnfs, (Ga2_ObjId(p,pObj) << 1)+1);                    }

static inline int         Ga2_ObjIsAbs( Ga2_Man_t * p, Gia_Obj_t * pObj )        { assert(Ga2_ObjId(p,pObj)); return Ga2_ObjId(p,pObj) <  p->LimAbs;                                        }
static inline int         Ga2_ObjIsPpi( Ga2_Man_t * p, Gia_Obj_t * pObj )        { assert(Ga2_ObjId(p,pObj)); return Ga2_ObjId(p,pObj) >= p->LimAbs && Ga2_ObjId(p,pObj) < p->LimPpi;       }

static inline Vec_Int_t * Ga2_MapFrameMap( Ga2_Man_t * p, int f )                { return (Vec_Int_t *)Vec_PtrEntry( p->vId2Lit, f );                                                       }

// returns literal of this object, or -1 if SAT variable of the object is not assigned
static inline int Ga2_ObjFindLit( Ga2_Man_t * p, Gia_Obj_t * pObj, int f )  
{ 
    assert( Ga2_ObjId(p,pObj) && Ga2_ObjId(p,pObj) < Vec_IntSize(p->vValues) );
    if ( f == Vec_PtrSize(p->vId2Lit) )
        Vec_PtrPush( p->vId2Lit, Vec_IntStartFull(Vec_IntSize(p->vValues)) );
    assert( f < Vec_PtrSize(p->vId2Lit) );
    return Vec_IntEntry( Ga2_MapFrameMap(p, f), Ga2_ObjId(p,pObj) );
}
// inserts literal of this object
static inline void Ga2_ObjAddLit( Ga2_Man_t * p, Gia_Obj_t * pObj, int f, int Lit )  
{ 
    assert( Lit > 1 );
    assert( Ga2_ObjFindLit(p, pObj, f) == -1 );
    Vec_IntSetEntry( Ga2_MapFrameMap(p, f), Ga2_ObjId(p,pObj), Lit );
}
// returns or inserts-and-returns literal of this object
static inline int Ga2_ObjFindOrAddLit( Ga2_Man_t * p, Gia_Obj_t * pObj, int f )  
{ 
    int Lit = Ga2_ObjFindLit( p, pObj, f );
    if ( Lit == -1 )
    {
        Lit = toLitCond( p->nSatVars++, 0 );
        Ga2_ObjAddLit( p, pObj, f, Lit );
    }
    assert( Lit > 1 );
    return Lit;
}

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Computes truth table for the marked node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
unsigned Ga2_ObjComputeTruth_rec( Gia_Man_t * p, Gia_Obj_t * pObj, int fFirst )
{
    unsigned Val0, Val1;
    if ( pObj->fPhase && !fFirst )
        return pObj->Value;
    assert( Gia_ObjIsAnd(pObj) );
    Val0 = Ga2_ObjComputeTruth_rec( p, Gia_ObjFanin0(pObj), 0 );
    Val1 = Ga2_ObjComputeTruth_rec( p, Gia_ObjFanin1(pObj), 0 );
    return (Gia_ObjFaninC0(pObj) ? ~Val0 : Val0) & (Gia_ObjFaninC1(pObj) ? ~Val1 : Val1);
}
unsigned Ga2_ManComputeTruth( Gia_Man_t * p, Gia_Obj_t * pRoot, Vec_Int_t * vLeaves )
{
    static unsigned uTruth5[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 };
    Gia_Obj_t * pObj;
    int i;
    Gia_ManForEachObjVec( vLeaves, p, pObj, i )
        pObj->Value = uTruth5[i];
    return Ga2_ObjComputeTruth_rec( p, pRoot, 1 );
}

/**Function*************************************************************

  Synopsis    [Returns AIG marked for CNF generation.]

  Description [The marking satisfies the following requirements:
  Each marked node has the number of marked fanins no more than N.]
               
  SideEffects [Uses pObj->fPhase to store the markings.]

  SeeAlso     []

***********************************************************************/
int Ga2_ManBreakTree_rec( Gia_Man_t * p, Gia_Obj_t * pObj, int fFirst, int N )
{   // breaks a tree rooted at the node into N-feasible subtrees
    int Val0, Val1;
    if ( pObj->fPhase && !fFirst )
        return 1;
    Val0 = Ga2_ManBreakTree_rec( p, Gia_ObjFanin0(pObj), 0, N );
    Val1 = Ga2_ManBreakTree_rec( p, Gia_ObjFanin1(pObj), 0, N );
    if ( Val0 + Val1 < N )
        return Val0 + Val1;
    if ( Val0 + Val1 == N )
    {
        pObj->fPhase = 1;
        return 1;
    }
    assert( Val0 + Val1 > N );
    assert( Val0 < N && Val1 < N );
    if ( Val0 >= Val1 )
    {
        Gia_ObjFanin0(pObj)->fPhase = 1;
        Val0 = 1;
    }
    else 
    {
        Gia_ObjFanin1(pObj)->fPhase = 1;
        Val1 = 1;
    }
    if ( Val0 + Val1 < N )
        return Val0 + Val1;
    if ( Val0 + Val1 == N )
    {
        pObj->fPhase = 1;
        return 1;
    }
    assert( 0 );
    return -1;
}
int Ga2_ManCheckNodesAnd( Gia_Man_t * p, Vec_Int_t * vNodes )
{
    Gia_Obj_t * pObj;
    int i;
    Gia_ManForEachObjVec( vNodes, p, pObj, i )
        if ( (!Gia_ObjFanin0(pObj)->fPhase && Gia_ObjFaninC0(pObj)) || 
             (!Gia_ObjFanin1(pObj)->fPhase && Gia_ObjFaninC1(pObj)) )
            return 0;
    return 1;
}
void Ga2_ManCollectNodes_rec( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vNodes, int fFirst )
{
    if ( pObj->fPhase && !fFirst )
        return;
    assert( Gia_ObjIsAnd(pObj) );
    Ga2_ManCollectNodes_rec( p, Gia_ObjFanin0(pObj), vNodes, 0 );
    Ga2_ManCollectNodes_rec( p, Gia_ObjFanin1(pObj), vNodes, 0 );
    Vec_IntPush( vNodes, Gia_ObjId(p, pObj) );

