summaryrefslogtreecommitdiffstats
path: root/src/base/abci/abcDetect.c
blob: 7adbed5dbf134d0845977cc050d8a048f79c51da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
/**CFile****************************************************************

  FileName    [abcDetect.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Network and node package.]

  Synopsis    [Detect conditions.]

  Author      [Alan Mishchenko, Dao Ai Quoc]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 7, 2016.]

  Revision    [$Id: abcDetect.c,v 1.00 2016/06/07 00:00:00 alanmi Exp $]

***********************************************************************/

#include "base/abc/abc.h"
#include "misc/vec/vecHsh.h"
#include "misc/util/utilNam.h"
#include "sat/cnf/cnf.h"
#include "sat/bsat/satStore.h"
#include "map/mio/mio.h"
#include "map/mio/exp.h"

ABC_NAMESPACE_IMPL_START

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

typedef enum { 
    ABC_FIN_NONE = -100,   //  0:  unknown
    ABC_FIN_SA0,           //  1:
    ABC_FIN_SA1,           //  2:
    ABC_FIN_NEG,           //  3:
    ABC_FIN_RDOB_AND,      //  4:
    ABC_FIN_RDOB_NAND,     //  5:
    ABC_FIN_RDOB_OR,       //  6:
    ABC_FIN_RDOB_NOR,      //  7:
    ABC_FIN_RDOB_XOR,      //  8:
    ABC_FIN_RDOB_NXOR,     //  9:
    ABC_FIN_RDOB_NOT,      // 10:
    ABC_FIN_RDOB_BUFF,     // 11:
    ABC_FIN_RDOB_LAST      // 12:
} Abc_FinType_t;

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Generates fault list for the given mapped network.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkGenFaultList( Abc_Ntk_t * pNtk, char * pFileName, int fStuckAt )
{
    Mio_Library_t * pLib = (Mio_Library_t *)pNtk->pManFunc;
    Mio_Gate_t * pGate;
    Abc_Obj_t * pObj;
    int i, Count = 1;
    FILE * pFile = fopen( pFileName, "wb" );
    if ( pFile == NULL )
    {
        printf( "Cannot open file \"%s\" for writing.\n", pFileName );
        return;
    }
    assert( Abc_NtkIsMappedLogic(pNtk) );
    Abc_NtkForEachNode( pNtk, pObj, i )
    {
        Mio_Gate_t * pGateObj = (Mio_Gate_t *)pObj->pData;
        int nInputs = Mio_GateReadPinNum(pGateObj);
        // add basic faults (SA0, SA1, NEG)
        fprintf( pFile, "%d %s %s\n", Count, Abc_ObjName(pObj), "SA0" ), Count++;
        fprintf( pFile, "%d %s %s\n", Count, Abc_ObjName(pObj), "SA1" ), Count++;
        fprintf( pFile, "%d %s %s\n", Count, Abc_ObjName(pObj), "NEG" ), Count++;
        if ( fStuckAt )
            continue;
        // add other faults, which correspond to changing the given gate
        // by another gate with the same support-size from the same library
        Mio_LibraryForEachGate( pLib, pGate )
            if ( pGate != pGateObj && Mio_GateReadPinNum(pGate) == nInputs )
                fprintf( pFile, "%d %s %s\n", Count, Abc_ObjName(pObj), Mio_GateReadName(pGate) ), Count++;
    }
    printf( "Generated fault list \"%s\" for network \"%s\" with %d nodes and %d %sfaults.\n", 
        pFileName, Abc_NtkName(pNtk), Abc_NtkNodeNum(pNtk), Count-1, fStuckAt ? "stuck-at ":"" );
    fclose( pFile );
}

/**Function*************************************************************

  Synopsis    [Recognize type.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Io_ReadFinTypeMapped( Mio_Library_t * pLib, char * pThis )
{
    Mio_Gate_t * pGate = Mio_LibraryReadGateByName( pLib, pThis, NULL );
    if ( pGate == NULL )
    {
        printf( "Cannot find gate \"%s\" in the current library.\n", pThis );
        return ABC_FIN_NONE;
    }
    return Mio_GateReadCell( pGate );
}
int Io_ReadFinType( char * pThis )
{
    if ( !strcmp(pThis, "SA0") )        return ABC_FIN_SA0;
    if ( !strcmp(pThis, "SA1") )        return ABC_FIN_SA1;
    if ( !strcmp(pThis, "NEG") )        return ABC_FIN_NEG;
    if ( !strcmp(pThis, "RDOB_AND") )   return ABC_FIN_RDOB_AND;
    if ( !strcmp(pThis, "RDOB_NAND") )  return ABC_FIN_RDOB_NAND;
    if ( !strcmp(pThis, "RDOB_OR") )    return ABC_FIN_RDOB_OR;
    if ( !strcmp(pThis, "RDOB_NOR") )   return ABC_FIN_RDOB_NOR;
    if ( !strcmp(pThis, "RDOB_XOR") )   return ABC_FIN_RDOB_XOR;
    if ( !strcmp(pThis, "RDOB_NXOR") )  return ABC_FIN_RDOB_NXOR;
    if ( !strcmp(pThis, "RDOB_NOT") )   return ABC_FIN_RDOB_NOT;
    if ( !strcmp(pThis, "RDOB_BUFF") )  return ABC_FIN_RDOB_BUFF;
    return ABC_FIN_NONE;
}
char * Io_WriteFinType( int Type )
{
    if ( Type == ABC_FIN_SA0 )          return "SA0";
    if ( Type == ABC_FIN_SA1 )          return "SA1";
    if ( Type == ABC_FIN_NEG )          return "NEG";
    if ( Type == ABC_FIN_RDOB_AND  )    return "RDOB_AND" ;
    if ( Type == ABC_FIN_RDOB_NAND )    return "RDOB_NAND";
    if ( Type == ABC_FIN_RDOB_OR   )    return "RDOB_OR"  ;
    if ( Type == ABC_FIN_RDOB_NOR  )    return "RDOB_NOR" ;
    if ( Type == ABC_FIN_RDOB_XOR  )    return "RDOB_XOR" ;
    if ( Type == ABC_FIN_RDOB_NXOR )    return "RDOB_NXOR";
    if ( Type == ABC_FIN_RDOB_NOT  )    return "RDOB_NOT" ;
    if ( Type == ABC_FIN_RDOB_BUFF )    return "RDOB_BUFF";
    return "Unknown";
}

/**Function*************************************************************

  Synopsis    [Read information from file.]

