summaryrefslogtreecommitdiffstats
path: root/src/base/abci/abcFx.c
blob: cf6001484154c1e928891e63725295488416a16f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #ffffff; }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
#!/bin/sh
set -e

pkg_dir=$1

if [ -z $pkg_dir ] || [ ! -d $pkg_dir ]; then
	echo "Usage: ipkg-make-index <package_directory>"
	exit 1
fi

which md5sum 2>&1 >/dev/null || alias md5sum=md5

for pkg in `find $pkg_dir -name '*.ipk' | sort`; do
	echo "Generating index for package $pkg" >&2
	file_size=$(ls -l $pkg | awk '{print $5}')
	md5sum=$(md5sum $pkg | awk '{print $1}')
	# Take pains to make variable value sed-safe
	sed_safe_pkg=`echo $pkg | sed -e 's/^\.\///g' -e 's/\\//\\\\\\//g'`
	tar -xzOf $pkg ./control.tar.gz | tar xzOf - ./control | sed -e "s/^Description:/Filename: $sed_safe_pkg\\
Size: $file_size\\
MD5Sum: $md5sum\\
Description:/"
	echo ""
done
5' href='#n295'>295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/**CFile****************************************************************

  FileName    [abcFx.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Network and node package.]

  Synopsis    [Implementation of traditional "fast_extract" algorithm.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - April 26, 2013.]

  Revision    [$Id: abcFx.c,v 1.00 2013/04/26 00:00:00 alanmi Exp $]

***********************************************************************/

#include "base/abc/abc.h"
#include "misc/vec/vecWec.h"
#include "misc/vec/vecQue.h"
#include "misc/vec/vecHsh.h"

ABC_NAMESPACE_IMPL_START

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

/*
    The code in this file implements the traditional "fast_extract" algorithm, 
    which extracts two-cube divisors concurrently with single-cube two-literal divisors,
    as proposed in the TCAD'92 paper by J. Rajski and J. Vasudevamurthi.

    Integration notes:

    It is assumed that each object (primary input or internal node) in the original network 
    is associated with a unique integer number, called object identifier (ObjId, for short).

    The user's input data given to 'fast_extract" is an array of cubes (pMan->vCubes).
    Each cube is an array of integers, in which the first entry contains ObjId of the node, 
    to which this cube belongs in the original network. The following entries of a cube are 
    SOP literals of this cube.  Each literal is represtned as 2*FaninId + ComplAttr, where FaninId 
    is ObjId of the fanin node and ComplAttr is 1 if literal is complemented, and 0 otherwise.

    The user's output data produced by 'fast_extract' is also an array of cubes (pMan->vCubes).
    If no divisors have been extracted, the output array is the same as the input array.
    If some divisors have been extracted, the output array contains updated old cubes and new cubes 
    representing the extracted divisors. The new divisors have their ObjId starting from the 
    largest ObjId used in the cubes. To give the user more flexibility, which may be needed when some 
    ObjIds are already used for primary output nodes, which do not participate in fast_extract,
    the parameter ObjIdMax is passed to procedure Fx_FastExtract().  The new divisors will receive
    their ObjId starting from ObjIdMax onward, as divisor extaction proceeds.

    The following two requirements are imposed on the input and output array of cubes:
    (1) The array of cubes should be sorted by the first entry in each cube (that is, cubes belonging 
    to the same node should form a contiguous range). 
    (2) Literals in a cube should be sorted in the increasing order of the integer numbers.
    
    To integrate this code into a calling application, such as ABC, the input cube array should 
    be generated (below this is done by the procedure Abc_NtkFxRetrieve) and the output cube array
    should be incorporated into the current network (below this is done by the procedure Abc_NtkFxInsert).
    In essence, the latter procedure performs the following:
    - removes the current fanins and SOPs of each node in the network
    - adds new nodes for each new divisor introduced by "fast_extract"
    - populates fanins and SOPs of each node, both old and new, as indicaded by the resulting cube array.

    Implementation notes:

    The implementation is optimized for simplicity and speed of computation.
    (1) Main input/output data-structure (pMan->vCubes) is the array of cubes which is dynamically updated by the algorithm.
    (2) Auxiliary data-structure (pMan->vLits) is the array of arrays. The i-th array contains IDs of cubes which have literal i.
    It may be convenient to think about the first (second) array as rows (columns) of a sparse matrix, 
    although the sparse matrix data-structure is not used in the proposed implementation.
    (3) Hash table (pMan->pHash) hashes the normalized divisors (represented as integer arrays) into integer numbers.
    (4) Array of divisor weights (pMan->vWeights), that is, the number of SOP literals to be saved by extacting each divisor.
    (5) Priority queue (pMan->vPrio), which sorts divisor (integer numbers) by their weight
    (6) Integer array (pMan->vVarCube), which maps each ObjId into the first cube of this object, 
    or -1, if there is no cubes as in the case of a primary input.

*/

typedef struct Fx_Man_t_ Fx_Man_t;
struct Fx_Man_t_
{
    // user's data
    Vec_Wec_t *     vCubes;     // cube -> lit
    int             LitCountMax;// max size of divisor to extract
    // internal data
    Vec_Wec_t *     vLits;      // lit -> cube
    Vec_Int_t *     vCounts;    // literal counts (currently not used)
    Hsh_VecMan_t *  pHash;      // hash table for normalized divisors
    Vec_Flt_t *     vWeights;   // divisor weights
    Vec_Que_t *     vPrio;      // priority queue for divisors by weight
    Vec_Int_t *     vVarCube;   // mapping ObjId into its first cube
    // temporary data to update the data-structure when a divisor is extracted
    Vec_Int_t *     vCubesS;    // single cubes for the given divisor
    Vec_Int_t *     vCubesD;    // cube pairs for the given divisor
    Vec_Int_t *     vCompls;    // complemented attribute of each cube pair
    Vec_Int_t *     vCubeFree;  // cube-free divisor
    Vec_Int_t *     vDiv;       // selected divisor
    // statistics 
    abctime         timeStart;  // starting time
    int             nVars;      // original problem variables
    int             nLits;      // the number of SOP literals
    int             nDivs;      // the number of extracted divisors
    int             nCompls;    // the number of complements
    int             nPairsS;    // number of lit pairs
    int             nPairsD;    // number of cube pairs
    int             nDivsS;     // single cube divisors
    int             nDivMux[3]; // 0 = mux, 1 = compl mux, 2 = no mux
};

static inline int Fx_ManGetFirstVarCube( Fx_Man_t * p, Vec_Int_t * vCube ) { return Vec_IntEntry( p->vVarCube, Vec_IntEntry(vCube, 0) ); }

