summaryrefslogtreecommitdiffstats
path: root/src/aig/gia/giaFront.c
blob: b3a3c2d06230d2dc4b58fef263e23698264fbb34 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/**CFile****************************************************************

  FileName    [giaFront.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Scalable AIG package.]

  Synopsis    [Frontier representation.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: giaFront.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "gia.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Find the next place on the frontier.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Gia_ManFrontFindNext( char * pFront, int nFront, int iFront )
{
    assert( iFront < nFront );
    for ( ; pFront[iFront]; iFront = (iFront + 1) % nFront );
    assert( pFront[iFront] == 0 );
    pFront[iFront] = 1;
    return iFront;
}

/**Function*************************************************************

  Synopsis    [Transforms the frontier manager to its initial state.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Gia_ManFrontTransform( Gia_Man_t * p )
{
    Gia_Obj_t * pObj;
    int i, * pFrontToId; // mapping of nodes into frontier variables
    assert( p->nFront > 0 );
    pFrontToId = ABC_ALLOC( int, p->nFront );
    Gia_ManForEachObj( p, pObj, i )
    {
        if ( Gia_ObjIsCo(pObj) )
        {
            assert( pObj->Value == GIA_NONE );
            pObj->iDiff0 = i - pFrontToId[Gia_ObjDiff0(pObj)];
        }
        else if ( Gia_ObjIsAnd(pObj) )
        {
            assert( (int)pObj->Value < p->nFront );
            pObj->iDiff0 = i - pFrontToId[Gia_ObjDiff0(pObj)];
            pObj->iDiff1 = i - pFrontToId[Gia_ObjDiff1(pObj)];
            pFrontToId[pObj->Value] = i;
        }
        else
        {
            assert( (int)pObj->Value < p->nFront );
            pFrontToId[pObj->Value] = i;
        }
        pObj->Value = 0;
    }
    ABC_FREE( pFrontToId );
}

/**Function*************************************************************

  Synopsis    [Determine the frontier.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Gia_Man_t * Gia_ManFront( Gia_Man_t * p )
{
    Gia_Man_t * pNew;
    Gia_Obj_t * pObj, * pFanin0New, * pFanin1New, * pObjNew;
    char * pFront;    // places used for the frontier
    int i, iLit, nCrossCut = 0, nCrossCutMax = 0;
    int nCrossCutMaxInit = Gia_ManCrossCut( p );
    int iFront = 0, clk = clock(); 
    // set references for all objects
    Gia_ManSetRefs( p );
    // start the new manager
    pNew = Gia_ManStart( Gia_ManObjNum(p) );
    pNew->pName = Gia_UtilStrsav( p->pName );
    pNew->nFront = 1 + (int)((float)1.1 * nCrossCutMaxInit); 
    // start the frontier
    pFront = ABC_CALLOC( char, pNew->nFront );
    // add constant node
    Gia_ManConst0(pNew)->Value = iFront = Gia_ManFrontFindNext( pFront, pNew->nFront, iFront );
    if ( Gia_ObjValue(Gia_ManConst0(p)) == 0 )
        pFront[iFront] = 0;
    else
        nCrossCut = 1;
    // iterate through the objects
    Gia_ManForEachObj1( p, pObj, i )
    {
        if ( Gia_ObjIsCi(pObj) )
        {
            if ( Gia_ObjValue(pObj) && nCrossCutMax < ++nCrossCut )
                nCrossCutMax = nCrossCut;
            // create new node
            iLit = Gia_ManAppendCi( pNew );
            pObjNew = Gia_ManObj( pNew, Gia_Lit2Var(iLit) );
            assert( Gia_ObjId(pNew, pObjNew) == Gia_ObjId(p, pObj) );
            pObjNew->Value = iFront = Gia_ManFrontFindNext( pFront, pNew->nFront, iFront );
            // handle CIs without fanout
            if ( Gia_ObjValue(pObj) == 0 )
                pFront[iFront] = 0;
            continue;
        }
        if ( Gia_ObjIsCo(pObj) )
        {
            assert( Gia_ObjValue(pObj) == 0 );
            // create new node
            iLit = Gia_ManAppendCo( pNew, 0 );
            pObjNew = Gia_ManObj( pNew, Gia_Lit2Var(iLit) );
            assert( Gia_ObjId(pNew, pObjNew) == Gia_ObjId(p, pObj) );
            // get the fanin
            pFanin0New = Gia_ManObj( pNew, Gia_ObjFaninId0(pObj, i) );
            assert( pFanin0New->Value != GIA_NONE );
            pObjNew->Value = GIA_NONE;
            pObjNew->iDiff0 = pFanin0New->Value;
            pObjNew->fCompl0 = Gia_ObjFaninC0(pObj);
            // deref the fanin
            if ( --Gia_ObjFanin0(pObj)->Value == 0 )
            {
                pFront[pFanin0New->Value] = 0;
                nCrossCut--;
            }
            continue;
        }
        if ( Gia_ObjValue(pObj) && nCrossCutMax < ++nCrossCut )
            nCrossCutMax = nCrossCut;
        // create new node
        pObjNew = Gia_ManAppendObj( pNew );
        assert( Gia_ObjId(pNew, pObjNew) == Gia_ObjId(p, pObj) );
        // assign the first fanin
        pFanin0New = Gia_ManObj( pNew, Gia_ObjFaninId0(pObj, i) );
        assert( pFanin0New->Value != GIA_NONE );
        pObjNew->iDiff0 = pFanin0New->Value;
        pObjNew->fCompl0 = Gia_ObjFaninC0(pObj);
        // assign the second fanin
        pFanin1New = Gia_ManObj( pNew, Gia_ObjFaninId1(pObj, i) );
        assert( pFanin1New->Value != GIA_NONE );
        pObjNew->iDiff1 = pFanin1New->Value;
        pObjNew->fCompl1 = Gia_ObjFaninC1(pObj);
        // assign the frontier number
        pObjNew->Value = iFront = Gia_ManFrontFindNext( pFront, pNew->nFront, iFront );
        // deref the fanins
        if ( --Gia_ObjFanin0(pObj)->Value == 0 )
        {
            pFront[pFanin0New->Value] = 0;
            nCrossCut--;
        }
        if ( --Gia_ObjFanin1(pObj)->Value == 0 )
        {
            pFront[pFanin1New->Value] = 0;
            nCrossCut--;
        }
        // handle nodes without fanout (choice nodes)
        if ( Gia_ObjValue(pObj) == 0 )
            pFront[iFront] = 0;
    }
    assert( pNew->nObjs == p->nObjs );
    assert( nCrossCut == 0 && nCrossCutMax == nCrossCutMaxInit );
    for ( i = 0; i < pNew->nFront; i++ )
        assert( pFront[i] == 0 );
    ABC_FREE( pFront );
//printf( "Crosscut = %6d. Frontier = %6d. ", nCrossCutMaxInit, pNew->nFront );
//ABC_PRT( "Time", clock() - clk );
    Gia_ManSetRegNum( pNew, Gia_ManRegNum(p) );
    return pNew;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Gia_ManFrontTest( Gia_Man_t * p )
{
    Gia_Man_t * pNew;
    pNew  = Gia_ManFront( p );
    Gia_ManFrontTransform( pNew );
//    Gia_ManCleanValue( p );
//    Gia_ManCleanValue( pNew );
    if ( memcmp( pNew->pObjs, p->pObjs, sizeof(Gia_Obj_t) * p->nObjs ) )
    {
/*
        Gia_Obj_t * pObj, * pObjNew;
        int i;
        Gia_ManForEachObj( p, pObj, i )
        {
            pObjNew = Gia_ManObj( pNew, i );
            printf( "%5d %5d   %5d %5d\n", 
                pObj->iDiff0, pObjNew->iDiff0, 
                pObj->iDiff1, pObjNew->iDiff1 );
        }
*/
        printf( "Verification failed.\n" );
    }
    else
        printf( "Verification successful.\n" );
    Gia_ManStop( pNew );
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////
'n1316' href='#n1316'>1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
/**CFile****************************************************************

  FileName    [ivyFraig.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [And-Inverter Graph package.]

  Synopsis    [Functional reduction of AIGs]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - May 11, 2006.]

  Revision    [$Id: ivyFraig.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $]

***********************************************************************/

#include "satSolver.h"
#include "extra.h"
#include "ivy.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

typedef struct Ivy_FraigMan_t_        Ivy_FraigMan_t;
typedef struct Ivy_FraigSim_t_        Ivy_FraigSim_t;
typedef struct Ivy_FraigList_t_       Ivy_FraigList_t;

struct Ivy_FraigList_t_
{
    Ivy_Obj_t *         pHead;
    Ivy_Obj_t *         pTail;
    int                 nItems;
};

struct Ivy_FraigSim_t_
{
    int                 Type;
    Ivy_FraigSim_t *    pNext;
    Ivy_FraigSim_t *    pFanin0;
    Ivy_FraigSim_t *    pFanin1;
    unsigned            pData[0];
};

struct Ivy_FraigMan_t_
{
    // general info 
    Ivy_FraigParams_t * pParams;        // various parameters
    // temporary backtrack limits because "ABC_INT64_T" cannot be defined in Ivy_FraigParams_t ...
    ABC_INT64_T              nBTLimitGlobal; // global limit on the number of backtracks
    ABC_INT64_T              nInsLimitGlobal;// global limit on the number of clause inspects
    // AIG manager
    Ivy_Man_t *         pManAig;        // the starting AIG manager
    Ivy_Man_t *         pManFraig;      // the final AIG manager
    // simulation information
    int                 nSimWords;      // the number of words
    char *              pSimWords;      // the simulation info
    Ivy_FraigSim_t *    pSimStart;      // the list of simulation info for internal nodes
    // counter example storage
    int                 nPatWords;      // the number of words in the counter example
    unsigned *          pPatWords;      // the counter example
    int *               pPatScores;     // the scores of each pattern
    // equivalence classes 
    Ivy_FraigList_t     lClasses;       // equivalence classes
    Ivy_FraigList_t     lCand;          // candidatates
    int                 nPairs;         // the number of pairs of nodes
    // equivalence checking
    sat_solver *        pSat;           // SAT solver
    int                 nSatVars;       // the number of variables currently used
    Vec_Ptr_t *         vPiVars;        // the PIs of the cone used 
    // other 
    ProgressBar *       pProgress;
    // statistics
    int                 nSimRounds;
    int                 nNodesMiter;
    int                 nClassesZero;
    int                 nClassesBeg;
    int                 nClassesEnd;
    int                 nPairsBeg;
    int                 nPairsEnd;
    int                 nSatCalls;
    int                 nSatCallsSat;
    int                 nSatCallsUnsat;
    int                 nSatProof;
    int                 nSatFails;
    int                 nSatFailsReal;
    // runtime
    int                 timeSim;
    int                 timeTrav;
    int                 timeSat;
    int                 timeSatUnsat;
    int                 timeSatSat;
    int                 timeSatFail;
    int                 timeRef;
    int                 timeTotal;
    int                 time1;
    int                 time2;
};

typedef struct Prove_ParamsStruct_t_      Prove_Params_t;
struct Prove_ParamsStruct_t_
{
    // general parameters
    int     fUseFraiging;          // enables fraiging
    int     fUseRewriting;         // enables rewriting
    int     fUseBdds;              // enables BDD construction when other methods fail
    int     fVerbose;              // prints verbose stats
    // iterations
    int     nItersMax;             // the number of iterations
    // mitering 
    int     nMiteringLimitStart;   // starting mitering limit
    float   nMiteringLimitMulti;   // multiplicative coefficient to increase the limit in each iteration
    // rewriting 
    int     nRewritingLimitStart;  // the number of rewriting iterations
    float   nRewritingLimitMulti;  // multiplicative coefficient to increase the limit in each iteration
    // fraiging 
    int     nFraigingLimitStart;   // starting backtrack(conflict) limit
    float   nFraigingLimitMulti;   // multiplicative coefficient to increase the limit in each iteration
    // last-gasp BDD construction
    int     nBddSizeLimit;         // the number of BDD nodes when construction is aborted
    int     fBddReorder;           // enables dynamic BDD variable reordering
    // last-gasp mitering
    int     nMiteringLimitLast;    // final mitering limit
    // global SAT solver limits
    ABC_INT64_T  nTotalBacktrackLimit;  // global limit on the number of backtracks
    ABC_INT64_T  nTotalInspectLimit;    // global limit on the number of clause inspects
    // global resources applied
    ABC_INT64_T  nTotalBacktracksMade;  // the total number of backtracks made
    ABC_INT64_T  nTotalInspectsMade;    // the total number of inspects made
};

