aboutsummaryrefslogtreecommitdiffstats
path: root/src/_cffi_src/openssl/cmac.py
Commit message (Expand)AuthorAgeFilesLines
* remove openssl CONDITIONAL_NAMESPaul Kehrer2015-08-031-11/+0
* convert to cffi 1.0 precompile systemPaul Kehrer2015-06-071-0/+56
40' href='#n40'>40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
/**CFile****************************************************************

  FileName    [abcOdc.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Network and node package.]

  Synopsis    [Scalable computation of observability don't-cares.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: abcOdc.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "abc.h"
#include "extra.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

#define ABC_DC_MAX_NODES   (1<<15)

typedef unsigned short Odc_Lit_t;

typedef struct Odc_Obj_t_ Odc_Obj_t;     // 16 bytes
struct Odc_Obj_t_
{
    Odc_Lit_t               iFan0;       // first fanin
    Odc_Lit_t               iFan1;       // second fanin
    Odc_Lit_t               iNext;       // next node in the hash table
    unsigned short          TravId;      // the traversal ID
    unsigned                uData;       // the computed data
    unsigned                uMask;       // the variable mask 
};

struct Odc_Man_t_
{
    // dont'-care parameters
    int                     nVarsMax;    // the max number of cut variables
    int                     nLevels;     // the number of ODC levels
    int                     fVerbose;    // the verbosiness flag
    int                     fVeryVerbose;// the verbosiness flag to print per-node stats
    int                     nPercCutoff; // cutoff percentage

    // windowing
    Abc_Obj_t *             pNode;       // the node for windowing
    Vec_Ptr_t *             vLeaves;     // the number of the cut
    Vec_Ptr_t *             vRoots;      // the roots of the cut
    Vec_Ptr_t *             vBranches;   // additional inputs 

    // internal AIG package
    // objects
    int                     nPis;        // number of PIs (nVarsMax + 32)
    int                     nObjs;       // number of objects (Const1, PIs, ANDs)
    int                     nObjsAlloc;  // number of objects allocated
    Odc_Obj_t *             pObjs;       // objects 
    Odc_Lit_t               iRoot;       // the root object
    unsigned short          nTravIds;    // the number of travIDs
    // structural hashing
    Odc_Lit_t *             pTable;      // hash table
    int                     nTableSize;  // hash table size
    Vec_Int_t *             vUsedSpots;  // the used spots

    // truth tables
    int                     nBits;       // the number of bits
    int                     nWords;      // the number of words 
    Vec_Ptr_t *             vTruths;     // truth tables for each node
    Vec_Ptr_t *             vTruthsElem; // elementary truth tables for the PIs
    unsigned *              puTruth;     // the place where the resulting truth table does

    // statistics
    int                     nWins;       // the number of windows processed
    int                     nWinsEmpty;  // the number of empty windows
    int                     nSimsEmpty;  // the number of empty simulation infos
    int                     nQuantsOver; // the number of quantification overflows
    int                     nWinsFinish; // the number of windows that finished
    int                     nTotalDcs;   // total percentage of DCs

    // runtime
    int                     timeClean;   // windowing
    int                     timeWin;     // windowing
    int                     timeMiter;   // computing the miter
    int                     timeSim;     // simulation
    int                     timeQuant;   // quantification
    int                     timeTruth;   // truth table
    int                     timeTotal;   // useful runtime
    int                     timeAbort;   // aborted runtime
};


// quantity of different objects
static inline int           Odc_PiNum( Odc_Man_t * p )                     { return p->nPis;                       }
static inline int           Odc_NodeNum( Odc_Man_t * p )                   { return p->nObjs - p->nPis - 1;        }
static inline int           Odc_ObjNum( Odc_Man_t * p )                    { return p->nObjs;                      }

// complemented attributes of objects
static inline int           Odc_IsComplement( Odc_Lit_t Lit )              { return Lit &  (Odc_Lit_t)1;           }
static inline Odc_Lit_t     Odc_Regular( Odc_Lit_t Lit )                   { return Lit & ~(Odc_Lit_t)1;           }
static inline Odc_Lit_t     Odc_Not( Odc_Lit_t Lit )                       { return Lit ^  (Odc_Lit_t)1;           }
static inline Odc_Lit_t     Odc_NotCond( Odc_Lit_t Lit, int c )            { return Lit ^  (Odc_Lit_t)(c!=0);      }