}
void Ga2_ManCollectLeaves_rec( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vLeaves, int fFirst )
{
    if ( pObj->fPhase && !fFirst )
    {
        Vec_IntPushUnique( vLeaves, Gia_ObjId(p, pObj) );
        return;
    }
    assert( Gia_ObjIsAnd(pObj) );
    Ga2_ManCollectLeaves_rec( p, Gia_ObjFanin0(pObj), vLeaves, 0 );
    Ga2_ManCollectLeaves_rec( p, Gia_ObjFanin1(pObj), vLeaves, 0 );
}
int Ga2_ManMarkup( Gia_Man_t * p, int N )
{
    static unsigned uTruth5[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 };
    clock_t clk = clock();
    Vec_Int_t * vLeaves;
    Gia_Obj_t * pObj;
    int i, k, Leaf, CountMarks;
    // label nodes with multiple fanouts and inputs MUXes
    Gia_ManForEachObj( p, pObj, i )
    {
        pObj->Value = 0;
        if ( !Gia_ObjIsAnd(pObj) )
            continue;
        Gia_ObjFanin0(pObj)->Value++;
        Gia_ObjFanin1(pObj)->Value++;
        if ( !Gia_ObjIsMuxType(pObj) )
            continue;
        Gia_ObjFanin0(Gia_ObjFanin0(pObj))->Value++;
        Gia_ObjFanin1(Gia_ObjFanin0(pObj))->Value++;
        Gia_ObjFanin0(Gia_ObjFanin1(pObj))->Value++;
        Gia_ObjFanin1(Gia_ObjFanin1(pObj))->Value++;
    }
    Gia_ManForEachObj( p, pObj, i )
    {
        pObj->fPhase = 0;
        if ( Gia_ObjIsAnd(pObj) )
            pObj->fPhase = (pObj->Value > 1);
        else if ( Gia_ObjIsCo(pObj) )
            Gia_ObjFanin0(pObj)->fPhase = 1;
        else 
            pObj->fPhase = 1;
    } 
    // add marks when needed
    vLeaves = Vec_IntAlloc( 100 );
    Gia_ManForEachAnd( p, pObj, i )
    {
        if ( !pObj->fPhase )
            continue;
        Vec_IntClear( vLeaves );
        Ga2_ManCollectLeaves_rec( p, pObj, vLeaves, 1 );
        if ( Vec_IntSize(vLeaves) > N )
            Ga2_ManBreakTree_rec( p, pObj, 1, N );
    }
    // verify that the tree is split correctly
    CountMarks = 0;
    Vec_IntFreeP( &p->vMapping );
    p->vMapping = Vec_IntStart( Gia_ManObjNum(p) );
    Gia_ManForEachAnd( p, pObj, i )
    {
        if ( !pObj->fPhase )
            continue;
        Vec_IntClear( vLeaves );
        Ga2_ManCollectLeaves_rec( p, pObj, vLeaves, 1 );
//        printf( "%d ", Vec_IntSize(vLeaves) );
        assert( Vec_IntSize(vLeaves) <= N );
        // create map
        Vec_IntWriteEntry( p->vMapping, i, Vec_IntSize(p->vMapping) );
        Vec_IntPush( p->vMapping, Vec_IntSize(vLeaves) );
        Vec_IntForEachEntry( vLeaves, Leaf, k )
        {            
            Vec_IntPush( p->vMapping, Leaf );
            Gia_ManObj(p, Leaf)->Value = uTruth5[k];
            assert( Gia_ManObj(p, Leaf)->fPhase );
        }
        Vec_IntPush( p->vMapping,  (int)Ga2_ObjComputeTruth_rec( p, pObj, 1 ) );
        Vec_IntPush( p->vMapping, -1 );  // placeholder for ref counter
        CountMarks++;
    }
//    printf( "Internal nodes = %d.   ", CountMarks );
    Abc_PrintTime( 1, "Time", clock() - clk );
    Vec_IntFree( vLeaves );
    return CountMarks;
}
void Ga2_ManComputeTest( Gia_Man_t * p )
{
    clock_t clk;
//    unsigned uTruth;
    Gia_Obj_t * pObj;
    int i, Counter = 0;
    clk = clock();
    Ga2_ManMarkup( p, 5 );
    Abc_PrintTime( 1, "Time", clock() - clk );
    Gia_ManForEachAnd( p, pObj, i )
    {
        if ( !pObj->fPhase )
            continue;
//        uTruth = Ga2_ObjTruth( p, pObj );
//        printf( "%6d : ", Counter );
//        Kit_DsdPrintFromTruth( &uTruth, Ga2_ObjLeaveNum(p, pObj) ); 
//        printf( "\n" );
        Counter++;
    }
    printf( "Marked AND nodes = %6d.  ", Counter );
    Abc_PrintTime( 1, "Time", clock() - clk );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Ga2_Man_t * Ga2_ManStart( Gia_Man_t * pGia, Gia_ParVta_t * pPars )
{
    Ga2_Man_t * p;
    p = ABC_CALLOC( Ga2_Man_t, 1 );
    p->timeStart = clock();
    // user data
    p->pGia      = pGia;
    p->pPars     = pPars;
    // markings 
    p->nMarked   = Ga2_ManMarkup( pGia, 5 ) + Gia_ManRegNum( p->pGia );
    p->vCnfs     = Vec_PtrAlloc( 1000 );
    Vec_PtrPush( p->vCnfs, Vec_IntAlloc(0) );
    Vec_PtrPush( p->vCnfs, Vec_IntAlloc(0) );
    // abstraction
    p->vIds      = Vec_IntStart( Gia_ManObjNum(pGia) );
    p->vAbs      = Vec_IntAlloc( 1000 );
    p->vValues   = Vec_IntAlloc( 1000 );
    Vec_IntPush( p->vValues, -1 );
    // refinement
    p->pRnm      = Rnm_ManStart( pGia );
    // SAT solver and variables
    p->vId2Lit   = Vec_PtrAlloc( 1000 );
    // temporaries
    p->vLits     = Vec_IntAlloc( 100 );
    p->vIsopMem  = Vec_IntAlloc( 100 );
    Cnf_ReadMsops( &p->pSopSizes, &p->pSops );
    return p;
}
void Ga2_ManReportMemory( Ga2_Man_t * p )
{
    double memTot = 0;
    double memAig = 1.0 * p->pGia->nObjsAlloc * sizeof(Gia_Obj_t) + Vec_IntMemory(p->pGia->vMapping);
    double memSat = sat_solver2_memory( p->pSat, 1 );
    double memPro = sat_solver2_memory_proof( p->pSat );
    double memMap = Vec_VecMemoryInt( (Vec_Vec_t *)p->vId2Lit );
    double memRef = Rnm_ManMemoryUsage( p->pRnm );
    double memOth = sizeof(Ga2_Man_t);
    memOth += Vec_VecMemoryInt( (Vec_Vec_t *)p->vCnfs );
    memOth += Vec_IntMemory( p->vIds );
    memOth += Vec_IntMemory( p->vAbs );
    memOth += Vec_IntMemory( p->vValues );
    memOth += Vec_IntMemory( p->vLits );
    memOth += Vec_IntMemory( p->vIsopMem );
    memOth += 336450 + (sizeof(char) + sizeof(char*)) * 65536;
    memTot = memAig + memSat + memPro + memMap + memRef + memOth;
    ABC_PRMP( "Memory: AIG   ", memAig, memTot );
    ABC_PRMP( "Memory: SAT   ", memSat, memTot );
    ABC_PRMP( "Memory: Proof ", memPro, memTot );
    ABC_PRMP( "Memory: Map   ", memMap, memTot );
    ABC_PRMP( "Memory: Refine", memRef, memTot );
    ABC_PRMP( "Memory: Other ", memOth, memTot );
    ABC_PRMP( "Memory: TOTAL ", memTot, memTot );
}
void Ga2_ManStop( Ga2_Man_t * p )
{
    Vec_IntFreeP( &p->pGia->vMapping );
    Gia_ManSetPhase( p->pGia );
//    if ( p->pPars->fVerbose )
        Abc_Print( 1, "SAT solver:  Var = %d  Cla = %d  Conf = %d  Reduce = %d  Cex = %d  ObjsAdded = %d\n", 
            sat_solver2_nvars(p->pSat), sat_solver2_nclauses(p->pSat), sat_solver2_nconflicts(p->pSat), p->pSat->nDBreduces, p->nCexes, p->nObjAdded );
    if( p->pSat ) sat_solver2_delete( p->pSat );
    Vec_VecFree( (Vec_Vec_t *)p->vCnfs );
    Vec_VecFree( (Vec_Vec_t *)p->vId2Lit );
    Vec_IntFree( p->vIds );
    Vec_IntFree( p->vAbs );
    Vec_IntFree( p->vValues );
    Vec_IntFree( p->vLits );
    Vec_IntFree( p->vIsopMem );
    Rnm_ManStop( p->pRnm, 1 );
    ABC_FREE( p->pSopSizes );
    ABC_FREE( p->pSops[1] );
    ABC_FREE( p->pSops );
    ABC_FREE( p );
}


