summaryrefslogtreecommitdiffstats
path: root/src/aig/saig/saigPhase.c
blob: 0f0b1c0691302f3977d4b84bbe0da02d1cc62a7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
/**CFile****************************************************************

  FileName    [saigPhase.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Sequential AIG package.]

  Synopsis    [Automated phase abstraction.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: saigPhase.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "saig.h"

/*
    The algorithm is described in the paper: Per Bjesse and Jim Kukula,
    "Automatic Phase Abstraction for Formal Verification", ICCAD 2005
    http://www.iccad.com/data2/iccad/iccad_05acceptedpapers.nsf/9cfb1ebaaf59043587256a6a00031f78/1701ecf34b149e958725702f00708828?OpenDocument
*/

// the maximum number of cycles of termiry simulation
#define TSIM_MAX_ROUNDS    10000
#define TSIM_ONE_SERIES     3000

#define SAIG_XVS0   1
#define SAIG_XVS1   2
#define SAIG_XVSX   3

static inline int  Saig_XsimConvertValue( int v )  { return v == 0? SAIG_XVS0 : (v == 1? SAIG_XVS1 : (v == 2? SAIG_XVSX : -1));  }

static inline void Saig_ObjSetXsim( Aig_Obj_t * pObj, int Value )  { pObj->nCuts = Value;  }
static inline int  Saig_ObjGetXsim( Aig_Obj_t * pObj )             { return pObj->nCuts;   }
static inline int  Saig_XsimInv( int Value )   
{ 
    if ( Value == SAIG_XVS0 )
        return SAIG_XVS1;
    if ( Value == SAIG_XVS1 )
        return SAIG_XVS0;
    assert( Value == SAIG_XVSX );       
    return SAIG_XVSX;
}
static inline int  Saig_XsimAnd( int Value0, int Value1 )   
{ 
    if ( Value0 == SAIG_XVS0 || Value1 == SAIG_XVS0 )
        return SAIG_XVS0;
    if ( Value0 == SAIG_XVSX || Value1 == SAIG_XVSX )
        return SAIG_XVSX;
    assert( Value0 == SAIG_XVS1 && Value1 == SAIG_XVS1 );
    return SAIG_XVS1;
}
static inline int  Saig_XsimRand2()   
{
    return (Aig_ManRandom(0) & 1) ? SAIG_XVS1 : SAIG_XVS0;
}
static inline int  Saig_XsimRand3()   
{
    int RetValue;
    do { 
        RetValue = Aig_ManRandom(0) & 3; 
    } while ( RetValue == 0 );
    return RetValue;
}
static inline int  Saig_ObjGetXsimFanin0( Aig_Obj_t * pObj )       
{ 
    int RetValue;
    RetValue = Saig_ObjGetXsim(Aig_ObjFanin0(pObj));
    return Aig_ObjFaninC0(pObj)? Saig_XsimInv(RetValue) : RetValue;
}
static inline int  Saig_ObjGetXsimFanin1( Aig_Obj_t * pObj )       
{ 
    int RetValue;
    RetValue = Saig_ObjGetXsim(Aig_ObjFanin1(pObj));
    return Aig_ObjFaninC1(pObj)? Saig_XsimInv(RetValue) : RetValue;
}
static inline void Saig_XsimPrint( FILE * pFile, int Value )   
{ 
    if ( Value == SAIG_XVS0 )
    {
        fprintf( pFile, "0" );
        return;
    }
    if ( Value == SAIG_XVS1 )
    {
        fprintf( pFile, "1" );
        return;
    }
    assert( Value == SAIG_XVSX );       
    fprintf( pFile, "x" );
}

// simulation manager
typedef struct Saig_Tsim_t_ Saig_Tsim_t;
struct Saig_Tsim_t_
{
    Aig_Man_t *      pAig;              // the original AIG manager
    int              nWords;            // the number of words in the states
    // ternary state representation
    Vec_Ptr_t *      vStates;           // the collection of ternary states
    Aig_MmFixed_t *  pMem;              // memory for ternary states
    int              nPrefix;           // prefix of the ternary state space
    int              nCycle;            // cycle of the ternary state space
    int              nNonXRegs;         // the number of candidate registers
    Vec_Int_t *      vNonXRegs;         // the candidate registers
    // hash table for terminary states
    unsigned **      pBins;
    int              nBins;
};

static inline unsigned * Saig_TsiNext( unsigned * pState, int nWords )                      { return *((unsigned **)(pState + nWords));  }
static inline void       Saig_TsiSetNext( unsigned * pState, int nWords, unsigned * pNext ) { *((unsigned **)(pState + nWords)) = pNext; }