  Description [Returns information as a set of pairs: (ObjId, TypeId).
  Uses the current network to map ObjName given in the file into ObjId.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Io_ReadFins( Abc_Ntk_t * pNtk, char * pFileName, int fVerbose )
{
    Mio_Library_t * pLib = (Mio_Library_t *)pNtk->pManFunc;
    char Buffer[1000];
    Abc_Obj_t * pObj;
    Abc_Nam_t * pNam;
    Vec_Int_t * vMap; 
    Vec_Int_t * vPairs = NULL;
    int i, Type, iObj, fFound, nLines = 1;
    FILE * pFile = fopen( pFileName, "r" );
    if ( pFile == NULL )
    {
        printf( "Cannot open input file \"%s\" for reading.\n", pFileName );
        return NULL;
    }
    // map CI/node names into their IDs
    pNam = Abc_NamStart( 1000, 10 );
    vMap = Vec_IntAlloc( 1000 );
    Vec_IntPush( vMap, -1 );
    Abc_NtkForEachObj( pNtk, pObj, i )
    {
        if ( !Abc_ObjIsCi(pObj) && !Abc_ObjIsNode(pObj) )
            continue;
        Abc_NamStrFindOrAdd( pNam, Abc_ObjName(pObj), &fFound );
        if ( fFound )
        {
            printf( "The same name \"%s\" appears twice among CIs and internal nodes.\n", Abc_ObjName(pObj) );
            goto finish;
        }
        Vec_IntPush( vMap, Abc_ObjId(pObj) );
    }
    assert( Vec_IntSize(vMap) == Abc_NamObjNumMax(pNam) );
    // read file lines
    vPairs = Vec_IntAlloc( 1000 );
    Vec_IntPushTwo( vPairs, -1, -1 );
    while ( fgets(Buffer, 1000, pFile) != NULL )
    {
        // read line number
        char * pToken = strtok( Buffer, " \n\r\t" );
        if ( pToken == NULL )
            break;
        if ( nLines++ != atoi(pToken) )
        {
            printf( "Line numbers are not consecutive. Quitting.\n" );
            Vec_IntFreeP( &vPairs );
            goto finish;
        }
        // read object name and find its ID
        pToken = strtok( NULL, " \n\r\t" );
        iObj = Abc_NamStrFind( pNam, pToken );
        if ( !iObj )
        {
            printf( "Cannot find object with name \"%s\".\n", pToken );
            continue;
        }
        // read type
        pToken = strtok( NULL, " \n\r\t" );
        if ( Abc_NtkIsMappedLogic(pNtk) )
        {
            if ( !strcmp(pToken, "SA0") || !strcmp(pToken, "SA1") || !strcmp(pToken, "NEG") )
                Type = Io_ReadFinType( pToken );
            else
                Type = Io_ReadFinTypeMapped( pLib, pToken );
        }
        else
            Type = Io_ReadFinType( pToken );
        if ( Type == ABC_FIN_NONE )
        {
            printf( "Cannot read type \"%s\" of object \"%s\".\n", pToken, Abc_ObjName(Abc_NtkObj(pNtk, iObj)) );
            continue;
        }
        Vec_IntPushTwo( vPairs, Vec_IntEntry(vMap, iObj), Type );
    }
    assert( Vec_IntSize(vPairs) == 2 * nLines );
    printf( "Finished reading %d lines from the fault list file \"%s\".\n", nLines - 1, pFileName );

    // verify the reader by printing the results
    if ( fVerbose )
        Vec_IntForEachEntryDoubleStart( vPairs, iObj, Type, i, 2 )
            printf( "%-10d%-10s%-10s\n", i/2, Abc_ObjName(Abc_NtkObj(pNtk, iObj)), Io_WriteFinType(Type) );

finish:
    Vec_IntFree( vMap );
    Abc_NamDeref( pNam );
    fclose( pFile );
    return vPairs;
}


/**Function*************************************************************

  Synopsis    [Extend the network by adding second timeframe.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkFrameExtend( Abc_Ntk_t * pNtk )
{
    Vec_Ptr_t * vFanins, * vNodes;
    Abc_Obj_t * pObj, * pFanin, * pReset, * pEnable, * pSignal;
    Abc_Obj_t * pResetN, * pEnableN, * pAnd0, * pAnd1, * pMux;
    int i, k, iStartPo, nPisOld = Abc_NtkPiNum(pNtk), nPosOld = Abc_NtkPoNum(pNtk);
    // skip if there are no flops
    if ( pNtk->nConstrs == 0 )
        return;
    assert( Abc_NtkPiNum(pNtk) >= pNtk->nConstrs );
    assert( Abc_NtkPoNum(pNtk) >= pNtk->nConstrs * 4 );
    // collect nodes
    vNodes = Vec_PtrAlloc( Abc_NtkNodeNum(pNtk) );
    Abc_NtkForEachNode( pNtk, pObj, i )
        Vec_PtrPush( vNodes, pObj );
    // duplicate PIs
    vFanins = Vec_PtrAlloc( 2 );
    Abc_NtkForEachPi( pNtk, pObj, i )
    {
        if ( i == nPisOld )
            break;
        if ( i < nPisOld - pNtk->nConstrs )
        {
            Abc_NtkDupObj( pNtk, pObj, 0 );
            Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), "_frame1" );
            continue;
        }
        // create flop input
        iStartPo = nPosOld + 4 * (i - nPisOld);
        pReset   = Abc_ObjFanin0( Abc_NtkPo( pNtk, iStartPo + 1 ) );
        pEnable  = Abc_ObjFanin0( Abc_NtkPo( pNtk, iStartPo + 2 ) );
        pSignal  = Abc_ObjFanin0( Abc_NtkPo( pNtk, iStartPo + 3 ) );
        pResetN  = Abc_NtkCreateNodeInv( pNtk, pReset );
        pEnableN = Abc_NtkCreateNodeInv( pNtk, pEnable );
        Vec_PtrFillTwo( vFanins, 2, pEnableN, pObj );
        pAnd0    = Abc_NtkCreateNodeAnd( pNtk, vFanins );
        Vec_PtrFillTwo( vFanins, 2, pEnable, pSignal );
        pAnd1    = Abc_NtkCreateNodeAnd( pNtk, vFanins );
        Vec_PtrFillTwo( vFanins, 2, pAnd0, pAnd1 );
        pMux     = Abc_NtkCreateNodeOr( pNtk, vFanins );
        Vec_PtrFillTwo( vFanins, 2, pResetN, pMux );
        pObj->pCopy = Abc_NtkCreateNodeAnd( pNtk, vFanins );
    }
    // duplicate internal nodes
    Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
        Abc_NtkDupObj( pNtk, pObj, 0 );
    // connect objects
    Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
        Abc_ObjForEachFanin( pObj, pFanin, k )
            Abc_ObjAddFanin( pObj->pCopy, pFanin->pCopy );
    // create new POs and reconnect flop inputs
    Abc_NtkForEachPo( pNtk, pObj, i )
    {
        if ( i == nPosOld )
            break;
        if ( i < nPosOld - 4 * pNtk->nConstrs )
        {
            Abc_NtkDupObj( pNtk, pObj, 0 );
            Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), "_frame1" );
            Abc_ObjAddFanin( pObj->pCopy, Abc_ObjFanin0(pObj)->pCopy );
            continue;
        }
        Abc_ObjPatchFanin( pObj, Abc_ObjFanin0(pObj), Abc_ObjFanin0(pObj)->pCopy );
    }
    Vec_PtrFree( vFanins );
    Vec_PtrFree( vNodes );
}

/**Function*************************************************************

  Synopsis    [Detect equivalence classes of nodes in terms of their TFO.]

