summaryrefslogtreecommitdiffstats
path: root/src/aig/ivy/ivyRwr.c
blob: 30bff58f089d6ec6cbb35aa66224cb98911ee071 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
/**CFile****************************************************************

  FileName    [ivyRwt.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [And-Inverter Graph package.]

  Synopsis    [Rewriting based on precomputation.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - May 11, 2006.]

  Revision    [$Id: ivyRwt.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $]

***********************************************************************/

#include "ivy.h"
#include "bool/deco/deco.h"
#include "opt/rwt/rwt.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

static unsigned Ivy_NodeGetTruth( Ivy_Obj_t * pObj, int * pNums, int nNums );
static int Ivy_NodeRewrite( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pNode, int fUpdateLevel, int fUseZeroCost );
static Dec_Graph_t * Rwt_CutEvaluate( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pRoot, 
    Vec_Ptr_t * vFaninsCur, int nNodesSaved, int LevelMax, int * pGainBest, unsigned uTruth );

static int Ivy_GraphToNetworkCount( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int NodeMax, int LevelMax );
static void Ivy_GraphUpdateNetwork( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain );

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Performs incremental rewriting of the AIG.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_ManRewritePre( Ivy_Man_t * p, int fUpdateLevel, int fUseZeroCost, int fVerbose )
{
    Rwt_Man_t * pManRwt;
    Ivy_Obj_t * pNode;
    int i, nNodes, nGain;
    abctime clk, clkStart = Abc_Clock();
    // start the rewriting manager
    pManRwt = Rwt_ManStart( 0 );
    p->pData = pManRwt;
    if ( pManRwt == NULL )
        return 0; 
    // create fanouts
    if ( fUpdateLevel && p->fFanout == 0 )
        Ivy_ManStartFanout( p );
    // compute the reverse levels if level update is requested
    if ( fUpdateLevel )
        Ivy_ManRequiredLevels( p );
    // set the number of levels
//    p->nLevelMax = Ivy_ManLevels( p );
    // resynthesize each node once
    nNodes = Ivy_ManObjIdMax(p);
    Ivy_ManForEachNode( p, pNode, i )
    {
        // fix the fanin buffer problem
        Ivy_NodeFixBufferFanins( p, pNode, 1 );
        if ( Ivy_ObjIsBuf(pNode) )
            continue;
        // stop if all nodes have been tried once
        if ( i > nNodes )
            break;
        // for each cut, try to resynthesize it
        nGain = Ivy_NodeRewrite( p, pManRwt, pNode, fUpdateLevel, fUseZeroCost );
        if ( nGain > 0 || (nGain == 0 && fUseZeroCost) )
        {
            Dec_Graph_t * pGraph = (Dec_Graph_t *)Rwt_ManReadDecs(pManRwt);
            int fCompl           = Rwt_ManReadCompl(pManRwt);
/*
            {
                Ivy_Obj_t * pObj;
                int i;
                printf( "USING: (" );
                Vec_PtrForEachEntry( Ivy_Obj_t *, Rwt_ManReadLeaves(pManRwt), pObj, i )
                    printf( "%d ", Ivy_ObjFanoutNum(Ivy_Regular(pObj)) );
                printf( ")   Gain = %d.\n", nGain );
            }
            if ( nGain > 0 )
            { // print stats on the MFFC
                extern void Ivy_NodeMffcConeSuppPrint( Ivy_Obj_t * pNode );
                printf( "Node %6d : Gain = %4d  ", pNode->Id, nGain );
                Ivy_NodeMffcConeSuppPrint( pNode );
            }
*/
            // complement the FF if needed
clk = Abc_Clock();
            if ( fCompl ) Dec_GraphComplement( pGraph );
            Ivy_GraphUpdateNetwork( p, pNode, pGraph, fUpdateLevel, nGain );
            if ( fCompl ) Dec_GraphComplement( pGraph );
Rwt_ManAddTimeUpdate( pManRwt, Abc_Clock() - clk );
        }
    }
Rwt_ManAddTimeTotal( pManRwt, Abc_Clock() - clkStart );
    // print stats
    if ( fVerbose )
        Rwt_ManPrintStats( pManRwt );
    // delete the managers
    Rwt_ManStop( pManRwt );
    p->pData = NULL;
    // fix the levels
    if ( fUpdateLevel )
        Vec_IntFree( p->vRequired ), p->vRequired = NULL;
    else
        Ivy_ManResetLevels( p );
    // check
    if ( (i = Ivy_ManCleanup(p)) )
        printf( "Cleanup after rewriting removed %d dangling nodes.\n", i );
    if ( !Ivy_ManCheck(p) )
        printf( "Ivy_ManRewritePre(): The check has failed.\n" );
    return 1;
}