/**Function*************************************************************

  Synopsis    [Computes a minimized truth table.]

  Description [Input literals can be 0/1 (const 0/1), non-trivial literals 
  (integers that are more than 1) and unassigned literals (large integers).
  This procedure computes the truth table that essentially depends on input
  variables ordered in the increasing order of their positive literals.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline unsigned Ga2_ObjTruthDepends( unsigned t, int v )
{
    static unsigned uInvTruth5[5] = { 0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF, 0x0000FFFF };
    assert( v >= 0 && v <= 4 );
    return ((t ^ (t >> (1 << v))) & uInvTruth5[v]);
}
unsigned Ga2_ObjComputeTruthSpecial( Gia_Man_t * p, Gia_Obj_t * pRoot, Vec_Int_t * vLeaves, Vec_Int_t * vLits )
{
    static unsigned uTruth5[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 };
    Gia_Obj_t * pObj;
    int i, Entry;
    unsigned Res;
    // assign elementary truth tables
    Gia_ManForEachObjVec( vLeaves, p, pObj, i )
    {
        Entry = Vec_IntEntry( vLits, i );
        assert( Entry >= 0 );
        if ( Entry == 0 )
            pObj->Value = 0;
        else if ( Entry == 1 )
            pObj->Value = ~0;
        else // non-trivial literal
            pObj->Value = uTruth5[i];
    }
    // compute truth table
    Res = Ga2_ObjComputeTruth_rec( p, pRoot, 1 );
    if ( Res != 0 && Res != ~0 )
    {
        // find essential variables
        int nUsed = 0, pUsed[5];
        for ( i = 0; i < Vec_IntSize(vLeaves); i++ )
            if ( Ga2_ObjTruthDepends( Res, i ) )
                pUsed[nUsed++] = i;
        assert( nUsed > 0 );
        // order the by literal value
        Vec_IntSelectSortCost( pUsed, nUsed, vLits );
        assert( Vec_IntEntry(vLits, pUsed[0]) <= Vec_IntEntry(vLits, pUsed[nUsed-1]) );
        // assign elementary truth tables to the leaves
        Gia_ManForEachObjVec( vLeaves, p, pObj, i )
            pObj->Value = 0;
        for ( i = 0; i < nUsed; i++ )
        {
            Entry = Vec_IntEntry( vLits, pUsed[i] );
            assert( Entry > 1 );
            pObj = Gia_ManObj( p, Vec_IntEntry(vLeaves, pUsed[i]) );
            pObj->Value = Abc_LitIsCompl(Entry) ? ~uTruth5[i] : uTruth5[i];
            // remember this literal
            pUsed[i] = Abc_LitRegular(Entry);
        }
        // compute truth table
        Res = Ga2_ObjComputeTruth_rec( p, pRoot, 1 );
        // reload the literals
        Vec_IntClear( vLits );
        for ( i = 0; i < nUsed; i++ )
        {
            Vec_IntPush( vLits, pUsed[i] );
            assert( Ga2_ObjTruthDepends(Res, i) );
        }
    }
    else
        Vec_IntClear( vLits );
    return Res;
}

