1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
|
/**CFile****************************************************************
FileName [abcMap.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Interface with the SC mapping package.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcMap.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "base/abc/abc.h"
#include "base/main/main.h"
#include "map/mio/mio.h"
#include "map/mapper/mapper.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static Map_Man_t * Abc_NtkToMap( Abc_Ntk_t * pNtk, double DelayTarget, int fRecovery, float * pSwitching, int fVerbose );
static Abc_Ntk_t * Abc_NtkFromMap( Map_Man_t * pMan, Abc_Ntk_t * pNtk );
static Abc_Obj_t * Abc_NodeFromMap_rec( Abc_Ntk_t * pNtkNew, Map_Node_t * pNodeMap, int fPhase );
static Abc_Obj_t * Abc_NodeFromMapPhase_rec( Abc_Ntk_t * pNtkNew, Map_Node_t * pNodeMap, int fPhase );
static Abc_Ntk_t * Abc_NtkFromMapSuperChoice( Map_Man_t * pMan, Abc_Ntk_t * pNtk );
static void Abc_NodeSuperChoice( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode );
static void Abc_NodeFromMapCutPhase( Abc_Ntk_t * pNtkNew, Map_Cut_t * pCut, int fPhase );
static Abc_Obj_t * Abc_NodeFromMapSuperChoice_rec( Abc_Ntk_t * pNtkNew, Map_Super_t * pSuper, Abc_Obj_t * pNodePis[], int nNodePis );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Interface with the mapping package.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkMap( Abc_Ntk_t * pNtk, double DelayTarget, double AreaMulti, double DelayMulti, float LogFan, float Slew, float Gain, int nGatesMin, int fRecovery, int fSwitching, int fSkipFanout, int fVerbose )
{
static int fUseMulti = 0;
int fShowSwitching = 1;
Abc_Ntk_t * pNtkNew;
Map_Man_t * pMan;
Vec_Int_t * vSwitching = NULL;
float * pSwitching = NULL;
abctime clk, clkTotal = Abc_Clock();
Mio_Library_t * pLib = (Mio_Library_t *)Abc_FrameReadLibGen();
assert( Abc_NtkIsStrash(pNtk) );
// derive library from SCL
// if the library is created here, it will be deleted when pSuperLib is deleted in Map_SuperLibFree()
if ( Abc_FrameReadLibScl() && Abc_SclHasDelayInfo( Abc_FrameReadLibScl() ) )
{
pLib = Abc_SclDeriveGenlib( Abc_FrameReadLibScl(), Slew, Gain, nGatesMin, fVerbose );
if ( Abc_FrameReadLibGen() )
Mio_LibraryTransferDelays( (Mio_Library_t *)Abc_FrameReadLibGen(), pLib );
// remove supergate library
Map_SuperLibFree( (Map_SuperLib_t *)Abc_FrameReadLibSuper() );
Abc_FrameSetLibSuper( NULL );
}
// quit if there is no library
if ( pLib == NULL )
{
printf( "The current library is not available.\n" );
return 0;
}
if ( AreaMulti != 0.0 )
fUseMulti = 1, printf( "The cell areas are multiplied by the factor: <num_fanins> ^ (%.2f).\n", AreaMulti );
if ( DelayMulti != 0.0 )
fUseMulti = 1, printf( "The cell delays are multiplied by the factor: <num_fanins> ^ (%.2f).\n", DelayMulti );
// penalize large gates by increasing their area
if ( AreaMulti != 0.0 )
Mio_LibraryMultiArea( pLib, AreaMulti );
if ( DelayMulti != 0.0 )
Mio_LibraryMultiDelay( pLib, DelayMulti );
// derive the supergate library
if ( fUseMulti || Abc_FrameReadLibSuper() == NULL )
{
if ( fVerbose )
printf( "Converting \"%s\" into supergate library \"%s\".\n",
Mio_LibraryReadName(pLib), Extra_FileNameGenericAppend(Mio_LibraryReadName(pLib), ".super") );
// compute supergate library to be used for mapping
Map_SuperLibDeriveFromGenlib( pLib, fVerbose );
}
// return the library to normal
if ( AreaMulti != 0.0 )
