summaryrefslogtreecommitdiffstats
path: root/src/base/abci/abcDelay.c
blob: 3c28e6a6ada3a5bbd366d59e8dea7afbcbe27fb2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/**CFile****************************************************************

  FileName    [abcDelay.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Network and node package.]

  Synopsis    [Delay trace and speedup.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: abcDelay.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "abc.h"
#include "if.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

static inline float Abc_ObjArrival( Abc_Obj_t * pNode )                 { return pNode->pNtk->pLutTimes[3*pNode->Id+0]; }
static inline float Abc_ObjRequired( Abc_Obj_t * pNode )                { return pNode->pNtk->pLutTimes[3*pNode->Id+1]; }
static inline float Abc_ObjSlack( Abc_Obj_t * pNode )                   { return pNode->pNtk->pLutTimes[3*pNode->Id+2]; }

static inline void  Abc_ObjSetArrival( Abc_Obj_t * pNode, float Time )  { pNode->pNtk->pLutTimes[3*pNode->Id+0] = Time; }
static inline void  Abc_ObjSetRequired( Abc_Obj_t * pNode, float Time ) { pNode->pNtk->pLutTimes[3*pNode->Id+1] = Time; }
static inline void  Abc_ObjSetSlack( Abc_Obj_t * pNode, float Time )    { pNode->pNtk->pLutTimes[3*pNode->Id+2] = Time; }

extern void * Abc_FrameReadLibLut();   

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Sorts the pins in the decreasing order of delays.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDelayTraceSortPins( Abc_Obj_t * pNode, int * pPinPerm, float * pPinDelays )
{
    Abc_Obj_t * pFanin;
    int i, j, best_i, temp;
    // start the trivial permutation and collect pin delays
    Abc_ObjForEachFanin( pNode, pFanin, i )
    {
        pPinPerm[i] = i;
        pPinDelays[i] = Abc_ObjArrival(pFanin);
    }
    // selection sort the pins in the decreasible order of delays
    // this order will match the increasing order of LUT input pins
    for ( i = 0; i < Abc_ObjFaninNum(pNode)-1; i++ )
    {
        best_i = i;
        for ( j = i+1; j < Abc_ObjFaninNum(pNode); j++ )
            if ( pPinDelays[pPinPerm[j]] > pPinDelays[pPinPerm[best_i]] )
                best_i = j;
        if ( best_i == i )
            continue;
        temp = pPinPerm[i]; 
        pPinPerm[i] = pPinPerm[best_i]; 
        pPinPerm[best_i] = temp;
    }
    // verify
    assert( Abc_ObjFaninNum(pNode) == 0 || pPinPerm[0] < Abc_ObjFaninNum(pNode) );
    for ( i = 1; i < Abc_ObjFaninNum(pNode); i++ )
    {
        assert( pPinPerm[i] < Abc_ObjFaninNum(pNode) );
        assert( pPinDelays[pPinPerm[i-1]] >= pPinDelays[pPinPerm[i]] );
    }
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
float Abc_NtkDelayTraceLut( Abc_Ntk_t * pNtk, int fUseLutLib )
{
    int fUseSorting = 1;
    int pPinPerm[32];
    float pPinDelays[32];
    If_Lib_t * pLutLib;
    Abc_Obj_t * pNode, * pFanin;
    Vec_Ptr_t * vNodes;
    float tArrival, tRequired, tSlack, * pDelays;
    int i, k;

    assert( Abc_NtkIsLogic(pNtk) );
    // get the library
    pLutLib = fUseLutLib?  Abc_FrameReadLibLut() : NULL;
    if ( pLutLib && pLutLib->LutMax < Abc_NtkGetFaninMax(pNtk) )
    {
        printf( "The max LUT size (%d) is less than the max fanin count (%d).\n", 
            pLutLib->LutMax, Abc_NtkGetFaninMax(pNtk) );
        return -ABC_INFINITY;
    }

    // initialize the arrival times
    FREE( pNtk->pLutTimes );
    pNtk->pLutTimes = ALLOC( float, 3 * Abc_NtkObjNumMax(pNtk) );
    for ( i = 0; i < Abc_NtkObjNumMax(pNtk); i++ )
    {
        pNtk->pLutTimes[3*i+0] = pNtk->pLutTimes[3*i+2] = 0;
        pNtk->pLutTimes[3*i+1] = ABC_INFINITY;
    }