  Description [Given is the logic network (pNtk) and the set of objects
  (primary inputs or internal nodes) to be considered (vObjs), this function
  returns a set of equivalence classes of these objects in terms of their 
  transitive fanout (TFO). Two objects belong to the same class if the set 
  of COs they feed into are the same.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkDetectObjClasses_rec( Abc_Obj_t * pObj, Vec_Int_t * vMap, Hsh_VecMan_t * pHash, Vec_Int_t * vTemp )
{
    Vec_Int_t * vArray, * vSet;
    Abc_Obj_t * pNext; int i;
    // get the CO set for this object
    int Entry = Vec_IntEntry(vMap, Abc_ObjId(pObj));
    if ( Entry != -1 ) // the set is already computed
        return Entry;
    // compute a new CO set
    assert( Abc_ObjIsCi(pObj) || Abc_ObjIsNode(pObj) );
    // if there is no fanouts, the set of COs is empty
    if ( Abc_ObjFanoutNum(pObj) == 0 )
    {
        Vec_IntWriteEntry( vMap, Abc_ObjId(pObj), 0 );
        return 0;
    }
    // compute the set for the first fanout
    Entry = Abc_NtkDetectObjClasses_rec( Abc_ObjFanout0(pObj), vMap, pHash, vTemp );
    if ( Abc_ObjFanoutNum(pObj) == 1 )
    {
        Vec_IntWriteEntry( vMap, Abc_ObjId(pObj), Entry );
        return Entry;
    }
    vSet = Vec_IntAlloc( 16 );
    // initialize the set with that of first fanout
    vArray = Hsh_VecReadEntry( pHash, Entry );
    Vec_IntClear( vSet );
    Vec_IntAppend( vSet, vArray );
    // iteratively add sets of other fanouts
    Abc_ObjForEachFanout( pObj, pNext, i )
    {
        if ( i == 0 ) 
            continue;
        Entry = Abc_NtkDetectObjClasses_rec( pNext, vMap, pHash, vTemp );
        vArray = Hsh_VecReadEntry( pHash, Entry );
        Vec_IntTwoMerge2( vSet, vArray, vTemp );
        ABC_SWAP( Vec_Int_t, *vSet, *vTemp );
    }
    // create or find new set and map the object into it
    Entry = Hsh_VecManAdd( pHash, vSet );
    Vec_IntWriteEntry( vMap, Abc_ObjId(pObj), Entry );
    Vec_IntFree( vSet );
    return Entry;
}
Vec_Wec_t * Abc_NtkDetectObjClasses( Abc_Ntk_t * pNtk, Vec_Int_t * vObjs, Vec_Wec_t ** pvCos )
{
    Vec_Wec_t * vClasses;   // classes of equivalence objects from vObjs
    Vec_Int_t * vClassMap;  // mapping of each CO set into its class in vClasses
    Vec_Int_t * vClass;     // one equivalence class     
    Abc_Obj_t * pObj; 
    int i, iObj, SetId, ClassId;
    // create hash table to hash sets of CO indexes
    Hsh_VecMan_t * pHash = Hsh_VecManStart( 1000 );
    // create elementary sets (each composed of one CO) and map COs into them
    Vec_Int_t * vMap = Vec_IntStartFull( Abc_NtkObjNumMax(pNtk) );
    Vec_Int_t * vSet = Vec_IntAlloc( 16 );
    assert( Abc_NtkIsLogic(pNtk) );
    // compute empty set
    SetId = Hsh_VecManAdd( pHash, vSet );
    assert( SetId == 0 );
    Abc_NtkForEachCo( pNtk, pObj, i )
    {
        Vec_IntFill( vSet, 1, Abc_ObjId(pObj) );
        SetId = Hsh_VecManAdd( pHash, vSet );
        Vec_IntWriteEntry( vMap, Abc_ObjId(pObj), SetId );
    }
    // make sure the array of objects is sorted
    Vec_IntSort( vObjs, 0 );
    // begin from the objects and map their IDs into sets of COs
    Abc_NtkForEachObjVec( vObjs, pNtk, pObj, i )
        Abc_NtkDetectObjClasses_rec( pObj, vMap, pHash, vSet );
    Vec_IntFree( vSet );
    // create map for mapping CO set its their classes
    vClassMap = Vec_IntStartFull( Hsh_VecSize(pHash) + 1 );
    // collect classes of objects
    vClasses = Vec_WecAlloc( 1000 );
    Vec_IntForEachEntry( vObjs, iObj, i )
    {
        //char * pName = Abc_ObjName( Abc_NtkObj(pNtk, iObj) );
        // for a given object (iObj), find the ID of its COs set
        SetId = Vec_IntEntry( vMap, iObj );
        assert( SetId >= 0 );
        // for the given CO set, finds its equivalence class
        ClassId = Vec_IntEntry( vClassMap, SetId );
        if ( ClassId == -1 )  // there is no equivalence class
        {
            // map this CO set into a new equivalence class
            Vec_IntWriteEntry( vClassMap, SetId, Vec_WecSize(vClasses) );
            vClass = Vec_WecPushLevel( vClasses );
        }
        else // get hold of the equivalence class
            vClass = Vec_WecEntry( vClasses, ClassId );
        // add objects to the class
        Vec_IntPush( vClass, iObj );
        // print the set for this object
        //printf( "Object %5d : ", iObj );
        //Vec_IntPrint( Hsh_VecReadEntry(pHash, SetId) );
    }
    // collect arrays of COs for each class
    *pvCos = Vec_WecStart( Vec_WecSize(vClasses) );
    Vec_WecForEachLevel( vClasses, vClass, i )
    {
        iObj = Vec_IntEntry( vClass, 0 );
        // for a given object (iObj), find the ID of its COs set
        SetId = Vec_IntEntry( vMap, iObj );
        assert( SetId >= 0 );
        // for the given CO set ID, find the set
        vSet = Hsh_VecReadEntry( pHash, SetId );
        Vec_IntAppend( Vec_WecEntry(*pvCos, i), vSet );
    }
    Hsh_VecManStop( pHash );
    Vec_IntFree( vClassMap );
    Vec_IntFree( vMap );
    return vClasses;
}
void Abc_NtkDetectClassesTest2( Abc_Ntk_t * pNtk, int fVerbose, int fVeryVerbose )
{
    Vec_Int_t * vObjs;
    Vec_Wec_t * vRes, * vCos;
    // for testing, create the set of object IDs for all combinational inputs (CIs)
    Abc_Obj_t * pObj; int i;
    vObjs = Vec_IntAlloc( Abc_NtkCiNum(pNtk) );
    Abc_NtkForEachCi( pNtk, pObj, i )
        Vec_IntPush( vObjs, Abc_ObjId(pObj) );
    // compute equivalence classes of CIs and print them
    vRes = Abc_NtkDetectObjClasses( pNtk, vObjs, &vCos );
    Vec_WecPrint( vRes, 0 );
    Vec_WecPrint( vCos, 0 );
    // clean up
    Vec_IntFree( vObjs );
    Vec_WecFree( vRes );
    Vec_WecFree( vCos );
}

/**Function*************************************************************

  Synopsis    [Collecting objects.]

  Description [Collects combinational inputs (vCIs) and internal nodes (vNodes)
  reachable from the given set of combinational outputs (vCOs).]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkFinMiterCollect_rec( Abc_Obj_t * pObj, Vec_Int_t * vCis, Vec_Int_t * vNodes )
{
    if ( Abc_NodeIsTravIdCurrent(pObj) )
        return;
    Abc_NodeSetTravIdCurrent(pObj);
    if ( Abc_ObjIsCi(pObj) )
        Vec_IntPush( vCis, Abc_ObjId(pObj) );
    else
    {
        Abc_Obj_t * pFanin; int i;
        assert( Abc_ObjIsNode( pObj ) );
        Abc_ObjForEachFanin( pObj, pFanin, i )
            Abc_NtkFinMiterCollect_rec( pFanin, vCis, vNodes );
        Vec_IntPush( vNodes, Abc_ObjId(pObj) );
    }
}
void Abc_NtkFinMiterCollect( Abc_Ntk_t * pNtk, Vec_Int_t * vCos, Vec_Int_t * vCis, Vec_Int_t * vNodes )
{
    Abc_Obj_t * pObj; int i;
    Vec_IntClear( vCis );
    Vec_IntClear( vNodes );
    Abc_NtkIncrementTravId( pNtk );
    Abc_NtkForEachObjVec( vCos, pNtk, pObj, i )
        Abc_NtkFinMiterCollect_rec( Abc_ObjFanin0(pObj), vCis, vNodes );
}