Mio_LibraryMultiArea( (Mio_Library_t *)Abc_FrameReadLibGen(), -AreaMulti );
if ( DelayMulti != 0.0 )
Mio_LibraryMultiDelay( (Mio_Library_t *)Abc_FrameReadLibGen(), -DelayMulti );
// print a warning about choice nodes
if ( fVerbose && Abc_NtkGetChoiceNum( pNtk ) )
printf( "Performing mapping with choices.\n" );
// compute switching activity
fShowSwitching |= fSwitching;
if ( fShowSwitching )
{
extern Vec_Int_t * Sim_NtkComputeSwitching( Abc_Ntk_t * pNtk, int nPatterns );
vSwitching = Sim_NtkComputeSwitching( pNtk, 4096 );
pSwitching = (float *)vSwitching->pArray;
}
// perform the mapping
pMan = Abc_NtkToMap( pNtk, DelayTarget, fRecovery, pSwitching, fVerbose );
if ( pSwitching ) Vec_IntFree( vSwitching );
if ( pMan == NULL )
return NULL;
clk = Abc_Clock();
Map_ManSetSwitching( pMan, fSwitching );
Map_ManSetSkipFanout( pMan, fSkipFanout );
if ( LogFan != 0 )
Map_ManCreateNodeDelays( pMan, LogFan );
if ( !Map_Mapping( pMan ) )
{
Map_ManFree( pMan );
return NULL;
}
// Map_ManPrintStatsToFile( pNtk->pSpec, Map_ManReadAreaFinal(pMan), Map_ManReadRequiredGlo(pMan), Abc_Clock()-clk );
// reconstruct the network after mapping
pNtkNew = Abc_NtkFromMap( pMan, pNtk );
Map_ManFree( pMan );
if ( pNtkNew == NULL )
return NULL;
if ( pNtk->pExdc )
pNtkNew->pExdc = Abc_NtkDup( pNtk->pExdc );
if ( fVerbose )
{
ABC_PRT( "Total runtime", Abc_Clock() - clkTotal );
}
// make sure that everything is okay
if ( !Abc_NtkCheck( pNtkNew ) )
{
printf( "Abc_NtkMap: The network check has failed.\n" );
Abc_NtkDelete( pNtkNew );
return NULL;
}
return pNtkNew;
}
/**Function*************************************************************
Synopsis [Load the network into manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Map_Time_t * Abc_NtkMapCopyCiArrival( Abc_Ntk_t * pNtk, Abc_Time_t * ppTimes )
{
Map_Time_t * p;
int i;
p = ABC_CALLOC( Map_Time_t, Abc_NtkCiNum(pNtk) );
for ( i = 0; i < Abc_NtkCiNum(pNtk); i++ )
{
p[i].Fall = ppTimes[i].Fall;
p[i].Rise = ppTimes[i].Rise;
p[i].Worst = Abc_MaxFloat( p[i].Fall, p[i].Rise );
}
ABC_FREE( ppTimes );
return p;
}
Map_Time_t * Abc_NtkMapCopyCoRequired( Abc_Ntk_t * pNtk, Abc_Time_t * ppTimes )
{
Map_Time_t * p;
int i;
p = ABC_CALLOC( Map_Time_t, Abc_NtkCoNum(pNtk) );
for ( i = 0; i < Abc_NtkCoNum(pNtk); i++ )
{
p[i].Fall = ppTimes[i].Fall;
p[i].Rise = ppTimes[i].Rise;
p[i].Worst = Abc_MaxFloat( p[i].Fall, p[i].Rise );
}
ABC_FREE( ppTimes );
return p;
}
/**Function*************************************************************
Synopsis [Load the network into manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Map_Man_t * Abc_NtkToMap( Abc_Ntk_t * pNtk, double DelayTarget, int fRecovery, float * pSwitching, int fVerbose )
{
Map_Man_t * pMan;
Map_Node_t * pNodeMap;
Vec_Ptr_t * vNodes;
Abc_Obj_t * pNode, * pFanin, * pPrev;
int i;
assert( Abc_NtkIsStrash(pNtk) );
// start the mapping manager and set its parameters
pMan = Map_ManCreate( Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk) - pNtk->nBarBufs, Abc_NtkPoNum(pNtk) + Abc_NtkLatchNum(pNtk) - pNtk->nBarBufs, fVerbose );
if ( pMan == NULL )
return NULL;
Map_ManSetAreaRecovery( pMan, fRecovery );
Map_ManSetOutputNames( pMan, Abc_NtkCollectCioNames(pNtk, 1) );
Map_ManSetDelayTarget( pMan, (float)DelayTarget );
Map_ManSetInputArrivals( pMan, Abc_NtkMapCopyCiArrival(pNtk, Abc_NtkGetCiArrivalTimes(pNtk)) );
Map_ManSetOutputRequireds( pMan, Abc_NtkMapCopyCoRequired(pNtk, Abc_NtkGetCoRequiredTimes(pNtk)) );
// create PIs and remember them in the old nodes