    // propagate arrival times
    vNodes = Abc_NtkDfs( pNtk, 1 );
    Vec_PtrForEachEntry( vNodes, pNode, i )
    {
        tArrival = -ABC_INFINITY;
        if ( pLutLib == NULL )
        {
            Abc_ObjForEachFanin( pNode, pFanin, k )
                if ( tArrival < Abc_ObjArrival(pFanin) + 1.0 )
                    tArrival = Abc_ObjArrival(pFanin) + 1.0;
        }
        else if ( !pLutLib->fVarPinDelays )
        {
            pDelays = pLutLib->pLutDelays[Abc_ObjFaninNum(pNode)];
            Abc_ObjForEachFanin( pNode, pFanin, k )
                if ( tArrival < Abc_ObjArrival(pFanin) + pDelays[0] )
                    tArrival = Abc_ObjArrival(pFanin) + pDelays[0];
        }
        else
        {
            pDelays = pLutLib->pLutDelays[Abc_ObjFaninNum(pNode)];
            if ( fUseSorting )
            {
                Abc_NtkDelayTraceSortPins( pNode, pPinPerm, pPinDelays );
                Abc_ObjForEachFanin( pNode, pFanin, k ) 
                    if ( tArrival < Abc_ObjArrival(Abc_ObjFanin(pNode,pPinPerm[k])) + pDelays[k] )
                        tArrival = Abc_ObjArrival(Abc_ObjFanin(pNode,pPinPerm[k])) + pDelays[k];
            }
            else
            {
                Abc_ObjForEachFanin( pNode, pFanin, k )
                    if ( tArrival < Abc_ObjArrival(pFanin) + pDelays[k] )
                        tArrival = Abc_ObjArrival(pFanin) + pDelays[k];
            }
        }
        if ( Abc_ObjFaninNum(pNode) == 0 )
            tArrival = 0.0;
        Abc_ObjSetArrival( pNode, tArrival );
    }
    Vec_PtrFree( vNodes );

    // get the latest arrival times
    tArrival = -ABC_INFINITY;
    Abc_NtkForEachCo( pNtk, pNode, i )
        if ( tArrival < Abc_ObjArrival(Abc_ObjFanin0(pNode)) )
            tArrival = Abc_ObjArrival(Abc_ObjFanin0(pNode));

    // initialize the required times
    Abc_NtkForEachCo( pNtk, pNode, i )
        if ( Abc_ObjRequired(Abc_ObjFanin0(pNode)) > tArrival )
            Abc_ObjSetRequired( Abc_ObjFanin0(pNode), tArrival );

    // propagate the required times
    vNodes = Abc_NtkDfsReverse( pNtk );
    Vec_PtrForEachEntry( vNodes, pNode, i )
    {
        if ( pLutLib == NULL )
        {
            tRequired = Abc_ObjRequired(pNode) - (float)1.0;
            Abc_ObjForEachFanin( pNode, pFanin, k )
                if ( Abc_ObjRequired(pFanin) > tRequired )
                    Abc_ObjSetRequired( pFanin, tRequired );
        }
        else if ( !pLutLib->fVarPinDelays )
        {
            pDelays = pLutLib->pLutDelays[Abc_ObjFaninNum(pNode)];
            tRequired = Abc_ObjRequired(pNode) - pDelays[0];
            Abc_ObjForEachFanin( pNode, pFanin, k )
                if ( Abc_ObjRequired(pFanin) > tRequired )
                    Abc_ObjSetRequired( pFanin, tRequired );
        }
        else 
        {
            pDelays = pLutLib->pLutDelays[Abc_ObjFaninNum(pNode)];
            if ( fUseSorting )
            {
                Abc_NtkDelayTraceSortPins( pNode, pPinPerm, pPinDelays );
                Abc_ObjForEachFanin( pNode, pFanin, k )
                {
                    tRequired = Abc_ObjRequired(pNode) - pDelays[k];
                    if ( Abc_ObjRequired(Abc_ObjFanin(pNode,pPinPerm[k])) > tRequired )
                        Abc_ObjSetRequired( Abc_ObjFanin(pNode,pPinPerm[k]), tRequired );
                }
            }
            else
            {
                Abc_ObjForEachFanin( pNode, pFanin, k )
                {
                    tRequired = Abc_ObjRequired(pNode) - pDelays[k];
                    if ( Abc_ObjRequired(pFanin) > tRequired )
                        Abc_ObjSetRequired( pFanin, tRequired );
                }
            }
        }
        // set slack for this object
        tSlack = Abc_ObjRequired(pNode) - Abc_ObjArrival(pNode);
        assert( tSlack + 0.001 > 0.0 );
        Abc_ObjSetSlack( pNode, tSlack < 0.0 ? 0.0 : tSlack );
    }
    Vec_PtrFree( vNodes );
    return tArrival;
}