/**Function*************************************************************

  Synopsis    [Simulates expression using given simulation info.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Mio_LibGateSimulate( Mio_Gate_t * pGate, word * ppFaninSims[6], int nWords, word * pObjSim )
{
    int i, w, nVars = Mio_GateReadPinNum(pGate);
    Vec_Int_t * vExpr = Mio_GateReadExpr( pGate );
    assert( nVars <= 6 );
    for ( w = 0; w < nWords; w++ )
    {
        word uFanins[6];
        for ( i = 0; i < nVars; i++ )
            uFanins[i] = ppFaninSims[i][w];
        pObjSim[w] = Exp_Truth6( nVars, vExpr, uFanins );
    }
}

/**Function*************************************************************

  Synopsis    [Simulates expression for one simulation pattern.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Mio_LibGateSimulateOne( Mio_Gate_t * pGate, int iBits[6] )
{
    int nVars = Mio_GateReadPinNum(pGate);
    int i, iMint = 0;
    for ( i = 0; i < nVars; i++ )
        if ( iBits[i] )
            iMint |= (1 << i);
    return Abc_InfoHasBit( (unsigned *)Mio_GateReadTruthP(pGate), iMint );
}

/**Function*************************************************************

  Synopsis    [Simulated expression with one bit.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Mio_LibGateSimulateGia( Gia_Man_t * pGia, Mio_Gate_t * pGate, int iLits[6], Vec_Int_t * vLits )
{
    int i, nVars = Mio_GateReadPinNum(pGate);
    Vec_Int_t * vExpr = Mio_GateReadExpr( pGate );
    if ( Exp_IsConst0(vExpr) )
        return 0;
    if ( Exp_IsConst1(vExpr) )
        return 1;
    if ( Exp_IsLit(vExpr) )
    {
        int Index0  = Vec_IntEntry(vExpr,0) >> 1;
        int fCompl0 = Vec_IntEntry(vExpr,0) & 1;
        assert( Index0 < nVars );
        return Abc_LitNotCond( iLits[Index0], fCompl0 );
    }
    Vec_IntClear( vLits );
    for ( i = 0; i < nVars; i++ )
        Vec_IntPush( vLits, iLits[i] );
    for ( i = 0; i < Exp_NodeNum(vExpr); i++ )
    {
        int Index0  = Vec_IntEntry( vExpr, 2*i+0 ) >> 1;
        int Index1  = Vec_IntEntry( vExpr, 2*i+1 ) >> 1;
        int fCompl0 = Vec_IntEntry( vExpr, 2*i+0 ) & 1;
        int fCompl1 = Vec_IntEntry( vExpr, 2*i+1 ) & 1;
        Vec_IntPush( vLits, Gia_ManHashAnd( pGia, Abc_LitNotCond(Vec_IntEntry(vLits, Index0), fCompl0), Abc_LitNotCond(Vec_IntEntry(vLits, Index1), fCompl1) ) );
    }
    return Abc_LitNotCond( Vec_IntEntryLast(vLits), Vec_IntEntryLast(vExpr) & 1 );
}

/**Function*************************************************************

  Synopsis    [AIG construction and simulation.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Abc_NtkFinSimOneLit( Gia_Man_t * pNew, Abc_Obj_t * pObj, int Type, Vec_Int_t * vMap, int n, Vec_Int_t * vTemp )
{
    if ( Abc_NtkIsMappedLogic(pObj->pNtk) && Type >= 0 )
    {
        extern int Mio_LibGateSimulateGia( Gia_Man_t * pGia, Mio_Gate_t * pGate, int iLits[6], Vec_Int_t * vLits );
        Mio_Library_t * pLib = (Mio_Library_t *)pObj->pNtk->pManFunc;
        int i, Lits[6];
        for ( i = 0; i < Abc_ObjFaninNum(pObj); i++ )
            Lits[i] = Vec_IntEntry( vMap, Abc_Var2Lit(Abc_ObjFaninId(pObj, i), n) );
        return Mio_LibGateSimulateGia( pNew, Mio_LibraryReadGateById(pLib, Type), Lits, vTemp );
    }
    else
    {
        int iLit0 = Abc_ObjFaninNum(pObj) > 0 ? Vec_IntEntry( vMap, Abc_Var2Lit(Abc_ObjFaninId0(pObj), n) ) : -1;
        int iLit1 = Abc_ObjFaninNum(pObj) > 1 ? Vec_IntEntry( vMap, Abc_Var2Lit(Abc_ObjFaninId1(pObj), n) ) : -1;
        assert( Type != ABC_FIN_NEG );
        if ( Type == ABC_FIN_SA0 )            return 0;
        if ( Type == ABC_FIN_SA1 )            return 1;
        if ( Type == ABC_FIN_RDOB_BUFF )      return iLit0;
        if ( Type == ABC_FIN_RDOB_NOT )       return Abc_LitNot( iLit0 );
        if ( Type == ABC_FIN_RDOB_AND )       return Gia_ManHashAnd( pNew, iLit0, iLit1 );
        if ( Type == ABC_FIN_RDOB_OR )        return Gia_ManHashOr( pNew, iLit0, iLit1 );
        if ( Type == ABC_FIN_RDOB_XOR )       return Gia_ManHashXor( pNew, iLit0, iLit1 );
        if ( Type == ABC_FIN_RDOB_NAND )      return Abc_LitNot(Gia_ManHashAnd( pNew, iLit0, iLit1 ));
        if ( Type == ABC_FIN_RDOB_NOR )       return Abc_LitNot(Gia_ManHashOr( pNew, iLit0, iLit1 ));
        if ( Type == ABC_FIN_RDOB_NXOR )      return Abc_LitNot(Gia_ManHashXor( pNew, iLit0, iLit1 ));
        assert( 0 );
        return -1;
    }
}
static inline int Abc_NtkFinSimOneBit( Abc_Obj_t * pObj, int Type, Vec_Wrd_t * vSims, int nWords, int iBit )
{
    if ( Abc_NtkIsMappedLogic(pObj->pNtk) && Type >= 0 )
    {
        extern int Mio_LibGateSimulateOne( Mio_Gate_t * pGate, int iBits[6] );
        Mio_Library_t * pLib = (Mio_Library_t *)pObj->pNtk->pManFunc;
        int i, iBits[6];
        for ( i = 0; i < Abc_ObjFaninNum(pObj); i++ )
        {
            word * pSim0 = Vec_WrdEntryP( vSims, nWords * Abc_ObjFaninId(pObj, i) );
            iBits[i] = Abc_InfoHasBit( (unsigned*)pSim0, iBit );
        }
        return Mio_LibGateSimulateOne( Mio_LibraryReadGateById(pLib, Type), iBits );
    }
    else
    {
        word * pSim0 = Abc_ObjFaninNum(pObj) > 0 ? Vec_WrdEntryP( vSims, nWords * Abc_ObjFaninId0(pObj) ) : NULL;
        word * pSim1 = Abc_ObjFaninNum(pObj) > 1 ? Vec_WrdEntryP( vSims, nWords * Abc_ObjFaninId1(pObj) ) : NULL;
        int iBit0 = Abc_ObjFaninNum(pObj) > 0 ? Abc_InfoHasBit( (unsigned*)pSim0, iBit ) : -1;
        int iBit1 = Abc_ObjFaninNum(pObj) > 1 ? Abc_InfoHasBit( (unsigned*)pSim1, iBit ) : -1;
        assert( Type != ABC_FIN_NEG );
        if ( Type == ABC_FIN_SA0 )            return 0;
        if ( Type == ABC_FIN_SA1 )            return 1;
        if ( Type == ABC_FIN_RDOB_BUFF )      return iBit0;
        if ( Type == ABC_FIN_RDOB_NOT )       return !iBit0;
        if ( Type == ABC_FIN_RDOB_AND )       return iBit0 & iBit1;
        if ( Type == ABC_FIN_RDOB_OR )        return iBit0 | iBit1;
        if ( Type == ABC_FIN_RDOB_XOR )       return iBit0 ^ iBit1;
        if ( Type == ABC_FIN_RDOB_NAND )      return !(iBit0 & iBit1);
        if ( Type == ABC_FIN_RDOB_NOR )       return !(iBit0 | iBit1);
        if ( Type == ABC_FIN_RDOB_NXOR )      return !(iBit0 ^ iBit1);
        assert( 0 );
        return -1;
    }
}
static inline void Abc_NtkFinSimOneWord( Abc_Obj_t * pObj, int Type, Vec_Wrd_t * vSims, int nWords )
{
    if ( Abc_NtkIsMappedLogic(pObj->pNtk) )
    {
        extern void Mio_LibGateSimulate( Mio_Gate_t * pGate, word * ppFaninSims[6], int nWords, word * pObjSim );
        word * ppSims[6]; int i;
        word * pSim = Vec_WrdEntryP( vSims, nWords * Abc_ObjId(pObj) );
        assert( Type == -1 );
        for ( i = 0; i < Abc_ObjFaninNum(pObj); i++ )
            ppSims[i] = Vec_WrdEntryP( vSims, nWords * Abc_ObjFaninId(pObj, i) );
        Mio_LibGateSimulate( (Mio_Gate_t *)pObj->pData, ppSims, nWords, pSim );
    }
    else
    {
        word * pSim  = Vec_WrdEntryP( vSims, nWords * Abc_ObjId(pObj) );  int w;
        word * pSim0 = Abc_ObjFaninNum(pObj) > 0 ? Vec_WrdEntryP( vSims, nWords * Abc_ObjFaninId0(pObj) ) : NULL;
        word * pSim1 = Abc_ObjFaninNum(pObj) > 1 ? Vec_WrdEntryP( vSims, nWords * Abc_ObjFaninId1(pObj) ) : NULL;
        assert( Type != ABC_FIN_NEG );
        if ( Type == ABC_FIN_SA0 )            for ( w = 0; w < nWords; w++ ) pSim[w] = 0;
        else if ( Type == ABC_FIN_SA1 )       for ( w = 0; w < nWords; w++ ) pSim[w] = ~((word)0);
        else if ( Type == ABC_FIN_RDOB_BUFF ) for ( w = 0; w < nWords; w++ ) pSim[w] = pSim0[w];
        else if ( Type == ABC_FIN_RDOB_NOT )  for ( w = 0; w < nWords; w++ ) pSim[w] = ~pSim0[w];
        else if ( Type == ABC_FIN_RDOB_AND )  for ( w = 0; w < nWords; w++ ) pSim[w] = pSim0[w] & pSim1[w];
        else if ( Type == ABC_FIN_RDOB_OR )   for ( w = 0; w < nWords; w++ ) pSim[w] = pSim0[w] | pSim1[w];
        else if ( Type == ABC_FIN_RDOB_XOR )  for ( w = 0; w < nWords; w++ ) pSim[w] = pSim0[w] ^ pSim1[w];
        else if ( Type == ABC_FIN_RDOB_NAND ) for ( w = 0; w < nWords; w++ ) pSim[w] = ~(pSim0[w] & pSim1[w]);
        else if ( Type == ABC_FIN_RDOB_NOR )  for ( w = 0; w < nWords; w++ ) pSim[w] = ~(pSim0[w] | pSim1[w]);
        else if ( Type == ABC_FIN_RDOB_NXOR ) for ( w = 0; w < nWords; w++ ) pSim[w] = ~(pSim0[w] ^ pSim1[w]);
        else assert( 0 );
    }
}