/**Function*************************************************************

  Synopsis    [Returns CNF of the function.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Ga2_ManCnfCompute( unsigned uTruth, int nVars, Vec_Int_t * vCover )
{
    extern int Kit_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vMemory, int fTryBoth );
    int RetValue;
    assert( nVars <= 5 );
    // transform truth table into the SOP
    RetValue = Kit_TruthIsop( &uTruth, nVars, vCover, 0 );
    assert( RetValue == 0 );
    // check the case of constant cover
    return Vec_IntDup( vCover );
}

/**Function*************************************************************

  Synopsis    [Derives CNF for one node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Ga2_ManCnfAddDynamic( Ga2_Man_t * p, int uTruth, int Lits[], int iLitOut, int ProofId )
{
    int i, k, b, Cube, nClaLits, ClaLits[6];
    assert( uTruth > 0 && uTruth < 0xffff );
    // write positive/negative polarity
    for ( i = 0; i < 2; i++ )
    {
        if ( i )
            uTruth = 0xffff & ~uTruth;
//        Extra_PrintBinary( stdout, &uTruth, 16 ); printf( "\n" );
        for ( k = 0; k < p->pSopSizes[uTruth]; k++ )
        {
            nClaLits = 0;
            ClaLits[nClaLits++] = i ? lit_neg(iLitOut) : iLitOut;
            Cube = p->pSops[uTruth][k];
            for ( b = 3; b >= 0; b-- )
            {
                if ( Cube % 3 == 0 ) // value 0 --> add positive literal
                {
                    assert( Lits[b] > 1 );
                    ClaLits[nClaLits++] = Lits[b];
                }
                else if ( Cube % 3 == 1 ) // value 1 --> add negative literal
                {
                    assert( Lits[b] > 1 );
                    ClaLits[nClaLits++] = lit_neg(Lits[b]);
                }
                Cube = Cube / 3;
            }
            sat_solver2_addclause( p->pSat, ClaLits, ClaLits+nClaLits, ProofId );
        }
    }
}
static inline void Ga2_ManCnfAddStatic( Ga2_Man_t * p, Vec_Int_t * vCnf0, Vec_Int_t * vCnf1, int Lits[], int iLitOut, int ProofId )
{
    Vec_Int_t * vCnf;
    int i, k, b, Cube, Literal, nClaLits, ClaLits[6];
    // write positive/negative polarity
    for ( i = 0; i < 2; i++ )
    {
        vCnf = i ? vCnf1 : vCnf0;
//        for ( k = 0; k < p->pSopSizes[uTruth]; k++ )
        Vec_IntForEachEntry( vCnf, Cube, k )
        {
            nClaLits = 0;
            ClaLits[nClaLits++] = i ? lit_neg(iLitOut) : iLitOut;
//            Cube = p->pSops[uTruth][k];
//            for ( b = 3; b >= 0; b-- )
            for ( b = 0; b < 5; b++ )
            {
                Literal = 3 & (Cube >> (b << 1));
                if ( Literal == 1 ) // value 0 --> add positive literal
                {
//                    pCube[b] = '0';
                    assert( Lits[b] > 1 );
                    ClaLits[nClaLits++] = Lits[b];
                }
                else if ( Literal == 2 ) // value 1 --> add negative literal
                {
//                    pCube[b] = '1';
                    assert( Lits[b] > 1 );
                    ClaLits[nClaLits++] = lit_neg(Lits[b]);
                }
                else if ( Literal != 0 )
                    assert( 0 );
            }
            sat_solver2_addclause( p->pSat, ClaLits, ClaLits+nClaLits, ProofId );
        }
    }
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ga2_ManSetupNode( Ga2_Man_t * p, Gia_Obj_t * pObj, int fAbs )
{
    unsigned uTruth;
    int nLeaves;
    assert( pObj->fPhase );
    assert( Vec_PtrSize(p->vCnfs) == 2 * Vec_IntSize(p->vValues) );
    // assign abstraction ID to the node
    if ( Ga2_ObjId(p,pObj) == 0 )
    {
        Ga2_ObjSetId( p, pObj, Vec_IntSize(p->vValues) );
        Vec_IntPush( p->vValues, Gia_ObjId(p->pGia, pObj) );
        Vec_PtrPush( p->vCnfs, NULL );
        Vec_PtrPush( p->vCnfs, NULL );
    }
    assert( Ga2_ObjCnf0(p, pObj) == NULL );
    if ( !fAbs )
        return;
    // compute parameters
    nLeaves = Ga2_ObjLeaveNum(p->pGia, pObj);
    uTruth = Ga2_ObjTruth( p->pGia, pObj );
    // create CNF for pos/neg phases
    Vec_PtrWriteEntry( p->vCnfs, 2 * Ga2_ObjId(p,pObj),     Ga2_ManCnfCompute(uTruth, nLeaves, p->vIsopMem) );    
    uTruth = (~uTruth) & Abc_InfoMask( (1 << nLeaves) );
    Vec_PtrWriteEntry( p->vCnfs, 2 * Ga2_ObjId(p,pObj) + 1, Ga2_ManCnfCompute(uTruth, nLeaves, p->vIsopMem) );
}

