summaryrefslogtreecommitdiffstats
path: root/src/aig/miniaig/ndr.h
blob: 286c3811adb6dec21fdfe6aa74585b6d6ba71085 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
/**CFile****************************************************************

  FileName    [ndr.h]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Format for word-level design representation.]

  Synopsis    [External declarations.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - August 22, 2014.]

  Revision    [$Id: ndr.h,v 1.00 2014/09/12 00:00:00 alanmi Exp $]

***********************************************************************/

#ifndef ABC__base__ndr__ndr_h
#define ABC__base__ndr__ndr_h


////////////////////////////////////////////////////////////////////////
///                          INCLUDES                                ///
////////////////////////////////////////////////////////////////////////

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "abcOper.h"

ABC_NAMESPACE_HEADER_START 

#ifdef _WIN32
#define inline __inline
#endif

/*
    For the lack of a better name, this format is called New Data Representation (NDR).

    NDR is based on the following principles:
    - complex data is composed of individual records
    - a record has one of several known types (module, name, range, fanins, etc)
    - a record can be atomic, for example, a name or an operator type
    - a record can be composed of other records (for example, a module is composed of objects, etc)
    - the stored data should be easy to write into and read from a file, or pass around as a memory buffer
    - the format should be simple, easy to use, low-memory, and extensible
    - new record types can be added by the user as needed

    The implementation is based on the following ideas:
    - a record is composed of two parts (the header followed by the body)
    - the header contains two items (the record type and the body size, measured in terms of 4-byte integers)
    - the body contains as many entries as stated in the record size
    - if a record is composed of other records, its body contains these records

    As an example, consider a name. It can be a module name, an object name, or a net name.
    A record storing one name has a header {NDR_NAME, 1} containing record type (NDR_NAME) and size (1),
    The body of the record is composed of one unsigned integer representing the name (say, 357).  
    So the complete record looks as follows:  { <header>, <body> } = { {NDR_NAME, 1}, {357} }.

    As another example, consider a two-input AND-gate.  In this case, the recent is composed 
    of a header {NDR_OBJECT, 4}  containing record type (NDR_OBJECT) and the body size (4), followed 
    by an array of records creating the AND-gate:  (a) name, (b) operation type, (c) fanins.   
    The complete record  looks as follows: {  {NDR_OBJECT, 5}, {{{NDR_NAME, 1}, 357}, {{NDR_OPERTYPE, 1}, ABC_OPER_LOGIC_AND}, 
    {{NDR_INPUT, 2}, {<id_fanin1>, <id_fanin2>}}} }.   Please note that only body entries are counted towards size. 
    In the case of one name, there is only one body entry.  In the case of the AND-gate, there are 4 body entries 
    (name ID, gate type, first fanin, second fanin).

    Headers and bodies of all objects are stored differently.  Headers are stored in an array of unsigned chars, 
    while bodies are stored in the array of 4-byte unsigned integers.  This is important for memory efficiency. 
    However, the user does not see these details.

    To estimate memory usage, we can assume that each header takes 1 byte and each body entry contains 4 bytes.   
    A name takes 5 bytes, and an AND-gate takes 1 * NumHeaders + 4 * NumBodyEntries = 1 * 4 + 4 * 4 = 20 bytes.  
    Not bad.  The same as memory usage in a well-designed AIG package with structural hashing. 

    Comments:
    - it is assumed that all port names, net names, and instance names are hashed into 1-based integer numbers called name IDs
    - nets are not explicitly represented but their name ID are used to establish connectivity between the objects
    - primary input and primary output objects have to be explicitly created (as shown in the example below)
    - object inputs are name IDs of the driving nets; object outputs are name IDs of the driven nets
    - objects can be added to a module in any order
    - if the ordering of inputs/outputs/flops of a module is not provided as a separate record,
      their ordering is determined by the order of their appearance of their records in the body of the module
    - if range limits and signedness are all 0, it is assumed that it is a Boolean object
    - if left limit and right limit of a range are equal, it is assumed that the range contains one bit
    - instances of known operators can have types defined by Wlc_ObjType_t below
    - instances of user modules have type equal to the name ID of the module plus 1000
    - initial states of the flops are given as char-strings containing 0, 1, and 'x' 
      (for example, "4'b10XX" is an init state of a 4-bit flop with bit-level init states const1, const0, unknown, unknown)
    - word-level constants are represented as char-strings given in the same way as they would appear in a Verilog file 
      (for example, the 16-bit constant 10 is represented as a string "4'b1010". This string contains  8 bytes, 
      including the char '\0' to denote the end of the string. It will take 2 unsigned ints, therefore 
      its record will look as follows { {NDR_FUNCTION, 2}, {"4'b1010"} }, but the user does not see these details.  
      The user only gives  "4'b1010" as an argument (char * pFunction) to the above procedure Ndr_AddObject(). 
*/