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Allocates simulation manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Saig_Tsim_t * Saig_TsiStart( Aig_Man_t * pAig )
{
    Saig_Tsim_t * p;
    p = (Saig_Tsim_t *)malloc( sizeof(Saig_Tsim_t) );
    memset( p, 0, sizeof(Saig_Tsim_t) );
    p->pAig    = pAig;
    p->nWords  = Aig_BitWordNum( 2*Aig_ManRegNum(pAig) );
    p->vStates = Vec_PtrAlloc( 1000 );
    p->pMem    = Aig_MmFixedStart( sizeof(unsigned) * p->nWords + sizeof(unsigned *), 10000 );
    p->nBins   = Aig_PrimeCudd(TSIM_MAX_ROUNDS/2);
    p->pBins   = ALLOC( unsigned *, p->nBins );
    memset( p->pBins, 0, sizeof(unsigned *) * p->nBins );
    return p;
}

/**Function*************************************************************

  Synopsis    [Deallocates simulation manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Saig_TsiStop( Saig_Tsim_t * p )
{
    if ( p->vNonXRegs )
        Vec_IntFree( p->vNonXRegs );
    Aig_MmFixedStop( p->pMem, 0 );
    Vec_PtrFree( p->vStates );
    free( p->pBins );
    free( p );
}

/**Function*************************************************************

  Synopsis    [Computes hash value of the node using its simulation info.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Saig_TsiStateHash( unsigned * pState, int nWords, int nTableSize )
{
    static int s_FPrimes[128] = { 
        1009, 1049, 1093, 1151, 1201, 1249, 1297, 1361, 1427, 1459, 
        1499, 1559, 1607, 1657, 1709, 1759, 1823, 1877, 1933, 1997, 
        2039, 2089, 2141, 2213, 2269, 2311, 2371, 2411, 2467, 2543, 
        2609, 2663, 2699, 2741, 2797, 2851, 2909, 2969, 3037, 3089, 
        3169, 3221, 3299, 3331, 3389, 3461, 3517, 3557, 3613, 3671, 
        3719, 3779, 3847, 3907, 3943, 4013, 4073, 4129, 4201, 4243, 
        4289, 4363, 4441, 4493, 4549, 4621, 4663, 4729, 4793, 4871, 
        4933, 4973, 5021, 5087, 5153, 5227, 5281, 5351, 5417, 5471, 
        5519, 5573, 5651, 5693, 5749, 5821, 5861, 5923, 6011, 6073, 
        6131, 6199, 6257, 6301, 6353, 6397, 6481, 6563, 6619, 6689, 
        6737, 6803, 6863, 6917, 6977, 7027, 7109, 7187, 7237, 7309, 
        7393, 7477, 7523, 7561, 7607, 7681, 7727, 7817, 7877, 7933, 
        8011, 8039, 8059, 8081, 8093, 8111, 8123, 8147
    };
    unsigned uHash;
    int i;
    uHash = 0;
    for ( i = 0; i < nWords; i++ )
        uHash ^= pState[i] * s_FPrimes[i & 0x7F];
    return uHash % nTableSize;
}

/**Function*************************************************************

  Synopsis    [Count non-X-valued registers in the simulation data.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Saig_TsiCountNonXValuedRegisters( Saig_Tsim_t * p, int nWords )
{
    unsigned * pState;
    int nRegs = p->pAig->nRegs;
    int Value, i, k;
    assert( p->vNonXRegs == NULL );
    p->vNonXRegs = Vec_IntAlloc( 10 );
    for ( i = 0; i < nRegs; i++ )
    {
        Vec_PtrForEachEntry( p->vStates, pState, k )
        {
            Value = (Aig_InfoHasBit( pState, 2 * i + 1 ) << 1) | Aig_InfoHasBit( pState, 2 * i );
            assert( Value != 0 );
            if ( Value == SAIG_XVSX )
                break;
        }
        if ( k == Vec_PtrSize(p->vStates) )
            Vec_IntPush( p->vNonXRegs, i );
    }
    return Vec_IntSize(p->vNonXRegs);
}