#define Fx_ManForEachCubeVec( vVec, vCubes, vCube, i )           \
    for ( i = 0; (i < Vec_IntSize(vVec)) && ((vCube) = Vec_WecEntry(vCubes, Vec_IntEntry(vVec, i))); i++ )

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Retrieves SOP information for fast_extract.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Wec_t * Abc_NtkFxRetrieve( Abc_Ntk_t * pNtk )
{
    Vec_Wec_t * vCubes;
    Vec_Int_t * vCube;
    Abc_Obj_t * pNode;
    char * pCube, * pSop;
    int nVars, i, v, Lit;
    assert( Abc_NtkIsSopLogic(pNtk) );
    vCubes = Vec_WecAlloc( 1000 );
    Abc_NtkForEachNode( pNtk, pNode, i )
    {
        pSop = (char *)pNode->pData;
        nVars = Abc_SopGetVarNum(pSop);
        assert( nVars == Abc_ObjFaninNum(pNode) );
//        if ( nVars < 2 ) continue;
        Abc_SopForEachCube( pSop, nVars, pCube )
        {
            vCube = Vec_WecPushLevel( vCubes );
            Vec_IntPush( vCube, Abc_ObjId(pNode) );
            Abc_CubeForEachVar( pCube, Lit, v )
            {
                if ( Lit == '0' )
                    Vec_IntPush( vCube, Abc_Var2Lit(Abc_ObjFaninId(pNode, v), 1) );
                else if ( Lit == '1' )
                    Vec_IntPush( vCube, Abc_Var2Lit(Abc_ObjFaninId(pNode, v), 0) );
            }
            Vec_IntSelectSort( Vec_IntArray(vCube) + 1, Vec_IntSize(vCube) - 1 );
        }
    }
    return vCubes;
}

/**Function*************************************************************

  Synopsis    [Inserts SOP information after fast_extract.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkFxInsert( Abc_Ntk_t * pNtk, Vec_Wec_t * vCubes )
{
    Vec_Int_t * vCube, * vPres, * vFirst, * vCount;
    Abc_Obj_t * pNode, * pFanin;
    char * pCube, * pSop;
    int i, k, v, Lit, iFanin, iNodeMax = 0;
    assert( Abc_NtkIsSopLogic(pNtk) );
    // check that cubes have no gaps and are ordered by first node
    Lit = -1;
    Vec_WecForEachLevel( vCubes, vCube, i )
    {
        assert( Vec_IntSize(vCube) > 0 );
        assert( Lit <= Vec_IntEntry(vCube, 0) );
        Lit = Vec_IntEntry(vCube, 0);
    }
    // find the largest index
    Vec_WecForEachLevel( vCubes, vCube, i )
        iNodeMax = Abc_MaxInt( iNodeMax, Vec_IntEntry(vCube, 0) );
    // quit if nothing changes
    if ( iNodeMax < Abc_NtkObjNumMax(pNtk) )
    {
        printf( "The network is unchanged by fast extract.\n" );
        return;
    }
    // create new nodes
    for ( i = Abc_NtkObjNumMax(pNtk); i <= iNodeMax; i++ )
    {
        pNode = Abc_NtkCreateNode( pNtk );
        assert( i == (int)Abc_ObjId(pNode) );
    }
    // create node fanins
    vFirst = Vec_IntStart( Abc_NtkObjNumMax(pNtk) );
    vCount = Vec_IntStart( Abc_NtkObjNumMax(pNtk) );
    Vec_WecForEachLevel( vCubes, vCube, i )
    {
        iFanin = Vec_IntEntry( vCube, 0 );
        if ( Vec_IntEntry(vCount, iFanin) == 0 )
            Vec_IntWriteEntry( vFirst, iFanin, i );
        Vec_IntAddToEntry( vCount, iFanin, 1 );
    }
    // create node SOPs
    vPres = Vec_IntStartFull( Abc_NtkObjNumMax(pNtk) );
    Abc_NtkForEachNode( pNtk, pNode, i )
    {
//        if ( Vec_IntEntry(vCount, i) == 0 ) continue;
        Abc_ObjRemoveFanins( pNode );
        // create fanins
        assert( Vec_IntEntry(vCount, i) > 0 );
        for ( k = 0; k < Vec_IntEntry(vCount, i); k++ )
        {
            vCube = Vec_WecEntry( vCubes, Vec_IntEntry(vFirst, i) + k );
            assert( Vec_IntEntry( vCube, 0 ) == i );
            Vec_IntForEachEntryStart( vCube, Lit, v, 1 )
            {
                pFanin = Abc_NtkObj(pNtk, Abc_Lit2Var(Lit));
                if ( Vec_IntEntry(vPres, Abc_ObjId(pFanin)) >= 0 )
                    continue;
                Vec_IntWriteEntry(vPres, Abc_ObjId(pFanin), Abc_ObjFaninNum(pNode));
                Abc_ObjAddFanin( pNode, pFanin );
            }
        }
        // create SOP
        pSop = pCube = Abc_SopStart( (Mem_Flex_t *)pNtk->pManFunc, Vec_IntEntry(vCount, i), Abc_ObjFaninNum(pNode) );
        for ( k = 0; k < Vec_IntEntry(vCount, i); k++ )
        {
            vCube = Vec_WecEntry( vCubes, Vec_IntEntry(vFirst, i) + k );
            assert( Vec_IntEntry( vCube, 0 ) == i );
            Vec_IntForEachEntryStart( vCube, Lit, v, 1 )
            {
                pFanin = Abc_NtkObj(pNtk, Abc_Lit2Var(Lit));
                iFanin = Vec_IntEntry(vPres, Abc_ObjId(pFanin));
                assert( iFanin >= 0 && iFanin < Abc_ObjFaninNum(pNode) );
                pCube[iFanin] = Abc_LitIsCompl(Lit) ? '0' : '1';
            }
            pCube += Abc_ObjFaninNum(pNode) + 3;
        }
        // complement SOP if the original one was complemented
        if ( pNode->pData && Abc_SopIsComplement((char *)pNode->pData) )
            Abc_SopComplement( pSop );
        pNode->pData = pSop;
        // clean fanins
        Abc_ObjForEachFanin( pNode, pFanin, v )
            Vec_IntWriteEntry( vPres, Abc_ObjId(pFanin), -1 );
    }
    Vec_IntFree( vFirst );
    Vec_IntFree( vCount );
    Vec_IntFree( vPres );
}