////////////////////////////////////////////////////////////////////////
///                         PARAMETERS                               ///
////////////////////////////////////////////////////////////////////////

// record types
typedef enum {
    NDR_NONE = 0,          // 0:  unused
    NDR_DESIGN,            // 1:  design (or library of modules)
    NDR_MODULE,            // 2:  one module
    NDR_OBJECT,            // 3:  object
    NDR_INPUT,             // 4:  input
    NDR_OUTPUT,            // 5:  output
    NDR_OPERTYPE,          // 6:  operator type (buffer, shifter, adder, etc)
    NDR_NAME,              // 7:  name
    NDR_RANGE,             // 8:  bit range
    NDR_FUNCTION,          // 9:  specified for some operators (PLAs, etc)
    NDR_TARGET,            // 10: target
    NDR_UNKNOWN            // 11: unknown
} Ndr_RecordType_t; 


////////////////////////////////////////////////////////////////////////
///                         BASIC TYPES                              ///
////////////////////////////////////////////////////////////////////////

// this is an internal procedure, which is not seen by the user
typedef struct Ndr_Data_t_  Ndr_Data_t;
struct Ndr_Data_t_ 
{
    int                     nSize;
    int                     nCap;
    unsigned char *         pHead;
    unsigned int *          pBody;
};

static inline int           Ndr_DataType( Ndr_Data_t * p, int i )                { assert( p->pHead[i] ); return (int)p->pHead[i];                }
static inline int           Ndr_DataSize( Ndr_Data_t * p, int i )                { return Ndr_DataType(p, i) > NDR_OBJECT ? 1 : p->pBody[i];      }
static inline int           Ndr_DataEntry( Ndr_Data_t * p, int i )               { return (int)p->pBody[i];                                       }
static inline int *         Ndr_DataEntryP( Ndr_Data_t * p, int i )              { return (int *)p->pBody + i;                                    }
static inline int           Ndr_DataEnd( Ndr_Data_t * p, int i )                 { return i + p->pBody[i];                                        }
static inline void          Ndr_DataAddTo( Ndr_Data_t * p, int i, int Add )      { assert(Ndr_DataType(p, i) <= NDR_OBJECT); p->pBody[i] += Add;  } 
static inline void          Ndr_DataPush( Ndr_Data_t * p, int Type, int Entry )  { p->pHead[p->nSize] = Type; p->pBody[p->nSize++] = Entry;       }

////////////////////////////////////////////////////////////////////////
///                          ITERATORS                               ///
////////////////////////////////////////////////////////////////////////

// iterates over modules in the design
#define Ndr_DesForEachMod( p, Mod )                                   \
    for ( Mod = 1; Mod < Ndr_DataEntry(p, 0); Mod += Ndr_DataSize(p, Mod) ) if (Ndr_DataType(p, Mod) != NDR_MODULE) {} else

// iterates over objects in a module
#define Ndr_ModForEachObj( p, Mod, Obj )                              \
    for ( Obj = Mod + 1; Obj < Ndr_DataEnd(p, Mod); Obj += Ndr_DataSize(p, Obj) ) if (Ndr_DataType(p, Obj) != NDR_OBJECT) {} else

// iterates over records in an object
#define Ndr_ObjForEachEntry( p, Obj, Ent )                            \
    for ( Ent = Obj + 1; Ent < Ndr_DataEnd(p, Obj); Ent += Ndr_DataSize(p, Ent) )

// iterates over primary inputs of a module
#define Ndr_ModForEachPi( p, Mod, Obj )                               \
    Ndr_ModForEachObj( p, Mod, Obj ) if ( !Ndr_ObjIsType(p, Obj, ABC_OPER_CI) ) {} else

// iteraots over primary outputs of a module
#define Ndr_ModForEachPo( p, Mod, Obj )                               \
    Ndr_ModForEachObj( p, Mod, Obj ) if ( !Ndr_ObjIsType(p, Obj, ABC_OPER_CO) ) {} else

// iterates over internal nodes of a module
#define Ndr_ModForEachNode( p, Mod, Obj )                             \
    Ndr_ModForEachObj( p, Mod, Obj ) if ( Ndr_ObjIsType(p, Obj, ABC_OPER_CI) || Ndr_ObjIsType(p, Obj, ABC_OPER_CO) ) {} else