void Ga2_ManAddToAbs( Ga2_Man_t * p, Vec_Int_t * vToAdd )
{
    Vec_Int_t * vLeaves, * vMap;
    Gia_Obj_t * pObj, * pFanin;
    int f, i, k, iLitOut;
    // add abstraction objects
    Gia_ManForEachObjVec( vToAdd, p->pGia, pObj, i )
    {
        Ga2_ManSetupNode( p, pObj, 1 );
        Vec_IntPush( p->vAbs, Gia_ObjId(p->pGia, pObj) );
    }
    // add PPI objects
    Gia_ManForEachObjVec( vToAdd, p->pGia, pObj, i )
    {
        vLeaves = Ga2_ObjLeaves( p->pGia, pObj );
        Gia_ManForEachObjVec( vLeaves, p->pGia, pFanin, k )
            Ga2_ManSetupNode( p, pObj, 0 );
    }
    // clean mapping in the timeframes
    Vec_PtrForEachEntry( Vec_Int_t *, p->vId2Lit, vMap, i )
        Vec_IntFillExtra( vMap, Vec_IntSize(p->vValues), -1 );
    // add new clauses to the timeframes
    for ( f = 0; f < p->pPars->iFrame; f++ )
    Gia_ManForEachObjVec( vToAdd, p->pGia, pObj, i )
    {
        iLitOut =  Ga2_ObjFindOrAddLit( p, pObj, f );
        vLeaves = Ga2_ObjLeaves( p->pGia, pObj );
        Vec_IntClear( p->vLits );
        Gia_ManForEachObjVec( vLeaves, p->pGia, pFanin, k )
            Vec_IntPush( p->vLits, Ga2_ObjFindOrAddLit( p, pFanin, f ) );
        Ga2_ManCnfAddStatic( p, Ga2_ObjCnf0(p, pObj), Ga2_ObjCnf1(p, pObj), Vec_IntArray(p->vLits), iLitOut, p->nProofIds + i );
    }
}

void Ga2_ManAddAbsClauses( Ga2_Man_t * p, int f )
{
    Vec_Int_t * vLeaves;
    Gia_Obj_t * pObj, * pFanin;
    int i, k, iLitOut;
    Gia_ManForEachObjVec( p->vAbs, p->pGia, pObj, i )
    {
        if ( i < p->LimAbs )
            continue;
        iLitOut =  Ga2_ObjFindOrAddLit( p, pObj, f );
        vLeaves = Ga2_ObjLeaves( p->pGia, pObj );
        Vec_IntClear( p->vLits );
        Gia_ManForEachObjVec( vLeaves, p->pGia, pFanin, k )
            Vec_IntPush( p->vLits, Ga2_ObjFindOrAddLit( p, pFanin, f ) );
        Ga2_ManCnfAddStatic( p, Ga2_ObjCnf0(p, pObj), Ga2_ObjCnf1(p, pObj), Vec_IntArray(p->vLits), iLitOut, i - p->LimAbs );
    }
}

void Ga2_ManShrinkAbs( Ga2_Man_t * p, int nAbs, int nValues )
{
    Vec_Int_t * vMap;
    Gia_Obj_t * pObj;
    int i;
    assert( nAbs >= 0 );
    assert( nValues > 0 );
    // shrink abstraction
    Gia_ManForEachObjVec( p->vAbs, p->pGia, pObj, i )
    {
        assert( Ga2_ObjCnf0(p, pObj) != NULL );
        assert( Ga2_ObjCnf1(p, pObj) != NULL );
        if ( i < nAbs )
            continue;
        Vec_IntFree( Ga2_ObjCnf0(p, pObj) );
        Vec_IntFree( Ga2_ObjCnf1(p, pObj) );
        Vec_PtrWriteEntry( p->vCnfs, 2 * Ga2_ObjId(p,pObj),     NULL );    
        Vec_PtrWriteEntry( p->vCnfs, 2 * Ga2_ObjId(p,pObj) + 1, NULL );
    }
    Vec_IntShrink( p->vAbs, nAbs );
    // shrink values
    Gia_ManForEachObjVec( p->vValues, p->pGia, pObj, i )
    {
        assert( Ga2_ObjId(p,pObj) );
        if ( i < nValues )
            continue;
        Ga2_ObjSetId( p, pObj, 0 );
    }
    Vec_IntShrink( p->vValues, nValues );
    Vec_PtrShrink( p->vCnfs, 2 * nValues );
    // clean mapping into timeframes
    Vec_PtrForEachEntry( Vec_Int_t *, p->vId2Lit, vMap, i )
        Vec_IntShrink( vMap, nValues );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ga2_ManAbsTranslate_rec( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vClasses, int fFirst )
{
    if ( pObj->fPhase && !fFirst )
        return;
    assert( Gia_ObjIsAnd(pObj) );
    Ga2_ManAbsTranslate_rec( p, Gia_ObjFanin0(pObj), vClasses, 0 );
    Ga2_ManAbsTranslate_rec( p, Gia_ObjFanin1(pObj), vClasses, 0 );
    Vec_IntWriteEntry( vClasses, Gia_ObjId(p, pObj), 1 );
}

Vec_Int_t * Ga2_ManAbsTranslate( Ga2_Man_t * p )
{
    Vec_Int_t * vGateClasses;
    Gia_Obj_t * pObj;
    int i;
    vGateClasses = Vec_IntStart( Gia_ManObjNum(p->pGia) );
    Gia_ManForEachObjVec( p->vAbs, p->pGia, pObj, i )
        Ga2_ManAbsTranslate_rec( p->pGia, pObj, vGateClasses, 1 );
    return vGateClasses;
}