static inline Ivy_FraigSim_t * Ivy_ObjSim( Ivy_Obj_t * pObj )                            { return (Ivy_FraigSim_t *)pObj->pFanout;  }
static inline Ivy_Obj_t * Ivy_ObjClassNodeLast( Ivy_Obj_t * pObj )                       { return pObj->pNextFan0;  }
static inline Ivy_Obj_t * Ivy_ObjClassNodeRepr( Ivy_Obj_t * pObj )                       { return pObj->pNextFan0;  }
static inline Ivy_Obj_t * Ivy_ObjClassNodeNext( Ivy_Obj_t * pObj )                       { return pObj->pNextFan1;  }
static inline Ivy_Obj_t * Ivy_ObjNodeHashNext( Ivy_Obj_t * pObj )                        { return pObj->pPrevFan0;  }
static inline Ivy_Obj_t * Ivy_ObjEquivListNext( Ivy_Obj_t * pObj )                       { return pObj->pPrevFan0;  }
static inline Ivy_Obj_t * Ivy_ObjEquivListPrev( Ivy_Obj_t * pObj )                       { return pObj->pPrevFan1;  }
static inline Ivy_Obj_t * Ivy_ObjFraig( Ivy_Obj_t * pObj )                               { return pObj->pEquiv;     }
static inline int         Ivy_ObjSatNum( Ivy_Obj_t * pObj )                              { return (int)(ABC_PTRUINT_T)pObj->pNextFan0;         }
static inline Vec_Ptr_t * Ivy_ObjFaninVec( Ivy_Obj_t * pObj )                            { return (Vec_Ptr_t *)pObj->pNextFan1; }

static inline void        Ivy_ObjSetSim( Ivy_Obj_t * pObj, Ivy_FraigSim_t * pSim )       { pObj->pFanout = (Ivy_Obj_t *)pSim; }
static inline void        Ivy_ObjSetClassNodeLast( Ivy_Obj_t * pObj, Ivy_Obj_t * pLast ) { pObj->pNextFan0 = pLast; }
static inline void        Ivy_ObjSetClassNodeRepr( Ivy_Obj_t * pObj, Ivy_Obj_t * pRepr ) { pObj->pNextFan0 = pRepr; }
static inline void        Ivy_ObjSetClassNodeNext( Ivy_Obj_t * pObj, Ivy_Obj_t * pNext ) { pObj->pNextFan1 = pNext; }
static inline void        Ivy_ObjSetNodeHashNext( Ivy_Obj_t * pObj, Ivy_Obj_t * pNext )  { pObj->pPrevFan0 = pNext; }
static inline void        Ivy_ObjSetEquivListNext( Ivy_Obj_t * pObj, Ivy_Obj_t * pNext ) { pObj->pPrevFan0 = pNext; }
static inline void        Ivy_ObjSetEquivListPrev( Ivy_Obj_t * pObj, Ivy_Obj_t * pPrev ) { pObj->pPrevFan1 = pPrev; }
static inline void        Ivy_ObjSetFraig( Ivy_Obj_t * pObj, Ivy_Obj_t * pNode )         { pObj->pEquiv    = pNode; }
static inline void        Ivy_ObjSetSatNum( Ivy_Obj_t * pObj, int Num )                  { pObj->pNextFan0 = (Ivy_Obj_t *)(ABC_PTRUINT_T)Num;     }
static inline void        Ivy_ObjSetFaninVec( Ivy_Obj_t * pObj, Vec_Ptr_t * vFanins )    { pObj->pNextFan1 = (Ivy_Obj_t *)vFanins; }

static inline unsigned    Ivy_ObjRandomSim()                       { return (rand() << 24) ^ (rand() << 12) ^ rand(); }

// iterate through equivalence classes
#define Ivy_FraigForEachEquivClass( pList, pEnt )                 \
    for ( pEnt = pList;                                           \
          pEnt;                                                   \
          pEnt = Ivy_ObjEquivListNext(pEnt) )
#define Ivy_FraigForEachEquivClassSafe( pList, pEnt, pEnt2 )      \
    for ( pEnt = pList,                                           \
          pEnt2 = pEnt? Ivy_ObjEquivListNext(pEnt): NULL;         \
          pEnt;                                                   \
          pEnt = pEnt2,                                           \
          pEnt2 = pEnt? Ivy_ObjEquivListNext(pEnt): NULL )
// iterate through nodes in one class
#define Ivy_FraigForEachClassNode( pClass, pEnt )                 \
    for ( pEnt = pClass;                                          \
          pEnt;                                                   \
          pEnt = Ivy_ObjClassNodeNext(pEnt) )
// iterate through nodes in the hash table
#define Ivy_FraigForEachBinNode( pBin, pEnt )                     \
    for ( pEnt = pBin;                                            \
          pEnt;                                                   \
          pEnt = Ivy_ObjNodeHashNext(pEnt) )

static Ivy_FraigMan_t * Ivy_FraigStart( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams );
static Ivy_FraigMan_t * Ivy_FraigStartSimple( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams );
static Ivy_Man_t *   Ivy_FraigPerform_int( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams, ABC_INT64_T nBTLimitGlobal, ABC_INT64_T nInsLimitGlobal, ABC_INT64_T * pnSatConfs, ABC_INT64_T * pnSatInspects );
static void          Ivy_FraigPrint( Ivy_FraigMan_t * p );
static void          Ivy_FraigStop( Ivy_FraigMan_t * p );
static void          Ivy_FraigSimulate( Ivy_FraigMan_t * p );
static void          Ivy_FraigSweep( Ivy_FraigMan_t * p );
static Ivy_Obj_t *   Ivy_FraigAnd( Ivy_FraigMan_t * p, Ivy_Obj_t * pObjOld );
static int           Ivy_FraigNodesAreEquiv( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj0, Ivy_Obj_t * pObj1 );
static int           Ivy_FraigNodeIsConst( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj );
static void          Ivy_FraigNodeAddToSolver( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj0, Ivy_Obj_t * pObj1 );
static int           Ivy_FraigSetActivityFactors( Ivy_FraigMan_t * p, Ivy_Obj_t * pOld, Ivy_Obj_t * pNew );
static void          Ivy_FraigAddToPatScores( Ivy_FraigMan_t * p, Ivy_Obj_t * pClass, Ivy_Obj_t * pClassNew );
static int           Ivy_FraigMiterStatus( Ivy_Man_t * pMan );
static void          Ivy_FraigMiterProve( Ivy_FraigMan_t * p );
static void          Ivy_FraigMiterPrint( Ivy_Man_t * pNtk, char * pString, int clk, int fVerbose );
static int *         Ivy_FraigCreateModel( Ivy_FraigMan_t * p );

static int Ivy_FraigNodesAreEquivBdd( Ivy_Obj_t * pObj1, Ivy_Obj_t * pObj2 );

static ABC_INT64_T s_nBTLimitGlobal = 0;
static ABC_INT64_T s_nInsLimitGlobal = 0;

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Sets the default solving parameters.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigParamsDefault( Ivy_FraigParams_t * pParams )
{
    memset( pParams, 0, sizeof(Ivy_FraigParams_t) );
    pParams->nSimWords        =      32;  // the number of words in the simulation info
    pParams->dSimSatur        =   0.005;  // the ratio of refined classes when saturation is reached
    pParams->fPatScores       =       0;  // enables simulation pattern scoring
    pParams->MaxScore         =      25;  // max score after which resimulation is used
    pParams->fDoSparse        =       1;  // skips sparse functions
//    pParams->dActConeRatio    =    0.05;  // the ratio of cone to be bumped
//    pParams->dActConeBumpMax  =     5.0;  // the largest bump of activity
    pParams->dActConeRatio    =     0.3;  // the ratio of cone to be bumped
    pParams->dActConeBumpMax  =    10.0;  // the largest bump of activity

    pParams->nBTLimitNode     =     100;  // conflict limit at a node
    pParams->nBTLimitMiter    =  500000;  // conflict limit at an output
//    pParams->nBTLimitGlobal   =       0;  // conflict limit global
//    pParams->nInsLimitGlobal  =       0;  // inspection limit global
}

/**Function*************************************************************

  Synopsis    [Performs combinational equivalence checking for the miter.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_FraigProve( Ivy_Man_t ** ppManAig, void * pPars )
{
    Prove_Params_t * pParams = pPars;
    Ivy_FraigParams_t Params, * pIvyParams = &Params; 
    Ivy_Man_t * pManAig, * pManTemp;
    int RetValue, nIter, clk;//, Counter;
    ABC_INT64_T nSatConfs = 0, nSatInspects = 0;

    // start the network and parameters
    pManAig = *ppManAig;
    Ivy_FraigParamsDefault( pIvyParams );
    pIvyParams->fVerbose = pParams->fVerbose;
    pIvyParams->fProve = 1;

    if ( pParams->fVerbose )
    {
        printf( "RESOURCE LIMITS: Iterations = %d. Rewriting = %s. Fraiging = %s.\n",
            pParams->nItersMax, pParams->fUseRewriting? "yes":"no", pParams->fUseFraiging? "yes":"no" );
        printf( "Miter = %d (%3.1f).  Rwr = %d (%3.1f).  Fraig = %d (%3.1f).  Last = %d.\n", 
            pParams->nMiteringLimitStart,  pParams->nMiteringLimitMulti, 
            pParams->nRewritingLimitStart, pParams->nRewritingLimitMulti,
            pParams->nFraigingLimitStart,  pParams->nFraigingLimitMulti, pParams->nMiteringLimitLast );
    }

    // if SAT only, solve without iteration
    if ( !pParams->fUseRewriting && !pParams->fUseFraiging )
    {
        clk = clock();
        pIvyParams->nBTLimitMiter = pParams->nMiteringLimitLast / Ivy_ManPoNum(pManAig);
        pManAig = Ivy_FraigMiter( pManTemp = pManAig, pIvyParams );  Ivy_ManStop( pManTemp );
        RetValue = Ivy_FraigMiterStatus( pManAig );
        Ivy_FraigMiterPrint( pManAig, "SAT solving", clk, pParams->fVerbose );
        *ppManAig = pManAig;
        return RetValue;
    }

    if ( Ivy_ManNodeNum(pManAig) < 500 )
    {
        // run the first mitering
        clk = clock();
        pIvyParams->nBTLimitMiter = pParams->nMiteringLimitStart / Ivy_ManPoNum(pManAig);
        pManAig = Ivy_FraigMiter( pManTemp = pManAig, pIvyParams );  Ivy_ManStop( pManTemp );
        RetValue = Ivy_FraigMiterStatus( pManAig );
        Ivy_FraigMiterPrint( pManAig, "SAT solving", clk, pParams->fVerbose );
        if ( RetValue >= 0 )
        {
            *ppManAig = pManAig;
            return RetValue;
        }
    }

    // check the current resource limits
    RetValue = -1;
    for ( nIter = 0; nIter < pParams->nItersMax; nIter++ )
    {
        if ( pParams->fVerbose )
        {
            printf( "ITERATION %2d : Confs = %6d. FraigBTL = %3d. \n", nIter+1, 
                 (int)(pParams->nMiteringLimitStart * pow(pParams->nMiteringLimitMulti,nIter)), 
                 (int)(pParams->nFraigingLimitStart * pow(pParams->nFraigingLimitMulti,nIter)) );
            fflush( stdout );
        }

        // try rewriting
        if ( pParams->fUseRewriting )
        { // bug in Ivy_NodeFindCutsAll() when leaves are identical!
/*
            clk = clock();
            Counter = (int)(pParams->nRewritingLimitStart * pow(pParams->nRewritingLimitMulti,nIter));
            pManAig = Ivy_ManRwsat( pManAig, 0 );  
            RetValue = Ivy_FraigMiterStatus( pManAig );
            Ivy_FraigMiterPrint( pManAig, "Rewriting  ", clk, pParams->fVerbose );
*/
        }
        if ( RetValue >= 0 )
            break;

        // catch the situation when ref pattern detects the bug
        RetValue = Ivy_FraigMiterStatus( pManAig );
        if ( RetValue >= 0 )
            break;

        // try fraiging followed by mitering
        if ( pParams->fUseFraiging )
        {
            clk = clock();
            pIvyParams->nBTLimitNode  = (int)(pParams->nFraigingLimitStart * pow(pParams->nFraigingLimitMulti,nIter));
            pIvyParams->nBTLimitMiter = 1 + (int)(pParams->nMiteringLimitStart * pow(pParams->nMiteringLimitMulti,nIter)) / Ivy_ManPoNum(pManAig);
            pManAig = Ivy_FraigPerform_int( pManTemp = pManAig, pIvyParams, pParams->nTotalBacktrackLimit, pParams->nTotalInspectLimit, &nSatConfs, &nSatInspects );  Ivy_ManStop( pManTemp );
            RetValue = Ivy_FraigMiterStatus( pManAig );
            Ivy_FraigMiterPrint( pManAig, "Fraiging   ", clk, pParams->fVerbose );
        }
        if ( RetValue >= 0 )
            break;

        // add to the number of backtracks and inspects
        pParams->nTotalBacktracksMade += nSatConfs;
        pParams->nTotalInspectsMade   += nSatInspects;
        // check if global resource limit is reached
        if ( (pParams->nTotalBacktrackLimit && pParams->nTotalBacktracksMade >= pParams->nTotalBacktrackLimit) ||
             (pParams->nTotalInspectLimit   && pParams->nTotalInspectsMade   >= pParams->nTotalInspectLimit) )
        {
            printf( "Reached global limit on conflicts/inspects. Quitting.\n" );
            *ppManAig = pManAig;
            return -1;
        }
    }    

    if ( RetValue < 0 )
    {
        if ( pParams->fVerbose )
        {
            printf( "Attempting SAT with conflict limit %d ...\n", pParams->nMiteringLimitLast );
            fflush( stdout );
        }
        clk = clock();
        pIvyParams->nBTLimitMiter = pParams->nMiteringLimitLast / Ivy_ManPoNum(pManAig);
        if ( pParams->nTotalBacktrackLimit )
            s_nBTLimitGlobal  = pParams->nTotalBacktrackLimit - pParams->nTotalBacktracksMade;
        if ( pParams->nTotalInspectLimit )
            s_nInsLimitGlobal = pParams->nTotalInspectLimit -   pParams->nTotalInspectsMade;        
        pManAig = Ivy_FraigMiter( pManTemp = pManAig, pIvyParams );  Ivy_ManStop( pManTemp );
        s_nBTLimitGlobal  = 0;
        s_nInsLimitGlobal = 0;        
        RetValue = Ivy_FraigMiterStatus( pManAig );
        Ivy_FraigMiterPrint( pManAig, "SAT solving", clk, pParams->fVerbose );
        // make sure that the sover never returns "undecided" when infinite resource limits are set
        if( RetValue == -1 && pParams->nTotalInspectLimit == 0 &&
            pParams->nTotalBacktrackLimit == 0 )
        {
            extern void Prove_ParamsPrint( Prove_Params_t * pParams );
            Prove_ParamsPrint( pParams );
            printf("ERROR: ABC has returned \"undecided\" in spite of no limits...\n");
            exit(1);
        }
    }