// iterates over target signals of a module
#define Ndr_ModForEachTarget( p, Mod, Obj )                           \
    for ( Obj = Mod + 1; Obj < Ndr_DataEnd(p, Mod); Obj += Ndr_DataSize(p, Obj) ) if (Ndr_DataType(p, Obj) != NDR_TARGET) {} else

////////////////////////////////////////////////////////////////////////
///                    INTERNAL PROCEDURES                           ///
////////////////////////////////////////////////////////////////////////


static inline void Ndr_DataResize( Ndr_Data_t * p, int Add )
{
    if ( p->nSize + Add <= p->nCap )
        return;
    p->nCap  = Abc_MaxInt( 2 * p->nCap, p->nSize + Add );
    p->pHead = (unsigned char*)realloc( p->pHead,   p->nCap );
    p->pBody = (unsigned int *)realloc( p->pBody, 4*p->nCap );
}
static inline void Ndr_DataPushRange( Ndr_Data_t * p, int RangeLeft, int RangeRight, int fSignedness )
{ 
    if ( fSignedness )
    {
        Ndr_DataPush( p, NDR_RANGE, RangeLeft );
        Ndr_DataPush( p, NDR_RANGE, RangeRight );
        Ndr_DataPush( p, NDR_RANGE, fSignedness );
        return;
    }
    if ( !RangeLeft && !RangeRight )
        return;
    if ( RangeLeft == RangeRight )
        Ndr_DataPush( p, NDR_RANGE, RangeLeft );
    else
    {
        Ndr_DataPush( p, NDR_RANGE, RangeLeft );
        Ndr_DataPush( p, NDR_RANGE, RangeRight );
    }
}
static inline void Ndr_DataPushArray( Ndr_Data_t * p, int Type, int nArray, int * pArray )
{ 
    if ( !nArray )
        return;
    assert( nArray > 0 );
    Ndr_DataResize( p, nArray );
    memset( p->pHead + p->nSize, Type, nArray );
    memcpy( p->pBody + p->nSize, pArray, 4*nArray );
    p->nSize += nArray;
}
static inline void Ndr_DataPushString( Ndr_Data_t * p, int Type, char * pFunc )
{ 
    if ( !pFunc )
        return;
    Ndr_DataPushArray( p, Type, ((int)strlen(pFunc) + 4) / 4, (int *)pFunc );
}

////////////////////////////////////////////////////////////////////////
///                     VERILOG WRITING                              ///
////////////////////////////////////////////////////////////////////////

static inline int Ndr_ObjReadEntry( Ndr_Data_t * p, int Obj, int Type )
{
    int Ent;
    Ndr_ObjForEachEntry( p, Obj, Ent )
        if ( Ndr_DataType(p, Ent) == Type )
            return Ndr_DataEntry(p, Ent);
    return -1;
}
static inline int Ndr_ObjReadArray( Ndr_Data_t * p, int Obj, int Type, int ** ppStart )
{
    int Ent, Counter = 0; *ppStart = NULL;
    Ndr_ObjForEachEntry( p, Obj, Ent )
        if ( Ndr_DataType(p, Ent) == Type )
        {
            Counter++;
            if ( *ppStart == NULL )
                *ppStart = (int *)p->pBody + Ent;
        }
        else if ( *ppStart )
            return Counter;
    return Counter;
} 
static inline int Ndr_ObjIsType( Ndr_Data_t * p, int Obj, int Type )
{
    int Ent;
    Ndr_ObjForEachEntry( p, Obj, Ent )
        if ( Ndr_DataType(p, Ent) == NDR_OPERTYPE )
            return (int)(Ndr_DataEntry(p, Ent) == Type);
    return -1;
}
static inline int Ndr_ObjReadBody( Ndr_Data_t * p, int Obj, int Type )
{
    int Ent;
    Ndr_ObjForEachEntry( p, Obj, Ent )
        if ( Ndr_DataType(p, Ent) == Type )
            return Ndr_DataEntry(p, Ent);
    return -1;
}
static inline int * Ndr_ObjReadBodyP( Ndr_Data_t * p, int Obj, int Type )
{
    int Ent;
    Ndr_ObjForEachEntry( p, Obj, Ent )
        if ( Ndr_DataType(p, Ent) == Type )
            return Ndr_DataEntryP(p, Ent);
    return NULL;
}
static inline void Ndr_ObjWriteRange( Ndr_Data_t * p, int Obj, FILE * pFile, int fSkipBin )
{
    int * pArray, nArray = Ndr_ObjReadArray( p, Obj, NDR_RANGE, &pArray );
    if ( (nArray == 0 || nArray == 1) && fSkipBin )
        return;
    if ( nArray == 3 && fSkipBin )
        fprintf( pFile, "signed " ); 
    else if ( nArray == 1 )
    {
        if ( fSkipBin )
            fprintf( pFile, "[%d:%d]", pArray[0], pArray[0] );
        else
            fprintf( pFile, "[%d]", pArray[0] );
    }
    else if ( nArray == 0 )
    {
        if ( fSkipBin )
            fprintf( pFile, "[%d:%d]", 0, 0 );
        else
            fprintf( pFile, "[%d]", 0 );
    }
    else
        fprintf( pFile, "[%d:%d]", pArray[0], pArray[1] );
}
static inline char * Ndr_ObjReadOutName( Ndr_Data_t * p, int Obj, char ** pNames )
{
    return pNames[Ndr_ObjReadBody(p, Obj, NDR_OUTPUT)];
}
static inline char * Ndr_ObjReadInName( Ndr_Data_t * p, int Obj, char ** pNames )
{
    return pNames[Ndr_ObjReadBody(p, Obj, NDR_INPUT)];
}