/**Function*************************************************************

  Synopsis    [Count non-X-valued registers in the simulation data.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Saig_TsiPrintTraces( Saig_Tsim_t * p, int nWords, int nPrefix )
{
    unsigned * pState;
    int nRegs = p->pAig->nRegs;
    int Value, i, k, Counter = 0;
    if ( Vec_PtrSize(p->vStates) > 80 )
        return;
    for ( i = 0; i < nRegs; i++ )
    {
        Vec_PtrForEachEntry( p->vStates, pState, k )
        {
            Value = (Aig_InfoHasBit( pState, 2 * i + 1 ) << 1) | Aig_InfoHasBit( pState, 2 * i );
            if ( Value == SAIG_XVSX )
                break;
        }
        if ( k == Vec_PtrSize(p->vStates) )
            Counter++;
        else
            continue;
        // print trace
        printf( "%5d : %5d %5d  ", Counter, i, Saig_ManLo(p->pAig, i)->Id );
        Vec_PtrForEachEntryStop( p->vStates, pState, k, Vec_PtrSize(p->vStates)-1 )
        {
            Value = (Aig_InfoHasBit( pState, 2 * i + 1 ) << 1) | Aig_InfoHasBit( pState, 2 * i );
            if ( Value == SAIG_XVS0 )
                printf( "0" );
            else if ( Value == SAIG_XVS1 )
                printf( "1" );
            else if ( Value == SAIG_XVSX )
                printf( "x" );
            else
                assert( 0 );
            if ( k == nPrefix - 1 )
                printf( "  " );
        }
        printf( "\n" );
    }
}

/**Function*************************************************************

  Synopsis    [Returns the number of the state.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Saig_TsiComputePrefix( Saig_Tsim_t * p, unsigned * pState, int nWords )
{
    unsigned * pEntry, * pPrev;
    int Hash, i;
    Hash = Saig_TsiStateHash( pState, nWords, p->nBins );
    for ( pEntry = p->pBins[Hash]; pEntry; pEntry = Saig_TsiNext(pEntry, nWords) )
        if ( !memcmp( pEntry, pState, sizeof(unsigned) * nWords ) )
        {
            Vec_PtrForEachEntry( p->vStates, pPrev, i )
            {
                if ( pPrev == pEntry )
                    return i;
            }
            assert( 0 );
            return -1;
        }
    return -1;
}

/**Function*************************************************************

  Synopsis    [Checks if the value exists in the table.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Saig_TsiStateLookup( Saig_Tsim_t * p, unsigned * pState, int nWords )
{
    unsigned * pEntry;
    int Hash;
    Hash = Saig_TsiStateHash( pState, nWords, p->nBins );
    for ( pEntry = p->pBins[Hash]; pEntry; pEntry = Saig_TsiNext(pEntry, nWords) )
        if ( !memcmp( pEntry, pState, sizeof(unsigned) * nWords ) )
            return 1;
    return 0;
}

/**Function*************************************************************

  Synopsis    [Inserts value into the table.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Saig_TsiStateInsert( Saig_Tsim_t * p, unsigned * pState, int nWords )
{
    int Hash = Saig_TsiStateHash( pState, nWords, p->nBins );
    assert( !Saig_TsiStateLookup( p, pState, nWords ) );
    Saig_TsiSetNext( pState, nWords, p->pBins[Hash] );
    p->pBins[Hash] = pState;    
}

/**Function*************************************************************

  Synopsis    [Inserts value into the table.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
unsigned * Saig_TsiStateNew( Saig_Tsim_t * p )
{
    unsigned * pState;
    pState = (unsigned *)Aig_MmFixedEntryFetch( p->pMem );
    memset( pState, 0, sizeof(unsigned) * p->nWords );
    Vec_PtrPush( p->vStates, pState );
    return pState;
}