// returns 1 if the functionality with indexes i1 and i2 is the same
static inline int Abc_NtkFinCompareSimTwo( Abc_Ntk_t * pNtk, Vec_Int_t * vCos, Vec_Wrd_t * vSims, int nWords, int i1, int i2 )
{
    Abc_Obj_t * pObj; int i;
    assert( i1 != i2 );
    Abc_NtkForEachObjVec( vCos, pNtk, pObj, i )
    {
        word * pSim0 = Vec_WrdEntryP( vSims, nWords * Abc_ObjFaninId0(pObj) );
        if ( Abc_InfoHasBit((unsigned*)pSim0, i1) != Abc_InfoHasBit((unsigned*)pSim0, i2) )
            return 0;
    }
    return 1;
}

Gia_Man_t * Abc_NtkFinMiterToGia( Abc_Ntk_t * pNtk, Vec_Int_t * vTypes, Vec_Int_t * vCos, Vec_Int_t * vCis, Vec_Int_t * vNodes, 
                                  int iObjs[2], int Types[2], Vec_Int_t * vLits )
{
    Gia_Man_t * pNew = NULL, * pTemp;
    Abc_Obj_t * pObj; 
    Vec_Int_t * vTemp = Vec_IntAlloc( 100 );
    int n, i, Type, iMiter, iLit, * pLits;
    // create AIG manager
    pNew = Gia_ManStart( 1000 );
    pNew->pName = Abc_UtilStrsav( pNtk->pName );
    pNew->pSpec = Abc_UtilStrsav( pNtk->pSpec );
    Gia_ManHashStart( pNew );
    // create inputs
    Abc_NtkForEachObjVec( vCis, pNtk, pObj, i )
    {
        iLit = Gia_ManAppendCi(pNew);
        for ( n = 0; n < 2; n++ )
        {
            if ( iObjs[n] != (int)Abc_ObjId(pObj) )
                Vec_IntWriteEntry( vLits, Abc_Var2Lit(Abc_ObjId(pObj), n), iLit );
            else if ( Types[n] != ABC_FIN_NEG )
                Vec_IntWriteEntry( vLits, Abc_Var2Lit(Abc_ObjId(pObj), n), Abc_NtkFinSimOneLit(pNew, pObj, Types[n], vLits, n, vTemp) );
            else // if ( iObjs[n] == (int)Abc_ObjId(pObj) && Types[n] == ABC_FIN_NEG )
                Vec_IntWriteEntry( vLits, Abc_Var2Lit(Abc_ObjId(pObj), n), Abc_LitNot(iLit) );
        }
    }
    // create internal nodes
    Abc_NtkForEachObjVec( vNodes, pNtk, pObj, i )
    {
        Type = Abc_NtkIsMappedLogic(pNtk) ? Mio_GateReadCell((Mio_Gate_t *)pObj->pData) : Vec_IntEntry(vTypes, Abc_ObjId(pObj));
        for ( n = 0; n < 2; n++ )
        {
            if ( iObjs[n] != (int)Abc_ObjId(pObj) )
                Vec_IntWriteEntry( vLits, Abc_Var2Lit(Abc_ObjId(pObj), n), Abc_NtkFinSimOneLit(pNew, pObj, Type, vLits, n, vTemp) );
            else if ( Types[n] != ABC_FIN_NEG )
                Vec_IntWriteEntry( vLits, Abc_Var2Lit(Abc_ObjId(pObj), n), Abc_NtkFinSimOneLit(pNew, pObj, Types[n], vLits, n, vTemp) );
            else // if ( iObjs[n] == (int)Abc_ObjId(pObj) && Types[n] == ABC_FIN_NEG )
                Vec_IntWriteEntry( vLits, Abc_Var2Lit(Abc_ObjId(pObj), n), Abc_LitNot(Abc_NtkFinSimOneLit(pNew, pObj, Type, vLits, n, vTemp)) );
        }
    }
    // create comparator
    iMiter = 0;
    Abc_NtkForEachObjVec( vCos, pNtk, pObj, i )
    {
        pLits  = Vec_IntEntryP( vLits, Abc_Var2Lit(Abc_ObjFaninId0(pObj), 0) );
        iLit   = Gia_ManHashXor( pNew, pLits[0], pLits[1] );
        iMiter = Gia_ManHashOr( pNew, iMiter, iLit );
    }
    Gia_ManAppendCo( pNew, iMiter );
    // perform cleanup
    pNew = Gia_ManCleanup( pTemp = pNew );
    Gia_ManStop( pTemp );
    Vec_IntFree( vTemp );
    return pNew;
}
void Abc_NtkFinSimulateOne( Abc_Ntk_t * pNtk, Vec_Int_t * vTypes, Vec_Int_t * vCos, Vec_Int_t * vCis, Vec_Int_t * vNodes, 
                            Vec_Wec_t * vMap2, Vec_Int_t * vPat, Vec_Wrd_t * vSims, int nWords, Vec_Int_t * vPairs, Vec_Wec_t * vRes, int iLevel, int iItem )
{
    Abc_Obj_t * pObj; 
    Vec_Int_t * vClass, * vArray;
    int i, Counter = 0;
    int nItems = Vec_WecSizeSize(vRes);
    assert( nItems == Vec_WecSizeSize(vMap2) );
    assert( nItems <= 128 * nWords );
    // assign inputs
    assert( Vec_IntSize(vPat) == Vec_IntSize(vCis) );
    Abc_NtkForEachObjVec( vCis, pNtk, pObj, i )
    {
        int w, iObj = Abc_ObjId( pObj );
        word Init = Vec_IntEntry(vPat, i) ? ~((word)0) : 0;
        word * pSim = Vec_WrdEntryP( vSims, nWords * Abc_ObjId(pObj) );
        for ( w = 0; w < nWords; w++ )
            pSim[w] = Init;
        vArray = Vec_WecEntry(vMap2, iObj);
        if ( Vec_IntSize(vArray) > 0 )
        {
            int k, iFin, Index, iObj, Type;
            Vec_IntForEachEntryDouble( vArray, iFin, Index, k )
            {
                assert( Index < 64 );
                iObj = Vec_IntEntry( vPairs, 2*iFin );
                assert( iObj == (int)Abc_ObjId(pObj) );
                Type = Vec_IntEntry( vPairs, 2*iFin+1 );
                assert( Type == ABC_FIN_NEG || Type == ABC_FIN_SA0 || Type == ABC_FIN_SA1 );
                if ( Type == ABC_FIN_NEG || Abc_InfoHasBit((unsigned *)pSim, Index) != Abc_NtkFinSimOneBit(pObj, Type, vSims, nWords, Index) )