static inline int Ndr_DataCiNum( Ndr_Data_t * p, int Mod )
{ 
    int Obj, Count = 0;
    Ndr_ModForEachPi( p, Mod, Obj )
        Count++;
    return Count;
}
static inline int Ndr_DataCoNum( Ndr_Data_t * p, int Mod )
{ 
    int Obj, Count = 0;
    Ndr_ModForEachPo( p, Mod, Obj )
        Count++;
    return Count;
}
static inline int Ndr_DataObjNum( Ndr_Data_t * p, int Mod )
{ 
    int Obj, Count = 0;
    Ndr_ModForEachObj( p, Mod, Obj )
        Count++;
    return Count;
}

// to write signal names, this procedure takes a mapping of name IDs into actual char-strings (pNames)
static inline void Ndr_WriteVerilogModule( FILE * pFile, void * pDesign, int Mod, char ** pNames )
{
    Ndr_Data_t * p = (Ndr_Data_t *)pDesign; 
    int Obj, nArray, * pArray, fFirst = 1;

    fprintf( pFile, "\nmodule %s (\n  ", pNames[Ndr_ObjReadEntry(p, Mod, NDR_NAME)] );

    Ndr_ModForEachPi( p, Mod, Obj )
        fprintf( pFile, "%s, ", Ndr_ObjReadOutName(p, Obj, pNames) );

    fprintf( pFile, "\n  " );

    Ndr_ModForEachPo( p, Mod, Obj )
        fprintf( pFile, "%s%s", fFirst ? "":", ", Ndr_ObjReadInName(p, Obj, pNames) ), fFirst = 0;

    fprintf( pFile, "\n);\n\n" );

    Ndr_ModForEachPi( p, Mod, Obj )
    {
        fprintf( pFile, "  input " );
        Ndr_ObjWriteRange( p, Obj, pFile, 1 );
        fprintf( pFile, " %s;\n", Ndr_ObjReadOutName(p, Obj, pNames) );
    }

    Ndr_ModForEachPo( p, Mod, Obj )
    {
        fprintf( pFile, "  output " );
        Ndr_ObjWriteRange( p, Obj, pFile, 1 );
        fprintf( pFile, " %s;\n", Ndr_ObjReadInName(p, Obj, pNames) );
    }

    fprintf( pFile, "\n" );

    Ndr_ModForEachNode( p, Mod, Obj )
    {
        fprintf( pFile, "  wire " );
        Ndr_ObjWriteRange( p, Obj, pFile, 1 );
        fprintf( pFile, " %s;\n", Ndr_ObjReadOutName(p, Obj, pNames) );
    }

    fprintf( pFile, "\n" );