/**Function*************************************************************

  Synopsis    [Inserts value into the table.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Saig_TsiStatePrint( Saig_Tsim_t * p, unsigned * pState )
{
    int i, Value, nZeros = 0, nOnes = 0, nDcs = 0;
    for ( i = 0; i < Aig_ManRegNum(p->pAig); i++ )
    {
        Value = (Aig_InfoHasBit( pState, 2 * i + 1 ) << 1) | Aig_InfoHasBit( pState, 2 * i );
        if ( Value == SAIG_XVS0 )
            printf( "0" ), nZeros++;
        else if ( Value == SAIG_XVS1 )
            printf( "1" ), nOnes++;
        else if ( Value == SAIG_XVSX )
            printf( "x" ), nDcs++;
        else
            assert( 0 );
    }
    printf( " (0=%5d, 1=%5d, x=%5d)\n", nZeros, nOnes, nDcs );
}

/**Function*************************************************************

  Synopsis    [Count constant values in the state.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Saig_TsiStateCount( Saig_Tsim_t * p, unsigned * pState )
{
    Aig_Obj_t * pObjLi, * pObjLo;
    int i, Value, nCounter = 0;
    Aig_ManForEachLiLoSeq( p->pAig, pObjLi, pObjLo, i )
    {
        Value = (Aig_InfoHasBit( pState, 2 * i + 1 ) << 1) | Aig_InfoHasBit( pState, 2 * i );
        nCounter += (Value == SAIG_XVS0 || Value == SAIG_XVS1);
    }
    return nCounter;
}

/**Function*************************************************************

  Synopsis    [Count constant values in the state.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Saig_TsiStateOrAll( Saig_Tsim_t * pTsi, unsigned * pState )
{
    unsigned * pPrev;
    int i, k;
    Vec_PtrForEachEntry( pTsi->vStates, pPrev, i )
    {
        for ( k = 0; k < pTsi->nWords; k++ )
            pState[k] |= pPrev[k];
    }
}

/**Function*************************************************************

  Synopsis    [Cycles the circuit to create a new initial state.]

  Description [Simulates the circuit with random input for the given 
  number of timeframes to get a better initial state.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Saig_Tsim_t * Saig_ManReachableTernary( Aig_Man_t * p, Vec_Int_t * vInits )
{
    Saig_Tsim_t * pTsi;
    Aig_Obj_t * pObj, * pObjLi, * pObjLo;
    unsigned * pState;
    int i, f, Value, nCounter;
    // allocate the simulation manager
    pTsi = Saig_TsiStart( p );
    // initialize the values
    Saig_ObjSetXsim( Aig_ManConst1(p), SAIG_XVS1 );
    Saig_ManForEachPi( p, pObj, i )
        Saig_ObjSetXsim( pObj, SAIG_XVSX );
    if ( vInits )
    {
        Saig_ManForEachLo( p, pObj, i )
            Saig_ObjSetXsim( pObj, Saig_XsimConvertValue(Vec_IntEntry(vInits, i)) );
    }
    else
    {
        Saig_ManForEachLo( p, pObj, i )
            Saig_ObjSetXsim( pObj, SAIG_XVS0 );
    }
    // simulate for the given number of timeframes
    for ( f = 0; f < TSIM_MAX_ROUNDS; f++ )
    {
        // collect this state
        pState = Saig_TsiStateNew( pTsi );
        Saig_ManForEachLiLo( p, pObjLi, pObjLo, i )
        {
            Value = Saig_ObjGetXsim(pObjLo);
            if ( Value & 1 )
                Aig_InfoSetBit( pState, 2 * i );
            if ( Value & 2 )
                Aig_InfoSetBit( pState, 2 * i + 1 );
        }
//        printf( "%d ", Saig_TsiStateCount(pTsi, pState) );
//        Saig_TsiStatePrint( pTsi, pState );
        // check if this state exists
        if ( Saig_TsiStateLookup( pTsi, pState, pTsi->nWords ) )
            return pTsi;
        // insert this state
        Saig_TsiStateInsert( pTsi, pState, pTsi->nWords );
        // simulate internal nodes
        Aig_ManForEachNode( p, pObj, i )
            Saig_ObjSetXsim( pObj, Saig_XsimAnd(Saig_ObjGetXsimFanin0(pObj), Saig_ObjGetXsimFanin1(pObj)) );
        // transfer the latch values
        Saig_ManForEachLi( p, pObj, i )
            Saig_ObjSetXsim( pObj, Saig_ObjGetXsimFanin0(pObj) );
        nCounter = 0;
        Saig_ManForEachLiLo( p, pObjLi, pObjLo, i )
        {
            if ( f < TSIM_ONE_SERIES )
                Saig_ObjSetXsim( pObjLo, Saig_ObjGetXsim(pObjLi) );
            else
            {
                if ( Saig_ObjGetXsim(pObjLi) != Saig_ObjGetXsim(pObjLo) )
                    Saig_ObjSetXsim( pObjLo, SAIG_XVSX );
            }
            nCounter += (Saig_ObjGetXsim(pObjLo) == SAIG_XVS0);
        }
    }
    printf( "Saig_ManReachableTernary(): Did not reach a fixed point after %d iterations (not a bug).\n", TSIM_MAX_ROUNDS );
    Saig_TsiStop( pTsi );
    return NULL;
}