    // assign the model if it was proved by rewriting (const 1 miter)
    if ( RetValue == 0 && pManAig->pData == NULL )
    {
        pManAig->pData = ABC_ALLOC( int, Ivy_ManPiNum(pManAig) );
        memset( pManAig->pData, 0, sizeof(int) * Ivy_ManPiNum(pManAig) );
    }
    *ppManAig = pManAig;
    return RetValue;
}

/**Function*************************************************************

  Synopsis    [Performs fraiging of the AIG.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Ivy_Man_t * Ivy_FraigPerform_int( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams, ABC_INT64_T nBTLimitGlobal, ABC_INT64_T nInsLimitGlobal, ABC_INT64_T * pnSatConfs, ABC_INT64_T * pnSatInspects )
{ 
    Ivy_FraigMan_t * p;
    Ivy_Man_t * pManAigNew;
    int clk;
    if ( Ivy_ManNodeNum(pManAig) == 0 )
        return Ivy_ManDup(pManAig);
clk = clock();
    assert( Ivy_ManLatchNum(pManAig) == 0 );
    p = Ivy_FraigStart( pManAig, pParams );
    // set global limits
    p->nBTLimitGlobal  = nBTLimitGlobal;
    p->nInsLimitGlobal = nInsLimitGlobal; 
    
    Ivy_FraigSimulate( p );
    Ivy_FraigSweep( p );
    pManAigNew = p->pManFraig;
p->timeTotal = clock() - clk;
    if ( pnSatConfs )
        *pnSatConfs = p->pSat? p->pSat->stats.conflicts : 0;
    if ( pnSatInspects )
        *pnSatInspects = p->pSat? p->pSat->stats.inspects : 0;
    Ivy_FraigStop( p );
    return pManAigNew;
}

/**Function*************************************************************

  Synopsis    [Performs fraiging of the AIG.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Ivy_Man_t * Ivy_FraigPerform( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams )
{
    Ivy_FraigMan_t * p;
    Ivy_Man_t * pManAigNew;
    int clk;
    if ( Ivy_ManNodeNum(pManAig) == 0 )
        return Ivy_ManDup(pManAig);
clk = clock();
    assert( Ivy_ManLatchNum(pManAig) == 0 );
    p = Ivy_FraigStart( pManAig, pParams );
    Ivy_FraigSimulate( p );
    Ivy_FraigSweep( p );
    pManAigNew = p->pManFraig;
p->timeTotal = clock() - clk;
    Ivy_FraigStop( p );
    return pManAigNew;
}

/**Function*************************************************************

  Synopsis    [Applies brute-force SAT to the miter.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Ivy_Man_t * Ivy_FraigMiter( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams )
{
    Ivy_FraigMan_t * p;
    Ivy_Man_t * pManAigNew;
    Ivy_Obj_t * pObj;
    int i, clk;
clk = clock();
    assert( Ivy_ManLatchNum(pManAig) == 0 );
    p = Ivy_FraigStartSimple( pManAig, pParams );
    // set global limits
    p->nBTLimitGlobal  = s_nBTLimitGlobal;
    p->nInsLimitGlobal = s_nInsLimitGlobal; 
    // duplicate internal nodes
    Ivy_ManForEachNode( p->pManAig, pObj, i )
        pObj->pEquiv = Ivy_And( p->pManFraig, Ivy_ObjChild0Equiv(pObj), Ivy_ObjChild1Equiv(pObj) );
    // try to prove each output of the miter
    Ivy_FraigMiterProve( p );
    // add the POs
    Ivy_ManForEachPo( p->pManAig, pObj, i )
        Ivy_ObjCreatePo( p->pManFraig, Ivy_ObjChild0Equiv(pObj) );
    // clean the new manager
    Ivy_ManForEachObj( p->pManFraig, pObj, i )
    {
        if ( Ivy_ObjFaninVec(pObj) )
            Vec_PtrFree( Ivy_ObjFaninVec(pObj) );
        pObj->pNextFan0 = pObj->pNextFan1 = NULL;
    }
    // remove dangling nodes 
    Ivy_ManCleanup( p->pManFraig );
    pManAigNew = p->pManFraig;
p->timeTotal = clock() - clk;

//printf( "Final nodes = %6d. ", Ivy_ManNodeNum(pManAigNew) );
//ABC_PRT( "Time", p->timeTotal );
    Ivy_FraigStop( p );
    return pManAigNew;
}

/**Function*************************************************************

  Synopsis    [Starts the fraiging manager without simulation info.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Ivy_FraigMan_t * Ivy_FraigStartSimple( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams )
{
    Ivy_FraigMan_t * p;
    // allocat the fraiging manager
    p = ABC_ALLOC( Ivy_FraigMan_t, 1 );
    memset( p, 0, sizeof(Ivy_FraigMan_t) );
    p->pParams   = pParams;
    p->pManAig   = pManAig;
    p->pManFraig = Ivy_ManStartFrom( pManAig );
    p->vPiVars   = Vec_PtrAlloc( 100 );
    return p;
}

/**Function*************************************************************

  Synopsis    [Starts the fraiging manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Ivy_FraigMan_t * Ivy_FraigStart( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams )
{
    Ivy_FraigMan_t * p;
    Ivy_FraigSim_t * pSims;
    Ivy_Obj_t * pObj;
    int i, k, EntrySize;
    // clean the fanout representation
    Ivy_ManForEachObj( pManAig, pObj, i )
//        pObj->pEquiv = pObj->pFanout = pObj->pNextFan0 = pObj->pNextFan1 = pObj->pPrevFan0 = pObj->pPrevFan1 = NULL;
        assert( !pObj->pEquiv && !pObj->pFanout );
    // allocat the fraiging manager
    p = ABC_ALLOC( Ivy_FraigMan_t, 1 );
    memset( p, 0, sizeof(Ivy_FraigMan_t) );
    p->pParams   = pParams;
    p->pManAig   = pManAig;
    p->pManFraig = Ivy_ManStartFrom( pManAig );
    // allocate simulation info
    p->nSimWords    = pParams->nSimWords;
//    p->pSimWords    = ABC_ALLOC( unsigned, Ivy_ManObjNum(pManAig) * p->nSimWords ); 
    EntrySize    = sizeof(Ivy_FraigSim_t) + sizeof(unsigned) * p->nSimWords;
    p->pSimWords = (char *)ABC_ALLOC( char, Ivy_ManObjNum(pManAig) * EntrySize ); 
    memset( p->pSimWords, 0, EntrySize );
    k = 0;
    Ivy_ManForEachObj( pManAig, pObj, i )
    {
        pSims = (Ivy_FraigSim_t *)(p->pSimWords + EntrySize * k++);
        pSims->pNext = NULL;
        if ( Ivy_ObjIsNode(pObj) )
        {
            if ( p->pSimStart == NULL )
                p->pSimStart = pSims;
            else
                ((Ivy_FraigSim_t *)(p->pSimWords + EntrySize * (k-2)))->pNext = pSims;
            pSims->pFanin0 = Ivy_ObjSim( Ivy_ObjFanin0(pObj) );
            pSims->pFanin1 = Ivy_ObjSim( Ivy_ObjFanin1(pObj) );
            pSims->Type = (Ivy_ObjFaninPhase(Ivy_ObjChild0(pObj)) << 2) | (Ivy_ObjFaninPhase(Ivy_ObjChild1(pObj)) << 1) | pObj->fPhase;
        }
        else
        {
            pSims->pFanin0 = NULL;
            pSims->pFanin1 = NULL;
            pSims->Type = 0;
        }
        Ivy_ObjSetSim( pObj, pSims );
    }
    assert( k == Ivy_ManObjNum(pManAig) );
    // allocate storage for sim pattern
    p->nPatWords = Ivy_BitWordNum( Ivy_ManPiNum(pManAig) );
    p->pPatWords = ABC_ALLOC( unsigned, p->nPatWords ); 
    p->pPatScores = ABC_ALLOC( int, 32 * p->nSimWords ); 
    p->vPiVars   = Vec_PtrAlloc( 100 );
    // set random number generator
    srand( 0xABCABC );
    return p;
}

/**Function*************************************************************

  Synopsis    [Stops the fraiging manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigStop( Ivy_FraigMan_t * p )
{
    if ( p->pParams->fVerbose )
        Ivy_FraigPrint( p );
    if ( p->vPiVars ) Vec_PtrFree( p->vPiVars );
    if ( p->pSat ) sat_solver_delete( p->pSat );
    ABC_FREE( p->pPatScores );
    ABC_FREE( p->pPatWords );
    ABC_FREE( p->pSimWords );
    ABC_FREE( p );
}

/**Function*************************************************************

  Synopsis    [Prints stats for the fraiging manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigPrint( Ivy_FraigMan_t * p )
{
    double nMemory;
    nMemory = (double)Ivy_ManObjNum(p->pManAig)*p->nSimWords*sizeof(unsigned)/(1<<20);
    printf( "SimWords = %d. Rounds = %d. Mem = %0.2f Mb.  ", p->nSimWords, p->nSimRounds, nMemory );
    printf( "Classes: Beg = %d. End = %d.\n", p->nClassesBeg, p->nClassesEnd );
//    printf( "Limits: BTNode = %d. BTMiter = %d.\n", p->pParams->nBTLimitNode, p->pParams->nBTLimitMiter );
    printf( "Proof = %d. Counter-example = %d. Fail = %d. FailReal = %d. Zero = %d.\n", 
        p->nSatProof, p->nSatCallsSat, p->nSatFails, p->nSatFailsReal, p->nClassesZero );
    printf( "Final = %d. Miter = %d. Total = %d. Mux = %d. (Exor = %d.) SatVars = %d.\n", 
        Ivy_ManNodeNum(p->pManFraig), p->nNodesMiter, Ivy_ManNodeNum(p->pManAig), 0, 0, p->nSatVars );
    if ( p->pSat ) Sat_SolverPrintStats( stdout, p->pSat );
    ABC_PRT( "AIG simulation  ", p->timeSim  );
    ABC_PRT( "AIG traversal   ", p->timeTrav  );
    ABC_PRT( "SAT solving     ", p->timeSat   );
    ABC_PRT( "    Unsat       ", p->timeSatUnsat );
    ABC_PRT( "    Sat         ", p->timeSatSat   );
    ABC_PRT( "    Fail        ", p->timeSatFail  );
    ABC_PRT( "Class refining  ", p->timeRef   );
    ABC_PRT( "TOTAL RUNTIME   ", p->timeTotal );
    if ( p->time1 ) { ABC_PRT( "time1           ", p->time1 ); }
}



/**Function*************************************************************

  Synopsis    [Assigns random patterns to the PI node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_NodeAssignRandom( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj )
{
    Ivy_FraigSim_t * pSims;
    int i;
    assert( Ivy_ObjIsPi(pObj) );
    pSims = Ivy_ObjSim(pObj);
    for ( i = 0; i < p->nSimWords; i++ )
        pSims->pData[i] = Ivy_ObjRandomSim();
}

/**Function*************************************************************

  Synopsis    [Assigns constant patterns to the PI node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_NodeAssignConst( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj, int fConst1 )
{
    Ivy_FraigSim_t * pSims;
    int i;
    assert( Ivy_ObjIsPi(pObj) );
    pSims = Ivy_ObjSim(pObj);
    for ( i = 0; i < p->nSimWords; i++ )
        pSims->pData[i] = fConst1? ~(unsigned)0 : 0;
}

/**Function*************************************************************

  Synopsis    [Assings random simulation info for the PIs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigAssignRandom( Ivy_FraigMan_t * p )
{
    Ivy_Obj_t * pObj;
    int i;
    Ivy_ManForEachPi( p->pManAig, pObj, i )
        Ivy_NodeAssignRandom( p, pObj );
}

/**Function*************************************************************

  Synopsis    [Assings distance-1 simulation info for the PIs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigAssignDist1( Ivy_FraigMan_t * p, unsigned * pPat )
{
    Ivy_Obj_t * pObj;
    int i, Limit;
    Ivy_ManForEachPi( p->pManAig, pObj, i )
    {
        Ivy_NodeAssignConst( p, pObj, Ivy_InfoHasBit(pPat, i) );
//        printf( "%d", Ivy_InfoHasBit(pPat, i) );
    }
//    printf( "\n" );

    Limit = IVY_MIN( Ivy_ManPiNum(p->pManAig), p->nSimWords * 32 - 1 );
    for ( i = 0; i < Limit; i++ )
        Ivy_InfoXorBit( Ivy_ObjSim( Ivy_ManPi(p->pManAig,i) )->pData, i+1 );
}