    Ndr_ModForEachNode( p, Mod, Obj )
    {
        int i, Type = Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE);
        if ( Type >= 256 )
        {
            fprintf( pFile, "  %s ", pNames[Ndr_ObjReadEntry(p, Type-256, NDR_NAME)] );
            if ( Ndr_ObjReadBody(p, Obj, NDR_NAME) )
                fprintf( pFile, "%s ", pNames[Ndr_ObjReadBody(p, Obj, NDR_NAME)] );
            fprintf( pFile, "( " );
            nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
            for ( i = 0; i < nArray; i++ )
                fprintf( pFile, "%s%s ", pNames[pArray[i]], i==nArray-1 ? "":"," );
            fprintf( pFile, ");\n" );
            continue;
        }
        fprintf( pFile, "  assign %s = ", Ndr_ObjReadOutName(p, Obj, pNames) );
        nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
        if ( nArray == 0 )
            fprintf( pFile, "%s;\n", (char *)Ndr_ObjReadBodyP(p, Obj, NDR_FUNCTION) );
        else if ( nArray == 1 && Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE) == ABC_OPER_BIT_BUF )
            fprintf( pFile, "%s;\n", pNames[pArray[0]] );
        else if ( Type == ABC_OPER_SLICE )
            fprintf( pFile, "%s", pNames[pArray[0]] ),
            Ndr_ObjWriteRange( p, Obj, pFile, 0 ),
            fprintf( pFile, ";\n" );
        else if ( Type == ABC_OPER_CONCAT )
        {
            fprintf( pFile, "{" );
            for ( i = 0; i < nArray; i++ )
                fprintf( pFile, "%s%s", pNames[pArray[i]], i==nArray-1 ? "":", " );
            fprintf( pFile, "};\n" );
        }
        else if ( nArray == 1 )
            fprintf( pFile, "%s %s;\n", Abc_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)), pNames[pArray[0]] );
        else if ( nArray == 2 )
            fprintf( pFile, "%s %s %s;\n", pNames[pArray[0]], Abc_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)), pNames[pArray[1]] );
        else if ( nArray == 3 && Type == ABC_OPER_ARI_ADD )
            fprintf( pFile, "%s + %s + %s;\n", pNames[pArray[0]], pNames[pArray[1]], pNames[pArray[2]] );
        else if ( Type == ABC_OPER_BIT_MUX )
            fprintf( pFile, "%s ? %s : %s;\n", pNames[pArray[0]], pNames[pArray[1]], pNames[pArray[2]] );
        else
            fprintf( pFile, "<cannot write operation %s>;\n", Abc_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)) );
    }

    fprintf( pFile, "\nendmodule\n\n" );
}

// to write signal names, this procedure takes a mapping of name IDs into actual char-strings (pNames)
static inline void Ndr_WriteVerilog( char * pFileName, void * pDesign, char ** pNames )
{
    Ndr_Data_t * p = (Ndr_Data_t *)pDesign; int Mod;

    FILE * pFile = pFileName ? fopen( pFileName, "wb" ) : stdout;
    if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for writing.\n", pFileName ); return; }

    Ndr_DesForEachMod( p, Mod )
        Ndr_WriteVerilogModule( pFile, p, Mod, pNames );
    
    if ( pFileName ) fclose( pFile );
}


////////////////////////////////////////////////////////////////////////
///                     EXTERNAL PROCEDURES                          ///
////////////////////////////////////////////////////////////////////////

// creating a new module (returns pointer to the memory buffer storing the module info)
static inline void * Ndr_Create( int Name )
{
    Ndr_Data_t * p = ABC_ALLOC( Ndr_Data_t, 1 );
    p->nSize = 0;
    p->nCap  = 16;
    p->pHead = ABC_ALLOC( unsigned char, p->nCap );
    p->pBody = ABC_ALLOC( unsigned int, p->nCap * 4 );
    Ndr_DataPush( p, NDR_DESIGN, 0 );
    Ndr_DataPush( p, NDR_NAME, Name );
    Ndr_DataAddTo( p, 0, p->nSize );
    assert( p->nSize == 2 );
    assert( Name );
    return p;
}

// creating a new module in an already started design 
// returns module ID to be used when adding objects to the module
static inline int Ndr_AddModule( void * pDesign, int Name )
{
    Ndr_Data_t * p = (Ndr_Data_t *)pDesign;
    int Mod = p->nSize;  
    Ndr_DataResize( p, 6 );
    Ndr_DataPush( p, NDR_MODULE, 0 );
    Ndr_DataPush( p, NDR_NAME, Name );
    Ndr_DataAddTo( p, Mod, p->nSize - Mod );
    Ndr_DataAddTo( p, 0, p->nSize - Mod );
    assert( (int)p->pBody[0] == p->nSize );
    return Mod + 256;
}