/**Function*************************************************************

  Synopsis    [Analize initial value of the selected register.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Saig_ManAnalizeControl( Aig_Man_t * p, int Reg )
{
    Aig_Obj_t * pObj, * pReg, * pCtrl, * pAnd;
    int i;
    pReg = Saig_ManLo( p, Reg );
    pCtrl = Saig_ManLo( p, Saig_ManRegNum(p)-1 );
    assert( pReg->Id < pCtrl->Id );
    // find a node pointing to both
    pAnd = NULL;
    Aig_ManForEachNode( p, pObj, i )
    {
        if ( Aig_ObjFanin0(pObj) == pReg && Aig_ObjFanin1(pObj) == pCtrl )
        {
            pAnd = pObj;
            break;
        }
    }
    if ( pAnd == NULL )
    {
        printf( "Register is not found.\n" );
        return;
    }
    printf( "Clock-like register: \n" );
    Aig_ObjPrint( p, pReg );
    printf( "\n" );
    printf( "Control register: \n" );
    Aig_ObjPrint( p, pCtrl );
    printf( "\n" );
    printf( "Their fanout: \n" );
    Aig_ObjPrint( p, pAnd );
    printf( "\n" );
 
    // find the fanouts of pAnd
    printf( "Fanouts of the fanout: \n" );
    Aig_ManForEachObj( p, pObj, i )
        if ( Aig_ObjFanin0(pObj) == pAnd || Aig_ObjFanin1(pObj) == pAnd )
        {
            Aig_ObjPrint( p, pObj );
            printf( "\n" );
        }
    printf( "\n" );
}

/**Function*************************************************************

  Synopsis    [Finds the registers to phase-abstract.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Saig_ManFindRegisters( Saig_Tsim_t * pTsi, int nFrames, int fIgnore, int fVerbose )
{
    int Values[257];
    unsigned * pState;
    int r, i, k, Reg, Value;
    int nTests = pTsi->nPrefix + 2 * pTsi->nCycle;
    assert( nFrames <= 256 );
    r = 0;
    Vec_IntForEachEntry( pTsi->vNonXRegs, Reg, i )
    {
        for ( k = 0; k < nTests; k++ )
        {
            if ( k < pTsi->nPrefix + pTsi->nCycle )
                pState = Vec_PtrEntry( pTsi->vStates, k );
            else
                pState = Vec_PtrEntry( pTsi->vStates, k - pTsi->nCycle );
            Value = (Aig_InfoHasBit( pState, 2 * Reg + 1 ) << 1) | Aig_InfoHasBit( pState, 2 * Reg );
            assert( Value == SAIG_XVS0 || Value == SAIG_XVS1 );
            if ( k < nFrames || (fIgnore && k == nFrames) )
                Values[k % nFrames] = Value;
            else if ( Values[k % nFrames] != Value )
                break;
        }
        if ( k < nTests )
            continue;
        // skip stuck at
        if ( fIgnore )
        {
            for ( k = 1; k < nFrames; k++ )
                if ( Values[k] != Values[0] )
                    break;
            if ( k == nFrames )
                continue;
        }
        // report useful register
        Vec_IntWriteEntry( pTsi->vNonXRegs, r++, Reg );
        if ( fVerbose )
        {
            printf( "Register %5d has generator: [", Reg );
            for ( k = 0; k < nFrames; k++ )
                Saig_XsimPrint( stdout, Values[k] );
            printf( "]\n" );

            if ( fVerbose )
            Saig_ManAnalizeControl( pTsi->pAig, Reg );
        }
    }
    Vec_IntShrink( pTsi->vNonXRegs, r );
    if ( fVerbose )
        printf( "Found %3d useful registers.\n", Vec_IntSize(pTsi->vNonXRegs) );
    return Vec_IntSize(pTsi->vNonXRegs);
}