Abc_NtkCleanCopy( pNtk );
Abc_AigConst1(pNtk)->pCopy = (Abc_Obj_t *)Map_ManReadConst1(pMan);
Abc_NtkForEachCi( pNtk, pNode, i )
{
if ( i == Abc_NtkCiNum(pNtk) - pNtk->nBarBufs )
break;
pNodeMap = Map_ManReadInputs(pMan)[i];
pNode->pCopy = (Abc_Obj_t *)pNodeMap;
if ( pSwitching )
Map_NodeSetSwitching( pNodeMap, pSwitching[pNode->Id] );
}
// load the AIG into the mapper
vNodes = Abc_AigDfsMap( pNtk );
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pNode, i )
{
if ( Abc_ObjIsLatch(pNode) )
{
pFanin = Abc_ObjFanin0(pNode);
pNodeMap = Map_NodeBuf( pMan, Map_NotCond( Abc_ObjFanin0(pFanin)->pCopy, (int)Abc_ObjFaninC0(pFanin) ) );
Abc_ObjFanout0(pNode)->pCopy = (Abc_Obj_t *)pNodeMap;
continue;
}
assert( Abc_ObjIsNode(pNode) );
// add the node to the mapper
pNodeMap = Map_NodeAnd( pMan,
Map_NotCond( Abc_ObjFanin0(pNode)->pCopy, (int)Abc_ObjFaninC0(pNode) ),
Map_NotCond( Abc_ObjFanin1(pNode)->pCopy, (int)Abc_ObjFaninC1(pNode) ) );
assert( pNode->pCopy == NULL );
// remember the node
pNode->pCopy = (Abc_Obj_t *)pNodeMap;
if ( pSwitching )
Map_NodeSetSwitching( pNodeMap, pSwitching[pNode->Id] );
// set up the choice node
if ( Abc_AigNodeIsChoice( pNode ) )
for ( pPrev = pNode, pFanin = (Abc_Obj_t *)pNode->pData; pFanin; pPrev = pFanin, pFanin = (Abc_Obj_t *)pFanin->pData )
{
Map_NodeSetNextE( (Map_Node_t *)pPrev->pCopy, (Map_Node_t *)pFanin->pCopy );
Map_NodeSetRepr( (Map_Node_t *)pFanin->pCopy, (Map_Node_t *)pNode->pCopy );
}
}
assert( Map_ManReadBufNum(pMan) == pNtk->nBarBufs );
Vec_PtrFree( vNodes );
// set the primary outputs in the required phase
Abc_NtkForEachCo( pNtk, pNode, i )
{
if ( i == Abc_NtkCoNum(pNtk) - pNtk->nBarBufs )
break;
Map_ManReadOutputs(pMan)[i] = Map_NotCond( (Map_Node_t *)Abc_ObjFanin0(pNode)->pCopy, (int)Abc_ObjFaninC0(pNode) );
}
return pMan;
}
/**Function*************************************************************
Synopsis [Creates the mapped network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NodeFromMapSuper_rec( Abc_Ntk_t * pNtkNew, Map_Node_t * pNodeMap, Map_Super_t * pSuper, Abc_Obj_t * pNodePis[], int nNodePis )
{
Mio_Library_t * pLib = (Mio_Library_t *)Abc_FrameReadLibGen();
Mio_Gate_t * pRoot;
Map_Super_t ** ppFanins;
Abc_Obj_t * pNodeNew, * pNodeFanin;
int nFanins, Number, i;
// get the parameters of the supergate
pRoot = Map_SuperReadRoot(pSuper);
if ( pRoot == NULL )
{
Number = Map_SuperReadNum(pSuper);
if ( Number < nNodePis )
{
return pNodePis[Number];
}
else
{
// assert( 0 );
/* It might happen that a super gate with 5 inputs is constructed that
* actually depends only on the first four variables; i.e the fifth is a
* don't care -- in that case we connect constant node for the fifth
* (since the cut only has 4 variables). An interesting question is what
* if the first variable (and not the fifth one is the redundant one;
* can that happen?) */
return Abc_NtkCreateNodeConst0(pNtkNew);
}
}
pRoot = Mio_LibraryReadGateByName( pLib, Mio_GateReadName(pRoot), NULL );
// get information about the fanins of the supergate
nFanins = Map_SuperReadFaninNum( pSuper );
ppFanins = Map_SuperReadFanins( pSuper );
// create a new node with these fanins
pNodeNew = Abc_NtkCreateNode( pNtkNew );
for ( i = 0; i < nFanins; i++ )
{
pNodeFanin = Abc_NodeFromMapSuper_rec( pNtkNew, pNodeMap, ppFanins[i], pNodePis, nNodePis );
Abc_ObjAddFanin( pNodeNew, pNodeFanin );
}
pNodeNew->pData = pRoot;
return pNodeNew;
}