// adding a new object (input/output/flop/intenal node) to an already started module
// this procedure takes the design, the module ID, and the parameters of the boject
// (please note that all objects should be added to a given module before starting a new module)
static inline void Ndr_AddObject( void * pDesign, int ModuleId,
                                  int ObjType, int InstName, 
                                  int RangeLeft, int RangeRight, int fSignedness, 
                                  int nInputs, int * pInputs, 
                                  int nOutputs, int * pOutputs, 
                                  char * pFunction )
{
    Ndr_Data_t * p = (Ndr_Data_t *)pDesign;
    int Mod = ModuleId - 256;  
    int Obj = p->nSize;  assert( ObjType != 0 );
    Ndr_DataResize( p, 6 );
    Ndr_DataPush( p, NDR_OBJECT, 0 );
    Ndr_DataPush( p, NDR_OPERTYPE, ObjType );
    Ndr_DataPushRange( p, RangeLeft, RangeRight, fSignedness );
    if ( InstName )
        Ndr_DataPush( p, NDR_NAME, InstName );
    Ndr_DataPushArray( p, NDR_INPUT, nInputs, pInputs );
    Ndr_DataPushArray( p, NDR_OUTPUT, nOutputs, pOutputs );
    Ndr_DataPushString( p, NDR_FUNCTION, pFunction );
    Ndr_DataAddTo( p, Obj, p->nSize - Obj );
    Ndr_DataAddTo( p, Mod, p->nSize - Obj );
    Ndr_DataAddTo( p, 0, p->nSize - Obj );
    assert( (int)p->pBody[0] == p->nSize );
}

// deallocate the memory buffer
static inline void Ndr_Delete( void * pDesign )
{
    Ndr_Data_t * p = (Ndr_Data_t *)pDesign;
    if ( !p ) return;
    free( p->pHead );
    free( p->pBody );
    free( p );
}


////////////////////////////////////////////////////////////////////////
///                  FILE READING AND WRITING                        ///
////////////////////////////////////////////////////////////////////////

// file reading/writing
static inline void * Ndr_Read( char * pFileName )
{
    Ndr_Data_t * p; int nFileSize, RetValue;
    FILE * pFile = fopen( pFileName, "rb" );
    if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for reading.\n", pFileName ); return NULL; }
    // check file size
    fseek( pFile, 0, SEEK_END );
    nFileSize = ftell( pFile ); 
    assert( nFileSize % 5 == 0 );
    rewind( pFile );
    // create structure
    p = ABC_ALLOC( Ndr_Data_t, 1 );
    p->nSize = p->nCap = nFileSize / 5;
    p->pHead = ABC_ALLOC( unsigned char, p->nCap );
    p->pBody = ABC_ALLOC( unsigned int, p->nCap * 4 );
    RetValue = (int)fread( p->pBody, 4, p->nCap, pFile );
    RetValue = (int)fread( p->pHead, 1, p->nCap, pFile );
    assert( p->nSize == (int)p->pBody[0] );
    fclose( pFile );
    //printf( "Read the design from file \"%s\".\n", pFileName );
    return p;
}
static inline void Ndr_Write( char * pFileName, void * pDesign )
{
    Ndr_Data_t * p = (Ndr_Data_t *)pDesign; int RetValue;
    FILE * pFile = fopen( pFileName, "wb" );
    if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for writing.\n", pFileName ); return; }
    RetValue = (int)fwrite( p->pBody, 4, p->pBody[0], pFile );
    RetValue = (int)fwrite( p->pHead, 1, p->pBody[0], pFile );
    fclose( pFile );
    //printf( "Dumped the design into file \"%s\".\n", pFileName );
}


////////////////////////////////////////////////////////////////////////
///                     TESTING PROCEDURE                            ///
////////////////////////////////////////////////////////////////////////

// This testing procedure creates and writes into a Verilog file 
// for the following design composed of one module

// module add10 ( input [3:0] a, output [3:0] s );
//   wire [3:0] const10 = 4'b1010;
//   assign s = a + const10;
// endmodule

static inline void Ndr_ModuleTest()
{
    // name IDs
    int NameIdA = 2;
    int NameIdS = 3;
    int NameIdC = 4;
    // array of fanins of node s
    int Fanins[2] = { NameIdA, NameIdC };
    // map name IDs into char strings
    char * ppNames[5] = { NULL, "add10", "a", "s", "const10" };

    // create a new module
    void * pDesign = Ndr_Create( 1 );

    int ModuleID = Ndr_AddModule( pDesign, 1 );

    // add objects to the modele
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,       0,   3, 0, 0,   0, NULL,      1, &NameIdA,   NULL      ); // no fanins
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CONST,    0,   3, 0, 0,   0, NULL,      1, &NameIdC,   "4'b1010" ); // no fanins
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_ARI_ADD,  0,   3, 0, 0,   2, Fanins,    1, &NameIdS,   NULL      ); // fanins are a and const10 
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO,       0,   3, 0, 0,   1, &NameIdS,  0, NULL,       NULL      ); // fanin is a

    // write Verilog for verification
    Ndr_WriteVerilog( NULL, pDesign, ppNames );
    Ndr_Write( "add4.ndr", pDesign );
    Ndr_Delete( pDesign );
}