/**Function*************************************************************

  Synopsis    [Makes sure the nodes do not have complemented and duplicated fanins.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkFxCheck( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pNode;
    int i;
//    Abc_NtkForEachObj( pNtk, pNode, i )
//        Abc_ObjPrint( stdout, pNode );
    Abc_NtkForEachNode( pNtk, pNode, i )
        if ( !Vec_IntCheckUniqueSmall( &pNode->vFanins ) )
            return 0;
    return 1;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkFxPerform( Abc_Ntk_t * pNtk, int nNewNodesMax, int LitCountMax, int fVerbose )
{
    extern int Fx_FastExtract( Vec_Wec_t * vCubes, int ObjIdMax, int nNewNodesMax, int LitCountMax, int fVerbose );
    Vec_Wec_t * vCubes;
    assert( Abc_NtkIsSopLogic(pNtk) );
    // check unique fanins
    if ( !Abc_NtkFxCheck(pNtk) )
    {
        printf( "Abc_NtkFastExtract: Nodes have duplicated fanins. FX is not performed.\n" );
        return 0;
    }
    // sweep removes useless nodes
    Abc_NtkCleanup( pNtk, 0 );
//    Abc_NtkOrderFanins( pNtk );
    // makes sure the SOPs are SCC-free and D1C-free
    Abc_NtkMakeLegit( pNtk );
    // collect information about the covers
    vCubes = Abc_NtkFxRetrieve( pNtk );
    // call the fast extract procedure
    if ( Fx_FastExtract( vCubes, Abc_NtkObjNumMax(pNtk), nNewNodesMax, LitCountMax, fVerbose ) > 0 )
    {
        // update the network
        Abc_NtkFxInsert( pNtk, vCubes );
        Vec_WecFree( vCubes );
        if ( !Abc_NtkCheck( pNtk ) )
            printf( "Abc_NtkFxPerform: The network check has failed.\n" );
        return 1;
    }
    else
        printf( "Warning: The network has not been changed by \"fx\".\n" );
    Vec_WecFree( vCubes );
    return 0;
}



/**Function*************************************************************

  Synopsis    [Starting the manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fx_Man_t * Fx_ManStart( Vec_Wec_t * vCubes )
{
    Fx_Man_t * p;
    p = ABC_CALLOC( Fx_Man_t, 1 );
    p->vCubes   = vCubes;
    // temporary data
    p->vCubesS   = Vec_IntAlloc( 100 );
    p->vCubesD   = Vec_IntAlloc( 100 );
    p->vCompls   = Vec_IntAlloc( 100 );
    p->vCubeFree = Vec_IntAlloc( 100 );
    p->vDiv      = Vec_IntAlloc( 100 );
    return p;
}
void Fx_ManStop( Fx_Man_t * p )
{
//    Vec_WecFree( p->vCubes );
    Vec_WecFree( p->vLits );
    Vec_IntFree( p->vCounts );
    Hsh_VecManStop( p->pHash );
    Vec_FltFree( p->vWeights );
    Vec_QueFree( p->vPrio );
    Vec_IntFree( p->vVarCube );
    // temporary data
    Vec_IntFree( p->vCubesS );
    Vec_IntFree( p->vCubesD );
    Vec_IntFree( p->vCompls );
    Vec_IntFree( p->vCubeFree );
    Vec_IntFree( p->vDiv );
    ABC_FREE( p );
}

/**Function*************************************************************

  Synopsis    [Printing procedures.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline char Fx_PrintDivLit( int Lit ) { return (Abc_LitIsCompl(Lit) ? 'A' : 'a') + Abc_Lit2Var(Lit); }
static inline void Fx_PrintDivOneReal( Vec_Int_t * vDiv )
{
    int i, Lit;
    Vec_IntForEachEntry( vDiv, Lit, i )
        if ( !Abc_LitIsCompl(Lit) )
            printf( "%c", Fx_PrintDivLit(Abc_Lit2Var(Lit)) );
    printf( " + " );
    Vec_IntForEachEntry( vDiv, Lit, i )
        if ( Abc_LitIsCompl(Lit) )
            printf( "%c", Fx_PrintDivLit(Abc_Lit2Var(Lit)) );
}
static inline void Fx_PrintDivOne( Vec_Int_t * vDiv )
{
    int i, Lit;
    Vec_IntForEachEntry( vDiv, Lit, i )
        if ( !Abc_LitIsCompl(Lit) )
            printf( "%c", Fx_PrintDivLit( Abc_Var2Lit(i, Abc_LitIsCompl(Lit)) ) );
    printf( " + " );
    Vec_IntForEachEntry( vDiv, Lit, i )
        if ( Abc_LitIsCompl(Lit) )
            printf( "%c", Fx_PrintDivLit( Abc_Var2Lit(i, Abc_LitIsCompl(Lit)) ) );
}
static inline void Fx_PrintDivArray( Vec_Int_t * vDiv )
{
    int i, Lit;
    Vec_IntForEachEntry( vDiv, Lit, i )
        if ( !Abc_LitIsCompl(Lit) )
            printf( "%d(1) ", Abc_Lit2Var(Lit) );
    printf( " + " );
    Vec_IntForEachEntry( vDiv, Lit, i )
        if ( Abc_LitIsCompl(Lit) )
            printf( "%d(2) ", Abc_Lit2Var(Lit) );
}
static inline void Fx_PrintDiv( Fx_Man_t * p, int iDiv )
{
    int i;
    printf( "%4d : ", p->nDivs );
    printf( "Div %7d : ", iDiv );
    printf( "Weight %5d  ", (int)Vec_FltEntry(p->vWeights, iDiv) );
//    printf( "Compl %4d  ", p->nCompls );
    Fx_PrintDivOne( Hsh_VecReadEntry(p->pHash, iDiv) );
    for ( i = Vec_IntSize(Hsh_VecReadEntry(p->pHash, iDiv)) + 3; i < 16; i++ )
        printf( " " );
    printf( "Lits =%7d  ", p->nLits );
    printf( "Divs =%8d  ", Hsh_VecSize(p->pHash) );
    Abc_PrintTime( 1, "Time", Abc_Clock() - p->timeStart );
}
static void Fx_PrintDivisors( Fx_Man_t * p )
{
    int iDiv;
    for ( iDiv = 0; iDiv < Vec_FltSize(p->vWeights); iDiv++ )
        Fx_PrintDiv( p, iDiv );
}
static void Fx_PrintLiterals( Fx_Man_t * p )
{
    Vec_Int_t * vTemp;
    int i;
    Vec_WecForEachLevel( p->vLits, vTemp, i )
    {
        printf( "%c : ", Fx_PrintDivLit(i) );
        Vec_IntPrint( vTemp );
    }
}
static void Fx_PrintMatrix( Fx_Man_t * p )
{
    Vec_Int_t * vCube;
    int i, v, Lit, nObjs;
    char * pLine;
    printf( "         " );
    nObjs = Vec_WecSize(p->vLits)/2;
    for ( i = 0; i < Abc_MinInt(nObjs, 26); i++ )
        printf( "%c", 'a' + i );
    printf( "\n" );
    pLine = ABC_CALLOC( char, nObjs+1 );
    Vec_WecForEachLevel( p->vCubes, vCube, i )
    {
        if ( Vec_IntSize(vCube) == 0 )
            continue;
        memset( pLine, '-', nObjs );
        Vec_IntForEachEntryStart( vCube, Lit, v, 1 )
        {
            assert( Abc_Lit2Var(Lit) < nObjs );
            pLine[Abc_Lit2Var(Lit)] = Abc_LitIsCompl(Lit) ? '0' : '1';
        }
        printf( "%6d : %s %4d\n", i, pLine, Vec_IntEntry(vCube, 0) );
    }
    ABC_FREE( pLine );
    Fx_PrintLiterals( p );
    Fx_PrintDivisors( p );
}
static void Fx_PrintStats( Fx_Man_t * p, abctime clk )
{
    printf( "Cubes =%7d  ", Vec_WecSizeUsed(p->vCubes) );
    printf( "Lits  =%7d  ", Vec_WecSizeUsed(p->vLits) );
    printf( "Divs  =%7d  ", Hsh_VecSize(p->pHash) );
    printf( "Divs+ =%7d  ", Vec_QueSize(p->vPrio) );
    printf( "Compl =%6d  ", p->nDivMux[1] );
//    printf( "DivsS =%6d  ", p->nDivsS );
//    printf( "PairS =%6d  ", p->nPairsS );
//    printf( "PairD =%6d  ", p->nPairsD );
    Abc_PrintTime( 1, "Time", clk );
//    printf( "\n" );
}