/**Function*************************************************************

  Synopsis    [Performs rewriting for one node.]

  Description [This procedure considers all the cuts computed for the node
  and tries to rewrite each of them using the "forest" of different AIG
  structures precomputed and stored in the RWR manager. 
  Determines the best rewriting and computes the gain in the number of AIG
  nodes in the final network. In the end, p->vFanins contains information 
  about the best cut that can be used for rewriting, while p->pGraph gives 
  the decomposition dag (represented using decomposition graph data structure).
  Returns gain in the number of nodes or -1 if node cannot be rewritten.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_NodeRewrite( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pNode, int fUpdateLevel, int fUseZeroCost )
{
    int fVeryVerbose = 0;
    Dec_Graph_t * pGraph;
    Ivy_Store_t * pStore;
    Ivy_Cut_t * pCut;
    Ivy_Obj_t * pFanin;
    unsigned uPhase;
    unsigned uTruthBest = 0; // Suppress "might be used uninitialized"
    unsigned uTruth;
    char * pPerm;
    int Required, nNodesSaved;
    int nNodesSaveCur = -1; // Suppress "might be used uninitialized"
    int i, c, GainCur = -1, GainBest = -1;
    abctime clk, clk2;

    p->nNodesConsidered++;
    // get the required times
    Required = fUpdateLevel? Vec_IntEntry( pMan->vRequired, pNode->Id ) : 1000000;
    // get the node's cuts
clk = Abc_Clock();
    pStore = Ivy_NodeFindCutsAll( pMan, pNode, 5 );
p->timeCut += Abc_Clock() - clk;

    // go through the cuts
clk = Abc_Clock();
    for ( c = 1; c < pStore->nCuts; c++ )
    {
        pCut = pStore->pCuts + c;
        // consider only 4-input cuts
        if ( pCut->nSize != 4 )
            continue;
        // skip the cuts with buffers
        for ( i = 0; i < (int)pCut->nSize; i++ )
            if ( Ivy_ObjIsBuf( Ivy_ManObj(pMan, pCut->pArray[i]) ) )
                break;
        if ( i != pCut->nSize )
        {
            p->nCutsBad++;
            continue;
        }
        p->nCutsGood++;
        // get the fanin permutation
clk2 = Abc_Clock();
        uTruth = 0xFFFF & Ivy_NodeGetTruth( pNode, pCut->pArray, pCut->nSize );  // truth table
p->timeTruth += Abc_Clock() - clk2;
        pPerm = p->pPerms4[ (int) p->pPerms[uTruth] ];
        uPhase = p->pPhases[uTruth];
        // collect fanins with the corresponding permutation/phase
        Vec_PtrClear( p->vFaninsCur );
        Vec_PtrFill( p->vFaninsCur, (int)pCut->nSize, 0 );
        for ( i = 0; i < (int)pCut->nSize; i++ )
        {
            pFanin = Ivy_ManObj( pMan, pCut->pArray[(int)pPerm[i]] );
            assert( Ivy_ObjIsNode(pFanin) || Ivy_ObjIsCi(pFanin) );
            pFanin = Ivy_NotCond(pFanin, ((uPhase & (1<<i)) > 0) );
            Vec_PtrWriteEntry( p->vFaninsCur, i, pFanin );
        }
clk2 = Abc_Clock();
/*
        printf( "Considering: (" );
        Vec_PtrForEachEntry( Ivy_Obj_t *, p->vFaninsCur, pFanin, i )
            printf( "%d ", Ivy_ObjFanoutNum(Ivy_Regular(pFanin)) );
        printf( ")\n" );
*/
        // mark the fanin boundary 
        Vec_PtrForEachEntry( Ivy_Obj_t *, p->vFaninsCur, pFanin, i )
            Ivy_ObjRefsInc( Ivy_Regular(pFanin) );
        // label MFFC with current ID
        Ivy_ManIncrementTravId( pMan );
        nNodesSaved = Ivy_ObjMffcLabel( pMan, pNode );
        // unmark the fanin boundary
        Vec_PtrForEachEntry( Ivy_Obj_t *, p->vFaninsCur, pFanin, i )
            Ivy_ObjRefsDec( Ivy_Regular(pFanin) );
p->timeMffc += Abc_Clock() - clk2;