// This testing procedure creates and writes into a Verilog file 
// for the following design composed of one adder divided into two

// module add8 ( input [7:0] a, input [7:0] b, output [7:0] s, output co );
//   wire [3:0] a0 = a[3:0];
//   wire [3:0] b0 = b[3:0];

//   wire [7:4] a1 = a[7:4];
//   wire [7:4] b1 = b[7:4];

//   wire [4:0] r0 = a0 + b0;
//   wire [3:0] s0 = r0[3:0];
//   wire rco = r0[4];

//   wire [4:0] r1 = a1 + b1 + rco;
//   wire [3:0] s1 = r1[3:0];
//   assign co = r1[4];

//   assign s = {s1, s0};
// endmodule

static inline void Ndr_ModuleTestAdder()
{
    // map name IDs into char strings
    char * ppNames[20] = {  NULL, 
                           "a", "b", "s", "co",          // 1,  2,  3,  4
                           "a0",  "a1",  "b0",  "b1",    // 5,  6,  7,  8
                           "r0", "s0", "rco",            // 9,  10, 11
                           "r1", "s1", "add8"            // 12, 13, 14
                         };
    // fanins 
    int FaninA        =  1;
    int FaninB        =  2;
    int FaninS        =  3;
    int FaninCO       =  4;

    int FaninA0       =  5;
    int FaninA1       =  6;
    int FaninB0       =  7;
    int FaninB1       =  8;

    int FaninR0       =  9;
    int FaninS0       = 10;
    int FaninRCO      = 11;

    int FaninR1       = 12;
    int FaninS1       = 13;

    int Fanins1[2]    = { FaninA0, FaninB0 };
    int Fanins2[3]    = { FaninA1, FaninB1, FaninRCO };
    int Fanins3[4]    = { FaninS1, FaninS0 };

    // create a new module
    void * pDesign = Ndr_Create( 14 );

    int ModuleID = Ndr_AddModule( pDesign, 14 );

    // add objects to the modele
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,       0,   7, 0, 0,   0, NULL,      1, &FaninA,   NULL  );  // no fanins
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,       0,   7, 0, 0,   0, NULL,      1, &FaninB,   NULL  );  // no fanins

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   3, 0, 0,   1, &FaninA,   1, &FaninA0,   NULL );  // wire [3:0] a0 = a[3:0];
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   3, 0, 0,   1, &FaninB,   1, &FaninB0,   NULL );  // wire [3:0] b0 = a[3:0];

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   7, 4, 0,   1, &FaninA,   1, &FaninA1,   NULL );  // wire [7:4] a1 = a[7:4];
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   7, 4, 0,   1, &FaninB,   1, &FaninB1,   NULL );  // wire [7:4] b1 = b[7:4];

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_ARI_ADD,  0,   4, 0, 0,   2, Fanins1,   1, &FaninR0,   NULL );  // wire [4:0] r0 = a0 + b0;
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   3, 0, 0,   1, &FaninR0,  1, &FaninS0,   NULL );  // wire [3:0] s0 = r0[3:0];
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   4, 4, 0,   1, &FaninR0,  1, &FaninRCO,  NULL );  // wire rco = r0[4];

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_ARI_ADD,  0,   4, 0, 0,   3, Fanins2,   1, &FaninR1,   NULL );  // wire [4:0] r1 = a1 + b1 + rco;
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   3, 0, 0,   1, &FaninR1,  1, &FaninS1,   NULL );  // wire [3:0] s1 = r1[3:0];
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   4, 4, 0,   1, &FaninR1,  1, &FaninCO,   NULL );  // assign co = r1[4];

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CONCAT,   0,   7, 0, 0,   2, Fanins3,   1, &FaninS,    NULL );  // s = {s1, s0};

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO,       0,   7, 0, 0,   1, &FaninS,   0, NULL,       NULL ); 
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO,       0,   0, 0, 0,   1, &FaninCO,  0, NULL,       NULL ); 

    // write Verilog for verification
    Ndr_WriteVerilog( NULL, pDesign, ppNames );
    Ndr_Write( "add8.ndr", pDesign );
    Ndr_Delete( pDesign );

}

// This testing procedure creates and writes into a Verilog file 
// for the following hierarchical design composed of three modules

// module mux21w ( input sel, input [3:0] d1, input [3:0] d0, output [3:0] out );
//   assign out = sel ? d1 : d0;
// endmodule