/**Function*************************************************************

  Synopsis    [Mapping of AIG nodes into frames nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline Aig_Obj_t * Saig_ObjFrames( Aig_Obj_t ** pObjMap, int nFs, Aig_Obj_t * pObj, int i )                       { return pObjMap[nFs*pObj->Id + i];  }
static inline void        Saig_ObjSetFrames( Aig_Obj_t ** pObjMap, int nFs, Aig_Obj_t * pObj, int i, Aig_Obj_t * pNode ) { pObjMap[nFs*pObj->Id + i] = pNode; }

static inline Aig_Obj_t * Saig_ObjChild0Frames( Aig_Obj_t ** pObjMap, int nFs, Aig_Obj_t * pObj, int i ) { return Aig_ObjFanin0(pObj)? Aig_NotCond(Saig_ObjFrames(pObjMap,nFs,Aig_ObjFanin0(pObj),i), Aig_ObjFaninC0(pObj)) : NULL;  }
static inline Aig_Obj_t * Saig_ObjChild1Frames( Aig_Obj_t ** pObjMap, int nFs, Aig_Obj_t * pObj, int i ) { return Aig_ObjFanin1(pObj)? Aig_NotCond(Saig_ObjFrames(pObjMap,nFs,Aig_ObjFanin1(pObj),i), Aig_ObjFaninC1(pObj)) : NULL;  }

/**Function*************************************************************

  Synopsis    [Performs phase abstraction by unrolling the circuit.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Saig_ManPerformAbstraction( Saig_Tsim_t * pTsi, int nFrames, int fVerbose )
{
    Aig_Man_t * pFrames, * pAig = pTsi->pAig;
    Aig_Obj_t * pObj, * pObjLi, * pObjLo, * pObjNew;
    Aig_Obj_t ** pObjMap;
    unsigned * pState;
    int i, f, Reg, Value;

    assert( Vec_IntSize(pTsi->vNonXRegs) > 0 );

    // create mapping for the frames nodes
    pObjMap = ALLOC( Aig_Obj_t *, nFrames * Aig_ManObjNumMax(pAig) );
    memset( pObjMap, 0, sizeof(Aig_Obj_t *) * nFrames * Aig_ManObjNumMax(pAig) );

    // start the fraig package
    pFrames = Aig_ManStart( Aig_ManObjNumMax(pAig) * nFrames );
    pFrames->pName = Aig_UtilStrsav( pAig->pName );
    pFrames->pSpec = Aig_UtilStrsav( pAig->pSpec );
    // map constant nodes
    for ( f = 0; f < nFrames; f++ )
        Saig_ObjSetFrames( pObjMap, nFrames, Aig_ManConst1(pAig), f, Aig_ManConst1(pFrames) );
    // create PI nodes for the frames
    for ( f = 0; f < nFrames; f++ )
        Aig_ManForEachPiSeq( pAig, pObj, i )
            Saig_ObjSetFrames( pObjMap, nFrames, pObj, f, Aig_ObjCreatePi(pFrames) );
    // create the latches
    Aig_ManForEachLoSeq( pAig, pObj, i )
        Saig_ObjSetFrames( pObjMap, nFrames, pObj, 0, Aig_ObjCreatePi(pFrames) );