/**Function*************************************************************

  Synopsis    [Delay tracing of the LUT mapped network.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDelayTracePrint( Abc_Ntk_t * pNtk, int fUseLutLib, int fVerbose )
{
    Abc_Obj_t * pNode;
    If_Lib_t * pLutLib;
    int i, Nodes, * pCounters;
    float tArrival, tDelta, nSteps, Num;
    // get the library
    pLutLib = fUseLutLib?  Abc_FrameReadLibLut() : NULL;
    if ( pLutLib && pLutLib->LutMax < Abc_NtkGetFaninMax(pNtk) )
    {
        printf( "The max LUT size (%d) is less than the max fanin count (%d).\n", 
            pLutLib->LutMax, Abc_NtkGetFaninMax(pNtk) );
        return;
    }
    // decide how many steps
    nSteps = fUseLutLib ? 20 : Abc_NtkLevel(pNtk);
    pCounters = ALLOC( int, nSteps + 1 );
    memset( pCounters, 0, sizeof(int)*(nSteps + 1) );
    // perform delay trace
    tArrival = Abc_NtkDelayTraceLut( pNtk, fUseLutLib );
    tDelta = tArrival / nSteps;
    // count how many nodes have slack in the corresponding intervals
    Abc_NtkForEachNode( pNtk, pNode, i )
    {
        if ( Abc_ObjFaninNum(pNode) == 0 )
            continue;
        Num = Abc_ObjSlack(pNode) / tDelta;
        assert( Num >=0 && Num <= nSteps );
        pCounters[(int)Num]++;
    }
    // print the results
    printf( "Max delay = %6.2f. Delay trace using %s model:\n", tArrival, fUseLutLib? "LUT library" : "unit-delay" );
    Nodes = 0;
    for ( i = 0; i < nSteps; i++ )
    {
        Nodes += pCounters[i];
        printf( "%3d %s : %5d  (%6.2f %%)\n", fUseLutLib? 5*(i+1) : i+1, 
            fUseLutLib? "%":"lev", Nodes, 100.0*Nodes/Abc_NtkNodeNum(pNtk) );
    }
    free( pCounters );
}

/**Function*************************************************************

  Synopsis    [Returns 1 if pOld is in the TFI of pNew.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_AigCheckTfi_rec( Abc_Obj_t * pNode, Abc_Obj_t * pOld )
{
    // check the trivial cases
    if ( pNode == NULL )
        return 0;
    if ( Abc_ObjIsCi(pNode) )
        return 0;
    if ( pNode == pOld )
        return 1;
    // skip the visited node
    if ( Abc_NodeIsTravIdCurrent( pNode ) )
        return 0;
    Abc_NodeSetTravIdCurrent( pNode );
    // check the children
    if ( Abc_AigCheckTfi_rec( Abc_ObjFanin0(pNode), pOld ) )
        return 1;
    if ( Abc_AigCheckTfi_rec( Abc_ObjFanin1(pNode), pOld ) )
        return 1;
    // check equivalent nodes
    return Abc_AigCheckTfi_rec( pNode->pData, pOld );
}

/**Function*************************************************************

  Synopsis    [Returns 1 if pOld is in the TFI of pNew.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_AigCheckTfi( Abc_Obj_t * pNew, Abc_Obj_t * pOld )
{
    assert( !Abc_ObjIsComplement(pNew) );
    assert( !Abc_ObjIsComplement(pOld) );
    Abc_NtkIncrementTravId( pNew->pNtk );
    return Abc_AigCheckTfi_rec( pNew, pOld );
}

/**Function*************************************************************

  Synopsis    [Adds strashed nodes for one node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkSpeedupNode_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vNodes )
{
    if ( Abc_NodeIsTravIdCurrent(pNode) )
        return 1;
    if ( Abc_ObjIsCi(pNode) )
        return 0;
    assert( Abc_ObjIsNode(pNode) );
    Abc_NodeSetTravIdCurrent( pNode );
    if ( !Abc_NtkSpeedupNode_rec( Abc_ObjFanin0(pNode), vNodes ) )
        return 0;
    if ( !Abc_NtkSpeedupNode_rec( Abc_ObjFanin1(pNode), vNodes ) )
        return 0;
    Vec_PtrPush( vNodes, pNode );
    return 1;
}