/**Function*************************************************************

  Synopsis    [Returns 1 if simulation info is composed of all zeros.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_NodeHasZeroSim( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj )
{
    Ivy_FraigSim_t * pSims;
    int i;
    pSims = Ivy_ObjSim(pObj);
    for ( i = 0; i < p->nSimWords; i++ )
        if ( pSims->pData[i] )
            return 0;
    return 1;
}

/**Function*************************************************************

  Synopsis    [Returns 1 if simulation info is composed of all zeros.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_NodeComplementSim( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj )
{
    Ivy_FraigSim_t * pSims;
    int i;
    pSims = Ivy_ObjSim(pObj);
    for ( i = 0; i < p->nSimWords; i++ )
        pSims->pData[i] = ~pSims->pData[i];
}

/**Function*************************************************************

  Synopsis    [Returns 1 if simulation infos are equal.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_NodeCompareSims( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj0, Ivy_Obj_t * pObj1 )
{
    Ivy_FraigSim_t * pSims0, * pSims1;
    int i;
    pSims0 = Ivy_ObjSim(pObj0);
    pSims1 = Ivy_ObjSim(pObj1);
    for ( i = 0; i < p->nSimWords; i++ )
        if ( pSims0->pData[i] != pSims1->pData[i] )
            return 0;
    return 1;
}

/**Function*************************************************************

  Synopsis    [Simulates one node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_NodeSimulateSim( Ivy_FraigMan_t * p, Ivy_FraigSim_t * pSims )
{
    unsigned * pData, * pData0, * pData1;
    int i;
    pData  = pSims->pData;
    pData0 = pSims->pFanin0->pData;
    pData1 = pSims->pFanin1->pData;
    switch( pSims->Type )
    {
    case 0:
        for ( i = 0; i < p->nSimWords; i++ )
            pData[i] = (pData0[i] & pData1[i]);
        break;
    case 1:
        for ( i = 0; i < p->nSimWords; i++ )
            pData[i] = ~(pData0[i] & pData1[i]);
        break;
    case 2:
        for ( i = 0; i < p->nSimWords; i++ )
            pData[i] = (pData0[i] & ~pData1[i]);
        break;
    case 3:
        for ( i = 0; i < p->nSimWords; i++ )
            pData[i] = (~pData0[i] | pData1[i]);
        break;
    case 4:
        for ( i = 0; i < p->nSimWords; i++ )
            pData[i] = (~pData0[i] & pData1[i]);
        break;
    case 5:
        for ( i = 0; i < p->nSimWords; i++ )
            pData[i] = (pData0[i] | ~pData1[i]);
        break;
    case 6:
        for ( i = 0; i < p->nSimWords; i++ )
            pData[i] = ~(pData0[i] | pData1[i]);
        break;
    case 7:
        for ( i = 0; i < p->nSimWords; i++ )
            pData[i] = (pData0[i] | pData1[i]);
        break;
    }
}

/**Function*************************************************************

  Synopsis    [Simulates one node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_NodeSimulate( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj )
{
    Ivy_FraigSim_t * pSims, * pSims0, * pSims1;
    int fCompl, fCompl0, fCompl1, i;
    assert( !Ivy_IsComplement(pObj) );
    // get hold of the simulation information
    pSims  = Ivy_ObjSim(pObj);
    pSims0 = Ivy_ObjSim(Ivy_ObjFanin0(pObj));
    pSims1 = Ivy_ObjSim(Ivy_ObjFanin1(pObj));
    // get complemented attributes of the children using their random info
    fCompl  = pObj->fPhase;
    fCompl0 = Ivy_ObjFaninPhase(Ivy_ObjChild0(pObj));
    fCompl1 = Ivy_ObjFaninPhase(Ivy_ObjChild1(pObj));
    // simulate
    if ( fCompl0 && fCompl1 )
    {
        if ( fCompl )
            for ( i = 0; i < p->nSimWords; i++ )
                pSims->pData[i] = (pSims0->pData[i] | pSims1->pData[i]);
        else
            for ( i = 0; i < p->nSimWords; i++ )
                pSims->pData[i] = ~(pSims0->pData[i] | pSims1->pData[i]);
    }
    else if ( fCompl0 && !fCompl1 )
    {
        if ( fCompl )
            for ( i = 0; i < p->nSimWords; i++ )
                pSims->pData[i] = (pSims0->pData[i] | ~pSims1->pData[i]);
        else
            for ( i = 0; i < p->nSimWords; i++ )
                pSims->pData[i] = (~pSims0->pData[i] & pSims1->pData[i]);
    }
    else if ( !fCompl0 && fCompl1 )
    {
        if ( fCompl )
            for ( i = 0; i < p->nSimWords; i++ )
                pSims->pData[i] = (~pSims0->pData[i] | pSims1->pData[i]);
        else
            for ( i = 0; i < p->nSimWords; i++ )
                pSims->pData[i] = (pSims0->pData[i] & ~pSims1->pData[i]);
    }
    else // if ( !fCompl0 && !fCompl1 )
    {
        if ( fCompl )
            for ( i = 0; i < p->nSimWords; i++ )
                pSims->pData[i] = ~(pSims0->pData[i] & pSims1->pData[i]);
        else
            for ( i = 0; i < p->nSimWords; i++ )
                pSims->pData[i] = (pSims0->pData[i] & pSims1->pData[i]);
    }
}

/**Function*************************************************************

  Synopsis    [Computes hash value using simulation info.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
unsigned Ivy_NodeHash( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj )
{
    static int s_FPrimes[128] = { 
        1009, 1049, 1093, 1151, 1201, 1249, 1297, 1361, 1427, 1459, 
        1499, 1559, 1607, 1657, 1709, 1759, 1823, 1877, 1933, 1997, 
        2039, 2089, 2141, 2213, 2269, 2311, 2371, 2411, 2467, 2543, 
        2609, 2663, 2699, 2741, 2797, 2851, 2909, 2969, 3037, 3089, 
        3169, 3221, 3299, 3331, 3389, 3461, 3517, 3557, 3613, 3671, 
        3719, 3779, 3847, 3907, 3943, 4013, 4073, 4129, 4201, 4243, 
        4289, 4363, 4441, 4493, 4549, 4621, 4663, 4729, 4793, 4871, 
        4933, 4973, 5021, 5087, 5153, 5227, 5281, 5351, 5417, 5471, 
        5519, 5573, 5651, 5693, 5749, 5821, 5861, 5923, 6011, 6073, 
        6131, 6199, 6257, 6301, 6353, 6397, 6481, 6563, 6619, 6689, 
        6737, 6803, 6863, 6917, 6977, 7027, 7109, 7187, 7237, 7309, 
        7393, 7477, 7523, 7561, 7607, 7681, 7727, 7817, 7877, 7933, 
        8011, 8039, 8059, 8081, 8093, 8111, 8123, 8147
    };
    Ivy_FraigSim_t * pSims;
    unsigned uHash;
    int i;
    assert( p->nSimWords <= 128 );
    uHash = 0;
    pSims  = Ivy_ObjSim(pObj);
    for ( i = 0; i < p->nSimWords; i++ )
        uHash ^= pSims->pData[i] * s_FPrimes[i];
    return uHash;
}

/**Function*************************************************************

  Synopsis    [Simulates AIG manager.]

  Description [Assumes that the PI simulation info is attached.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigSimulateOne( Ivy_FraigMan_t * p )
{
    Ivy_Obj_t * pObj;
    int i, clk;
clk = clock();
    Ivy_ManForEachNode( p->pManAig, pObj, i )
    {
        Ivy_NodeSimulate( p, pObj );
/*
        if ( Ivy_ObjFraig(pObj) == NULL )
            printf( "%3d --- -- %d  :  ", pObj->Id, pObj->fPhase );
        else
            printf( "%3d %3d %2d %d  :  ", pObj->Id, Ivy_Regular(Ivy_ObjFraig(pObj))->Id, Ivy_ObjSatNum(Ivy_Regular(Ivy_ObjFraig(pObj))), pObj->fPhase );
        Extra_PrintBinary( stdout, Ivy_ObjSim(pObj), 30 );
        printf( "\n" );
*/
    }
p->timeSim += clock() - clk;
p->nSimRounds++;
}

/**Function*************************************************************

  Synopsis    [Simulates AIG manager.]

  Description [Assumes that the PI simulation info is attached.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigSimulateOneSim( Ivy_FraigMan_t * p )
{
    Ivy_FraigSim_t * pSims;
    int clk;
clk = clock();
    for ( pSims = p->pSimStart; pSims; pSims = pSims->pNext )
        Ivy_NodeSimulateSim( p, pSims );
p->timeSim += clock() - clk;
p->nSimRounds++;
}

/**Function*************************************************************

  Synopsis    [Adds one node to the equivalence class.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_NodeAddToClass( Ivy_Obj_t * pClass, Ivy_Obj_t * pObj )
{
    if ( Ivy_ObjClassNodeNext(pClass) == NULL )
        Ivy_ObjSetClassNodeNext( pClass, pObj );
    else
        Ivy_ObjSetClassNodeNext( Ivy_ObjClassNodeLast(pClass), pObj );
    Ivy_ObjSetClassNodeLast( pClass, pObj );
    Ivy_ObjSetClassNodeRepr( pObj, pClass );
    Ivy_ObjSetClassNodeNext( pObj, NULL );
}

/**Function*************************************************************

  Synopsis    [Adds equivalence class to the list of classes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigAddClass( Ivy_FraigList_t * pList, Ivy_Obj_t * pClass )
{
    if ( pList->pHead == NULL )
    {
        pList->pHead = pClass;
        pList->pTail = pClass;
        Ivy_ObjSetEquivListPrev( pClass, NULL );
        Ivy_ObjSetEquivListNext( pClass, NULL ); 
    }
    else
    {
        Ivy_ObjSetEquivListNext( pList->pTail, pClass ); 
        Ivy_ObjSetEquivListPrev( pClass, pList->pTail );
        Ivy_ObjSetEquivListNext( pClass, NULL ); 
        pList->pTail = pClass;
    }
    pList->nItems++;
}
 
/**Function*************************************************************

  Synopsis    [Updates the list of classes after base class has split.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigInsertClass( Ivy_FraigList_t * pList, Ivy_Obj_t * pBase, Ivy_Obj_t * pClass )
{
    Ivy_ObjSetEquivListPrev( pClass, pBase );
    Ivy_ObjSetEquivListNext( pClass, Ivy_ObjEquivListNext(pBase) ); 
    if ( Ivy_ObjEquivListNext(pBase) )
        Ivy_ObjSetEquivListPrev( Ivy_ObjEquivListNext(pBase), pClass );
    Ivy_ObjSetEquivListNext( pBase, pClass ); 
    if ( pList->pTail == pBase )
        pList->pTail = pClass;
    pList->nItems++;
}

/**Function*************************************************************

  Synopsis    [Removes equivalence class from the list of classes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigRemoveClass( Ivy_FraigList_t * pList, Ivy_Obj_t * pClass )
{
    if ( pList->pHead == pClass )
        pList->pHead = Ivy_ObjEquivListNext(pClass);
    if ( pList->pTail == pClass )
        pList->pTail = Ivy_ObjEquivListPrev(pClass);
    if ( Ivy_ObjEquivListPrev(pClass) )
        Ivy_ObjSetEquivListNext( Ivy_ObjEquivListPrev(pClass), Ivy_ObjEquivListNext(pClass) ); 
    if ( Ivy_ObjEquivListNext(pClass) )
        Ivy_ObjSetEquivListPrev( Ivy_ObjEquivListNext(pClass), Ivy_ObjEquivListPrev(pClass) );
    Ivy_ObjSetEquivListNext( pClass, NULL ); 
    Ivy_ObjSetEquivListPrev( pClass, NULL );
    pClass->fMarkA = 0;
    pList->nItems--;
}

/**Function*************************************************************

  Synopsis    [Count the number of pairs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_FraigCountPairsClasses( Ivy_FraigMan_t * p )
{
    Ivy_Obj_t * pClass, * pNode;
    int nPairs = 0, nNodes;
    return nPairs;

    Ivy_FraigForEachEquivClass( p->lClasses.pHead, pClass )
    {
        nNodes = 0;
        Ivy_FraigForEachClassNode( pClass, pNode )
            nNodes++;
        nPairs += nNodes * (nNodes - 1) / 2;
    }
    return nPairs;
}

/**Function*************************************************************

  Synopsis    [Creates initial simulation classes.]