Abc_Obj_t * Abc_NodeFromMapPhase_rec( Abc_Ntk_t * pNtkNew, Map_Node_t * pNodeMap, int fPhase )
{
Abc_Obj_t * pNodePIs[10];
Abc_Obj_t * pNodeNew;
Map_Node_t ** ppLeaves;
Map_Cut_t * pCutBest;
Map_Super_t * pSuperBest;
unsigned uPhaseBest;
int i, fInvPin, nLeaves;
// make sure the node can be implemented in this phase
assert( Map_NodeReadCutBest(pNodeMap, fPhase) != NULL || Map_NodeIsConst(pNodeMap) );
// check if the phase is already implemented
pNodeNew = (Abc_Obj_t *)Map_NodeReadData( pNodeMap, fPhase );
if ( pNodeNew )
return pNodeNew;
// get the information about the best cut
pCutBest = Map_NodeReadCutBest( pNodeMap, fPhase );
pSuperBest = Map_CutReadSuperBest( pCutBest, fPhase );
uPhaseBest = Map_CutReadPhaseBest( pCutBest, fPhase );
nLeaves = Map_CutReadLeavesNum( pCutBest );
ppLeaves = Map_CutReadLeaves( pCutBest );
// collect the PI nodes
for ( i = 0; i < nLeaves; i++ )
{
fInvPin = ((uPhaseBest & (1 << i)) > 0);
pNodePIs[i] = Abc_NodeFromMap_rec( pNtkNew, ppLeaves[i], !fInvPin );
assert( pNodePIs[i] != NULL );
}
// implement the supergate
pNodeNew = Abc_NodeFromMapSuper_rec( pNtkNew, pNodeMap, pSuperBest, pNodePIs, nLeaves );
Map_NodeSetData( pNodeMap, fPhase, (char *)pNodeNew );
return pNodeNew;
}
Abc_Obj_t * Abc_NodeFromMap_rec( Abc_Ntk_t * pNtkNew, Map_Node_t * pNodeMap, int fPhase )
{
Abc_Obj_t * pNodeNew, * pNodeInv;
// check the case of constant node
if ( Map_NodeIsConst(pNodeMap) )
{
pNodeNew = fPhase? Abc_NtkCreateNodeConst1(pNtkNew) : Abc_NtkCreateNodeConst0(pNtkNew);
if ( pNodeNew->pData == NULL )
printf( "Error creating mapped network: Library does not have a constant %d gate.\n", fPhase );
return pNodeNew;
}
// check if the phase is already implemented
pNodeNew = (Abc_Obj_t *)Map_NodeReadData( pNodeMap, fPhase );
if ( pNodeNew )
return pNodeNew;
// implement the node if the best cut is assigned
if ( Map_NodeReadCutBest(pNodeMap, fPhase) != NULL )
return Abc_NodeFromMapPhase_rec( pNtkNew, pNodeMap, fPhase );
// if the cut is not assigned, implement the node
assert( Map_NodeReadCutBest(pNodeMap, !fPhase) != NULL || Map_NodeIsConst(pNodeMap) );
pNodeNew = Abc_NodeFromMapPhase_rec( pNtkNew, pNodeMap, !fPhase );
// add the inverter
pNodeInv = Abc_NtkCreateNode( pNtkNew );
Abc_ObjAddFanin( pNodeInv, pNodeNew );
pNodeInv->pData = Mio_LibraryReadInv((Mio_Library_t *)Abc_FrameReadLibGen());
// set the inverter
Map_NodeSetData( pNodeMap, fPhase, (char *)pNodeInv );
return pNodeInv;
}
Abc_Ntk_t * Abc_NtkFromMap( Map_Man_t * pMan, Abc_Ntk_t * pNtk )
{
Abc_Ntk_t * pNtkNew;
Map_Node_t * pNodeMap;
Abc_Obj_t * pNode, * pNodeNew;
int i, nDupGates;
assert( Map_ManReadBufNum(pMan) == pNtk->nBarBufs );
// create the new network
pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_MAP );
// make the mapper point to the new network
Map_ManCleanData( pMan );
Abc_NtkForEachCi( pNtk, pNode, i )
{
if ( i >= Abc_NtkCiNum(pNtk) - pNtk->nBarBufs )
break;
Map_NodeSetData( Map_ManReadInputs(pMan)[i], 1, (char *)pNode->pCopy );
}
Abc_NtkForEachCi( pNtk, pNode, i )
{
if ( i < Abc_NtkCiNum(pNtk) - pNtk->nBarBufs )
continue;
Map_NodeSetData( Map_ManReadBufs(pMan)[i - (Abc_NtkCiNum(pNtk) - pNtk->nBarBufs)], 1, (char *)pNode->pCopy );
}
// assign the mapping of the required phase to the POs
Abc_NtkForEachCo( pNtk, pNode, i )
{
if ( i < Abc_NtkCoNum(pNtk) - pNtk->nBarBufs )
continue;
pNodeMap = Map_ManReadBufDriver( pMan, i - (Abc_NtkCoNum(pNtk) - pNtk->nBarBufs) );
pNodeNew = Abc_NodeFromMap_rec( pNtkNew, Map_Regular(pNodeMap), !Map_IsComplement(pNodeMap) );