        // evaluate the cut
clk2 = Abc_Clock();
        pGraph = Rwt_CutEvaluate( pMan, p, pNode, p->vFaninsCur, nNodesSaved, Required, &GainCur, uTruth );
p->timeEval += Abc_Clock() - clk2;

        // check if the cut is better than the current best one
        if ( pGraph != NULL && GainBest < GainCur )
        {
            // save this form
            nNodesSaveCur = nNodesSaved;
            GainBest  = GainCur;
            p->pGraph  = pGraph;
            p->fCompl = ((uPhase & (1<<4)) > 0);
            uTruthBest = uTruth;
            // collect fanins in the
            Vec_PtrClear( p->vFanins );
            Vec_PtrForEachEntry( Ivy_Obj_t *, p->vFaninsCur, pFanin, i )
                Vec_PtrPush( p->vFanins, pFanin );
        }
    }
p->timeRes += Abc_Clock() - clk;

    if ( GainBest == -1 )
        return -1;

//    printf( "%d", nNodesSaveCur - GainBest );
/*
    if ( GainBest > 0 )
    {
        if ( Rwt_CutIsintean( pNode, p->vFanins ) )
            printf( "b" );
        else
        {
            printf( "Node %d : ", pNode->Id );
            Vec_PtrForEachEntry( Ivy_Obj_t *, p->vFanins, pFanin, i )
                printf( "%d ", Ivy_Regular(pFanin)->Id );
            printf( "a" );
        }
    }
*/
/*
    if ( GainBest > 0 )
        if ( p->fCompl )
            printf( "c" );
        else
            printf( "." );
*/

    // copy the leaves
    Vec_PtrForEachEntry( Ivy_Obj_t *, p->vFanins, pFanin, i )
        Dec_GraphNode((Dec_Graph_t *)p->pGraph, i)->pFunc = pFanin;

    p->nScores[p->pMap[uTruthBest]]++;
    p->nNodesGained += GainBest;
    if ( fUseZeroCost || GainBest > 0 )
        p->nNodesRewritten++;

    // report the progress
    if ( fVeryVerbose && GainBest > 0 )
    {
        printf( "Node %6d :   ", Ivy_ObjId(pNode) );
        printf( "Fanins = %d. ", p->vFanins->nSize );
        printf( "Save = %d.  ", nNodesSaveCur );
        printf( "Add = %d.  ",  nNodesSaveCur-GainBest );
        printf( "GAIN = %d.  ", GainBest );
        printf( "Cone = %d.  ", p->pGraph? Dec_GraphNodeNum((Dec_Graph_t *)p->pGraph) : 0 );
        printf( "Class = %d.  ", p->pMap[uTruthBest] );
        printf( "\n" );
    }
    return GainBest;
}