  Description [Assumes that simulation info is assigned.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigCreateClasses( Ivy_FraigMan_t * p )
{
    Ivy_Obj_t ** pTable;
    Ivy_Obj_t * pObj, * pConst1, * pBin, * pEntry;
    int i, nTableSize;
    unsigned Hash;
    pConst1 = Ivy_ManConst1(p->pManAig);
    // allocate the table
    nTableSize = Ivy_ManObjNum(p->pManAig) / 2 + 13;
    pTable = ABC_ALLOC( Ivy_Obj_t *, nTableSize ); 
    memset( pTable, 0, sizeof(Ivy_Obj_t *) * nTableSize );
    // collect nodes into the table
    Ivy_ManForEachObj( p->pManAig, pObj, i )
    {
        if ( !Ivy_ObjIsPi(pObj) && !Ivy_ObjIsNode(pObj) )
            continue;
        Hash = Ivy_NodeHash( p, pObj );
        if ( Hash == 0 && Ivy_NodeHasZeroSim( p, pObj ) )
        {
            Ivy_NodeAddToClass( pConst1, pObj );
            continue;
        }
        // add the node to the table
        pBin = pTable[Hash % nTableSize];
        Ivy_FraigForEachBinNode( pBin, pEntry )
            if ( Ivy_NodeCompareSims( p, pEntry, pObj ) )
            {
                Ivy_NodeAddToClass( pEntry, pObj );
                break;
            }
        // check if the entry was added
        if ( pEntry )
            continue;
        Ivy_ObjSetNodeHashNext( pObj, pBin );
        pTable[Hash % nTableSize] = pObj;
    }
    // collect non-trivial classes
    assert( p->lClasses.pHead == NULL );
    Ivy_ManForEachObj( p->pManAig, pObj, i )
    {
        if ( !Ivy_ObjIsConst1(pObj) && !Ivy_ObjIsPi(pObj) && !Ivy_ObjIsNode(pObj) )
            continue;
        Ivy_ObjSetNodeHashNext( pObj, NULL );
        if ( Ivy_ObjClassNodeRepr(pObj) == NULL )
        {
            assert( Ivy_ObjClassNodeNext(pObj) == NULL );
            continue;
        }
        // recognize the head of the class
        if ( Ivy_ObjClassNodeNext( Ivy_ObjClassNodeRepr(pObj) ) != NULL )
            continue;
        // clean the class representative and add it to the list
        Ivy_ObjSetClassNodeRepr( pObj, NULL );
        Ivy_FraigAddClass( &p->lClasses, pObj );
    }
    // free the table
    ABC_FREE( pTable );
}

/**Function*************************************************************

  Synopsis    [Recursively refines the class after simulation.]

  Description [Returns 1 if the class has changed.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_FraigRefineClass_rec( Ivy_FraigMan_t * p, Ivy_Obj_t * pClass )
{
    Ivy_Obj_t * pClassNew, * pListOld, * pListNew, * pNode;
    int RetValue = 0;
    // check if there is refinement
    pListOld = pClass;
    Ivy_FraigForEachClassNode( Ivy_ObjClassNodeNext(pClass), pClassNew )
    {
        if ( !Ivy_NodeCompareSims(p, pClass, pClassNew) )
        {
            if ( p->pParams->fPatScores )
                Ivy_FraigAddToPatScores( p, pClass, pClassNew );
            break;
        }
        pListOld = pClassNew;
    }
    if ( pClassNew == NULL )
        return 0;
    // set representative of the new class
    Ivy_ObjSetClassNodeRepr( pClassNew, NULL );
    // start the new list
    pListNew = pClassNew;
    // go through the remaining nodes and sort them into two groups:
    // (1) matches of the old node; (2) non-matches of the old node
    Ivy_FraigForEachClassNode( Ivy_ObjClassNodeNext(pClassNew), pNode )
        if ( Ivy_NodeCompareSims( p, pClass, pNode ) )
        {
            Ivy_ObjSetClassNodeNext( pListOld, pNode );
            pListOld = pNode;
        }
        else
        {
            Ivy_ObjSetClassNodeNext( pListNew, pNode );
            Ivy_ObjSetClassNodeRepr( pNode, pClassNew );
            pListNew = pNode;
        }
    // finish both lists
    Ivy_ObjSetClassNodeNext( pListNew, NULL );
    Ivy_ObjSetClassNodeNext( pListOld, NULL );
    // update the list of classes
    Ivy_FraigInsertClass( &p->lClasses, pClass, pClassNew );
    // if the old class is trivial, remove it
    if ( Ivy_ObjClassNodeNext(pClass) == NULL )
        Ivy_FraigRemoveClass( &p->lClasses, pClass );
    // if the new class is trivial, remove it; otherwise, try to refine it
    if ( Ivy_ObjClassNodeNext(pClassNew) == NULL )
        Ivy_FraigRemoveClass( &p->lClasses, pClassNew );
    else
        RetValue = Ivy_FraigRefineClass_rec( p, pClassNew );
    return RetValue + 1;
}
 
/**Function*************************************************************

  Synopsis    [Creates the counter-example from the successful pattern.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigCheckOutputSimsSavePattern( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj )
{ 
    Ivy_FraigSim_t * pSims;
    int i, k, BestPat, * pModel;
    // find the word of the pattern
    pSims = Ivy_ObjSim(pObj);
    for ( i = 0; i < p->nSimWords; i++ )
        if ( pSims->pData[i] )
            break;
    assert( i < p->nSimWords );
    // find the bit of the pattern
    for ( k = 0; k < 32; k++ )
        if ( pSims->pData[i] & (1 << k) )
            break;
    assert( k < 32 );
    // determine the best pattern
    BestPat = i * 32 + k;
    // fill in the counter-example data
    pModel = ABC_ALLOC( int, Ivy_ManPiNum(p->pManFraig) );
    Ivy_ManForEachPi( p->pManAig, pObj, i )
    {
        pModel[i] = Ivy_InfoHasBit(Ivy_ObjSim(pObj)->pData, BestPat);
//        printf( "%d", pModel[i] );
    }
//    printf( "\n" );
    // set the model
    assert( p->pManFraig->pData == NULL );
    p->pManFraig->pData = pModel;
    return;
}

/**Function*************************************************************

  Synopsis    [Returns 1 if the one of the output is already non-constant 0.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_FraigCheckOutputSims( Ivy_FraigMan_t * p )
{
    Ivy_Obj_t * pObj;
    int i;
    // make sure the reference simulation pattern does not detect the bug
//    pObj = Ivy_ManPo( p->pManAig, 0 );
    Ivy_ManForEachPo( p->pManAig, pObj, i )
    {
        assert( Ivy_ObjFanin0(pObj)->fPhase == (unsigned)Ivy_ObjFaninC0(pObj) ); // Ivy_ObjFaninPhase(Ivy_ObjChild0(pObj)) == 0
        // complement simulation info
//        if ( Ivy_ObjFanin0(pObj)->fPhase ^ Ivy_ObjFaninC0(pObj) ) // Ivy_ObjFaninPhase(Ivy_ObjChild0(pObj))
//            Ivy_NodeComplementSim( p, Ivy_ObjFanin0(pObj) );
        // check 
        if ( !Ivy_NodeHasZeroSim( p, Ivy_ObjFanin0(pObj) ) )
        {
            // create the counter-example from this pattern
            Ivy_FraigCheckOutputSimsSavePattern( p, Ivy_ObjFanin0(pObj) );
            return 1;
        }
        // complement simulation info
//        if ( Ivy_ObjFanin0(pObj)->fPhase ^ Ivy_ObjFaninC0(pObj) )
//            Ivy_NodeComplementSim( p, Ivy_ObjFanin0(pObj) );
    }
    return 0;
}

/**Function*************************************************************

  Synopsis    [Refines the classes after simulation.]

  Description [Assumes that simulation info is assigned. Returns the
  number of classes refined.]
               
  SideEffects [Large equivalence class of constant 0 may cause problems.]

  SeeAlso     []

***********************************************************************/
int Ivy_FraigRefineClasses( Ivy_FraigMan_t * p )
{
    Ivy_Obj_t * pClass, * pClass2;
    int clk, RetValue, Counter = 0;
    // check if some outputs already became non-constant
    // this is a special case when computation can be stopped!!!
    if ( p->pParams->fProve )
        Ivy_FraigCheckOutputSims( p );
    if ( p->pManFraig->pData )
        return 0;
    // refine the classed
clk = clock();
    Ivy_FraigForEachEquivClassSafe( p->lClasses.pHead, pClass, pClass2 )
    {
        if ( pClass->fMarkA )
            continue;
        RetValue = Ivy_FraigRefineClass_rec( p, pClass );
        Counter += ( RetValue > 0 );
//if ( Ivy_ObjIsConst1(pClass) )
//printf( "%d ", RetValue );
//if ( Ivy_ObjIsConst1(pClass) )
//    p->time1 += clock() - clk;
    }
p->timeRef += clock() - clk;
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Print the class.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigPrintClass( Ivy_Obj_t * pClass )
{
    Ivy_Obj_t * pObj;
    printf( "Class {" );
    Ivy_FraigForEachClassNode( pClass, pObj )
        printf( " %d(%d)%c", pObj->Id, pObj->Level, pObj->fPhase? '+' : '-' );
    printf( " }\n" );
}

/**Function*************************************************************

  Synopsis    [Count the number of elements in the class.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_FraigCountClassNodes( Ivy_Obj_t * pClass )
{
    Ivy_Obj_t * pObj;
    int Counter = 0;
    Ivy_FraigForEachClassNode( pClass, pObj )
        Counter++;
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Prints simulation classes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigPrintSimClasses( Ivy_FraigMan_t * p )
{
    Ivy_Obj_t * pClass;
    Ivy_FraigForEachEquivClass( p->lClasses.pHead, pClass )
    {
//        Ivy_FraigPrintClass( pClass );
        printf( "%d ", Ivy_FraigCountClassNodes( pClass ) );
    }
//    printf( "\n" );
}

/**Function*************************************************************

  Synopsis    [Generated const 0 pattern.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigSavePattern0( Ivy_FraigMan_t * p )
{
    memset( p->pPatWords, 0, sizeof(unsigned) * p->nPatWords );
}

/**Function*************************************************************

  Synopsis    [[Generated const 1 pattern.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigSavePattern1( Ivy_FraigMan_t * p )
{
    memset( p->pPatWords, 0xff, sizeof(unsigned) * p->nPatWords );
}

/**Function*************************************************************

  Synopsis    [Generates the counter-example satisfying the miter.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int * Ivy_FraigCreateModel( Ivy_FraigMan_t * p )
{
    int * pModel;
    Ivy_Obj_t * pObj;
    int i;
    pModel = ABC_ALLOC( int, Ivy_ManPiNum(p->pManFraig) );
    Ivy_ManForEachPi( p->pManFraig, pObj, i )
        pModel[i] = ( p->pSat->model.ptr[Ivy_ObjSatNum(pObj)] == l_True );
    return pModel;
}

/**Function*************************************************************

  Synopsis    [Copy pattern from the solver into the internal storage.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigSavePattern( Ivy_FraigMan_t * p )
{
    Ivy_Obj_t * pObj;
    int i;
    memset( p->pPatWords, 0, sizeof(unsigned) * p->nPatWords );
    Ivy_ManForEachPi( p->pManFraig, pObj, i )
//    Vec_PtrForEachEntry( p->vPiVars, pObj, i )
        if ( p->pSat->model.ptr[Ivy_ObjSatNum(pObj)] == l_True )
            Ivy_InfoSetBit( p->pPatWords, i );
//            Ivy_InfoSetBit( p->pPatWords, pObj->Id - 1 );
}

/**Function*************************************************************

  Synopsis    [Copy pattern from the solver into the internal storage.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigSavePattern2( Ivy_FraigMan_t * p )
{
    Ivy_Obj_t * pObj;
    int i;
    memset( p->pPatWords, 0, sizeof(unsigned) * p->nPatWords );
//    Ivy_ManForEachPi( p->pManFraig, pObj, i )
    Vec_PtrForEachEntry( p->vPiVars, pObj, i )
        if ( p->pSat->model.ptr[Ivy_ObjSatNum(pObj)] == l_True )
//            Ivy_InfoSetBit( p->pPatWords, i );
            Ivy_InfoSetBit( p->pPatWords, pObj->Id - 1 );
}

/**Function*************************************************************

  Synopsis    [Copy pattern from the solver into the internal storage.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigSavePattern3( Ivy_FraigMan_t * p )
{
    Ivy_Obj_t * pObj;
    int i;
    for ( i = 0; i < p->nPatWords; i++ )
        p->pPatWords[i] = Ivy_ObjRandomSim();
    Vec_PtrForEachEntry( p->vPiVars, pObj, i )
        if ( Ivy_InfoHasBit( p->pPatWords, pObj->Id - 1 ) ^ (p->pSat->model.ptr[Ivy_ObjSatNum(pObj)] == l_True) )
            Ivy_InfoXorBit( p->pPatWords, pObj->Id - 1 );
}


/**Function*************************************************************

  Synopsis    [Performs simulation of the manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigSimulate( Ivy_FraigMan_t * p )
{
    int nChanges, nClasses;
    // start the classes
    Ivy_FraigAssignRandom( p );
    Ivy_FraigSimulateOne( p );
    Ivy_FraigCreateClasses( p );
//printf( "Starting classes = %5d.   Pairs = %6d.\n", p->lClasses.nItems, Ivy_FraigCountPairsClasses(p) );
    // refine classes by walking 0/1 patterns
    Ivy_FraigSavePattern0( p );
    Ivy_FraigAssignDist1( p, p->pPatWords );
    Ivy_FraigSimulateOne( p );
    nChanges = Ivy_FraigRefineClasses( p );
    if ( p->pManFraig->pData )
        return;
//printf( "Refined classes  = %5d.   Changes = %4d.   Pairs = %6d.\n", p->lClasses.nItems, nChanges, Ivy_FraigCountPairsClasses(p) );
    Ivy_FraigSavePattern1( p );
    Ivy_FraigAssignDist1( p, p->pPatWords );
    Ivy_FraigSimulateOne( p );
    nChanges = Ivy_FraigRefineClasses( p );
    if ( p->pManFraig->pData )
        return;
//printf( "Refined classes  = %5d.   Changes = %4d.   Pairs = %6d.\n", p->lClasses.nItems, nChanges, Ivy_FraigCountPairsClasses(p) );
    // refine classes by random simulation
    do {
        Ivy_FraigAssignRandom( p );
        Ivy_FraigSimulateOne( p );
        nClasses = p->lClasses.nItems;
        nChanges = Ivy_FraigRefineClasses( p );
        if ( p->pManFraig->pData )
            return;
//printf( "Refined classes  = %5d.   Changes = %4d.   Pairs = %6d.\n", p->lClasses.nItems, nChanges, Ivy_FraigCountPairsClasses(p) );
    } while ( (double)nChanges / nClasses > p->pParams->dSimSatur );
//    Ivy_FraigPrintSimClasses( p );
}