/**Function*************************************************************

  Synopsis    [Adds strashed nodes for one node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkSpeedupNode( Abc_Ntk_t * pNtk, Abc_Ntk_t * pAig, Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vTimes )
{
    Vec_Ptr_t * vNodes;
    Abc_Obj_t * pObj, * pObj2, * pAnd;
    Abc_Obj_t * ppCofs[32];
    int nCofs, i, k, nSkip;

    // quit of regulars are the same
    Vec_PtrForEachEntry( vLeaves, pObj, i )
    Vec_PtrForEachEntry( vLeaves, pObj2, k )
        if ( i != k && Abc_ObjRegular(pObj->pCopy) == Abc_ObjRegular(pObj2->pCopy) )
        {
//            printf( "Identical after structural hashing!!!\n" );
            return;
        }

    // collect the AIG nodes
    vNodes = Vec_PtrAlloc( 100 );
    Abc_NtkIncrementTravId( pAig );
    Abc_NodeSetTravIdCurrent( Abc_AigConst1(pAig) );
    Vec_PtrForEachEntry( vLeaves, pObj, i )
    {
        pAnd = pObj->pCopy;
        Abc_NodeSetTravIdCurrent( Abc_ObjRegular(pAnd) );
    }
    // traverse from the root node
    pAnd = pNode->pCopy;
    if ( !Abc_NtkSpeedupNode_rec( Abc_ObjRegular(pAnd), vNodes ) )
    {
//        printf( "Bad node!!!\n" );
        Vec_PtrFree( vNodes );
        return;
    }

    // derive cofactors
    nCofs = (1 << Vec_PtrSize(vTimes));
    for ( i = 0; i < nCofs; i++ )
    {
        Vec_PtrForEachEntry( vLeaves, pObj, k )
        {
            pAnd = pObj->pCopy;
            Abc_ObjRegular(pAnd)->pCopy = Abc_ObjRegular(pAnd);
        }
        Vec_PtrForEachEntry( vTimes, pObj, k )
        {
            pAnd = pObj->pCopy;
            Abc_ObjRegular(pAnd)->pCopy = Abc_ObjNotCond( Abc_AigConst1(pAig), ((i & (1<<k)) == 0) );
        }
        Vec_PtrForEachEntry( vNodes, pObj, k )
            pObj->pCopy = Abc_AigAnd( pAig->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
        // save the result
        pAnd = pNode->pCopy;
        ppCofs[i] = Abc_ObjNotCond( Abc_ObjRegular(pAnd)->pCopy, Abc_ObjIsComplement(pAnd) );
    }
    Vec_PtrFree( vNodes );

//Abc_ObjAddFanin( Abc_NtkCreatePo(pAig), ppCofs[0] );
//Abc_ObjAddFanin( Abc_NtkCreatePo(pAig), ppCofs[1] );

    // collect the resulting tree
    Vec_PtrForEachEntry( vTimes, pObj, k )
        for ( nSkip = (1<<k), i = 0; i < nCofs; i += 2*nSkip )
        {
            pAnd = pObj->pCopy;
            ppCofs[i] = Abc_AigMux( pAig->pManFunc, Abc_ObjRegular(pAnd), ppCofs[i+nSkip], ppCofs[i] );
        }
//Abc_ObjAddFanin( Abc_NtkCreatePo(pAig), ppCofs[0] );

    // create choice node
    pAnd = Abc_ObjRegular(pNode->pCopy); // repr
    pObj = Abc_ObjRegular(ppCofs[0]);    // new
    if ( pAnd->pData == NULL && pObj->pData == NULL && !Abc_AigCheckTfi(pObj, pAnd) )
    {
        pObj->pData = pAnd->pData;
        pAnd->pData = pObj;
    }