Vec_Int_t * Ga2_ManAbsDerive( Gia_Man_t * p )
{
    Vec_Int_t * vToAdd;
    Gia_Obj_t * pObj;
    int i;
    vToAdd = Vec_IntAlloc( 1000 );
    Gia_ManForEachRo( p, pObj, i )
        if ( pObj->fPhase && Vec_IntEntry(p->vGateClasses, i) )
            Vec_IntPush( vToAdd, i );
    Gia_ManForEachAnd( p, pObj, i )
        if ( pObj->fPhase && Vec_IntEntry(p->vGateClasses, i) )
            Vec_IntPush( vToAdd, i );
    return vToAdd;
}

void Ga2_ManRestart( Ga2_Man_t * p )
{
    Vec_Int_t * vToAdd;
    assert( p->pGia != NULL && p->pGia->vGateClasses != NULL );
    assert( Gia_ManPi(p->pGia, 0)->fPhase ); // marks are set
    // clear mappings from objects
    Ga2_ManShrinkAbs( p, 0, 1 );
    // clear SAT variable numbers (begin with 1)
    if ( p->pSat ) sat_solver2_delete( p->pSat );
    p->pSat      = sat_solver2_new();
    p->nSatVars  = 1;
    // start abstraction
    vToAdd = Ga2_ManAbsDerive( p->pGia );
    Ga2_ManAddToAbs( p, vToAdd );
    Vec_IntFree( vToAdd );
    p->LimAbs = Vec_IntSize(p->vAbs) + 1;
    p->LimPpi = Vec_IntSize(p->vValues);
    p->nProofIds = 0;
    // set runtime limit
    if ( p->pPars->nTimeOut )
        sat_solver2_set_runtime_limit( p->pSat, p->pPars->nTimeOut * CLOCKS_PER_SEC + p->timeStart );
}

/**Function*************************************************************

  Synopsis    [Unrolls one timeframe.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ga2_ManUnroll_rec( Ga2_Man_t * p, Gia_Obj_t * pObj, int f )
{
    int fSimple = 1;
    unsigned uTruth;
    Gia_Obj_t * pLeaf;
    int nLeaves, * pLeaves;
    int i, Lit, pLits[5];
    if ( Gia_ObjIsCo(pObj) )
        return Abc_LitNotCond( Ga2_ManUnroll_rec(p, Gia_ObjFanin0(pObj), f), Gia_ObjFaninC0(pObj) );
    if ( Gia_ObjIsConst0(pObj) || (f==0 && Gia_ObjIsRo(p->pGia, pObj)) )
    {
        if ( fSimple )
        {
            Lit = Ga2_ObjFindOrAddLit( p, pObj, f );
            Lit = Abc_LitNot(Lit);
            assert( Lit > 1 );
            sat_solver2_addclause( p->pSat, &Lit, &Lit + 1, -1 );
            return Lit;
        }
        return 0;
    }
    assert( pObj->fPhase );
    Lit = Ga2_ObjFindLit( p, pObj, f );
    if ( Lit >= 0 )
        return Lit;
    if ( Gia_ObjIsPi(p->pGia, pObj) )
        return Ga2_ObjFindOrAddLit( p, pObj, f );
    if ( Gia_ObjIsRo(p->pGia, pObj) )
    {
        assert( f > 0 );
        Lit = Ga2_ManUnroll_rec( p, Gia_ObjRoToRi(p->pGia, pObj), f-1 );
        Ga2_ObjAddLit( p, pObj, f, Lit );
        return Lit;
    }
    nLeaves = Ga2_ObjLeaveNum( p->pGia, pObj );
    pLeaves = Ga2_ObjLeavePtr( p->pGia, pObj );
    if ( fSimple )
    {
        // collect fanin literals
        for ( i = 0; i < nLeaves; i++ )
        {
            pLeaf = Gia_ManObj(p->pGia, pLeaves[i]);
            pLits[i] = Ga2_ManUnroll_rec( p, pLeaf, f );
        }
        // create fanout literal
        Lit = Ga2_ObjFindOrAddLit( p, pObj, f );
        // create clauses
        Ga2_ManCnfAddStatic( p, Ga2_ObjCnf0(p, pObj), Ga2_ObjCnf1(p, pObj), pLits, Lit, -1 );
        return Lit;
    }
    // collect fanin literals
    for ( i = 0; i < nLeaves; i++ )
    {
        pLeaf = Gia_ManObj( p->pGia, pLeaves[i] );
        if ( Ga2_ObjIsAbs(p, pLeaf) )      // belongs to original abstraction
            pLits[i] = Ga2_ManUnroll_rec( p, pLeaf, f );
        else if ( Ga2_ObjIsPpi(p, pLeaf) ) // belongs to original PPIs
            pLits[i] = GA2_BIG_NUM + i;
        else assert( 0 );
    }
    // collect literals
    Vec_IntClear( p->vLits );
    for ( i = 0; i < nLeaves; i++ )
        Vec_IntPush( p->vLits, pLits[i] );
    // minimize truth table
    uTruth = Ga2_ObjComputeTruthSpecial( p->pGia, pObj, Ga2_ObjLeaves(p->pGia, pObj), p->vLits );
    if ( uTruth == 0 || uTruth == ~0 ) // const 0 / 1
        Lit = (uTruth > 0);
    else if ( uTruth == 0xAAAAAAAA || uTruth == 0x55555555 )  // buffer / inverter
    {
        Lit = Vec_IntEntry( p->vLits, 0 );
        if ( Lit >= GA2_BIG_NUM )
        {
            pLeaf = Gia_ManObj( p->pGia, pLeaves[Lit-GA2_BIG_NUM] );
            Lit = Ga2_ObjFindOrAddLit( p, pLeaf, f );
        }
        Lit = Abc_LitNotCond( Lit, uTruth == 0x55555555 );
    }
    else
    {
        // perform structural hashing here!!!