/**Function*************************************************************

  Synopsis    [Returns 1 if the divisor should be complemented.]

  Description [Normalizes the divisor by putting, first, positive control 
  literal first and, second, positive data1 literal. As the result, 
  a MUX divisor is (ab + !ac) and an XOR divisor is (ab + !a!b).]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static int Fx_ManDivNormalize( Vec_Int_t * vCubeFree ) // return 1 if complemented
{
    int * L = Vec_IntArray(vCubeFree);
    int RetValue = 0, LitA0 = -1, LitB0 = -1, LitA1 = -1, LitB1 = -1;
    assert( Vec_IntSize(vCubeFree) == 4 );
    if ( Abc_LitIsCompl(L[0]) != Abc_LitIsCompl(L[1]) && (L[0] >> 2) == (L[1] >> 2) ) // diff cubes, same vars
    {
        if ( Abc_LitIsCompl(L[2]) == Abc_LitIsCompl(L[3]) )
            return -1;
        LitA0 = Abc_Lit2Var(L[0]), LitB0 = Abc_Lit2Var(L[1]);
        if ( Abc_LitIsCompl(L[0]) == Abc_LitIsCompl(L[2]) )
        {
            assert( Abc_LitIsCompl(L[1]) == Abc_LitIsCompl(L[3]) );
            LitA1 = Abc_Lit2Var(L[2]), LitB1 = Abc_Lit2Var(L[3]);
        }
        else
        {
            assert( Abc_LitIsCompl(L[0]) == Abc_LitIsCompl(L[3]) );
            assert( Abc_LitIsCompl(L[1]) == Abc_LitIsCompl(L[2]) );
            LitA1 = Abc_Lit2Var(L[3]), LitB1 = Abc_Lit2Var(L[2]);
        }
    }
    else if ( Abc_LitIsCompl(L[1]) != Abc_LitIsCompl(L[2]) && (L[1] >> 2) == (L[2] >> 2) )
    {
        if ( Abc_LitIsCompl(L[0]) == Abc_LitIsCompl(L[3]) )
            return -1;
        LitA0 = Abc_Lit2Var(L[1]), LitB0 = Abc_Lit2Var(L[2]);
        if ( Abc_LitIsCompl(L[1]) == Abc_LitIsCompl(L[0]) )
            LitA1 = Abc_Lit2Var(L[0]), LitB1 = Abc_Lit2Var(L[3]);
        else
            LitA1 = Abc_Lit2Var(L[3]), LitB1 = Abc_Lit2Var(L[0]);
    }
    else if ( Abc_LitIsCompl(L[2]) != Abc_LitIsCompl(L[3]) && (L[2] >> 2) == (L[3] >> 2) )
    {
        if ( Abc_LitIsCompl(L[0]) == Abc_LitIsCompl(L[1]) )
            return -1;
        LitA0 = Abc_Lit2Var(L[2]), LitB0 = Abc_Lit2Var(L[3]);
        if ( Abc_LitIsCompl(L[2]) == Abc_LitIsCompl(L[0]) )
            LitA1 = Abc_Lit2Var(L[0]), LitB1 = Abc_Lit2Var(L[1]);
        else
            LitA1 = Abc_Lit2Var(L[1]), LitB1 = Abc_Lit2Var(L[0]);
    }
    else 
        return -1;
    assert( LitA0 == Abc_LitNot(LitB0) );
    if ( Abc_LitIsCompl(LitA0) )
    {
        ABC_SWAP( int, LitA0, LitB0 );
        ABC_SWAP( int, LitA1, LitB1 );
    }
    assert( !Abc_LitIsCompl(LitA0) );
    if ( Abc_LitIsCompl(LitA1) )
    {
        LitA1 = Abc_LitNot(LitA1);
        LitB1 = Abc_LitNot(LitB1);
        RetValue = 1;
    }
    assert( !Abc_LitIsCompl(LitA1) );
    // arrange literals in such as a way that
    // - the first two literals are control literals from different cubes
    // - the third literal is non-complented data input
    // - the forth literal is possibly complemented data input
    L[0] = Abc_Var2Lit( LitA0, 0 );
    L[1] = Abc_Var2Lit( LitB0, 1 );
    L[2] = Abc_Var2Lit( LitA1, 0 );
    L[3] = Abc_Var2Lit( LitB1, 1 );
    return RetValue;
}