    // add timeframes
    for ( f = 0; f < nFrames; f++ )
    {
        // replace abstracted registers by constants
        Vec_IntForEachEntry( pTsi->vNonXRegs, Reg, i )
        {
            pObj = Saig_ManLo( pAig, Reg );
            pState = Vec_PtrEntry( pTsi->vStates, f );
            Value = (Aig_InfoHasBit( pState, 2 * Reg + 1 ) << 1) | Aig_InfoHasBit( pState, 2 * Reg );
            assert( Value == SAIG_XVS0 || Value == SAIG_XVS1 );
            pObjNew = (Value == SAIG_XVS1)? Aig_ManConst1(pFrames) : Aig_ManConst0(pFrames);
            Saig_ObjSetFrames( pObjMap, nFrames, pObj, f, pObjNew );
        }
        // add internal nodes of this frame
        Aig_ManForEachNode( pAig, pObj, i ) 
        {
            pObjNew = Aig_And( pFrames, Saig_ObjChild0Frames(pObjMap,nFrames,pObj,f), Saig_ObjChild1Frames(pObjMap,nFrames,pObj,f) );
            Saig_ObjSetFrames( pObjMap, nFrames, pObj, f, pObjNew );
        }
        // set the latch inputs and copy them into the latch outputs of the next frame
        Aig_ManForEachLiLoSeq( pAig, pObjLi, pObjLo, i )
        {
            pObjNew = Saig_ObjChild0Frames(pObjMap,nFrames,pObjLi,f);
            if ( f < nFrames - 1 )
                Saig_ObjSetFrames( pObjMap, nFrames, pObjLo, f+1, pObjNew );
        }
    }
    for ( f = 0; f < nFrames; f++ )
    {
        Aig_ManForEachPoSeq( pAig, pObj, i )
        {
            pObjNew = Aig_ObjCreatePo( pFrames, Saig_ObjChild0Frames(pObjMap,nFrames,pObj,f) );
            Saig_ObjSetFrames( pObjMap, nFrames, pObj, f, pObjNew );
        }
    }
    pFrames->nRegs = pAig->nRegs;
    pFrames->nTruePis = Aig_ManPiNum(pFrames) - Aig_ManRegNum(pFrames); 
    pFrames->nTruePos = Aig_ManPoNum(pFrames) - Aig_ManRegNum(pFrames); 
    Aig_ManForEachLiSeq( pAig, pObj, i )
    {
        pObjNew = Aig_ObjCreatePo( pFrames, Saig_ObjChild0Frames(pObjMap,nFrames,pObj,nFrames-1) );
        Saig_ObjSetFrames( pObjMap, nFrames, pObj, nFrames-1, pObjNew );
    }
//Aig_ManPrintStats( pFrames );
    Aig_ManSeqCleanup( pFrames );
//Aig_ManPrintStats( pFrames );
//    Aig_ManPiCleanup( pFrames );
//Aig_ManPrintStats( pFrames );
    free( pObjMap );
    return pFrames;
}

/**Function*************************************************************

  Synopsis    [Performs automated phase abstraction.]

  Description [Takes the AIG manager and the array of initial states.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Saig_ManPhaseAbstract( Aig_Man_t * p, Vec_Int_t * vInits, int nFrames, int fIgnore, int fPrint, int fVerbose )
{
    Aig_Man_t * pNew = NULL;
    Saig_Tsim_t * pTsi;
    assert( Saig_ManRegNum(p) );
    assert( Saig_ManPiNum(p) );
    assert( Saig_ManPoNum(p) );
    // perform terminary simulation
    pTsi = Saig_ManReachableTernary( p, vInits );
    if ( pTsi == NULL )
        return NULL;
    // derive information
    pTsi->nPrefix = Saig_TsiComputePrefix( pTsi, Vec_PtrEntryLast(pTsi->vStates), pTsi->nWords );
    pTsi->nCycle = Vec_PtrSize(pTsi->vStates) - 1 - pTsi->nPrefix;
    pTsi->nNonXRegs = Saig_TsiCountNonXValuedRegisters(pTsi, pTsi->nWords);
    // print statistics
    if ( fVerbose )
    {
        printf( "Prefix = %5d. Cycle = %5d.  Total = %5d. Non-ternary = %5d.\n", 
            pTsi->nPrefix, pTsi->nCycle, p->nRegs, pTsi->nNonXRegs );
        if ( pTsi->nNonXRegs < 100 )
            Saig_TsiPrintTraces( pTsi, pTsi->nWords, pTsi->nPrefix );
    }
    if ( fPrint )
        printf( "Print-out finished. Phase assignment is not performed.\n" );
    else if ( nFrames < 2 )
        printf( "The number of frames is less than 2. Phase assignment is not performed.\n" );
    else if ( nFrames > 256 )
        printf( "The number of frames is more than 256. Phase assignment is not performed.\n" );
    else if ( pTsi->nCycle == 1 )
        printf( "The cycle of ternary states is trivial. Phase abstraction cannot be done.\n" );
    else if ( pTsi->nCycle % nFrames != 0 )
        printf( "The cycle (%d) is not modulo the number of frames (%d). Phase abstraction cannot be done.\n", pTsi->nCycle, nFrames );
    else if ( pTsi->nNonXRegs == 0 )
        printf( "All registers have X-valued states. Phase abstraction cannot be done.\n" );
    else if ( !Saig_ManFindRegisters( pTsi, nFrames, fIgnore, fVerbose ) )
        printf( "There is no registers to abstract with %d frames.\n", nFrames );
    else
        pNew = Saig_ManPerformAbstraction( pTsi, nFrames, fVerbose );
    Saig_TsiStop( pTsi );
    return pNew;
}