// module mux41w ( input [1:0] sel, input [15:0] d, output [3:0] out );
//   wire [3:0] t0, t1;
//   wire [3:0] d0 = d[3:0];
//   wire [3:0] d1 = d[7:4];
//   wire [3:0] d2 = d[11:8];
//   wire [3:0] d3 = d[15:12];
//   wire sel0 = sel[0];
//   wire sel1 = sel[1];
//   mux21w i0 ( sel0, d1, d0, t0 );
//   mux21w i1 ( sel0, d3, d2, t1 );
//   mux21w i2 ( sel1, t1, t0, out );
// endmodule

static inline void Ndr_ModuleTestHierarchy()
{
    // map name IDs into char strings
    char * ppNames[20] = {  NULL, 
                           "mux21w", "mux41w",     // 1,  2
                           "sel",  "d",  "out",    // 3,  4,  5
                           "d0", "d1", "d2", "d3", // 6,  7,  8,  9
                           "sel0", "sel1",         // 10, 11,
                           "t0", "t1",             // 12, 13
                           "i0", "i1", "i2"        // 14, 15, 16
                         };
    // fanins 
    int FaninSel      =  3;
    int FaninSel0     = 10;
    int FaninSel1     = 11;
    int FaninD        =  4;
    int FaninD0       =  6;
    int FaninD1       =  7;
    int FaninD2       =  8;
    int FaninD3       =  9;
    int FaninT0       = 12;
    int FaninT1       = 13;
    int FaninOut      =  5;
    int Fanins1[3]    = {  FaninSel,  FaninD1, FaninD0 };
    int Fanins3[3][3] = { {FaninSel0, FaninD1, FaninD0 },  
                          {FaninSel0, FaninD3, FaninD2 },  
                          {FaninSel1, FaninT1, FaninT0 } };

    // create a new module
    void * pDesign = Ndr_Create( 2 );

    int Module21, Module41;

    Module21 = Ndr_AddModule( pDesign, 1 );
    
    Ndr_AddObject( pDesign, Module21, ABC_OPER_CI,        0,   0, 0, 0,   0, NULL,        1, &FaninSel,  NULL ); 
    Ndr_AddObject( pDesign, Module21, ABC_OPER_CI,        0,   3, 0, 0,   0, NULL,        1, &FaninD1,   NULL ); 
    Ndr_AddObject( pDesign, Module21, ABC_OPER_CI,        0,   3, 0, 0,   0, NULL,        1, &FaninD0,   NULL ); 
    Ndr_AddObject( pDesign, Module21, ABC_OPER_BIT_MUX,   0,   3, 0, 0,   3, Fanins1,     1, &FaninOut,  NULL ); 
    Ndr_AddObject( pDesign, Module21, ABC_OPER_CO,        0,   3, 0, 0,   1, &FaninOut,   0, NULL,       NULL ); 

    Module41 = Ndr_AddModule( pDesign, 2 );

    Ndr_AddObject( pDesign, Module41, ABC_OPER_CI,        0,   1, 0, 0,   0, NULL,        1, &FaninSel,  NULL ); 
    Ndr_AddObject( pDesign, Module41, ABC_OPER_CI,        0,   15,0, 0,   0, NULL,        1, &FaninD,    NULL ); 

    Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE,     0,   3, 0, 0,   1, &FaninD,     1, &FaninD0,   NULL ); 
    Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE,     0,   7, 4, 0,   1, &FaninD,     1, &FaninD1,   NULL ); 
    Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE,     0,   11,8, 0,   1, &FaninD,     1, &FaninD2,   NULL ); 
    Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE,     0,   15,12,0,   1, &FaninD,     1, &FaninD3,   NULL ); 

    Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE,     0,   0, 0, 0,   1, &FaninSel,   1, &FaninSel0, NULL ); 
    Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE,     0,   1, 1, 0,   1, &FaninSel,   1, &FaninSel1, NULL ); 

    Ndr_AddObject( pDesign, Module41, Module21,          14,   3, 0, 0,   3, Fanins3[0],  1, &FaninT0,   NULL ); 
    Ndr_AddObject( pDesign, Module41, Module21,          15,   3, 0, 0,   3, Fanins3[1],  1, &FaninT1,   NULL ); 
    Ndr_AddObject( pDesign, Module41, Module21,          16,   3, 0, 0,   3, Fanins3[2],  1, &FaninOut,  NULL ); 
    Ndr_AddObject( pDesign, Module41, ABC_OPER_CO,        0,   3, 0, 0,   1, &FaninOut,   0, NULL,       NULL ); 

    // write Verilog for verification
    Ndr_WriteVerilog( NULL, pDesign, ppNames );
    Ndr_Write( "mux41w.ndr", pDesign );
    Ndr_Delete( pDesign );
}


ABC_NAMESPACE_HEADER_END

#endif

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////