                    Abc_InfoXorBit( (unsigned *)pSim, Index );
                Counter++;
            }
        }
    }
    // simulate internal nodes
    Abc_NtkForEachObjVec( vNodes, pNtk, pObj, i )
    {
        int iObj = Abc_ObjId( pObj );
        int Type = Abc_NtkIsMappedLogic(pNtk) ? -1 : Vec_IntEntry( vTypes, iObj );
        word * pSim = Vec_WrdEntryP( vSims, nWords * Abc_ObjId(pObj) );
        Abc_NtkFinSimOneWord( pObj, Type, vSims, nWords );
        vArray = Vec_WecEntry(vMap2, iObj);
        if ( Vec_IntSize(vArray) > 0 )
        {
            int k, iFin, Index, iObj, Type;
            Vec_IntForEachEntryDouble( vArray, iFin, Index, k )
            {
                assert( Index < 64 * nWords );
                iObj = Vec_IntEntry( vPairs, 2*iFin );
                assert( iObj == (int)Abc_ObjId(pObj) );
                Type = Vec_IntEntry( vPairs, 2*iFin+1 );
                if ( Type == ABC_FIN_NEG || Abc_InfoHasBit((unsigned *)pSim, Index) != Abc_NtkFinSimOneBit(pObj, Type, vSims, nWords, Index) )
                    Abc_InfoXorBit( (unsigned *)pSim, Index );
                Counter++;
            }
        }
    }
    assert( nItems == 2*Counter );

    // confirm no refinement
    Vec_WecForEachLevelStop( vRes, vClass, i, iLevel+1 )
    {
        int k, iFin, Index, Value;
        int Index0 = Vec_IntEntry( vClass, 1 );
        Vec_IntForEachEntryDoubleStart( vClass, iFin, Index, k, 2 )
        {
            if ( i == iLevel && k/2 >= iItem )
                break;
            //printf( "Double-checking pair %d and %d\n", iFin0, iFin );
            Value = Abc_NtkFinCompareSimTwo( pNtk, vCos, vSims, nWords, Index0, Index );
            assert( Value ); // the same value
        }
    }

    // check refinement
    Vec_WecForEachLevelStart( vRes, vClass, i, iLevel )
    {
        int k, iFin, Index, Value, Index0 = Vec_IntEntry(vClass, 1);
        int j = (i == iLevel) ? 2*iItem : 2;
        Vec_Int_t * vNewClass = NULL;
        Vec_IntForEachEntryDoubleStart( vClass, iFin, Index, k, j )
        {
            Value = Abc_NtkFinCompareSimTwo( pNtk, vCos, vSims, nWords, Index0, Index );
            if ( Value )  // the same value
            {
                Vec_IntWriteEntry( vClass, j++, iFin );
                Vec_IntWriteEntry( vClass, j++, Index );
                continue;
            }
            // create new class
            vNewClass = vNewClass ? vNewClass : Vec_WecPushLevel( vRes );
            Vec_IntPushTwo( vNewClass, iFin, Index );  // index and first entry
            vClass = Vec_WecEntry( vRes, i );
        }
        Vec_IntShrink( vClass, j );
    }
}

/**Function*************************************************************

  Synopsis    [Check equivalence using SAT solver.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Abc_NtkFinCheckPair( Abc_Ntk_t * pNtk, Vec_Int_t * vTypes, Vec_Int_t * vCos, Vec_Int_t * vCis, Vec_Int_t * vNodes, int iObjs[2], int Types[2], Vec_Int_t * vLits )
{
    Gia_Man_t * pGia = Abc_NtkFinMiterToGia( pNtk, vTypes, vCos, vCis, vNodes, iObjs, Types, vLits );
    if ( Gia_ManAndNum(pGia) == 0 && Gia_ObjIsConst0(Gia_ObjFanin0(Gia_ManCo(pGia, 0))) )
    {
        Vec_Int_t * vPat = Gia_ObjFaninC0(Gia_ManCo(pGia, 0)) ? Vec_IntStart(Vec_IntSize(vCis)) : NULL;
        Gia_ManStop( pGia );
        return vPat;
    }
    else
    {
        Cnf_Dat_t * pCnf = (Cnf_Dat_t *)Mf_ManGenerateCnf( pGia, 8, 0, 1, 0, 0 );
        sat_solver * pSat = (sat_solver *)Cnf_DataWriteIntoSolver( pCnf, 1, 0 );
        if ( pSat == NULL )
        {
            Gia_ManStop( pGia );
            Cnf_DataFree( pCnf );
            return NULL;
        }
        else
        {
            int i, nConfLimit = 10000;
            Vec_Int_t * vPat = NULL;
            int status, iVarBeg = pCnf->nVars - Gia_ManPiNum(pGia);// - 1;
            //Gia_AigerWrite( pGia, "temp_detect.aig", 0, 0 );
            Gia_ManStop( pGia );
            Cnf_DataFree( pCnf );
            status = sat_solver_solve( pSat, NULL, NULL, (ABC_INT64_T)nConfLimit, 0, 0, 0 );
            if ( status == l_Undef )
                vPat = Vec_IntAlloc(0);
            else if ( status == l_True )
            {
                vPat = Vec_IntAlloc( Vec_IntSize(vCis) );
                for ( i = 0; i < Vec_IntSize(vCis); i++ )
                    Vec_IntPush( vPat, sat_solver_var_value(pSat, iVarBeg+i) );
            }
            //printf( "%d ", sat_solver_nconflicts(pSat) );
            sat_solver_delete( pSat );
            return vPat;
        }
    }
}