/**Function*************************************************************

  Synopsis    [Find a cube-free divisor of the two cubes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fx_ManDivFindCubeFree( Vec_Int_t * vArr1, Vec_Int_t * vArr2, Vec_Int_t * vCubeFree )
{
    int * pBeg1 = vArr1->pArray + 1;  // skip variable ID
    int * pBeg2 = vArr2->pArray + 1;  // skip variable ID
    int * pEnd1 = vArr1->pArray + vArr1->nSize;
    int * pEnd2 = vArr2->pArray + vArr2->nSize;
    int Counter = 0, fAttr0 = 0, fAttr1 = 1;
    Vec_IntClear( vCubeFree );
    while ( pBeg1 < pEnd1 && pBeg2 < pEnd2 )
    {
        if ( *pBeg1 == *pBeg2 )
            pBeg1++, pBeg2++, Counter++;
        else if ( *pBeg1 < *pBeg2 )
            Vec_IntPush( vCubeFree, Abc_Var2Lit(*pBeg1++, fAttr0) );
        else  
        {
            if ( Vec_IntSize(vCubeFree) == 0 )
                fAttr0 = 1, fAttr1 = 0;
            Vec_IntPush( vCubeFree, Abc_Var2Lit(*pBeg2++, fAttr1) );
        }
    }
    while ( pBeg1 < pEnd1 )
        Vec_IntPush( vCubeFree, Abc_Var2Lit(*pBeg1++, fAttr0) );
    while ( pBeg2 < pEnd2 )
        Vec_IntPush( vCubeFree, Abc_Var2Lit(*pBeg2++, fAttr1) );
    if ( Vec_IntSize(vCubeFree) == 0 )
        printf( "The SOP has duplicated cubes.\n" );
    else if ( Vec_IntSize(vCubeFree) == 1 )
        printf( "The SOP has contained cubes.\n" );
    else if ( Vec_IntSize(vCubeFree) == 2 && Abc_Lit2Var(Abc_Lit2Var(Vec_IntEntry(vCubeFree, 0))) == Abc_Lit2Var(Abc_Lit2Var(Vec_IntEntry(vCubeFree, 1))) )
        printf( "The SOP has distance-1 cubes or it is not a prime cover.  Please make sure the result verifies.\n" );
    assert( !Abc_LitIsCompl(Vec_IntEntry(vCubeFree, 0)) );
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Procedures operating on a two-cube divisor.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Fx_ManDivFindPivots( Vec_Int_t * vDiv, int * pLit0, int * pLit1 )
{
    int i, Lit;
    *pLit0 = -1;
    *pLit1 = -1;
    Vec_IntForEachEntry( vDiv, Lit, i )
    {
        if ( Abc_LitIsCompl(Lit) )
        {
            if ( *pLit1 == -1 )
                *pLit1 = Abc_Lit2Var(Lit);
        }
        else
        {
            if ( *pLit0 == -1 )
                *pLit0 = Abc_Lit2Var(Lit);
        }
        if ( *pLit0 >= 0 && *pLit1 >= 0 )
            return;
    }
}
static inline int Fx_ManDivRemoveLits( Vec_Int_t * vCube, Vec_Int_t * vDiv, int fCompl )
{
    int i, Lit, Count = 0;
    assert( !fCompl || Vec_IntSize(vDiv) == 4 );
    Vec_IntForEachEntry( vDiv, Lit, i )
        Count += Vec_IntRemove1( vCube, Abc_Lit2Var(Lit) ^ (fCompl && i > 1) );  // the last two lits can be complemented
    return Count;
}
static inline void Fx_ManDivAddLits( Vec_Int_t * vCube, Vec_Int_t * vCube2, Vec_Int_t * vDiv )
{
    int i, Lit, * pArray;
//    Vec_IntClear( vCube );
//    Vec_IntClear( vCube2 );
    Vec_IntForEachEntry( vDiv, Lit, i )
        if ( Abc_LitIsCompl(Lit) )
            Vec_IntPush( vCube2, Abc_Lit2Var(Lit) );
        else
            Vec_IntPush( vCube, Abc_Lit2Var(Lit) );
    if ( Vec_IntSize(vDiv) == 4 && Vec_IntSize(vCube) == 3 )
    {
        assert( Vec_IntSize(vCube2) == 3 );
        pArray = Vec_IntArray(vCube);
        if ( pArray[1] > pArray[2] )
            ABC_SWAP( int, pArray[1], pArray[2] );
        pArray = Vec_IntArray(vCube2);
        if ( pArray[1] > pArray[2] )
            ABC_SWAP( int, pArray[1], pArray[2] );
    }
}