/**Function*************************************************************

  Synopsis    [Computes the truth table.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
unsigned Ivy_NodeGetTruth_rec( Ivy_Obj_t * pObj, int * pNums, int nNums )
{
    static unsigned uMasks[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 };
    unsigned uTruth0, uTruth1;
    int i;
    for ( i = 0; i < nNums; i++ )
        if ( pObj->Id == pNums[i] )
            return uMasks[i];
    assert( Ivy_ObjIsNode(pObj) || Ivy_ObjIsBuf(pObj) );
    uTruth0 = Ivy_NodeGetTruth_rec( Ivy_ObjFanin0(pObj), pNums, nNums );
    if ( Ivy_ObjFaninC0(pObj) )
        uTruth0 = ~uTruth0;
    if ( Ivy_ObjIsBuf(pObj) )
        return uTruth0;
    uTruth1 = Ivy_NodeGetTruth_rec( Ivy_ObjFanin1(pObj), pNums, nNums );
    if ( Ivy_ObjFaninC1(pObj) )
        uTruth1 = ~uTruth1;
    return uTruth0 & uTruth1;
}


/**Function*************************************************************

  Synopsis    [Computes the truth table.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
unsigned Ivy_NodeGetTruth( Ivy_Obj_t * pObj, int * pNums, int nNums )
{
    assert( nNums < 6 );
    return Ivy_NodeGetTruth_rec( pObj, pNums, nNums );
}

/**Function*************************************************************

  Synopsis    [Evaluates the cut.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dec_Graph_t * Rwt_CutEvaluate( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pRoot, Vec_Ptr_t * vFaninsCur, int nNodesSaved, int LevelMax, int * pGainBest, unsigned uTruth )
{
    Vec_Ptr_t * vSubgraphs;
    Dec_Graph_t * pGraphBest = NULL; // Suppress "might be used uninitialized"
    Dec_Graph_t * pGraphCur;
    Rwt_Node_t * pNode, * pFanin;
    int nNodesAdded, GainBest, i, k;
    // find the matching class of subgraphs
    vSubgraphs = Vec_VecEntry( p->vClasses, p->pMap[uTruth] );
    p->nSubgraphs += vSubgraphs->nSize;
    // determine the best subgraph
    GainBest = -1;
    Vec_PtrForEachEntry( Rwt_Node_t *, vSubgraphs, pNode, i )
    {
        // get the current graph
        pGraphCur = (Dec_Graph_t *)pNode->pNext;
        // copy the leaves
        Vec_PtrForEachEntry( Rwt_Node_t *, vFaninsCur, pFanin, k )
            Dec_GraphNode(pGraphCur, k)->pFunc = pFanin;
        // detect how many unlabeled nodes will be reused
        nNodesAdded = Ivy_GraphToNetworkCount( pMan, pRoot, pGraphCur, nNodesSaved, LevelMax );
        if ( nNodesAdded == -1 )
            continue;
        assert( nNodesSaved >= nNodesAdded );
        // count the gain at this node
        if ( GainBest < nNodesSaved - nNodesAdded )
        {
            GainBest   = nNodesSaved - nNodesAdded;
            pGraphBest = pGraphCur;
        }
    }
    if ( GainBest == -1 )
        return NULL;
    *pGainBest = GainBest;
    return pGraphBest;
}


/**Function*************************************************************

  Synopsis    [Counts the number of new nodes added when using this graph.]