assert( !Abc_ObjIsComplement(pNodeNew) );
Abc_ObjAddFanin( pNode->pCopy, pNodeNew );
}
Abc_NtkForEachCo( pNtk, pNode, i )
{
if ( i >= Abc_NtkCoNum(pNtk) - pNtk->nBarBufs )
break;
pNodeMap = Map_ManReadOutputs(pMan)[i];
pNodeNew = Abc_NodeFromMap_rec( pNtkNew, Map_Regular(pNodeMap), !Map_IsComplement(pNodeMap) );
assert( !Abc_ObjIsComplement(pNodeNew) );
Abc_ObjAddFanin( pNode->pCopy, pNodeNew );
}
// decouple the PO driver nodes to reduce the number of levels
nDupGates = Abc_NtkLogicMakeSimpleCos( pNtkNew, 1 );
// if ( nDupGates && Map_ManReadVerbose(pMan) )
// printf( "Duplicated %d gates to decouple the CO drivers.\n", nDupGates );
return pNtkNew;
}
/**Function*************************************************************
Synopsis [Interface with the mapping package.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkSuperChoice( Abc_Ntk_t * pNtk )
{
Abc_Ntk_t * pNtkNew;
Map_Man_t * pMan;
assert( Abc_NtkIsStrash(pNtk) );
// check that the library is available
if ( Abc_FrameReadLibGen() == NULL )
{
printf( "The current library is not available.\n" );
return 0;
}
// derive the supergate library
if ( Abc_FrameReadLibSuper() == NULL && Abc_FrameReadLibGen() )
{
// printf( "A simple supergate library is derived from gate library \"%s\".\n",
// Mio_LibraryReadName((Mio_Library_t *)Abc_FrameReadLibGen()) );
Map_SuperLibDeriveFromGenlib( (Mio_Library_t *)Abc_FrameReadLibGen(), 0 );
}
// print a warning about choice nodes
if ( Abc_NtkGetChoiceNum( pNtk ) )
printf( "Performing mapping with choices.\n" );
// perform the mapping
pMan = Abc_NtkToMap( pNtk, -1, 1, NULL, 0 );
if ( pMan == NULL )
return NULL;
if ( !Map_Mapping( pMan ) )
{
Map_ManFree( pMan );
return NULL;
}
// reconstruct the network after mapping
pNtkNew = Abc_NtkFromMapSuperChoice( pMan, pNtk );
if ( pNtkNew == NULL )
return NULL;
Map_ManFree( pMan );
// make sure that everything is okay
if ( !Abc_NtkCheck( pNtkNew ) )
{
printf( "Abc_NtkMap: The network check has failed.\n" );
Abc_NtkDelete( pNtkNew );
return NULL;
}
return pNtkNew;
}
/**Function*************************************************************
Synopsis [Creates the mapped network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkFromMapSuperChoice( Map_Man_t * pMan, Abc_Ntk_t * pNtk )
{
extern Abc_Ntk_t * Abc_NtkMulti( Abc_Ntk_t * pNtk, int nThresh, int nFaninMax, int fCnf, int fMulti, int fSimple, int fFactor );
ProgressBar * pProgress;
Abc_Ntk_t * pNtkNew, * pNtkNew2;
Abc_Obj_t * pNode;
int i;
// save the pointer to the mapped nodes
Abc_NtkForEachCi( pNtk, pNode, i )
pNode->pNext = pNode->pCopy;
Abc_NtkForEachPo( pNtk, pNode, i )
pNode->pNext = pNode->pCopy;
Abc_NtkForEachNode( pNtk, pNode, i )
pNode->pNext = pNode->pCopy;
// duplicate the network
pNtkNew2 = Abc_NtkDup( pNtk );
pNtkNew = Abc_NtkMulti( pNtkNew2, 0, 20, 0, 0, 1, 0 );
if ( !Abc_NtkBddToSop( pNtkNew, -1, ABC_INFINITY ) )
{
printf( "Abc_NtkFromMapSuperChoice(): Converting to SOPs has failed.\n" );
return NULL;
}
// set the old network to point to the new network
Abc_NtkForEachCi( pNtk, pNode, i )
pNode->pCopy = pNode->pCopy->pCopy;
Abc_NtkForEachPo( pNtk, pNode, i )
pNode->pCopy = pNode->pCopy->pCopy;
Abc_NtkForEachNode( pNtk, pNode, i )
pNode->pCopy = pNode->pCopy->pCopy;
Abc_NtkDelete( pNtkNew2 );
// set the pointers from the mapper to the new nodes
Abc_NtkForEachCi( pNtk, pNode, i )
{
Map_NodeSetData( Map_ManReadInputs(pMan)[i], 0, (char *)Abc_NtkCreateNodeInv(pNtkNew,pNode->pCopy) );