/**Function*************************************************************

  Synopsis    [Setting up the data-structure.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fx_ManCreateLiterals( Fx_Man_t * p, int nVars )
{
    Vec_Int_t * vCube;
    int i, k, Lit, Count;
    // find the number of variables
    p->nVars = p->nLits = 0;
    Vec_WecForEachLevel( p->vCubes, vCube, i )
    {
        assert( Vec_IntSize(vCube) > 0 );
        p->nVars = Abc_MaxInt( p->nVars, Vec_IntEntry(vCube, 0) );
        p->nLits += Vec_IntSize(vCube) - 1;
        Vec_IntForEachEntryStart( vCube, Lit, k, 1 )
            p->nVars = Abc_MaxInt( p->nVars, Abc_Lit2Var(Lit) );
    }
//    p->nVars++;
    assert( p->nVars < nVars );
    p->nVars = nVars;
    // count literals
    p->vCounts = Vec_IntStart( 2*p->nVars );
    Vec_WecForEachLevel( p->vCubes, vCube, i )
        Vec_IntForEachEntryStart( vCube, Lit, k, 1 )
            Vec_IntAddToEntry( p->vCounts, Lit, 1 );
    // start literals
    p->vLits = Vec_WecStart( 2*p->nVars );
    Vec_IntForEachEntry( p->vCounts, Count, Lit )
        Vec_IntGrow( Vec_WecEntry(p->vLits, Lit), Count );
    // fill out literals
    Vec_WecForEachLevel( p->vCubes, vCube, i )
        Vec_IntForEachEntryStart( vCube, Lit, k, 1 )
            Vec_WecPush( p->vLits, Lit, i );
    // create mapping of variable into the first cube
    p->vVarCube = Vec_IntStartFull( p->nVars );
    Vec_WecForEachLevel( p->vCubes, vCube, i )
        if ( Vec_IntEntry(p->vVarCube, Vec_IntEntry(vCube, 0)) == -1 )
            Vec_IntWriteEntry( p->vVarCube, Vec_IntEntry(vCube, 0), i );
}
int Fx_ManCubeSingleCubeDivisors( Fx_Man_t * p, Vec_Int_t * vPivot, int fRemove, int fUpdate )
{
    int k, n, Lit, Lit2, iDiv;
    if ( Vec_IntSize(vPivot) < 2 )
        return 0;
    Vec_IntForEachEntryStart( vPivot, Lit, k, 1 )
    Vec_IntForEachEntryStart( vPivot, Lit2, n, k+1 )
    {
        assert( Lit < Lit2 );
        Vec_IntClear( p->vCubeFree );
        Vec_IntPush( p->vCubeFree, Abc_Var2Lit(Abc_LitNot(Lit), 0) );
        Vec_IntPush( p->vCubeFree, Abc_Var2Lit(Abc_LitNot(Lit2), 1) );
        iDiv = Hsh_VecManAdd( p->pHash, p->vCubeFree );
        if ( !fRemove )
        {
            if ( Vec_FltSize(p->vWeights) == iDiv )
            {
                Vec_FltPush(p->vWeights, -2);
                p->nDivsS++;
            }
            assert( iDiv < Vec_FltSize(p->vWeights) );
            Vec_FltAddToEntry( p->vWeights, iDiv, 1 );
            p->nPairsS++;
        }
        else
        {
            assert( iDiv < Vec_FltSize(p->vWeights) );
            Vec_FltAddToEntry( p->vWeights, iDiv, -1 );
            p->nPairsS--;
        }
        if ( fUpdate )
        {
            if ( Vec_QueIsMember(p->vPrio, iDiv) )
                Vec_QueUpdate( p->vPrio, iDiv );
            else if ( !fRemove )
                Vec_QuePush( p->vPrio, iDiv );
        }
    }
    return Vec_IntSize(vPivot) * (Vec_IntSize(vPivot) - 1) / 2;
}
void Fx_ManCubeDoubleCubeDivisors( Fx_Man_t * p, int iFirst, Vec_Int_t * vPivot, int fRemove, int fUpdate )
{
    Vec_Int_t * vCube;
    int i, iDiv, Base;
    Vec_WecForEachLevelStart( p->vCubes, vCube, i, iFirst )
    {
        if ( Vec_IntSize(vCube) == 0 || vCube == vPivot )
            continue;
        if ( Vec_WecIntHasMark(vCube) && Vec_WecIntHasMark(vPivot) && vCube > vPivot )
            continue;
        if ( Vec_IntEntry(vCube, 0) != Vec_IntEntry(vPivot, 0) )
            break;
        Base = Fx_ManDivFindCubeFree( vCube, vPivot, p->vCubeFree );
        if ( Vec_IntSize(p->vCubeFree) == 4 )
        { 
            int Value = Fx_ManDivNormalize( p->vCubeFree );
            if ( Value == 0 )
                p->nDivMux[0]++;
            else if ( Value == 1 )
                p->nDivMux[1]++;
            else
                p->nDivMux[2]++;
        }
        if ( p->LitCountMax && p->LitCountMax < Vec_IntSize(p->vCubeFree) )
            continue;
        iDiv = Hsh_VecManAdd( p->pHash, p->vCubeFree );
        if ( !fRemove )
        {
            if ( iDiv == Vec_FltSize(p->vWeights) )
                Vec_FltPush(p->vWeights, -Vec_IntSize(p->vCubeFree));
            assert( iDiv < Vec_FltSize(p->vWeights) );
            Vec_FltAddToEntry( p->vWeights, iDiv, Base + Vec_IntSize(p->vCubeFree) - 1 );
            p->nPairsD++;
        }
        else
        {
            assert( iDiv < Vec_FltSize(p->vWeights) );
            Vec_FltAddToEntry( p->vWeights, iDiv, -(Base + Vec_IntSize(p->vCubeFree) - 1) );
            p->nPairsD--;
        }
        if ( fUpdate )
        {
            if ( Vec_QueIsMember(p->vPrio, iDiv) )
                Vec_QueUpdate( p->vPrio, iDiv );
            else if ( !fRemove )
                Vec_QuePush( p->vPrio, iDiv );
        }
    } 
}
void Fx_ManCreateDivisors( Fx_Man_t * p )
{
    Vec_Int_t * vCube;
    float Weight;
    int i;
    // alloc hash table
    assert( p->pHash == NULL );
    p->pHash = Hsh_VecManStart( 1000 );
    p->vWeights = Vec_FltAlloc( 1000 );
    // create single-cube two-literal divisors
    Vec_WecForEachLevel( p->vCubes, vCube, i )
        Fx_ManCubeSingleCubeDivisors( p, vCube, 0, 0 ); // add - no update
    assert( p->nDivsS == Vec_FltSize(p->vWeights) );
    // create two-cube divisors
    Vec_WecForEachLevel( p->vCubes, vCube, i )
        Fx_ManCubeDoubleCubeDivisors( p, i+1, vCube, 0, 0 ); // add - no update
    // create queue with all divisors
    p->vPrio = Vec_QueAlloc( Vec_FltSize(p->vWeights) );
    Vec_QueSetCosts( p->vPrio, Vec_FltArrayP(p->vWeights) );
    Vec_FltForEachEntry( p->vWeights, Weight, i )
        if ( Weight > 0.0 )
            Vec_QuePush( p->vPrio, i );
}


/**Function*************************************************************

  Synopsis    [Compress the cubes by removing unused ones.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Fx_ManCompressCubes( Vec_Wec_t * vCubes, Vec_Int_t * vLit2Cube )
{
    int i, CubeId, k = 0;
    Vec_IntForEachEntry( vLit2Cube, CubeId, i )
        if ( Vec_IntSize(Vec_WecEntry(vCubes, CubeId)) > 0 )
            Vec_IntWriteEntry( vLit2Cube, k++, CubeId );
    Vec_IntShrink( vLit2Cube, k );
}