}

/**Function*************************************************************

  Synopsis    [Determines timing-critical edges of the node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
unsigned Abc_NtkDelayTraceTCEdges( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, float tDelta, int fUseLutLib )
{
    int pPinPerm[32];
    float pPinDelays[32];
    If_Lib_t * pLutLib;
    Abc_Obj_t * pFanin;
    unsigned uResult = 0;
    float tRequired, * pDelays;
    int k;
    pLutLib = fUseLutLib?  Abc_FrameReadLibLut() : NULL;
    tRequired = Abc_ObjRequired(pNode);
    if ( pLutLib == NULL )
    {
        Abc_ObjForEachFanin( pNode, pFanin, k )
            if ( tRequired < Abc_ObjArrival(pFanin) + 1.0 + tDelta )
                uResult |= (1 << k);
    }
    else if ( !pLutLib->fVarPinDelays )
    {
        pDelays = pLutLib->pLutDelays[Abc_ObjFaninNum(pNode)];
        Abc_ObjForEachFanin( pNode, pFanin, k )
            if ( tRequired < Abc_ObjArrival(pFanin) + pDelays[0] + tDelta )
                uResult |= (1 << k);
    }
    else
    {
        pDelays = pLutLib->pLutDelays[Abc_ObjFaninNum(pNode)];
        Abc_NtkDelayTraceSortPins( pNode, pPinPerm, pPinDelays );
        Abc_ObjForEachFanin( pNode, pFanin, k )
            if ( tRequired < Abc_ObjArrival(Abc_ObjFanin(pNode,pPinPerm[k])) + pDelays[k] + tDelta )
                uResult |= (1 << pPinPerm[k]);
    }
    return uResult;
}

/**Function*************************************************************

  Synopsis    [Adds choices to speed up the network by the given percentage.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkSpeedup( Abc_Ntk_t * pNtk, int fUseLutLib, int Percentage, int Degree, int fVerbose, int fVeryVerbose )
{
    Abc_Ntk_t * pNtkNew;
    Vec_Ptr_t * vTimeCries, * vTimeFanins;
    Abc_Obj_t * pNode, * pFanin, * pFanin2;
    float tDelta, tArrival;
    int i, k, k2, Counter, CounterRes, nTimeCris;
    unsigned * puTCEdges;
    // perform delay trace
    tArrival = Abc_NtkDelayTraceLut( pNtk, fUseLutLib );
    tDelta = fUseLutLib ? tArrival*Percentage/100.0 : 1.0;
    if ( fVerbose )
    {
        printf( "Max delay = %.2f. Delta = %.2f. ", tArrival, tDelta );
        printf( "Using %s model. ", fUseLutLib? "LUT library" : "unit-delay" );
        if ( fUseLutLib )
            printf( "Percentage = %d. ", Percentage );
        printf( "\n" );
    }
    // mark the timing critical nodes and edges
    puTCEdges = ALLOC( int, Abc_NtkObjNumMax(pNtk) );
    memset( puTCEdges, 0, sizeof(int) * Abc_NtkObjNumMax(pNtk) );
    Abc_NtkForEachNode( pNtk, pNode, i )
    {
        if ( Abc_ObjSlack(pNode) >= tDelta )
            continue;
        puTCEdges[pNode->Id] = Abc_NtkDelayTraceTCEdges( pNtk, pNode, tDelta, fUseLutLib );
    }
    if ( fVerbose )
    {
        Counter = CounterRes = 0;
        Abc_NtkForEachNode( pNtk, pNode, i )
        {
            Abc_ObjForEachFanin( pNode, pFanin, k )
                if ( !Abc_ObjIsCi(pFanin) && Abc_ObjSlack(pFanin) < tDelta )
                    Counter++;
            CounterRes += Extra_WordCountOnes( puTCEdges[pNode->Id] );
        }
        printf( "Edges: Total = %7d. 0-slack = %7d. Critical = %7d. Ratio = %4.2f\n", 
            Abc_NtkGetTotalFanins(pNtk), Counter, CounterRes, 1.0*CounterRes/Counter );
    }
    // start the resulting network
    pNtkNew = Abc_NtkStrash( pNtk, 0, 1, 0 );