/**Function*************************************************************

  Synopsis    [Cleans pattern scores.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigCleanPatScores( Ivy_FraigMan_t * p )
{
    int i, nLimit = p->nSimWords * 32;
    for ( i = 0; i < nLimit; i++ )
        p->pPatScores[i] = 0;
}

/**Function*************************************************************

  Synopsis    [Adds to pattern scores.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigAddToPatScores( Ivy_FraigMan_t * p, Ivy_Obj_t * pClass, Ivy_Obj_t * pClassNew )
{
    Ivy_FraigSim_t * pSims0, * pSims1;
    unsigned uDiff;
    int i, w;
    // get hold of the simulation information
    pSims0 = Ivy_ObjSim(pClass);
    pSims1 = Ivy_ObjSim(pClassNew);
    // iterate through the differences and record the score
    for ( w = 0; w < p->nSimWords; w++ )
    {
        uDiff = pSims0->pData[w] ^ pSims1->pData[w];
        if ( uDiff == 0 )
            continue;
        for ( i = 0; i < 32; i++ )
            if ( uDiff & ( 1 << i ) )
                p->pPatScores[w*32+i]++;
    }
}

/**Function*************************************************************

  Synopsis    [Selects the best pattern.]

  Description [Returns 1 if such pattern is found.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_FraigSelectBestPat( Ivy_FraigMan_t * p )
{
    Ivy_FraigSim_t * pSims;
    Ivy_Obj_t * pObj;
    int i, nLimit = p->nSimWords * 32, MaxScore = 0, BestPat = -1;
    for ( i = 1; i < nLimit; i++ )
    {
        if ( MaxScore < p->pPatScores[i] )
        {
            MaxScore = p->pPatScores[i];
            BestPat = i;
        }
    }
    if ( MaxScore == 0 )
        return 0;
//    if ( MaxScore > p->pParams->MaxScore )
//    printf( "Max score is %3d.  ", MaxScore );
    // copy the best pattern into the selected pattern
    memset( p->pPatWords, 0, sizeof(unsigned) * p->nPatWords );
    Ivy_ManForEachPi( p->pManAig, pObj, i )
    {
        pSims = Ivy_ObjSim(pObj);
        if ( Ivy_InfoHasBit(pSims->pData, BestPat) )
            Ivy_InfoSetBit(p->pPatWords, i);
    }
    return MaxScore;
}

/**Function*************************************************************

  Synopsis    [Resimulates fraiging manager after finding a counter-example.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigResimulate( Ivy_FraigMan_t * p )
{
    int nChanges;
    Ivy_FraigAssignDist1( p, p->pPatWords );
    Ivy_FraigSimulateOne( p );
    if ( p->pParams->fPatScores )
        Ivy_FraigCleanPatScores( p );
    nChanges = Ivy_FraigRefineClasses( p );
    if ( p->pManFraig->pData )
        return;
    if ( nChanges < 1 )
        printf( "Error: A counter-example did not refine classes!\n" );
    assert( nChanges >= 1 );
//printf( "Refined classes! = %5d.   Changes = %4d.\n", p->lClasses.nItems, nChanges );
    if ( !p->pParams->fPatScores )
        return;

    // perform additional simulation using dist1 patterns derived from successful patterns
    while ( Ivy_FraigSelectBestPat(p) > p->pParams->MaxScore )
    {
        Ivy_FraigAssignDist1( p, p->pPatWords );
        Ivy_FraigSimulateOne( p );
        Ivy_FraigCleanPatScores( p );
        nChanges = Ivy_FraigRefineClasses( p );
        if ( p->pManFraig->pData )
            return;
//printf( "Refined class!!! = %5d.   Changes = %4d.   Pairs = %6d.\n", p->lClasses.nItems, nChanges, Ivy_FraigCountPairsClasses(p) );
        if ( nChanges == 0 )
            break;
    }
}


/**Function*************************************************************

  Synopsis    [Prints the status of the miter.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigMiterPrint( Ivy_Man_t * pNtk, char * pString, int clk, int fVerbose )
{
    if ( !fVerbose )
        return;
    printf( "Nodes = %7d.  Levels = %4d.  ", Ivy_ManNodeNum(pNtk), Ivy_ManLevels(pNtk) );
    ABC_PRT( pString, clock() - clk );
}

/**Function*************************************************************

  Synopsis    [Reports the status of the miter.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_FraigMiterStatus( Ivy_Man_t * pMan )
{
    Ivy_Obj_t * pObj, * pObjNew;
    int i, CountConst0 = 0, CountNonConst0 = 0, CountUndecided = 0;
    if ( pMan->pData )
        return 0;
    Ivy_ManForEachPo( pMan, pObj, i )
    {
        pObjNew = Ivy_ObjChild0(pObj);
        // check if the output is constant 1
        if ( pObjNew == pMan->pConst1 )
        {
            CountNonConst0++;
            continue;
        }
        // check if the output is constant 0
        if ( pObjNew == Ivy_Not(pMan->pConst1) )
        {
            CountConst0++;
            continue;
        }
        // check if the output is a primary input
        if ( Ivy_ObjIsPi(Ivy_Regular(pObjNew)) )
        {
            CountNonConst0++;
            continue;
        }
        // check if the output can be constant 0
        if ( Ivy_Regular(pObjNew)->fPhase != (unsigned)Ivy_IsComplement(pObjNew) )
        {
            CountNonConst0++;
            continue;
        }
        CountUndecided++;
    }
/*
    if ( p->pParams->fVerbose )
    {
        printf( "Miter has %d outputs. ", Ivy_ManPoNum(p->pManAig) );
        printf( "Const0 = %d.  ", CountConst0 );
        printf( "NonConst0 = %d.  ", CountNonConst0 );
        printf( "Undecided = %d.  ", CountUndecided );
        printf( "\n" );
    }
*/
    if ( CountNonConst0 )
        return 0;
    if ( CountUndecided )
        return -1;
    return 1;
}

/**Function*************************************************************

  Synopsis    [Tries to prove each output of the miter until encountering a sat output.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigMiterProve( Ivy_FraigMan_t * p )
{
    Ivy_Obj_t * pObj, * pObjNew;
    int i, RetValue, clk = clock();
    int fVerbose = 0;
    Ivy_ManForEachPo( p->pManAig, pObj, i )
    {
        if ( i && fVerbose )
        {
            ABC_PRT( "Time", clock() -clk );
        }
        pObjNew = Ivy_ObjChild0Equiv(pObj);
        // check if the output is constant 1
        if ( pObjNew == p->pManFraig->pConst1 )
        {
            if ( fVerbose )
                printf( "Output %2d (out of %2d) is constant 1.  ", i, Ivy_ManPoNum(p->pManAig) );
            // assing constant 0 model
            p->pManFraig->pData = ABC_ALLOC( int, Ivy_ManPiNum(p->pManFraig) );
            memset( p->pManFraig->pData, 0, sizeof(int) * Ivy_ManPiNum(p->pManFraig) );
            break;
        }
        // check if the output is constant 0
        if ( pObjNew == Ivy_Not(p->pManFraig->pConst1) )
        {
            if ( fVerbose )
                printf( "Output %2d (out of %2d) is already constant 0.  ", i, Ivy_ManPoNum(p->pManAig) );
            continue;
        }
        // check if the output can be constant 0
        if ( Ivy_Regular(pObjNew)->fPhase != (unsigned)Ivy_IsComplement(pObjNew) )
        {
            if ( fVerbose )
                printf( "Output %2d (out of %2d) cannot be constant 0.  ", i, Ivy_ManPoNum(p->pManAig) );
            // assing constant 0 model
            p->pManFraig->pData = ABC_ALLOC( int, Ivy_ManPiNum(p->pManFraig) );
            memset( p->pManFraig->pData, 0, sizeof(int) * Ivy_ManPiNum(p->pManFraig) );
            break;
        }
/*
        // check the representative of this node
        pRepr = Ivy_ObjClassNodeRepr(Ivy_ObjFanin0(pObj));
        if ( Ivy_Regular(pRepr) != p->pManAig->pConst1 )
            printf( "Representative is not constant 1.\n" );
        else
            printf( "Representative is constant 1.\n" );
*/
        // try to prove the output constant 0
        RetValue = Ivy_FraigNodeIsConst( p, Ivy_Regular(pObjNew) );
        if ( RetValue == 1 )  // proved equivalent
        {
            if ( fVerbose )
                printf( "Output %2d (out of %2d) was proved constant 0.  ", i, Ivy_ManPoNum(p->pManAig) );
            // set the constant miter
            Ivy_ObjFanin0(pObj)->pEquiv = Ivy_NotCond( p->pManFraig->pConst1, !Ivy_ObjFaninC0(pObj) );
            continue;
        }
        if ( RetValue == -1 ) // failed
        {
            if ( fVerbose )
                printf( "Output %2d (out of %2d) has timed out at %d backtracks.  ", i, Ivy_ManPoNum(p->pManAig), p->pParams->nBTLimitMiter );
            continue;
        }
        // proved satisfiable
        if ( fVerbose )
            printf( "Output %2d (out of %2d) was proved NOT a constant 0.  ", i, Ivy_ManPoNum(p->pManAig) );
        // create the model
        p->pManFraig->pData = Ivy_FraigCreateModel(p);
        break;
    }
    if ( fVerbose )
    {
        ABC_PRT( "Time", clock() -clk );
    }
}

/**Function*************************************************************

  Synopsis    [Performs fraiging for the internal nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigSweep( Ivy_FraigMan_t * p )
{
    Ivy_Obj_t * pObj;//, * pTemp;
    int i, k = 0;
p->nClassesZero = p->lClasses.pHead? (Ivy_ObjIsConst1(p->lClasses.pHead) ? Ivy_FraigCountClassNodes(p->lClasses.pHead) : 0) : 0;
p->nClassesBeg  = p->lClasses.nItems;
    // duplicate internal nodes
    p->pProgress = Extra_ProgressBarStart( stdout, Ivy_ManNodeNum(p->pManAig) );
    Ivy_ManForEachNode( p->pManAig, pObj, i )
    {
        Extra_ProgressBarUpdate( p->pProgress, k++, NULL );
        // default to simple strashing if simulation detected a counter-example for a PO
        if ( p->pManFraig->pData )
            pObj->pEquiv = Ivy_And( p->pManFraig, Ivy_ObjChild0Equiv(pObj), Ivy_ObjChild1Equiv(pObj) );
        else
            pObj->pEquiv = Ivy_FraigAnd( p, pObj );
        assert( pObj->pEquiv != NULL );
//        pTemp = Ivy_Regular(pObj->pEquiv);
//        assert( Ivy_Regular(pObj->pEquiv)->Type );
    }
    Extra_ProgressBarStop( p->pProgress );
p->nClassesEnd = p->lClasses.nItems;
    // try to prove the outputs of the miter
    p->nNodesMiter = Ivy_ManNodeNum(p->pManFraig);
//    Ivy_FraigMiterStatus( p->pManFraig );
    if ( p->pParams->fProve && p->pManFraig->pData == NULL )
        Ivy_FraigMiterProve( p );
    // add the POs
    Ivy_ManForEachPo( p->pManAig, pObj, i )
        Ivy_ObjCreatePo( p->pManFraig, Ivy_ObjChild0Equiv(pObj) );
    // clean the old manager
    Ivy_ManForEachObj( p->pManAig, pObj, i )
        pObj->pFanout = pObj->pNextFan0 = pObj->pNextFan1 = pObj->pPrevFan0 = pObj->pPrevFan1 = NULL;
    // clean the new manager
    Ivy_ManForEachObj( p->pManFraig, pObj, i )
    {
        if ( Ivy_ObjFaninVec(pObj) )
            Vec_PtrFree( Ivy_ObjFaninVec(pObj) );
        pObj->pNextFan0 = pObj->pNextFan1 = NULL;
    }
    // remove dangling nodes 
    Ivy_ManCleanup( p->pManFraig );
    // clean up the class marks
    Ivy_FraigForEachEquivClass( p->lClasses.pHead, pObj )
        pObj->fMarkA = 0;
}

/**Function*************************************************************

  Synopsis    [Performs fraiging for one node.]