  Description [AIG nodes for the fanins should be assigned to pNode->pFunc 
  of the leaves of the graph before calling this procedure. 
  Returns -1 if the number of nodes and levels exceeded the given limit or 
  the number of levels exceeded the maximum allowed level.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_GraphToNetworkCount( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int NodeMax, int LevelMax )
{
    Dec_Node_t * pNode, * pNode0, * pNode1;
    Ivy_Obj_t * pAnd, * pAnd0, * pAnd1;
    int i, Counter, LevelNew, LevelOld;
    // check for constant function or a literal
    if ( Dec_GraphIsConst(pGraph) || Dec_GraphIsVar(pGraph) )
        return 0;
    // set the levels of the leaves
    Dec_GraphForEachLeaf( pGraph, pNode, i )
        pNode->Level = Ivy_Regular((Ivy_Obj_t *)pNode->pFunc)->Level;
    // compute the AIG size after adding the internal nodes
    Counter = 0;
    Dec_GraphForEachNode( pGraph, pNode, i )
    {
        // get the children of this node
        pNode0 = Dec_GraphNode( pGraph, pNode->eEdge0.Node );
        pNode1 = Dec_GraphNode( pGraph, pNode->eEdge1.Node );
        // get the AIG nodes corresponding to the children 
        pAnd0 = (Ivy_Obj_t *)pNode0->pFunc; 
        pAnd1 = (Ivy_Obj_t *)pNode1->pFunc; 
        if ( pAnd0 && pAnd1 )
        {
            // if they are both present, find the resulting node
            pAnd0 = Ivy_NotCond( pAnd0, pNode->eEdge0.fCompl );
            pAnd1 = Ivy_NotCond( pAnd1, pNode->eEdge1.fCompl );
            pAnd  = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, pAnd0, pAnd1, IVY_AND, IVY_INIT_NONE) );
            // return -1 if the node is the same as the original root
            if ( Ivy_Regular(pAnd) == pRoot )
                return -1;
        }
        else
            pAnd = NULL;
        // count the number of added nodes
        if ( pAnd == NULL || Ivy_ObjIsTravIdCurrent(p, Ivy_Regular(pAnd)) )
        {
            if ( ++Counter > NodeMax )
                return -1;
        }
        // count the number of new levels
        LevelNew = 1 + RWT_MAX( pNode0->Level, pNode1->Level );
        if ( pAnd )
        {
            if ( Ivy_Regular(pAnd) == p->pConst1 )
                LevelNew = 0;
            else if ( Ivy_Regular(pAnd) == Ivy_Regular(pAnd0) )
                LevelNew = (int)Ivy_Regular(pAnd0)->Level;
            else if ( Ivy_Regular(pAnd) == Ivy_Regular(pAnd1) )
                LevelNew = (int)Ivy_Regular(pAnd1)->Level;
            LevelOld = (int)Ivy_Regular(pAnd)->Level;
//            assert( LevelNew == LevelOld );
        }
        if ( LevelNew > LevelMax )
            return -1;
        pNode->pFunc = pAnd;
        pNode->Level = LevelNew;
    }
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Transforms the decomposition graph into the AIG.]

  Description [AIG nodes for the fanins should be assigned to pNode->pFunc
  of the leaves of the graph before calling this procedure.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Ivy_Obj_t * Ivy_GraphToNetwork( Ivy_Man_t * p, Dec_Graph_t * pGraph )
{
    Ivy_Obj_t * pAnd0, * pAnd1;
    Dec_Node_t * pNode = NULL; // Suppress "might be used uninitialized"
    int i;
    // check for constant function
    if ( Dec_GraphIsConst(pGraph) )
        return Ivy_NotCond( Ivy_ManConst1(p), Dec_GraphIsComplement(pGraph) );
    // check for a literal
    if ( Dec_GraphIsVar(pGraph) )
        return Ivy_NotCond( (Ivy_Obj_t *)Dec_GraphVar(pGraph)->pFunc, Dec_GraphIsComplement(pGraph) );
    // build the AIG nodes corresponding to the AND gates of the graph
    Dec_GraphForEachNode( pGraph, pNode, i )
    {
        pAnd0 = Ivy_NotCond( (Ivy_Obj_t *)Dec_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl ); 
        pAnd1 = Ivy_NotCond( (Ivy_Obj_t *)Dec_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl ); 
        pNode->pFunc = Ivy_And( p, pAnd0, pAnd1 );
    }
    // complement the result if necessary
    return Ivy_NotCond( (Ivy_Obj_t *)pNode->pFunc, Dec_GraphIsComplement(pGraph) );
}