/**Function*************************************************************

  Synopsis    [Performs automated phase abstraction.]

  Description [Takes the AIG manager and the array of initial states.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Saig_ManPhaseAbstractAuto( Aig_Man_t * p, int fVerbose )
{
    Aig_Man_t * pNew = NULL;
    Saig_Tsim_t * pTsi;
    int fPrint = 0;
    int nFrames;
    assert( Saig_ManRegNum(p) );
    assert( Saig_ManPiNum(p) );
    assert( Saig_ManPoNum(p) );
    // perform terminary simulation
    pTsi = Saig_ManReachableTernary( p, NULL );
    if ( pTsi == NULL )
        return NULL;
    // derive information
    pTsi->nPrefix = Saig_TsiComputePrefix( pTsi, Vec_PtrEntryLast(pTsi->vStates), pTsi->nWords );
    pTsi->nCycle = Vec_PtrSize(pTsi->vStates) - 1 - pTsi->nPrefix;
    pTsi->nNonXRegs = Saig_TsiCountNonXValuedRegisters(pTsi, pTsi->nWords);
    // print statistics
    if ( fVerbose )
    {
        printf( "Prefix = %5d. Cycle = %5d.  Total = %5d. Non-ternary = %5d.\n", 
            pTsi->nPrefix, pTsi->nCycle, p->nRegs, pTsi->nNonXRegs );
        if ( pTsi->nNonXRegs < 100 )
            Saig_TsiPrintTraces( pTsi, pTsi->nWords, pTsi->nPrefix );
    }
    nFrames = pTsi->nCycle;
    if ( fPrint )
    {
        printf( "Print-out finished. Phase assignment is not performed.\n" );
    }
    else if ( nFrames < 2 )
    {
//        printf( "The number of frames is less than 2. Phase assignment is not performed.\n" );
    }
    else if ( nFrames > 256 )
    {
//        printf( "The number of frames is more than 256. Phase assignment is not performed.\n" );
    }
    else if ( pTsi->nCycle == 1 )
    {
//        printf( "The cycle of ternary states is trivial. Phase abstraction cannot be done.\n" );
    }
    else if ( pTsi->nCycle % nFrames != 0 )
    {
//        printf( "The cycle (%d) is not modulo the number of frames (%d). Phase abstraction cannot be done.\n", pTsi->nCycle, nFrames );
    }
    else if ( pTsi->nNonXRegs == 0 )
    {
//        printf( "All registers have X-valued states. Phase abstraction cannot be done.\n" );
    }
    else if ( !Saig_ManFindRegisters( pTsi, nFrames, 0, fVerbose ) )
    {
//        printf( "There is no registers to abstract with %d frames.\n", nFrames );
    }
    else
        pNew = Saig_ManPerformAbstraction( pTsi, nFrames, fVerbose );
    Saig_TsiStop( pTsi );
    if ( pNew == NULL )
        pNew = Aig_ManDupSimple( p );
    if ( Aig_ManPiNum(pNew) == Aig_ManRegNum(pNew) )
    {
        Aig_ManStop( pNew);
        pNew = Aig_ManDupSimple( p );
    }
    return pNew;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////