/**Function*************************************************************

  Synopsis    [Find command cube pairs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Fx_ManGetCubeVar( Vec_Wec_t * vCubes, int iCube )  { return Vec_IntEntry( Vec_WecEntry(vCubes, iCube), 0 );      }
void Fx_ManFindCommonPairs( Vec_Wec_t * vCubes, Vec_Int_t * vPart0, Vec_Int_t * vPart1, Vec_Int_t * vPairs, Vec_Int_t * vCompls, Vec_Int_t * vDiv, Vec_Int_t * vCubeFree )
{
    int * pBeg1 = vPart0->pArray;
    int * pBeg2 = vPart1->pArray;
    int * pEnd1 = vPart0->pArray + vPart0->nSize;
    int * pEnd2 = vPart1->pArray + vPart1->nSize;
    int i, k, i_, k_, fCompl, CubeId1, CubeId2;
    Vec_IntClear( vPairs );
    Vec_IntClear( vCompls );
    while ( pBeg1 < pEnd1 && pBeg2 < pEnd2 )
    {
        CubeId1 = Fx_ManGetCubeVar(vCubes, *pBeg1);
        CubeId2 = Fx_ManGetCubeVar(vCubes, *pBeg2);
        if ( CubeId1 == CubeId2 )
        {
            for ( i = 1; pBeg1+i < pEnd1; i++ )
                if ( CubeId1 != Fx_ManGetCubeVar(vCubes, pBeg1[i]) )
                    break;
            for ( k = 1; pBeg2+k < pEnd2; k++ )
                if ( CubeId1 != Fx_ManGetCubeVar(vCubes, pBeg2[k]) )
                    break;
            for ( i_ = 0; i_ < i; i_++ )
            for ( k_ = 0; k_ < k; k_++ )
            {
                if ( pBeg1[i_] == pBeg2[k_] )
                    continue;
                Fx_ManDivFindCubeFree( Vec_WecEntry(vCubes, pBeg1[i_]), Vec_WecEntry(vCubes, pBeg2[k_]), vCubeFree );
                fCompl = (Vec_IntSize(vCubeFree) == 4 && Fx_ManDivNormalize(vCubeFree) == 1);
                if ( !Vec_IntEqual( vDiv, vCubeFree ) )
                    continue;
                Vec_IntPush( vPairs, pBeg1[i_] );
                Vec_IntPush( vPairs, pBeg2[k_] );
                Vec_IntPush( vCompls, fCompl );
            }
            pBeg1 += i;
            pBeg2 += k;
        }
        else if ( CubeId1 < CubeId2 )
            pBeg1++;
        else 
            pBeg2++;
    }
}

/**Function*************************************************************

  Synopsis    [Updates the data-structure when one divisor is selected.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fx_ManUpdate( Fx_Man_t * p, int iDiv )
{
    Vec_Int_t * vCube, * vCube2, * vLitP, * vLitN;
    Vec_Int_t * vDiv = p->vDiv;
    int nLitsNew = p->nLits - (int)Vec_FltEntry(p->vWeights, iDiv);
    int i, k, Lit0, Lit1, iVarNew, RetValue;

    // get the divisor and select pivot variables
    p->nDivs++;
    Vec_IntClear( vDiv );
    Vec_IntAppend( vDiv, Hsh_VecReadEntry(p->pHash, iDiv) );
    Fx_ManDivFindPivots( vDiv, &Lit0, &Lit1 );
    assert( Lit0 >= 0 && Lit1 >= 0 );

    // if the input cover is not prime, it may happen that we are extracting divisor (x + !x)
    // although it is not strictly correct, it seems to be fine to just skip such divisors
    if ( Abc_Lit2Var(Lit0) == Abc_Lit2Var(Lit1) )
        return;

    // collect single-cube-divisor cubes
    Vec_IntClear( p->vCubesS );
    if ( Vec_IntSize(vDiv) == 2 )
    {
        Fx_ManCompressCubes( p->vCubes, Vec_WecEntry(p->vLits, Abc_LitNot(Lit0)) );
        Fx_ManCompressCubes( p->vCubes, Vec_WecEntry(p->vLits, Abc_LitNot(Lit1)) );
        Vec_IntTwoRemoveCommon( Vec_WecEntry(p->vLits, Abc_LitNot(Lit0)), Vec_WecEntry(p->vLits, Abc_LitNot(Lit1)), p->vCubesS );
    }

    // collect double-cube-divisor cube pairs
    Fx_ManCompressCubes( p->vCubes, Vec_WecEntry(p->vLits, Lit0) );
    Fx_ManCompressCubes( p->vCubes, Vec_WecEntry(p->vLits, Lit1) );
    Fx_ManFindCommonPairs( p->vCubes, Vec_WecEntry(p->vLits, Lit0), Vec_WecEntry(p->vLits, Lit1), p->vCubesD, p->vCompls, vDiv, p->vCubeFree );

    // subtract cost of single-cube divisors
    Fx_ManForEachCubeVec( p->vCubesS, p->vCubes, vCube, i )
        Fx_ManCubeSingleCubeDivisors( p, vCube, 1, 1 );  // remove - update
    Fx_ManForEachCubeVec( p->vCubesD, p->vCubes, vCube, i )
        Fx_ManCubeSingleCubeDivisors( p, vCube, 1, 1 );  // remove - update

    // mark the cubes to be removed
    Vec_WecMarkLevels( p->vCubes, p->vCubesS );
    Vec_WecMarkLevels( p->vCubes, p->vCubesD );

    // subtract cost of double-cube divisors
    Fx_ManForEachCubeVec( p->vCubesS, p->vCubes, vCube, i )
        Fx_ManCubeDoubleCubeDivisors( p, Fx_ManGetFirstVarCube(p, vCube), vCube, 1, 1 );  // remove - update
    Fx_ManForEachCubeVec( p->vCubesD, p->vCubes, vCube, i )
        Fx_ManCubeDoubleCubeDivisors( p, Fx_ManGetFirstVarCube(p, vCube), vCube, 1, 1 );  // remove - update

    // unmark the cubes to be removed
    Vec_WecUnmarkLevels( p->vCubes, p->vCubesS );
    Vec_WecUnmarkLevels( p->vCubes, p->vCubesD );