// specialized Literals
static inline Odc_Lit_t     Odc_Const0()                                   { return 1;                             }
static inline Odc_Lit_t     Odc_Const1()                                   { return 0;                             }
static inline Odc_Lit_t     Odc_Var( Odc_Man_t * p, int i )                { assert( i >= 0 && i < p->nPis ); return (i+1) << 1;  }
static inline int           Odc_IsConst( Odc_Lit_t Lit )                   { return Lit <  (Odc_Lit_t)2;           }
static inline int           Odc_IsTerm( Odc_Man_t * p, Odc_Lit_t Lit )     { return (int)(Lit>>1) <= p->nPis;      }

// accessing internal storage
static inline Odc_Obj_t *   Odc_ObjNew( Odc_Man_t * p )                    { assert( p->nObjs < p->nObjsAlloc ); return p->pObjs + p->nObjs++;        }
static inline Odc_Lit_t     Odc_Obj2Lit( Odc_Man_t * p, Odc_Obj_t * pObj ) { assert( pObj ); return (pObj - p->pObjs) << 1;                           }
static inline Odc_Obj_t *   Odc_Lit2Obj( Odc_Man_t * p, Odc_Lit_t Lit )    { assert( !(Lit & 1) && (int)(Lit>>1) < p->nObjs ); return p->pObjs + (Lit>>1); }

// fanins and their complements
static inline Odc_Lit_t     Odc_ObjChild0( Odc_Obj_t * pObj )              { return pObj->iFan0;                   }
static inline Odc_Lit_t     Odc_ObjChild1( Odc_Obj_t * pObj )              { return pObj->iFan1;                   }
static inline Odc_Lit_t     Odc_ObjFanin0( Odc_Obj_t * pObj )              { return Odc_Regular(pObj->iFan0);      }
static inline Odc_Lit_t     Odc_ObjFanin1( Odc_Obj_t * pObj )              { return Odc_Regular(pObj->iFan1);      }
static inline int           Odc_ObjFaninC0( Odc_Obj_t * pObj )             { return Odc_IsComplement(pObj->iFan0); }
static inline int           Odc_ObjFaninC1( Odc_Obj_t * pObj )             { return Odc_IsComplement(pObj->iFan1); }

// traversal IDs
static inline void          Odc_ManIncrementTravId( Odc_Man_t * p )                         { p->nTravIds++;                                    }
static inline void          Odc_ObjSetTravIdCurrent( Odc_Man_t * p, Odc_Obj_t * pObj )      { pObj->TravId = p->nTravIds;                       }
static inline int           Odc_ObjIsTravIdCurrent( Odc_Man_t * p, Odc_Obj_t * pObj )       { return (int )((int)pObj->TravId == p->nTravIds);  }

// truth tables
static inline unsigned *    Odc_ObjTruth( Odc_Man_t * p, Odc_Lit_t Lit )   { assert( !(Lit & 1) ); return (unsigned *) Vec_PtrEntry(p->vTruths, Lit >> 1);  }

// iterators 
#define Odc_ForEachPi( p, Lit, i )                                                 \
    for ( i = 0; (i < Odc_PiNum(p)) && (((Lit) = Odc_Var(p, i)), 1); i++ )
#define Odc_ForEachAnd( p, pObj, i )                                               \
    for ( i = 1 + Odc_CiNum(p); (i < Odc_ObjNum(p)) && ((pObj) = (p)->pObjs + i); i++ )


////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Allocates the don't-care manager.]

  Description [The parameters are the max number of cut variables, 
  the number of fanout levels used for the ODC computation, and verbosiness.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Odc_Man_t * Abc_NtkDontCareAlloc( int nVarsMax, int nLevels, int fVerbose, int fVeryVerbose )
{
    Odc_Man_t * p;
    unsigned * pData;
    int i, k;
    p = ABC_ALLOC( Odc_Man_t, 1 );
    memset( p, 0, sizeof(Odc_Man_t) );
    assert( nVarsMax > 4 && nVarsMax < 16 );
    assert( nLevels > 0 && nLevels < 10 );

    srand( 0xABC );

    // dont'-care parameters
    p->nVarsMax     = nVarsMax;
    p->nLevels      = nLevels;
    p->fVerbose     = fVerbose;
    p->fVeryVerbose = fVeryVerbose;
    p->nPercCutoff  = 10;

    // windowing
    p->vRoots    = Vec_PtrAlloc( 128 );
    p->vBranches = Vec_PtrAlloc( 128 );