Map_NodeSetData( Map_ManReadInputs(pMan)[i], 1, (char *)pNode->pCopy );
}
Abc_NtkForEachNode( pNtk, pNode, i )
{
// if ( Abc_NodeIsConst(pNode) )
// continue;
Map_NodeSetData( (Map_Node_t *)pNode->pNext, 0, (char *)Abc_NtkCreateNodeInv(pNtkNew,pNode->pCopy) );
Map_NodeSetData( (Map_Node_t *)pNode->pNext, 1, (char *)pNode->pCopy );
}
// assign the mapping of the required phase to the POs
pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) );
Abc_NtkForEachNode( pNtk, pNode, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
// if ( Abc_NodeIsConst(pNode) )
// continue;
Abc_NodeSuperChoice( pNtkNew, pNode );
}
Extra_ProgressBarStop( pProgress );
return pNtkNew;
}
/**Function*************************************************************
Synopsis [Creates the mapped network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeSuperChoice( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode )
{
Map_Node_t * pMapNode = (Map_Node_t *)pNode->pNext;
Map_Cut_t * pCuts, * pTemp;
pCuts = Map_NodeReadCuts(pMapNode);
for ( pTemp = Map_CutReadNext(pCuts); pTemp; pTemp = Map_CutReadNext(pTemp) )
{
Abc_NodeFromMapCutPhase( pNtkNew, pTemp, 0 );
Abc_NodeFromMapCutPhase( pNtkNew, pTemp, 1 );
}
}
/**Function*************************************************************
Synopsis [Constructs the nodes corrresponding to one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeFromMapCutPhase( Abc_Ntk_t * pNtkNew, Map_Cut_t * pCut, int fPhase )
{
Abc_Obj_t * pNodePIs[10];
Map_Node_t ** ppLeaves;
Map_Super_t * pSuperBest;
unsigned uPhaseBest;
int i, fInvPin, nLeaves;
pSuperBest = Map_CutReadSuperBest( pCut, fPhase );
if ( pSuperBest == NULL )
return;
// get the information about the best cut
uPhaseBest = Map_CutReadPhaseBest( pCut, fPhase );
nLeaves = Map_CutReadLeavesNum( pCut );
ppLeaves = Map_CutReadLeaves( pCut );
// collect the PI nodes
for ( i = 0; i < nLeaves; i++ )
{
fInvPin = ((uPhaseBest & (1 << i)) > 0);
pNodePIs[i] = (Abc_Obj_t *)Map_NodeReadData( ppLeaves[i], !fInvPin );
assert( pNodePIs[i] != NULL );
}
// implement the supergate
Abc_NodeFromMapSuperChoice_rec( pNtkNew, pSuperBest, pNodePIs, nLeaves );
}
/**Function*************************************************************
Synopsis [Constructs the nodes corrresponding to one supergate.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NodeFromMapSuperChoice_rec( Abc_Ntk_t * pNtkNew, Map_Super_t * pSuper, Abc_Obj_t * pNodePis[], int nNodePis )
{
Mio_Library_t * pLib = (Mio_Library_t *)Abc_FrameReadLibGen();
Mio_Gate_t * pRoot;
Map_Super_t ** ppFanins;
Abc_Obj_t * pNodeNew, * pNodeFanin;
int nFanins, Number, i;
// get the parameters of the supergate
pRoot = Map_SuperReadRoot(pSuper);
if ( pRoot == NULL )
{
Number = Map_SuperReadNum(pSuper);
if ( Number < nNodePis )
{
return pNodePis[Number];
}
else
{
// assert( 0 );
/* It might happen that a super gate with 5 inputs is constructed that
* actually depends only on the first four variables; i.e the fifth is a
* don't care -- in that case we connect constant node for the fifth
* (since the cut only has 4 variables). An interesting question is what
* if the first variable (and not the fifth one is the redundant one;
* can that happen?) */
return Abc_NtkCreateNodeConst0(pNtkNew);
}
}
pRoot = Mio_LibraryReadGateByName( pLib, Mio_GateReadName(pRoot), NULL );
// get information about the fanins of the supergate
nFanins = Map_SuperReadFaninNum( pSuper );