/**Function*************************************************************

  Synopsis    [Refinement of equivalence classes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkFinLocalSetup( Vec_Int_t * vPairs, Vec_Int_t * vList, Vec_Wec_t * vMap2, Vec_Int_t * vResArray )
{
    int i, iFin;
    Vec_IntClear( vResArray );
    Vec_IntForEachEntry( vList, iFin, i )
    {
        int iObj = Vec_IntEntry( vPairs, 2*iFin );
        Vec_Int_t * vArray = Vec_WecEntry( vMap2, iObj );
        Vec_IntPushTwo( vArray, iFin, i );
        Vec_IntPushTwo( vResArray, iFin, i );
    }
}
void Abc_NtkFinLocalSetdown( Vec_Int_t * vPairs, Vec_Int_t * vList, Vec_Wec_t * vMap2 )
{
    int i, iFin;
    Vec_IntForEachEntry( vList, iFin, i )
    {
        int iObj = Vec_IntEntry( vPairs, 2*iFin );
        Vec_Int_t * vArray = Vec_WecEntry( vMap2, iObj );
        Vec_IntClear( vArray );
    }
}
int Abc_NtkFinRefinement( Abc_Ntk_t * pNtk, Vec_Int_t * vTypes, Vec_Int_t * vCos, Vec_Int_t * vCis, Vec_Int_t * vNodes, 
                          Vec_Int_t * vPairs, Vec_Int_t * vList, Vec_Wec_t * vMap2, Vec_Wec_t * vResult )
{
    Vec_Wec_t * vRes  = Vec_WecAlloc( 100 );
    int nWords = Abc_Bit6WordNum( Vec_IntSize(vList) );
    Vec_Wrd_t * vSims = Vec_WrdStart( nWords * Abc_NtkObjNumMax(pNtk) );  // simulation info for each object
    Vec_Int_t * vLits = Vec_IntStart( 2*Abc_NtkObjNumMax(pNtk) );         // two literals for each object
    Vec_Int_t * vPat, * vClass, * vArray;  
    int i, k, iFin, Index, nCalls = 0;
    // prepare
    vArray = Vec_WecPushLevel( vRes );
    Abc_NtkFinLocalSetup( vPairs, vList, vMap2, vArray );
    // try all-0/all-1 pattern
    for ( i = 0; i < 2; i++ )
    {
        vPat = Vec_IntAlloc( Vec_IntSize(vCis) );
        Vec_IntFill( vPat, Vec_IntSize(vCis), i );
        Abc_NtkFinSimulateOne( pNtk, vTypes, vCos, vCis, vNodes, vMap2, vPat, vSims, nWords, vPairs, vRes, 0, 1 );
        Vec_IntFree( vPat );
    }
    // explore the classes
    //Vec_WecPrint( vRes, 0 );
    Vec_WecForEachLevel( vRes, vClass, i )
    {
        int iFin0  = Vec_IntEntry( vClass, 0 );
        Vec_IntForEachEntryDoubleStart( vClass, iFin, Index, k, 2 )
        {
            int Objs[2]  = { Vec_IntEntry(vPairs, 2*iFin0),   Vec_IntEntry(vPairs, 2*iFin)   }; 
            int Types[2] = { Vec_IntEntry(vPairs, 2*iFin0+1), Vec_IntEntry(vPairs, 2*iFin+1) }; 
            nCalls++;
            //printf( "Checking pair %d and %d.\n", iFin0, iFin );
            vPat = Abc_NtkFinCheckPair( pNtk, vTypes, vCos, vCis, vNodes, Objs, Types, vLits );
            if ( vPat == NULL ) // proved
                continue;
            assert( Vec_IntEntry(vClass, k) == iFin );
            if ( Vec_IntSize(vPat) == 0 )
            {
                Vec_Int_t * vNewClass = Vec_WecPushLevel( vRes );
                Vec_IntPushTwo( vNewClass, iFin, Index );  // index and first entry
                vClass = Vec_WecEntry( vRes, i );
                Vec_IntDrop( vClass, k+1 );
                Vec_IntDrop( vClass, k );
            }
            else // resimulate and refine
                Abc_NtkFinSimulateOne( pNtk, vTypes, vCos, vCis, vNodes, vMap2, vPat, vSims, nWords, vPairs, vRes, i, k/2 );
            Vec_IntFree( vPat );
            // make sure refinement happened (k'th entry is now absent or different)
            vClass = Vec_WecEntry( vRes, i );
            assert( Vec_IntSize(vClass) <= k || Vec_IntEntry(vClass, k) != iFin );
            k -= 2;
            //Vec_WecPrint( vRes, 0 );
        }
    }
    // unprepare
    Abc_NtkFinLocalSetdown( vPairs, vList, vMap2 );
    // reload proved equivs into the final array
    Vec_WecForEachLevel( vRes, vArray, i )
    {
        assert( Vec_IntSize(vArray) % 2 == 0 );
        if ( Vec_IntSize(vArray) <= 2 )
            continue;
        vClass = Vec_WecPushLevel( vResult );
        Vec_IntForEachEntryDouble( vArray, iFin, Index, k )
            Vec_IntPush( vClass, iFin );
    }
    Vec_WecFree( vRes );
    Vec_WrdFree( vSims );
    Vec_IntFree( vLits );
    return nCalls;
}