    // internal AIG package
    // allocate room for objects
    p->nObjsAlloc = ABC_DC_MAX_NODES; 
    p->pObjs = ABC_ALLOC( Odc_Obj_t, p->nObjsAlloc * sizeof(Odc_Obj_t) );
    p->nPis  = nVarsMax + 32;
    p->nObjs = 1 + p->nPis;
    memset( p->pObjs, 0, p->nObjs * sizeof(Odc_Obj_t) );
    // set the PI masks
    for ( i = 0; i < 32; i++ )
        p->pObjs[1 + p->nVarsMax + i].uMask = (1 << i);
    // allocate hash table
    p->nTableSize = p->nObjsAlloc/3 + 1;
    p->pTable = ABC_ALLOC( Odc_Lit_t, p->nTableSize * sizeof(Odc_Lit_t) );
    memset( p->pTable, 0, p->nTableSize * sizeof(Odc_Lit_t) );
    p->vUsedSpots = Vec_IntAlloc( 1000 );

    // truth tables
    p->nWords = Abc_TruthWordNum( p->nVarsMax );
    p->nBits = p->nWords * 8 * sizeof(unsigned);
    p->vTruths = Vec_PtrAllocSimInfo( p->nObjsAlloc, p->nWords );
    p->vTruthsElem = Vec_PtrAllocSimInfo( p->nVarsMax, p->nWords );

    // set elementary truth tables
    Abc_InfoFill( (unsigned *)Vec_PtrEntry(p->vTruths, 0), p->nWords );
    for ( k = 0; k < p->nVarsMax; k++ )
    {
//        pData = Odc_ObjTruth( p, Odc_Var(p, k) );
        pData = (unsigned *)Vec_PtrEntry( p->vTruthsElem, k );
        Abc_InfoClear( pData, p->nWords );
        for ( i = 0; i < p->nBits; i++ )
            if ( i & (1 << k) )
                pData[i>>5] |= (1 << (i&31));
    }

    // set random truth table for the additional inputs
    for ( k = p->nVarsMax; k < p->nPis; k++ )
    {
        pData = Odc_ObjTruth( p, Odc_Var(p, k) );
        Abc_InfoRandom( pData, p->nWords );
    }

    // set the miter to the unused value
    p->iRoot = 0xffff;
    return p;
}

/**Function*************************************************************

  Synopsis    [Clears the manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDontCareClear( Odc_Man_t * p )
{
    int clk = clock();
    // clean the structural hashing table
    if ( Vec_IntSize(p->vUsedSpots) > p->nTableSize/3 ) // more than one third
        memset( p->pTable, 0, sizeof(Odc_Lit_t) * p->nTableSize );
    else
    {
        int iSpot, i;
        Vec_IntForEachEntry( p->vUsedSpots, iSpot, i )
            p->pTable[iSpot] = 0;
    }
    Vec_IntClear( p->vUsedSpots ); 
    // reset the number of nodes
    p->nObjs = 1 + p->nPis;
    // reset the root node
    p->iRoot = 0xffff;

p->timeClean += clock() - clk;
}

/**Function*************************************************************

  Synopsis    [Frees the don't-care manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDontCareFree( Odc_Man_t * p )
{
    if ( p->fVerbose )
    {
        printf( "Wins = %5d. Empty = %5d. SimsEmpty = %5d. QuantOver = %5d. WinsFinish = %5d.\n", 
            p->nWins, p->nWinsEmpty, p->nSimsEmpty, p->nQuantsOver, p->nWinsFinish );
        printf( "Ave DCs per window = %6.2f %%. Ave DCs per finished window = %6.2f %%.\n", 
            1.0*p->nTotalDcs/p->nWins, 1.0*p->nTotalDcs/p->nWinsFinish );
        printf( "Runtime stats of the ODC manager:\n" );
        ABC_PRT( "Cleaning    ", p->timeClean );
        ABC_PRT( "Windowing   ", p->timeWin   );
        ABC_PRT( "Miter       ", p->timeMiter );
        ABC_PRT( "Simulation  ", p->timeSim   );
        ABC_PRT( "Quantifying ", p->timeQuant );
        ABC_PRT( "Truth table ", p->timeTruth );
        ABC_PRT( "TOTAL       ", p->timeTotal );
        ABC_PRT( "Aborted     ", p->timeAbort );
    }
    Vec_PtrFree( p->vRoots );
    Vec_PtrFree( p->vBranches );
    Vec_PtrFree( p->vTruths );
    Vec_PtrFree( p->vTruthsElem );
    Vec_IntFree( p->vUsedSpots );
    ABC_FREE( p->pObjs );
    ABC_FREE( p->pTable );
    ABC_FREE( p );
}