        // add new node
        Lit = Ga2_ObjFindOrAddLit(p, pObj, f);
        Ga2_ManCnfAddDynamic( p, uTruth, Vec_IntArray(p->vLits), Lit, -1 );
    }
    Ga2_ObjAddLit( p, pObj, f, Lit );
    return Lit;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Vec_IntCheckUnique( Vec_Int_t * p )
{
    int RetValue;
    Vec_Int_t * pDup = Vec_IntDup( p );
    Vec_IntUniqify( pDup );
    RetValue = Vec_IntSize(p) - Vec_IntSize(pDup);
    Vec_IntFree( pDup );
    return RetValue;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Ga2_ObjSatValue( Ga2_Man_t * p, Gia_Obj_t * pObj, int f )
{
    int Lit = Ga2_ObjFindLit( p, pObj, f );
    if ( Lit == -1 )
        return 0;
    return Abc_LitIsCompl(Lit) ^ sat_solver2_var_value( p->pSat, Abc_Lit2Var(Lit) );
}
void Ga2_GlaPrepareCexAndMap( Ga2_Man_t * p, Abc_Cex_t ** ppCex, Vec_Int_t ** pvMaps )
{
    Abc_Cex_t * pCex;
    Vec_Int_t * vMap;
    Gia_Obj_t * pObj;
    int f, i, k;
    // find PIs and PPIs
    vMap = Vec_IntAlloc( 1000 );
    Gia_ManForEachObjVec( p->vValues, p->pGia, pObj, i )
    {
        if ( Ga2_ObjIsAbs(p, pObj) )
            continue;
        assert( Ga2_ObjIsPpi(p, pObj) );
        assert( Gia_ObjIsAnd(pObj) || Gia_ObjIsCi(pObj) );
        Vec_IntPush( vMap, Gia_ObjId(p->pGia, pObj) );
    }
    // derive counter-example
    pCex = Abc_CexAlloc( 0, Vec_IntSize(vMap), p->pPars->iFrame+1 );
    pCex->iFrame = p->pPars->iFrame;
    for ( f = 0; f <= p->pPars->iFrame; f++ )
        Gia_ManForEachObjVec( vMap, p->pGia, pObj, k )
            if ( Ga2_ObjSatValue( p, pObj, f ) )
                Abc_InfoSetBit( pCex->pData, f * Vec_IntSize(vMap) + k );
    *pvMaps = vMap;
    *ppCex = pCex;
}
Abc_Cex_t * Ga2_ManDeriveCex( Ga2_Man_t * p, Vec_Int_t * vPis )
{
    Abc_Cex_t * pCex;
    Gia_Obj_t * pObj;
    int i, f;
    pCex = Abc_CexAlloc( Gia_ManRegNum(p->pGia), Gia_ManPiNum(p->pGia), p->pPars->iFrame+1 );
    pCex->iPo = 0;
    pCex->iFrame = p->pPars->iFrame;
    Gia_ManForEachObjVec( vPis, p->pGia, pObj, i )
    {
        if ( !Gia_ObjIsPi(p->pGia, pObj) )
            continue;
        assert( Gia_ObjIsPi(p->pGia, pObj) );
        for ( f = 0; f <= pCex->iFrame; f++ )
            if ( Ga2_ObjSatValue( p, pObj, f ) )
                Abc_InfoSetBit( pCex->pData, pCex->nRegs + f * pCex->nPis + Gia_ObjCioId(pObj) );
    }
    return pCex;
}
Vec_Int_t * Ga2_ManRefine( Ga2_Man_t * p )
{
    Abc_Cex_t * pCex;
    Vec_Int_t * vMap, * vVec;
    Gia_Obj_t * pObj;
    int i;
    Ga2_GlaPrepareCexAndMap( p, &pCex, &vMap );
    vVec = Rnm_ManRefine( p->pRnm, pCex, vMap, p->pPars->fPropFanout, 1 );
    Abc_CexFree( pCex );
    if ( Vec_IntSize(vVec) == 0 )
    {
        Vec_IntFree( vVec );
        Abc_CexFreeP( &p->pGia->pCexSeq );
        p->pGia->pCexSeq = Ga2_ManDeriveCex( p, vMap );
        Vec_IntFree( vMap );
        return NULL;
    }
    Vec_IntFree( vMap );
    // these objects should be PPIs that are not abstracted yet
    Gia_ManForEachObjVec( vVec, p->pGia, pObj, i )
        assert( Ga2_ObjIsPpi(p, pObj) && !Ga2_ObjIsAbs(p, pObj) );
    p->nObjAdded += Vec_IntSize(vVec);
    return vVec;
}