  Description [Returns the fraiged node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Ivy_Obj_t * Ivy_FraigAnd( Ivy_FraigMan_t * p, Ivy_Obj_t * pObjOld )
{ 
    Ivy_Obj_t * pObjNew, * pFanin0New, * pFanin1New, * pObjReprNew;
    int RetValue;
    // get the fraiged fanins
    pFanin0New = Ivy_ObjChild0Equiv(pObjOld);
    pFanin1New = Ivy_ObjChild1Equiv(pObjOld);
    // get the candidate fraig node
    pObjNew = Ivy_And( p->pManFraig, pFanin0New, pFanin1New );
    // get representative of this class
    if ( Ivy_ObjClassNodeRepr(pObjOld) == NULL || // this is a unique node
         (!p->pParams->fDoSparse && Ivy_ObjClassNodeRepr(pObjOld) == p->pManAig->pConst1) ) // this is a sparse node
    {
//        assert( Ivy_Regular(pFanin0New) != Ivy_Regular(pFanin1New) );
//        assert( pObjNew != Ivy_Regular(pFanin0New) );
//        assert( pObjNew != Ivy_Regular(pFanin1New) );
        return pObjNew;
    }
    // get the fraiged representative
    pObjReprNew = Ivy_ObjFraig(Ivy_ObjClassNodeRepr(pObjOld));
    // if the fraiged nodes are the same return
    if ( Ivy_Regular(pObjNew) == Ivy_Regular(pObjReprNew) )
        return pObjNew;
    assert( Ivy_Regular(pObjNew) != Ivy_ManConst1(p->pManFraig) );
//    printf( "Node = %d. Repr = %d.\n", pObjOld->Id, Ivy_ObjClassNodeRepr(pObjOld)->Id );

    // they are different (the counter-example is in p->pPatWords)
    RetValue = Ivy_FraigNodesAreEquiv( p, Ivy_Regular(pObjReprNew), Ivy_Regular(pObjNew) );
    if ( RetValue == 1 )  // proved equivalent
    {
        // mark the class as proved
        if ( Ivy_ObjClassNodeNext(pObjOld) == NULL )
            Ivy_ObjClassNodeRepr(pObjOld)->fMarkA = 1;
        return Ivy_NotCond( pObjReprNew, pObjOld->fPhase ^ Ivy_ObjClassNodeRepr(pObjOld)->fPhase );
    }
    if ( RetValue == -1 ) // failed
        return pObjNew;
    // simulate the counter-example and return the new node
    Ivy_FraigResimulate( p );
    return pObjNew;
}

/**Function*************************************************************

  Synopsis    [Prints variable activity.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigPrintActivity( Ivy_FraigMan_t * p )
{
    int i;
    for ( i = 0; i < p->nSatVars; i++ )
        printf( "%d %.3f  ", i, p->pSat->activity[i] );
    printf( "\n" );
}

/**Function*************************************************************

  Synopsis    [Runs equivalence test for the two nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_FraigNodesAreEquiv( Ivy_FraigMan_t * p, Ivy_Obj_t * pOld, Ivy_Obj_t * pNew )
{
    int pLits[4], RetValue, RetValue1, nBTLimit, clk; //, clk2 = clock();

    // make sure the nodes are not complemented
    assert( !Ivy_IsComplement(pNew) );
    assert( !Ivy_IsComplement(pOld) );
    assert( pNew != pOld );

    // if at least one of the nodes is a failed node, perform adjustments:
    // if the backtrack limit is small, simply skip this node
    // if the backtrack limit is > 10, take the quare root of the limit
    nBTLimit = p->pParams->nBTLimitNode;
    if ( nBTLimit > 0 && (pOld->fFailTfo || pNew->fFailTfo) )
    {
        p->nSatFails++;
        // fail immediately
//        return -1;
        if ( nBTLimit <= 10 )
            return -1;
        nBTLimit = (int)pow(nBTLimit, 0.7);
    }
    p->nSatCalls++;

    // make sure the solver is allocated and has enough variables
    if ( p->pSat == NULL )
    {
        p->pSat = sat_solver_new();
        p->nSatVars = 1;
        sat_solver_setnvars( p->pSat, 1000 );
        // var 0 is reserved for const1 node - add the clause
//        pLits[0] = toLit( 0 );
//        sat_solver_addclause( p->pSat, pLits, pLits + 1 );
    }

    // if the nodes do not have SAT variables, allocate them
    Ivy_FraigNodeAddToSolver( p, pOld, pNew );

    // prepare variable activity
    Ivy_FraigSetActivityFactors( p, pOld, pNew ); 

    // solve under assumptions
    // A = 1; B = 0     OR     A = 1; B = 1 
clk = clock();
    pLits[0] = toLitCond( Ivy_ObjSatNum(pOld), 0 );
    pLits[1] = toLitCond( Ivy_ObjSatNum(pNew), pOld->fPhase == pNew->fPhase );
//Sat_SolverWriteDimacs( p->pSat, "temp.cnf", pLits, pLits + 2, 1 );
    RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 2, 
        (ABC_INT64_T)nBTLimit, (ABC_INT64_T)0, 
        p->nBTLimitGlobal, p->nInsLimitGlobal );
p->timeSat += clock() - clk;
    if ( RetValue1 == l_False )
    {
p->timeSatUnsat += clock() - clk;
        pLits[0] = lit_neg( pLits[0] );
        pLits[1] = lit_neg( pLits[1] );
        RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
        assert( RetValue );
        // continue solving the other implication
        p->nSatCallsUnsat++;
    }
    else if ( RetValue1 == l_True )
    {
p->timeSatSat += clock() - clk;
        Ivy_FraigSavePattern( p );
        p->nSatCallsSat++;
        return 0;
    }
    else // if ( RetValue1 == l_Undef )
    {
p->timeSatFail += clock() - clk;
        // mark the node as the failed node
        if ( pOld != p->pManFraig->pConst1 ) 
            pOld->fFailTfo = 1;
        pNew->fFailTfo = 1;
        p->nSatFailsReal++;
        return -1;
    }

    // if the old node was constant 0, we already know the answer
    if ( pOld == p->pManFraig->pConst1 )
    {
        p->nSatProof++;
        return 1;
    }

    // solve under assumptions
    // A = 0; B = 1     OR     A = 0; B = 0 
clk = clock();
    pLits[0] = toLitCond( Ivy_ObjSatNum(pOld), 1 );
    pLits[1] = toLitCond( Ivy_ObjSatNum(pNew), pOld->fPhase ^ pNew->fPhase );
    RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 2, 
        (ABC_INT64_T)nBTLimit, (ABC_INT64_T)0, 
        p->nBTLimitGlobal, p->nInsLimitGlobal );
p->timeSat += clock() - clk;
    if ( RetValue1 == l_False )
    {
p->timeSatUnsat += clock() - clk;
        pLits[0] = lit_neg( pLits[0] );
        pLits[1] = lit_neg( pLits[1] );
        RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
        assert( RetValue );
        p->nSatCallsUnsat++;
    }
    else if ( RetValue1 == l_True )
    {
p->timeSatSat += clock() - clk;
        Ivy_FraigSavePattern( p );
        p->nSatCallsSat++;
        return 0;
    }
    else // if ( RetValue1 == l_Undef )
    {
p->timeSatFail += clock() - clk;
        // mark the node as the failed node
        pOld->fFailTfo = 1;
        pNew->fFailTfo = 1;
        p->nSatFailsReal++;
        return -1;
    }
/*
    // check BDD proof
    {
        int RetVal;
        ABC_PRT( "Sat", clock() - clk2 );
        clk2 = clock();
        RetVal = Ivy_FraigNodesAreEquivBdd( pOld, pNew );
//        printf( "%d ", RetVal );
        assert( RetVal );
        ABC_PRT( "Bdd", clock() - clk2 );
        printf( "\n" );
    }
*/
    // return SAT proof
    p->nSatProof++;
    return 1;
}

/**Function*************************************************************

  Synopsis    [Runs equivalence test for one node.]

  Description [Returns the fraiged node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_FraigNodeIsConst( Ivy_FraigMan_t * p, Ivy_Obj_t * pNew )
{
    int pLits[2], RetValue1, clk;
    int RetValue;

    // make sure the nodes are not complemented
    assert( !Ivy_IsComplement(pNew) );
    assert( pNew != p->pManFraig->pConst1 );
    p->nSatCalls++;

    // make sure the solver is allocated and has enough variables
    if ( p->pSat == NULL )
    {
        p->pSat = sat_solver_new();
        p->nSatVars = 1;
        sat_solver_setnvars( p->pSat, 1000 );
        // var 0 is reserved for const1 node - add the clause
//        pLits[0] = toLit( 0 );
//        sat_solver_addclause( p->pSat, pLits, pLits + 1 );
    }

    // if the nodes do not have SAT variables, allocate them
    Ivy_FraigNodeAddToSolver( p, NULL, pNew );

    // prepare variable activity
    Ivy_FraigSetActivityFactors( p, NULL, pNew ); 

    // solve under assumptions
clk = clock();
    pLits[0] = toLitCond( Ivy_ObjSatNum(pNew), pNew->fPhase );
    RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 1, 
        (ABC_INT64_T)p->pParams->nBTLimitMiter, (ABC_INT64_T)0, 
        p->nBTLimitGlobal, p->nInsLimitGlobal );
p->timeSat += clock() - clk;
    if ( RetValue1 == l_False )
    {
p->timeSatUnsat += clock() - clk;
        pLits[0] = lit_neg( pLits[0] );
        RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 1 );
        assert( RetValue );
        // continue solving the other implication
        p->nSatCallsUnsat++;
    }
    else if ( RetValue1 == l_True )
    {
p->timeSatSat += clock() - clk;
        if ( p->pPatWords )
            Ivy_FraigSavePattern( p );
        p->nSatCallsSat++;
        return 0;
    }
    else // if ( RetValue1 == l_Undef )
    {
p->timeSatFail += clock() - clk;
        // mark the node as the failed node
        pNew->fFailTfo = 1;
        p->nSatFailsReal++;
        return -1;
    }

    // return SAT proof
    p->nSatProof++;
    return 1;
}

/**Function*************************************************************

  Synopsis    [Addes clauses to the solver.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigAddClausesMux( Ivy_FraigMan_t * p, Ivy_Obj_t * pNode )
{
    Ivy_Obj_t * pNodeI, * pNodeT, * pNodeE;
    int pLits[4], RetValue, VarF, VarI, VarT, VarE, fCompT, fCompE;

    assert( !Ivy_IsComplement( pNode ) );
    assert( Ivy_ObjIsMuxType( pNode ) );
    // get nodes (I = if, T = then, E = else)
    pNodeI = Ivy_ObjRecognizeMux( pNode, &pNodeT, &pNodeE );
    // get the variable numbers
    VarF = Ivy_ObjSatNum(pNode);
    VarI = Ivy_ObjSatNum(pNodeI);
    VarT = Ivy_ObjSatNum(Ivy_Regular(pNodeT));
    VarE = Ivy_ObjSatNum(Ivy_Regular(pNodeE));
    // get the complementation flags
    fCompT = Ivy_IsComplement(pNodeT);
    fCompE = Ivy_IsComplement(pNodeE);

    // f = ITE(i, t, e)

    // i' + t' + f
    // i' + t  + f'
    // i  + e' + f
    // i  + e  + f'

    // create four clauses
    pLits[0] = toLitCond(VarI, 1);
    pLits[1] = toLitCond(VarT, 1^fCompT);
    pLits[2] = toLitCond(VarF, 0);
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
    pLits[0] = toLitCond(VarI, 1);
    pLits[1] = toLitCond(VarT, 0^fCompT);
    pLits[2] = toLitCond(VarF, 1);
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
    pLits[0] = toLitCond(VarI, 0);
    pLits[1] = toLitCond(VarE, 1^fCompE);
    pLits[2] = toLitCond(VarF, 0);
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
    pLits[0] = toLitCond(VarI, 0);
    pLits[1] = toLitCond(VarE, 0^fCompE);
    pLits[2] = toLitCond(VarF, 1);
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );

    // two additional clauses
    // t' & e' -> f'
    // t  & e  -> f 

    // t  + e   + f'
    // t' + e'  + f 

    if ( VarT == VarE )
    {
//        assert( fCompT == !fCompE );
        return;
    }

    pLits[0] = toLitCond(VarT, 0^fCompT);
    pLits[1] = toLitCond(VarE, 0^fCompE);
    pLits[2] = toLitCond(VarF, 1);
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
    pLits[0] = toLitCond(VarT, 1^fCompT);
    pLits[1] = toLitCond(VarE, 1^fCompE);
    pLits[2] = toLitCond(VarF, 0);
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
    assert( RetValue );
}

/**Function*************************************************************

  Synopsis    [Addes clauses to the solver.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigAddClausesSuper( Ivy_FraigMan_t * p, Ivy_Obj_t * pNode, Vec_Ptr_t * vSuper )
{
    Ivy_Obj_t * pFanin;
    int * pLits, nLits, RetValue, i;
    assert( !Ivy_IsComplement(pNode) );
    assert( Ivy_ObjIsNode( pNode ) );
    // create storage for literals
    nLits = Vec_PtrSize(vSuper) + 1;
    pLits = ABC_ALLOC( int, nLits );
    // suppose AND-gate is A & B = C
    // add !A => !C   or   A + !C
    Vec_PtrForEachEntry( vSuper, pFanin, i )
    {
        pLits[0] = toLitCond(Ivy_ObjSatNum(Ivy_Regular(pFanin)), Ivy_IsComplement(pFanin));
        pLits[1] = toLitCond(Ivy_ObjSatNum(pNode), 1);
        RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
        assert( RetValue );
    }
    // add A & B => C   or   !A + !B + C
    Vec_PtrForEachEntry( vSuper, pFanin, i )
        pLits[i] = toLitCond(Ivy_ObjSatNum(Ivy_Regular(pFanin)), !Ivy_IsComplement(pFanin));
    pLits[nLits-1] = toLitCond(Ivy_ObjSatNum(pNode), 0);
    RetValue = sat_solver_addclause( p->pSat, pLits, pLits + nLits );
    assert( RetValue );
    ABC_FREE( pLits );
}