    // collect nodes to be used for resynthesis
    Counter = CounterRes = 0;
    vTimeCries = Vec_PtrAlloc( 16 );
    vTimeFanins = Vec_PtrAlloc( 16 );
    Abc_NtkForEachNode( pNtk, pNode, i )
    {
        if ( Abc_ObjSlack(pNode) >= tDelta )
            continue;
        // count the number of non-PI timing-critical nodes
        nTimeCris = 0;
        Abc_ObjForEachFanin( pNode, pFanin, k )
            if ( !Abc_ObjIsCi(pFanin) && (puTCEdges[pNode->Id] & (1<<k)) )
                nTimeCris++;
        if ( !fVeryVerbose && nTimeCris == 0 )
            continue;
        Counter++;
        // count the total number of timing critical second-generation nodes
        Vec_PtrClear( vTimeCries );
        if ( nTimeCris )
        {
            Abc_ObjForEachFanin( pNode, pFanin, k )
                if ( !Abc_ObjIsCi(pFanin) && (puTCEdges[pNode->Id] & (1<<k)) )
                    Abc_ObjForEachFanin( pFanin, pFanin2, k2 )
                        if ( puTCEdges[pFanin->Id] & (1<<k2) )
                            Vec_PtrPushUnique( vTimeCries, pFanin2 );
        }
//        if ( !fVeryVerbose && (Vec_PtrSize(vTimeCries) == 0 || Vec_PtrSize(vTimeCries) > Degree) )
        if ( (Vec_PtrSize(vTimeCries) == 0 || Vec_PtrSize(vTimeCries) > Degree) )
            continue;
        CounterRes++;
        // collect second generation nodes
        Vec_PtrClear( vTimeFanins );
        Abc_ObjForEachFanin( pNode, pFanin, k )
        {
            if ( Abc_ObjIsCi(pFanin) )
                Vec_PtrPushUnique( vTimeFanins, pFanin );
            else
                Abc_ObjForEachFanin( pFanin, pFanin2, k2 )
                    Vec_PtrPushUnique( vTimeFanins, pFanin2 );                    
        }
        // print the results
        if ( fVeryVerbose )
        {
        printf( "%5d Node %5d : %d %2d %2d  ", Counter, pNode->Id, 
            nTimeCris, Vec_PtrSize(vTimeCries), Vec_PtrSize(vTimeFanins) );
        Abc_ObjForEachFanin( pNode, pFanin, k )
            printf( "%d(%.2f)%s ", pFanin->Id, Abc_ObjSlack(pFanin), (puTCEdges[pNode->Id] & (1<<k))? "*":"" );
        printf( "\n" );
        }
        // add the node to choices
        if ( Vec_PtrSize(vTimeCries) == 0 || Vec_PtrSize(vTimeCries) > Degree )
            continue;
        // order the fanins in the increasing order of criticalily
        if ( Vec_PtrSize(vTimeCries) > 1 )
        {
            pFanin = Vec_PtrEntry( vTimeCries, 0 );
            pFanin2 = Vec_PtrEntry( vTimeCries, 1 );
            if ( Abc_ObjSlack(pFanin) < Abc_ObjSlack(pFanin2) )
            {
                Vec_PtrWriteEntry( vTimeCries, 0, pFanin2 );
                Vec_PtrWriteEntry( vTimeCries, 1, pFanin );
            }
        }
        if ( Vec_PtrSize(vTimeCries) > 2 )
        {
            pFanin = Vec_PtrEntry( vTimeCries, 1 );
            pFanin2 = Vec_PtrEntry( vTimeCries, 2 );
            if ( Abc_ObjSlack(pFanin) < Abc_ObjSlack(pFanin2) )
            {
                Vec_PtrWriteEntry( vTimeCries, 1, pFanin2 );
                Vec_PtrWriteEntry( vTimeCries, 2, pFanin );
            }
            pFanin = Vec_PtrEntry( vTimeCries, 0 );
            pFanin2 = Vec_PtrEntry( vTimeCries, 1 );
            if ( Abc_ObjSlack(pFanin) < Abc_ObjSlack(pFanin2) )
            {
                Vec_PtrWriteEntry( vTimeCries, 0, pFanin2 );
                Vec_PtrWriteEntry( vTimeCries, 1, pFanin );
            }
        }
        // add choice
        Abc_NtkSpeedupNode( pNtk, pNtkNew, pNode, vTimeFanins, vTimeCries );
    }
    Vec_PtrFree( vTimeCries );
    Vec_PtrFree( vTimeFanins );
    free( puTCEdges );
    if ( fVerbose )
        printf( "Nodes: Total = %7d. 0-slack = %7d. Workable = %7d. Ratio = %4.2f\n", 
            Abc_NtkNodeNum(pNtk), Counter, CounterRes, 1.0*CounterRes/Counter ); 

    // remove invalid choice nodes
    Abc_AigForEachAnd( pNtkNew, pNode, i )
        if ( pNode->pData )
        {
            if ( Abc_ObjFanoutNum(pNode->pData) > 0 )
                pNode->pData = NULL;
        }

    // return the result
    return pNtkNew;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////