ppFanins = Map_SuperReadFanins( pSuper );
// create a new node with these fanins
pNodeNew = Abc_NtkCreateNode( pNtkNew );
for ( i = 0; i < nFanins; i++ )
{
pNodeFanin = Abc_NodeFromMapSuperChoice_rec( pNtkNew, ppFanins[i], pNodePis, nNodePis );
Abc_ObjAddFanin( pNodeNew, pNodeFanin );
}
pNodeNew->pData = Abc_SopRegister( (Mem_Flex_t *)pNtkNew->pManFunc, Mio_GateReadSop(pRoot) );
return pNodeNew;
}
/**Function*************************************************************
Synopsis [Returns the twin node if it exists.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkFetchTwinNode( Abc_Obj_t * pNode )
{
Abc_Obj_t * pNode2;
Mio_Gate_t * pGate = (Mio_Gate_t *)pNode->pData;
assert( Abc_NtkHasMapping(pNode->pNtk) );
if ( pGate == NULL || Mio_GateReadTwin(pGate) == NULL )
return NULL;
// assuming the twin node is following next
if ( (int)Abc_ObjId(pNode) == Abc_NtkObjNumMax(pNode->pNtk) - 1 )
return NULL;
pNode2 = Abc_NtkObj( pNode->pNtk, Abc_ObjId(pNode) + 1 );
if ( pNode2 == NULL || !Abc_ObjIsNode(pNode2) || Abc_ObjFaninNum(pNode) != Abc_ObjFaninNum(pNode2) )
return NULL;
if ( Mio_GateReadTwin(pGate) != (Mio_Gate_t *)pNode2->pData )
return NULL;
return pNode2;
}
/**Function*************************************************************
Synopsis [Dumps mapped network in the mini-mapped format.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Abc_NtkWriteMiniMapping( Abc_Ntk_t * pNtk )
{
Vec_Ptr_t * vNodes;
Vec_Int_t * vMapping;
Vec_Str_t * vGates;
Abc_Obj_t * pObj, * pFanin;
int i, k, nNodes, nFanins, nExtra, * pArray;
assert( Abc_NtkHasMapping(pNtk) );
// collect nodes in the DFS order
vNodes = Abc_NtkDfs( pNtk, 0 );
// assign unique numbers
nNodes = nFanins = 0;
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->iTemp = nNodes++;
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
pObj->iTemp = nNodes++, nFanins += Abc_ObjFaninNum(pObj);
// allocate attay to store mapping (4 counters + fanins for each node + PO drivers + gate names)
vMapping = Vec_IntAlloc( 4 + Abc_NtkNodeNum(pNtk) + nFanins + Abc_NtkCoNum(pNtk) + 10000 );
// write the numbers of CI/CO/Node/FF
Vec_IntPush( vMapping, Abc_NtkCiNum(pNtk) );
Vec_IntPush( vMapping, Abc_NtkCoNum(pNtk) );
Vec_IntPush( vMapping, Abc_NtkNodeNum(pNtk) );
Vec_IntPush( vMapping, Abc_NtkLatchNum(pNtk) );
// write the nodes
vGates = Vec_StrAlloc( 10000 );
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
{
Vec_IntPush( vMapping, Abc_ObjFaninNum(pObj) );
Abc_ObjForEachFanin( pObj, pFanin, k )
Vec_IntPush( vMapping, pFanin->iTemp );
// remember this gate (to be added to the mapping later)
Vec_StrPrintStr( vGates, Mio_GateReadName((Mio_Gate_t *)pObj->pData) );
Vec_StrPush( vGates, '\0' );
}
// write the COs literals
Abc_NtkForEachCo( pNtk, pObj, i )
Vec_IntPush( vMapping, Abc_ObjFanin0(pObj)->iTemp );
// finish off the array
nExtra = 4 - Vec_StrSize(vGates) % 4;
for ( i = 0; i < nExtra; i++ )
Vec_StrPush( vGates, '\0' );
// add gates to the array
assert( Vec_StrSize(vGates) % 4 == 0 );
nExtra = Vec_StrSize(vGates) / 4;
pArray = (int *)Vec_StrArray(vGates);
for ( i = 0; i < nExtra; i++ )
Vec_IntPush( vMapping, pArray[i] );
// cleanup and return
Vec_PtrFree( vNodes );
Vec_StrFree( vGates );
return vMapping;
}
/**Function*************************************************************
Synopsis [Prints mapped network represented in mini-mapped format.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkPrintMiniMapping( int * pArray )
{
int nCis, nCos, nNodes, nFlops;