    // create new divisor
    iVarNew = Vec_WecSize( p->vLits ) / 2;
    assert( Vec_IntSize(p->vVarCube) == iVarNew );
    Vec_IntPush( p->vVarCube, Vec_WecSize(p->vCubes) );
    vCube = Vec_WecPushLevel( p->vCubes );
    Vec_IntPush( vCube, iVarNew );
    if ( Vec_IntSize(vDiv) == 2 )
    {
        Vec_IntPush( vCube, Abc_LitNot(Lit0) );
        Vec_IntPush( vCube, Abc_LitNot(Lit1) );
    }
    else
    {
        vCube2 = Vec_WecPushLevel( p->vCubes );
        vCube = Vec_WecEntry( p->vCubes, Vec_WecSize(p->vCubes) - 2 );
        Vec_IntPush( vCube2, iVarNew );
        Fx_ManDivAddLits( vCube, vCube2, vDiv );
    }
    // do not add new cubes to the matrix 
    p->nLits += Vec_IntSize( vDiv );
    // create new literals
    vLitP = Vec_WecPushLevel( p->vLits );
    vLitN = Vec_WecPushLevel( p->vLits );
    vLitP = Vec_WecEntry( p->vLits, Vec_WecSize(p->vLits) - 2 );
    // create updated single-cube divisor cubes
    Fx_ManForEachCubeVec( p->vCubesS, p->vCubes, vCube, i )
    {
        RetValue  = Vec_IntRemove1( vCube, Abc_LitNot(Lit0) );
        RetValue += Vec_IntRemove1( vCube, Abc_LitNot(Lit1) );
        assert( RetValue == 2 );
        Vec_IntPush( vCube, Abc_Var2Lit(iVarNew, 0) );
        Vec_IntPush( vLitP, Vec_WecLevelId(p->vCubes, vCube) );
        p->nLits--;
    }
    // create updated double-cube divisor cube pairs
    k = 0;
    p->nCompls = 0;
    assert( Vec_IntSize(p->vCubesD) % 2 == 0 );
    assert( Vec_IntSize(p->vCubesD) == 2 * Vec_IntSize(p->vCompls) );
    for ( i = 0; i < Vec_IntSize(p->vCubesD); i += 2 )
    {
        int fCompl = Vec_IntEntry(p->vCompls, i/2);
        p->nCompls += fCompl;
        vCube  = Vec_WecEntry( p->vCubes, Vec_IntEntry(p->vCubesD, i) );
        vCube2 = Vec_WecEntry( p->vCubes, Vec_IntEntry(p->vCubesD, i+1) );
        RetValue  = Fx_ManDivRemoveLits( vCube, vDiv, fCompl );  // cube 2*i
        RetValue += Fx_ManDivRemoveLits( vCube2, vDiv, fCompl ); // cube 2*i+1
        assert( RetValue == Vec_IntSize(vDiv) );
        if ( Vec_IntSize(vDiv) == 2 || fCompl )
        {
            Vec_IntPush( vCube, Abc_Var2Lit(iVarNew, 1) );
            Vec_IntPush( vLitN, Vec_WecLevelId(p->vCubes, vCube) );
        }
        else 
        {
            Vec_IntPush( vCube, Abc_Var2Lit(iVarNew, 0) );
            Vec_IntPush( vLitP, Vec_WecLevelId(p->vCubes, vCube) );
        }
        p->nLits -= Vec_IntSize(vDiv) + Vec_IntSize(vCube2) - 2;
        // remove second cube
        Vec_IntWriteEntry( p->vCubesD, k++, Vec_WecLevelId(p->vCubes, vCube) );
        Vec_IntClear( vCube2 ); 
    }
    assert( k == Vec_IntSize(p->vCubesD) / 2 );
    Vec_IntShrink( p->vCubesD, k );
    Vec_IntSort( p->vCubesD, 0 );

    // add cost of single-cube divisors
    Fx_ManForEachCubeVec( p->vCubesS, p->vCubes, vCube, i )
        Fx_ManCubeSingleCubeDivisors( p, vCube, 0, 1 );  // add - update
    Fx_ManForEachCubeVec( p->vCubesD, p->vCubes, vCube, i )
        Fx_ManCubeSingleCubeDivisors( p, vCube, 0, 1 );  // add - update

    // mark the cubes to be removed
    Vec_WecMarkLevels( p->vCubes, p->vCubesS );
    Vec_WecMarkLevels( p->vCubes, p->vCubesD );

    // add cost of double-cube divisors
    Fx_ManForEachCubeVec( p->vCubesS, p->vCubes, vCube, i )
        Fx_ManCubeDoubleCubeDivisors( p, Fx_ManGetFirstVarCube(p, vCube), vCube, 0, 1 );  // add - update
    Fx_ManForEachCubeVec( p->vCubesD, p->vCubes, vCube, i )
        Fx_ManCubeDoubleCubeDivisors( p, Fx_ManGetFirstVarCube(p, vCube), vCube, 0, 1 );  // add - update

    // unmark the cubes to be removed
    Vec_WecUnmarkLevels( p->vCubes, p->vCubesS );
    Vec_WecUnmarkLevels( p->vCubes, p->vCubesD );

    // add cost of the new divisor
    if ( Vec_IntSize(vDiv) > 2 )
    {
        vCube  = Vec_WecEntry( p->vCubes, Vec_WecSize(p->vCubes) - 2 );
        vCube2 = Vec_WecEntry( p->vCubes, Vec_WecSize(p->vCubes) - 1 );
        Fx_ManCubeSingleCubeDivisors( p, vCube,  0, 1 );  // add - update
        Fx_ManCubeSingleCubeDivisors( p, vCube2, 0, 1 );  // add - update
        Vec_IntForEachEntryStart( vCube, Lit0, i, 1 )
            Vec_WecPush( p->vLits, Lit0, Vec_WecLevelId(p->vCubes, vCube) );
        Vec_IntForEachEntryStart( vCube2, Lit0, i, 1 )
            Vec_WecPush( p->vLits, Lit0, Vec_WecLevelId(p->vCubes, vCube2) );
    }

    // remove these cubes from the lit array of the divisor
    Vec_IntForEachEntry( vDiv, Lit0, i )
    {
        Vec_IntTwoRemove( Vec_WecEntry(p->vLits, Abc_Lit2Var(Lit0)), p->vCubesD );
        if ( p->nCompls && i > 1 ) // the last two lits are possibly complemented
            Vec_IntTwoRemove( Vec_WecEntry(p->vLits, Abc_LitNot(Abc_Lit2Var(Lit0))), p->vCubesD );
    }
    
    // check predicted improvement: (new SOP lits == old SOP lits - divisor weight)
    assert( p->nLits == nLitsNew );
}

/**Function*************************************************************

  Synopsis    [Implements the traditional fast_extract algorithm.]

  Description [J. Rajski and J. Vasudevamurthi, "The testability-
  preserving concurrent decomposition and factorization of Boolean
  expressions", IEEE TCAD, Vol. 11, No. 6, June 1992, pp. 778-793.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fx_FastExtract( Vec_Wec_t * vCubes, int ObjIdMax, int nNewNodesMax, int LitCountMax, int fVerbose )
{
    int fVeryVerbose = 0;
    int i, iDiv;
    Fx_Man_t * p;
    abctime clk = Abc_Clock();
    // initialize the data-structure
    p = Fx_ManStart( vCubes );
    p->LitCountMax = LitCountMax;
    Fx_ManCreateLiterals( p, ObjIdMax );
    Fx_ManCreateDivisors( p );
    if ( fVeryVerbose )
        Fx_PrintMatrix( p );
    if ( fVerbose )
        Fx_PrintStats( p, Abc_Clock() - clk );
    // perform extraction
    p->timeStart = Abc_Clock();
    for ( i = 0; i < nNewNodesMax && Vec_QueTopCost(p->vPrio) > 0.0; i++ )
    {
        iDiv = Vec_QuePop(p->vPrio);
        if ( fVerbose )
            Fx_PrintDiv( p, iDiv );
        Fx_ManUpdate( p, iDiv );
        if ( fVeryVerbose )
            Fx_PrintMatrix( p );
    }
    Fx_ManStop( p );
    // return the result
    Vec_WecRemoveEmpty( vCubes );
    return 1;
}



////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END