/**Function*************************************************************

  Synopsis    [Performs gate-level abstraction.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ga2_ManPerform( Gia_Man_t * pAig, Gia_ParVta_t * pPars )
{
    Ga2_Man_t * p;
    Vec_Int_t * vCore, * vPPis;
    clock_t clk = clock();
    int nAbs, nValues, Status, RetValue = -1;
    int i, c, f, Lit;
    // start the manager
    p = Ga2_ManStart( pAig, pPars );
    // check trivial case 
    assert( Gia_ManPoNum(pAig) == 1 );
    ABC_FREE( pAig->pCexSeq );
    if ( Gia_ObjIsConst0(Gia_ObjFanin0(Gia_ManPo(pAig,0))) )
    {
        if ( !Gia_ObjFaninC0(Gia_ManPo(pAig,0)) )
        {
            printf( "Sequential miter is trivially UNSAT.\n" );
            return 1;
        }
        pAig->pCexSeq = Abc_CexMakeTriv( Gia_ManRegNum(pAig), Gia_ManPiNum(pAig), 1, 0 );
        printf( "Sequential miter is trivially SAT.\n" );
        return 0;
    }
    // create gate classes if not given
    if ( pAig->vGateClasses == NULL )
    {
        pAig->vGateClasses = Vec_IntStart( Gia_ManObjNum(pAig) );
        Vec_IntWriteEntry( pAig->vGateClasses, 0, 1 );
        Vec_IntWriteEntry( pAig->vGateClasses, Gia_ObjFaninId0p(pAig, Gia_ManPo(pAig, 0)), 1 );
    }
    // start the manager
    p = Ga2_ManStart( pAig, pPars );
    p->timeInit = clock() - clk;
    // perform initial abstraction
    if ( p->pPars->fVerbose )
    {
        Abc_Print( 1, "Running gate-level abstraction (GLA) with the following parameters:\n" );
        Abc_Print( 1, "FrameMax = %d  ConfMax = %d  Timeout = %d  RatioMin = %d %%.\n", 
            pPars->nFramesMax, pPars->nConfLimit, pPars->nTimeOut, pPars->nRatioMin );
        Abc_Print( 1, "LearnStart = %d  LearnDelta = %d  LearnRatio = %d %%.\n", 
            pPars->nLearnedStart, pPars->nLearnedDelta, pPars->nLearnedPerce );
        Abc_Print( 1, "Frame   %%   Abs  PPI   FF   LUT   Confl  Cex   Vars   Clas   Lrns     Time      Mem\n" );
    }
    // iterate unrolling
    for ( i = f = 0; !pPars->nFramesMax || f < pPars->nFramesMax; i++ )
    {
        // create new SAT solver
        Ga2_ManRestart( p );
        // remember current limits
        nAbs    = Vec_IntSize(p->vAbs);
        nValues = Vec_IntSize(p->vValues);
        // unroll the circuit
        for ( f = 0; !pPars->nFramesMax || f < pPars->nFramesMax; f++ )
        {
            p->pPars->iFrame = f;
            // add abstraction clauses
            Ga2_ManAddAbsClauses( p, f );
            // get the output literal
            Lit = Ga2_ManUnroll_rec( p, Gia_ManPo(pAig,0), f );
            // check for counter-examples
            for ( c = 0; ; c++ )
            {
                // perform SAT solving
                clk = clock();
                Status = sat_solver2_solve( p->pSat, &Lit, &Lit+1, (ABC_INT64_T)pPars->nConfLimit, (ABC_INT64_T)0, (ABC_INT64_T)0, (ABC_INT64_T)0 );
                if ( Status == l_True ) // perform refinement
                {
                    p->timeSat += clock() - clk;
                    clk = clock();
                    vPPis = Ga2_ManRefine( p );
                    p->timeCex += clock() - clk;
                    if ( vPPis == NULL )
                        goto finish;
                    Ga2_ManAddToAbs( p, vPPis );
                    Vec_IntFree( vPPis );
                    // verify
                    if ( Vec_IntCheckUnique(p->vAbs) )
                        printf( "Vector has %d duplicated entries.\n", Vec_IntCheckUnique(p->vAbs) );
                    continue;
                }
                p->timeUnsat += clock() - clk;
                if ( p->pSat->nRuntimeLimit && clock() > p->pSat->nRuntimeLimit ) // timeout
                    goto finish;
                if ( Status == l_Undef ) // ran out of resources
                    goto finish;
                assert( RetValue == l_False );
                // derive UNSAT core
                vCore = (Vec_Int_t *)Sat_ProofCore( p->pSat );
                Ga2_ManShrinkAbs( p, nAbs, nValues );
                Ga2_ManAddToAbs( p, vCore );
                Vec_IntFree( vCore );
                // remember current limits
                nAbs    = Vec_IntSize(p->vAbs);
                nValues = Vec_IntSize(p->vValues);
                // verify
                if ( Vec_IntCheckUnique(p->vAbs) )
                    printf( "Vector has %d duplicated entries.\n", Vec_IntCheckUnique(p->vAbs) );
                break;
            }
            if ( c > 0 )
            {
                Vec_IntFreeP( &pAig->vGateClasses );
                pAig->vGateClasses = Ga2_ManAbsTranslate( p );
                break;  // temporary
            }
        }
        // check if the number of objects is below limit
        if ( Vec_IntSize(p->vAbs) >= p->nMarked * (100 - pPars->nRatioMin) / 100 )
        {
            Status = l_Undef;
            break;
        }
    }
finish:
    // analize the results
    if ( pAig->pCexSeq == NULL )
    {
        if ( pAig->vGateClasses != NULL )
            Abc_Print( 1, "Replacing the old abstraction by a new one.\n" );
        Vec_IntFreeP( &pAig->vGateClasses );
        pAig->vGateClasses = Ga2_ManAbsTranslate( p );
        if ( Status == l_Undef )
        {
            if ( p->pPars->nTimeOut && clock() >= p->pSat->nRuntimeLimit ) 
                Abc_Print( 1, "SAT solver ran out of time at %d sec in frame %d.  ", p->pPars->nTimeOut, f );
            else if ( pPars->nConfLimit && sat_solver2_nconflicts(p->pSat) >= pPars->nConfLimit )
                Abc_Print( 1, "SAT solver ran out of resources at %d conflicts in frame %d.  ", pPars->nConfLimit, f );
            else if ( Vec_IntSize(p->vAbs) >= p->nMarked * (100 - pPars->nRatioMin) / 100 )
                Abc_Print( 1, "The ratio of abstracted objects is less than %d %% in frame %d.  ", pPars->nRatioMin, f );
            else
                Abc_Print( 1, "Abstraction stopped for unknown reason in frame %d.  ", f );
        }
        else
        {
            p->pPars->iFrame++;
            Abc_Print( 1, "SAT solver completed %d frames and produced an abstraction.  ", f );
        }
    }
    else
    {
        if ( !Gia_ManVerifyCex( pAig, pAig->pCexSeq, 0 ) )
            Abc_Print( 1, "    Gia_GlaPerform(): CEX verification has failed!\n" );
        Abc_Print( 1, "Counter-example detected in frame %d.  ", f );
        p->pPars->iFrame = pAig->pCexSeq->iFrame - 1;
        Vec_IntFreeP( &pAig->vGateClasses );
        RetValue = 0;
    }
    Abc_PrintTime( 1, "Time", clock() - clk );
    if ( p->pPars->fVerbose )
    {
        p->timeOther = (clock() - clk) - p->timeUnsat - p->timeSat - p->timeCex - p->timeInit;
        ABC_PRTP( "Runtime: Initializing", p->timeInit,   clock() - clk );
        ABC_PRTP( "Runtime: Solver UNSAT", p->timeUnsat,  clock() - clk );
        ABC_PRTP( "Runtime: Solver SAT  ", p->timeSat,    clock() - clk );
        ABC_PRTP( "Runtime: Refinement  ", p->timeCex,    clock() - clk );
        ABC_PRTP( "Runtime: Other       ", p->timeOther,  clock() - clk );
        ABC_PRTP( "Runtime: TOTAL       ", clock() - clk, clock() - clk );
        Ga2_ManReportMemory( p );
    }
    Ga2_ManStop( p );
    fflush( stdout );
    return RetValue;
}

//#endif


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END