/**Function*************************************************************

  Synopsis    [Detecting classes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Abc_ObjFinGateType( Abc_Obj_t * pNode )
{
    char * pSop = (char *)pNode->pData;
    if ( !strcmp(pSop, "1 1\n") )         return ABC_FIN_RDOB_BUFF;
    if ( !strcmp(pSop, "0 1\n") )         return ABC_FIN_RDOB_NOT;
    if ( !strcmp(pSop, "11 1\n") )        return ABC_FIN_RDOB_AND;
    if ( !strcmp(pSop, "11 0\n") )        return ABC_FIN_RDOB_NAND;
    if ( !strcmp(pSop, "00 0\n") )        return ABC_FIN_RDOB_OR;
    if ( !strcmp(pSop, "00 1\n") )        return ABC_FIN_RDOB_NOR;
    if ( !strcmp(pSop, "01 1\n10 1\n") )  return ABC_FIN_RDOB_XOR;
    if ( !strcmp(pSop, "11 1\n00 1\n") )  return ABC_FIN_RDOB_NXOR;
    return ABC_FIN_NONE;
}
int Abc_NtkFinCheckTypesOk( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pObj; int i;
    Abc_NtkForEachNode( pNtk, pObj, i )
        if ( Abc_ObjFinGateType(pObj) == ABC_FIN_NONE )
            return i;
    return 0;
}
int Abc_NtkFinCheckTypesOk2( Abc_Ntk_t * pNtk )
{
    Mio_Library_t * pLib = (Mio_Library_t *)pNtk->pManFunc;
    int i, iObj, Type;
    Vec_IntForEachEntryDoubleStart( pNtk->vFins, iObj, Type, i, 2 )
    {
        Abc_Obj_t * pObj = Abc_NtkObj( pNtk, iObj );
        Mio_Gate_t * pGateFlt, * pGateObj = (Mio_Gate_t *)pObj->pData;
        if ( Type < 0 ) // SA0, SA1, NEG
            continue;
        pGateFlt = Mio_LibraryReadGateById( pLib, Type );
        if ( Mio_GateReadPinNum(pGateFlt) < 1 )
            continue;
        if ( Mio_GateReadPinNum(pGateObj) != Mio_GateReadPinNum(pGateFlt) )
            return iObj;
    }
    return 0;
}
Vec_Int_t * Abc_NtkFinComputeTypes( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pObj; int i;
    Vec_Int_t * vObjs = Vec_IntStart( Abc_NtkObjNumMax(pNtk) );
    Abc_NtkForEachNode( pNtk, pObj, i )
        Vec_IntWriteEntry( vObjs, Abc_ObjId(pObj), Abc_ObjFinGateType(pObj) );
    return vObjs;
}
Vec_Int_t * Abc_NtkFinComputeObjects( Vec_Int_t * vPairs, Vec_Wec_t ** pvMap, int nObjs )
{
    int i, iObj, Type;
    Vec_Int_t * vObjs = Vec_IntAlloc( 100 );
    *pvMap = Vec_WecStart( nObjs );
    Vec_IntForEachEntryDoubleStart( vPairs, iObj, Type, i, 2 )
    {
        Vec_IntPush( vObjs, iObj );
        Vec_WecPush( *pvMap, iObj, i/2 );
    }
    Vec_IntUniqify( vObjs );
    return vObjs;
}
Vec_Int_t * Abc_NtkFinCreateList( Vec_Wec_t * vMap, Vec_Int_t * vClass )
{
    int i, iObj;
    Vec_Int_t * vList = Vec_IntAlloc( 100 );
    Vec_IntForEachEntry( vClass, iObj, i )
        Vec_IntAppend( vList, Vec_WecEntry(vMap, iObj) );
    return vList;
}
int Abc_NtkFinCountPairs( Vec_Wec_t * vClasses )
{
    int i, Counter = 0;
    Vec_Int_t * vLevel;
    Vec_WecForEachLevel( vClasses, vLevel, i )
        Counter += Vec_IntSize(vLevel) - 1;
    return Counter;
}
Vec_Wec_t * Abc_NtkDetectFinClasses( Abc_Ntk_t * pNtk, int fVerbose )
{
    Vec_Int_t * vTypes = NULL; // gate types
    Vec_Int_t * vPairs;        // original info as a set of pairs (ObjId, TypeId)
    Vec_Int_t * vObjs;         // all those objects that have some fin 
    Vec_Wec_t * vMap;          // for each object, the set of fins
    Vec_Wec_t * vMap2;         // for each local object, the set of pairs (Info, Index)
    Vec_Wec_t * vClasses;      // classes of objects
    Vec_Wec_t * vCoSets;       // corresponding CO sets
    Vec_Int_t * vClass;        // one class
    Vec_Int_t * vCoSet;        // one set of COs
    Vec_Int_t * vCiSet;        // one set of CIs
    Vec_Int_t * vNodeSet;      // one set of nodes
    Vec_Int_t * vList;         // one info list
    Vec_Wec_t * vResult;       // resulting equivalences
    int i, iObj, nCalls;
    if ( pNtk->vFins == NULL )
    {
        printf( "Current network does not have the required info.\n" );
        return NULL;
    }
    assert( Abc_NtkIsSopLogic(pNtk) || Abc_NtkIsMappedLogic(pNtk) );
    if ( Abc_NtkIsSopLogic(pNtk) )
    {
        iObj = Abc_NtkFinCheckTypesOk(pNtk);
        if ( iObj )
        {
            printf( "Current network contains unsupported gate types (for example, see node \"%s\").\n", Abc_ObjName(Abc_NtkObj(pNtk, iObj)) );
            return NULL;
        }
        vTypes   = Abc_NtkFinComputeTypes( pNtk );
    }
    else if ( Abc_NtkIsMappedLogic(pNtk) )
    {
        iObj = Abc_NtkFinCheckTypesOk2(pNtk);
        if ( iObj )
        {
            printf( "Current network has mismatch between mapped gate size and fault gate size (for example, see node \"%s\").\n", Abc_ObjName(Abc_NtkObj(pNtk, iObj)) );
            return NULL;
        }
    }
    else assert( 0 );
    //Abc_NtkFrameExtend( pNtk );
    // collect data
    vPairs   = pNtk->vFins;
    vObjs    = Abc_NtkFinComputeObjects( vPairs, &vMap, Abc_NtkObjNumMax(pNtk) );
    vClasses = Abc_NtkDetectObjClasses( pNtk, vObjs, &vCoSets );
    // refine classes
    vCiSet   = Vec_IntAlloc( 1000 );
    vNodeSet = Vec_IntAlloc( 1000 );
    vMap2    = Vec_WecStart( Abc_NtkObjNumMax(pNtk) );
    vResult  = Vec_WecAlloc( 1000 );
    Vec_WecForEachLevel( vClasses, vClass, i )
    {
        // extract one window
        vCoSet = Vec_WecEntry( vCoSets, i );
        Abc_NtkFinMiterCollect( pNtk, vCoSet, vCiSet, vNodeSet );
        // refine one class
        vList = Abc_NtkFinCreateList( vMap, vClass );
        nCalls = Abc_NtkFinRefinement( pNtk, vTypes, vCoSet, vCiSet, vNodeSet, vPairs, vList, vMap2, vResult );
        if ( fVerbose )
            printf( "Group %4d :  Obj =%4d. Fins =%4d.  CI =%5d. CO =%5d. Node =%6d.  SAT calls =%5d.\n", 
                i, Vec_IntSize(vClass), Vec_IntSize(vList), Vec_IntSize(vCiSet), Vec_IntSize(vCoSet), Vec_IntSize(vNodeSet), nCalls );
        Vec_IntFree( vList );
    }
    // sort entries in each array
    Vec_WecForEachLevel( vResult, vClass, i )
        Vec_IntSort( vClass, 0 );
    // sort by the index of the first entry
    Vec_WecSortByFirstInt( vResult, 0 ); 
    // cleanup
    Vec_IntFreeP( & vTypes );
    Vec_IntFree( vObjs );
    Vec_WecFree( vClasses );
    Vec_WecFree( vMap );
    Vec_WecFree( vMap2 );
    Vec_WecFree( vCoSets );
    Vec_IntFree( vCiSet );
    Vec_IntFree( vNodeSet );
    return vResult;
}

/**Function*************************************************************

  Synopsis    [Print results.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkPrintFinResults( Vec_Wec_t * vClasses )
{
    Vec_Int_t * vClass;
    int i, k, Entry;
    Vec_WecForEachLevel( vClasses, vClass, i )
        Vec_IntForEachEntryStart( vClass, Entry, k, 1 )
            printf( "%d %d\n", Vec_IntEntry(vClass, 0), Entry );
}

/**Function*************************************************************

  Synopsis    [Top-level procedure.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDetectClassesTest( Abc_Ntk_t * pNtk, int fSeq, int fVerbose, int fVeryVerbose )
{
    Vec_Wec_t * vResult;
    abctime clk = Abc_Clock();
    if ( fSeq ) 
        Abc_NtkFrameExtend( pNtk );
    vResult = Abc_NtkDetectFinClasses( pNtk, fVerbose );
    printf( "Computed %d equivalence classes with %d item pairs.  ", Vec_WecSize(vResult), Abc_NtkFinCountPairs(vResult) );
    Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
    if ( fVeryVerbose )
        Vec_WecPrint( vResult, 1 );
//    if ( fVerbose )
//        Abc_NtkPrintFinResults( vResult );
    Vec_WecFree( vResult );
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END