/**Function*************************************************************

  Synopsis    [Collects the supergate.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigCollectSuper_rec( Ivy_Obj_t * pObj, Vec_Ptr_t * vSuper, int fFirst, int fUseMuxes )
{
    // if the new node is complemented or a PI, another gate begins
    if ( Ivy_IsComplement(pObj) || Ivy_ObjIsPi(pObj) || (!fFirst && Ivy_ObjRefs(pObj) > 1) || 
         (fUseMuxes && Ivy_ObjIsMuxType(pObj)) )
    {
        Vec_PtrPushUnique( vSuper, pObj );
        return;
    }
    // go through the branches
    Ivy_FraigCollectSuper_rec( Ivy_ObjChild0(pObj), vSuper, 0, fUseMuxes );
    Ivy_FraigCollectSuper_rec( Ivy_ObjChild1(pObj), vSuper, 0, fUseMuxes );
}

/**Function*************************************************************

  Synopsis    [Collects the supergate.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Ivy_FraigCollectSuper( Ivy_Obj_t * pObj, int fUseMuxes )
{
    Vec_Ptr_t * vSuper;
    assert( !Ivy_IsComplement(pObj) );
    assert( !Ivy_ObjIsPi(pObj) );
    vSuper = Vec_PtrAlloc( 4 );
    Ivy_FraigCollectSuper_rec( pObj, vSuper, 1, fUseMuxes );
    return vSuper;
}

/**Function*************************************************************

  Synopsis    [Updates the solver clause database.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigObjAddToFrontier( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj, Vec_Ptr_t * vFrontier )
{
    assert( !Ivy_IsComplement(pObj) );
    if ( Ivy_ObjSatNum(pObj) )
        return;
    assert( Ivy_ObjSatNum(pObj) == 0 );
    assert( Ivy_ObjFaninVec(pObj) == NULL );
    if ( Ivy_ObjIsConst1(pObj) )
        return;
//printf( "Assigning node %d number %d\n", pObj->Id, p->nSatVars );
    Ivy_ObjSetSatNum( pObj, p->nSatVars++ );
    if ( Ivy_ObjIsNode(pObj) )
        Vec_PtrPush( vFrontier, pObj );
}

/**Function*************************************************************

  Synopsis    [Updates the solver clause database.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_FraigNodeAddToSolver( Ivy_FraigMan_t * p, Ivy_Obj_t * pOld, Ivy_Obj_t * pNew )
{ 
    Vec_Ptr_t * vFrontier, * vFanins;
    Ivy_Obj_t * pNode, * pFanin;
    int i, k, fUseMuxes = 1;
    assert( pOld || pNew );
    // quit if CNF is ready
    if ( (!pOld || Ivy_ObjFaninVec(pOld)) && (!pNew || Ivy_ObjFaninVec(pNew)) )
        return;
    // start the frontier
    vFrontier = Vec_PtrAlloc( 100 );
    if ( pOld ) Ivy_FraigObjAddToFrontier( p, pOld, vFrontier );
    if ( pNew ) Ivy_FraigObjAddToFrontier( p, pNew, vFrontier );
    // explore nodes in the frontier
    Vec_PtrForEachEntry( vFrontier, pNode, i )
    {
        // create the supergate
        assert( Ivy_ObjSatNum(pNode) );
        assert( Ivy_ObjFaninVec(pNode) == NULL );
        if ( fUseMuxes && Ivy_ObjIsMuxType(pNode) )
        {
            vFanins = Vec_PtrAlloc( 4 );
            Vec_PtrPushUnique( vFanins, Ivy_ObjFanin0( Ivy_ObjFanin0(pNode) ) );
            Vec_PtrPushUnique( vFanins, Ivy_ObjFanin0( Ivy_ObjFanin1(pNode) ) );
            Vec_PtrPushUnique( vFanins, Ivy_ObjFanin1( Ivy_ObjFanin0(pNode) ) );
            Vec_PtrPushUnique( vFanins, Ivy_ObjFanin1( Ivy_ObjFanin1(pNode) ) );
            Vec_PtrForEachEntry( vFanins, pFanin, k )
                Ivy_FraigObjAddToFrontier( p, Ivy_Regular(pFanin), vFrontier );
            Ivy_FraigAddClausesMux( p, pNode );
        }
        else
        {
            vFanins = Ivy_FraigCollectSuper( pNode, fUseMuxes );
            Vec_PtrForEachEntry( vFanins, pFanin, k )
                Ivy_FraigObjAddToFrontier( p, Ivy_Regular(pFanin), vFrontier );
            Ivy_FraigAddClausesSuper( p, pNode, vFanins );
        }
        assert( Vec_PtrSize(vFanins) > 1 );
        Ivy_ObjSetFaninVec( pNode, vFanins );
    }
    Vec_PtrFree( vFrontier );
    sat_solver_simplify( p->pSat );
}

/**Function*************************************************************

  Synopsis    [Sets variable activities in the cone.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_FraigSetActivityFactors_rec( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj, int LevelMin, int LevelMax )
{
    Vec_Ptr_t * vFanins;
    Ivy_Obj_t * pFanin;
    int i, Counter = 0;
    assert( !Ivy_IsComplement(pObj) );
    assert( Ivy_ObjSatNum(pObj) );
    // skip visited variables
    if ( Ivy_ObjIsTravIdCurrent(p->pManFraig, pObj) )
        return 0;
    Ivy_ObjSetTravIdCurrent(p->pManFraig, pObj);
    // add the PI to the list
    if ( pObj->Level <= (unsigned)LevelMin || Ivy_ObjIsPi(pObj) )
        return 0;
    // set the factor of this variable
    // (LevelMax-LevelMin) / (pObj->Level-LevelMin) = p->pParams->dActConeBumpMax / ThisBump
    p->pSat->factors[Ivy_ObjSatNum(pObj)] = p->pParams->dActConeBumpMax * (pObj->Level - LevelMin)/(LevelMax - LevelMin);
    veci_push(&p->pSat->act_vars, Ivy_ObjSatNum(pObj));
    // explore the fanins
    vFanins = Ivy_ObjFaninVec( pObj );
    Vec_PtrForEachEntry( vFanins, pFanin, i )
        Counter += Ivy_FraigSetActivityFactors_rec( p, Ivy_Regular(pFanin), LevelMin, LevelMax );
    return 1 + Counter;
}

/**Function*************************************************************

  Synopsis    [Sets variable activities in the cone.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_FraigSetActivityFactors( Ivy_FraigMan_t * p, Ivy_Obj_t * pOld, Ivy_Obj_t * pNew )
{
    int clk, LevelMin, LevelMax;
    assert( pOld || pNew );
clk = clock(); 
    // reset the active variables
    veci_resize(&p->pSat->act_vars, 0);
    // prepare for traversal
    Ivy_ManIncrementTravId( p->pManFraig );
    // determine the min and max level to visit
    assert( p->pParams->dActConeRatio > 0 && p->pParams->dActConeRatio < 1 );
    LevelMax = IVY_MAX( (pNew ? pNew->Level : 0), (pOld ? pOld->Level : 0) );
    LevelMin = (int)(LevelMax * (1.0 - p->pParams->dActConeRatio));
    // traverse
    if ( pOld && !Ivy_ObjIsConst1(pOld) )
        Ivy_FraigSetActivityFactors_rec( p, pOld, LevelMin, LevelMax );
    if ( pNew && !Ivy_ObjIsConst1(pNew) )
        Ivy_FraigSetActivityFactors_rec( p, pNew, LevelMin, LevelMax );
//Ivy_FraigPrintActivity( p );
p->timeTrav += clock() - clk;
    return 1;
}



#include "cuddInt.h"

/**Function*************************************************************

  Synopsis    [Checks equivalence using BDDs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Ivy_FraigNodesAreEquivBdd_int( DdManager * dd, DdNode * bFunc, Vec_Ptr_t * vFront, int Level )
{
    DdNode ** pFuncs;
    DdNode * bFuncNew;
    Vec_Ptr_t * vTemp;
    Ivy_Obj_t * pObj, * pFanin;
    int i, NewSize;
    // create new frontier
    vTemp = Vec_PtrAlloc( 100 );
    Vec_PtrForEachEntry( vFront, pObj, i )
    {
        if ( (int)pObj->Level != Level )
        {
            pObj->fMarkB = 1;
            pObj->TravId = Vec_PtrSize(vTemp);
            Vec_PtrPush( vTemp, pObj );
            continue;
        }

        pFanin = Ivy_ObjFanin0(pObj);
        if ( pFanin->fMarkB == 0 )
        {
            pFanin->fMarkB = 1;
            pFanin->TravId = Vec_PtrSize(vTemp);
            Vec_PtrPush( vTemp, pFanin );
        }

        pFanin = Ivy_ObjFanin1(pObj);
        if ( pFanin->fMarkB == 0 )
        {
            pFanin->fMarkB = 1;
            pFanin->TravId = Vec_PtrSize(vTemp);
            Vec_PtrPush( vTemp, pFanin );
        }
    }
    // collect the permutation
    NewSize = IVY_MAX(dd->size, Vec_PtrSize(vTemp));
    pFuncs = ABC_ALLOC( DdNode *, NewSize );
    Vec_PtrForEachEntry( vFront, pObj, i )
    {
        if ( (int)pObj->Level != Level )
            pFuncs[i] = Cudd_bddIthVar( dd, pObj->TravId );
        else
            pFuncs[i] = Cudd_bddAnd( dd, 
                Cudd_NotCond( Cudd_bddIthVar(dd, Ivy_ObjFanin0(pObj)->TravId), Ivy_ObjFaninC0(pObj) ),
                Cudd_NotCond( Cudd_bddIthVar(dd, Ivy_ObjFanin1(pObj)->TravId), Ivy_ObjFaninC1(pObj) ) );
        Cudd_Ref( pFuncs[i] );
    }
    // add the remaining vars
    assert( NewSize == dd->size );
    for ( i = Vec_PtrSize(vFront); i < dd->size; i++ )
    {
        pFuncs[i] = Cudd_bddIthVar( dd, i );
        Cudd_Ref( pFuncs[i] );
    }

    // create new
    bFuncNew = Cudd_bddVectorCompose( dd, bFunc, pFuncs ); Cudd_Ref( bFuncNew );
    // clean trav Id
    Vec_PtrForEachEntry( vTemp, pObj, i )
    {
        pObj->fMarkB = 0;
        pObj->TravId = 0;
    }
    // deref
    for ( i = 0; i < dd->size; i++ )
        Cudd_RecursiveDeref( dd, pFuncs[i] );
    ABC_FREE( pFuncs );

    ABC_FREE( vFront->pArray );
    *vFront = *vTemp;

    vTemp->nCap = vTemp->nSize = 0;
    vTemp->pArray = NULL;
    Vec_PtrFree( vTemp );

    Cudd_Deref( bFuncNew );
    return bFuncNew;
}

/**Function*************************************************************

  Synopsis    [Checks equivalence using BDDs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_FraigNodesAreEquivBdd( Ivy_Obj_t * pObj1, Ivy_Obj_t * pObj2 )
{
    static DdManager * dd = NULL;
    DdNode * bFunc, * bTemp;
    Vec_Ptr_t * vFront;
    Ivy_Obj_t * pObj;
    int i, RetValue, Iter, Level;
    // start the manager
    if ( dd == NULL )
        dd = Cudd_Init( 50, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
    // create front
    vFront = Vec_PtrAlloc( 100 );
    Vec_PtrPush( vFront, pObj1 );
    Vec_PtrPush( vFront, pObj2 );
    // get the function
    bFunc = Cudd_bddXor( dd, Cudd_bddIthVar(dd,0), Cudd_bddIthVar(dd,1) );  Cudd_Ref( bFunc );
    bFunc = Cudd_NotCond( bFunc, pObj1->fPhase != pObj2->fPhase );
    // try running BDDs
    for ( Iter = 0; ; Iter++ )
    {
        // find max level
        Level = 0;
        Vec_PtrForEachEntry( vFront, pObj, i )
            if ( Level < (int)pObj->Level )
                Level = (int)pObj->Level;
        if ( Level == 0 )
            break;            
        bFunc = Ivy_FraigNodesAreEquivBdd_int( dd, bTemp = bFunc, vFront, Level ); Cudd_Ref( bFunc );
        Cudd_RecursiveDeref( dd, bTemp );
        if ( bFunc == Cudd_ReadLogicZero(dd) ) // proved
            {printf( "%d", Iter ); break;}
        if ( Cudd_DagSize(bFunc) > 1000 )
            {printf( "b" ); break;}
        if ( dd->size > 120 )
            {printf( "s" ); break;}
        if ( Iter > 50 )
            {printf( "i" ); break;}
    }
    if ( bFunc == Cudd_ReadLogicZero(dd) ) // unsat
        RetValue = 1;
    else if ( Level == 0 ) // sat
        RetValue = 0;
    else 
        RetValue = -1; // spaceout/timeout
    Cudd_RecursiveDeref( dd, bFunc );
    Vec_PtrFree( vFront );
    return RetValue;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////