/**Function*************************************************************

  Synopsis    [Replaces MFFC of the node by the new factored form.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_GraphUpdateNetwork( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain )
{
    Ivy_Obj_t * pRootNew;
    int nNodesNew, nNodesOld, Required;
    Required = fUpdateLevel? Vec_IntEntry( p->vRequired, pRoot->Id ) : 1000000;
    nNodesOld = Ivy_ManNodeNum(p);
    // create the new structure of nodes
    pRootNew = Ivy_GraphToNetwork( p, pGraph );
    assert( (int)Ivy_Regular(pRootNew)->Level <= Required );
//    if ( Ivy_Regular(pRootNew)->Level == Required )
//        printf( "Difference %d.\n", Ivy_Regular(pRootNew)->Level - Required );
    // remove the old nodes
//    Ivy_AigReplace( pMan->pManFunc, pRoot, pRootNew, fUpdateLevel );
/*
    if ( Ivy_IsComplement(pRootNew) )
        printf( "c" );
    else
        printf( "d" );
    if ( Ivy_ObjRefs(Ivy_Regular(pRootNew)) > 0 )
        printf( "%d", Ivy_ObjRefs(Ivy_Regular(pRootNew)) );
    printf( " " );
*/
    Ivy_ObjReplace( p, pRoot, pRootNew, 1, 0, 1 );
    // compare the gains
    nNodesNew = Ivy_ManNodeNum(p);
    assert( nGain <= nNodesOld - nNodesNew );
    // propagate the buffer
    Ivy_ManPropagateBuffers( p, 1 );
}

/**Function*************************************************************

  Synopsis    [Replaces MFFC of the node by the new factored form.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_GraphUpdateNetwork3( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain )
{
    Ivy_Obj_t * pRootNew, * pFanin;
    int nNodesNew, nNodesOld, i, nRefsOld;
    nNodesOld = Ivy_ManNodeNum(p);

//printf( "Before = %d. ", Ivy_ManNodeNum(p) );
    // mark the cut
    Vec_PtrForEachEntry( Ivy_Obj_t *, ((Rwt_Man_t *)p->pData)->vFanins, pFanin, i )
        Ivy_ObjRefsInc( Ivy_Regular(pFanin) );
    // deref the old cone
    nRefsOld = pRoot->nRefs;  
    pRoot->nRefs = 0;
    Ivy_ObjDelete_rec( p, pRoot, 0 );
    pRoot->nRefs = nRefsOld;
    // unmark the cut
    Vec_PtrForEachEntry( Ivy_Obj_t *, ((Rwt_Man_t *)p->pData)->vFanins, pFanin, i )
        Ivy_ObjRefsDec( Ivy_Regular(pFanin) );
//printf( "Deref = %d. ", Ivy_ManNodeNum(p) );
 
    // create the new structure of nodes
    pRootNew = Ivy_GraphToNetwork( p, pGraph );
//printf( "Create = %d. ", Ivy_ManNodeNum(p) );
    // remove the old nodes
//    Ivy_AigReplace( pMan->pManFunc, pRoot, pRootNew, fUpdateLevel );
/*
    if ( Ivy_IsComplement(pRootNew) )
        printf( "c" );
    else
        printf( "d" );
    if ( Ivy_ObjRefs(Ivy_Regular(pRootNew)) > 0 )
        printf( "%d", Ivy_ObjRefs(Ivy_Regular(pRootNew)) );
    printf( " " );
*/
    Ivy_ObjReplace( p, pRoot, pRootNew, 0, 0, 1 );
//printf( "Replace = %d. ", Ivy_ManNodeNum(p) );

    // delete remaining dangling nodes
    Vec_PtrForEachEntry( Ivy_Obj_t *, ((Rwt_Man_t *)p->pData)->vFanins, pFanin, i )
    {
        pFanin = Ivy_Regular(pFanin);
        if ( !Ivy_ObjIsNone(pFanin) && Ivy_ObjRefs(pFanin) == 0 )
            Ivy_ObjDelete_rec( p, pFanin, 1 );
    }
//printf( "Deref = %d. ", Ivy_ManNodeNum(p) );
//printf( "\n" );

    // compare the gains
    nNodesNew = Ivy_ManNodeNum(p);
    assert( nGain <= nNodesOld - nNodesNew );
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END