int i, k, nLeaves, Pos = 4;
char * pBuffer, * pName;
nCis = pArray[0];
nCos = pArray[1];
nNodes = pArray[2];
nFlops = pArray[3];
printf( "Mapped network has %d CIs, %d COs, %d gates, and %d flops.\n", nCis, nCos, nNodes, nFlops );
printf( "The first %d object IDs (from 0 to %d) are reserved for the CIs.\n", nCis, nCis - 1 );
for ( i = 0; i < nNodes; i++ )
{
printf( "Node %d has fanins {", nCis + i );
nLeaves = pArray[Pos++];
for ( k = 0; k < nLeaves; k++ )
printf( " %d", pArray[Pos++] );
printf( " }\n" );
}
for ( i = 0; i < nCos; i++ )
printf( "CO %d is driven by node %d\n", i, pArray[Pos++] );
pBuffer = (char *)(pArray + Pos);
for ( i = 0; i < nNodes; i++ )
{
pName = pBuffer;
pBuffer += strlen(pName) + 1;
printf( "Node %d has gate \"%s\"\n", nCis + i, pName );
}
}
/**Function*************************************************************
Synopsis [This procedure outputs an array representing mini-mapped network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int * Abc_NtkOutputMiniMapping( void * pAbc0 )
{
Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0;
Abc_Ntk_t * pNtk;
Vec_Int_t * vMapping;
int * pArray;
if ( pAbc == NULL )
printf( "ABC framework is not initialized by calling Abc_Start()\n" );
pNtk = Abc_FrameReadNtk( pAbc );
if ( pNtk == NULL )
printf( "Current network in ABC framework is not defined.\n" );
if ( !Abc_NtkHasMapping(pNtk) )
printf( "Current network in ABC framework is not mapped.\n" );
// derive mini-mapping
vMapping = Abc_NtkWriteMiniMapping( pNtk );
pArray = Vec_IntArray( vMapping );
ABC_FREE( vMapping );
// print mini-mapping (optional)
// Abc_NtkPrintMiniMapping( pArray );
// return the array representation of mini-mapping
return pArray;
}
/**Function*************************************************************
Synopsis [Test for mini-mapped format.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkTestMiniMapping( Abc_Ntk_t * p )
{
Vec_Int_t * vMapping;
vMapping = Abc_NtkWriteMiniMapping( p );
Abc_NtkPrintMiniMapping( Vec_IntArray(vMapping) );
printf( "Array has size %d ints.\n", Vec_IntSize(vMapping) );
Vec_IntFree( vMapping );
}
/**Function*************************************************************
Synopsis [These APIs set arriva/required times of CIs/COs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkSetCiArrivalTime( void * pAbc0, int iCi, float Rise, float Fall )
{
Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0;
Abc_Ntk_t * pNtk;
Abc_Obj_t * pNode;
if ( pAbc == NULL )
printf( "ABC framework is not initialized by calling Abc_Start()\n" );
pNtk = Abc_FrameReadNtk( pAbc );
if ( pNtk == NULL )
printf( "Current network in ABC framework is not defined.\n" );
if ( iCi < 0 || iCi >= Abc_NtkCiNum(pNtk) )
printf( "CI index is not valid.\n" );
pNode = Abc_NtkCi( pNtk, iCi );
Abc_NtkTimeSetArrival( pNtk, Abc_ObjId(pNode), Rise, Fall );
}
void Abc_NtkSetCoRequiredTime( void * pAbc0, int iCo, float Rise, float Fall )
{
Abc_Frame_t * pAbc = (Abc_Frame_t *)pAbc0;
Abc_Ntk_t * pNtk;
Abc_Obj_t * pNode;
if ( pAbc == NULL )
printf( "ABC framework is not initialized by calling Abc_Start()\n" );
pNtk = Abc_FrameReadNtk( pAbc );
if ( pNtk == NULL )
printf( "Current network in ABC framework is not defined.\n" );
if ( iCo < 0 || iCo >= Abc_NtkCoNum(pNtk) )
printf( "CO index is not valid.\n" );
pNode = Abc_NtkCo( pNtk, iCo );
Abc_NtkTimeSetRequired( pNtk, Abc_ObjId(pNode), Rise, Fall );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|