/**Function*************************************************************

  Synopsis    [Marks the TFO of the collected nodes up to the given level.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDontCareWinSweepLeafTfo_rec( Abc_Obj_t * pObj, int nLevelLimit, Abc_Obj_t * pNode )
{
    Abc_Obj_t * pFanout;
    int i;
    if ( Abc_ObjIsCo(pObj) || (int)pObj->Level > nLevelLimit || pObj == pNode )
        return;
    if ( Abc_NodeIsTravIdCurrent(pObj) )
        return;
    Abc_NodeSetTravIdCurrent( pObj );
    ////////////////////////////////////////
    // try to reduce the runtime
    if ( Abc_ObjFanoutNum(pObj) > 100 )
        return;
    ////////////////////////////////////////
    Abc_ObjForEachFanout( pObj, pFanout, i )
        Abc_NtkDontCareWinSweepLeafTfo_rec( pFanout, nLevelLimit, pNode );
}

/**Function*************************************************************

  Synopsis    [Marks the TFO of the collected nodes up to the given level.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDontCareWinSweepLeafTfo( Odc_Man_t * p )
{
    Abc_Obj_t * pObj;
    int i;
    Abc_NtkIncrementTravId( p->pNode->pNtk );
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vLeaves, pObj, i )
        Abc_NtkDontCareWinSweepLeafTfo_rec( pObj, p->pNode->Level + p->nLevels, p->pNode );
}

/**Function*************************************************************

  Synopsis    [Recursively collects the roots.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDontCareWinCollectRoots_rec( Abc_Obj_t * pObj, Vec_Ptr_t * vRoots )
{
    Abc_Obj_t * pFanout;
    int i;
    assert( Abc_ObjIsNode(pObj) );
    assert( Abc_NodeIsTravIdCurrent(pObj) );
    // check if the node has all fanouts marked
    Abc_ObjForEachFanout( pObj, pFanout, i )
        if ( !Abc_NodeIsTravIdCurrent(pFanout) )
            break;
    // if some of the fanouts are unmarked, add the node to the root
    if ( i < Abc_ObjFanoutNum(pObj) ) 
    {
        Vec_PtrPushUnique( vRoots, pObj );
        return;
    }
    // otherwise, call recursively
    Abc_ObjForEachFanout( pObj, pFanout, i )
        Abc_NtkDontCareWinCollectRoots_rec( pFanout, vRoots );
}

/**Function*************************************************************

  Synopsis    [Collects the roots of the window.]

  Description [Roots of the window are the nodes that have at least
  one fanout that it not in the TFO of the leaves.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDontCareWinCollectRoots( Odc_Man_t * p )
{
    assert( !Abc_NodeIsTravIdCurrent(p->pNode) );
    // mark the node with the old traversal ID
    Abc_NodeSetTravIdCurrent( p->pNode ); 
    // collect the roots
    Vec_PtrClear( p->vRoots );
    Abc_NtkDontCareWinCollectRoots_rec( p->pNode, p->vRoots );
}
 
/**Function*************************************************************

  Synopsis    [Recursively adds missing nodes and leaves.]

  Description []
               
  SideEffects []

  SeeAlso     [] 

***********************************************************************/
int Abc_NtkDontCareWinAddMissing_rec( Odc_Man_t * p, Abc_Obj_t * pObj )
{
    Abc_Obj_t * pFanin;
    int i;
    // skip the already collected leaves and branches
    if ( Abc_NodeIsTravIdCurrent(pObj) )
        return 1;
    // if this is not an internal node - make it a new branch
    if ( !Abc_NodeIsTravIdPrevious(pObj) || Abc_ObjIsCi(pObj) ) //|| (int)pObj->Level <= p->nLevLeaves )
    {
        Abc_NodeSetTravIdCurrent( pObj );
        Vec_PtrPush( p->vBranches, pObj );
        return Vec_PtrSize(p->vBranches) <= 32;
    }
    // visit the fanins of the node
    Abc_ObjForEachFanin( pObj, pFanin, i )
        if ( !Abc_NtkDontCareWinAddMissing_rec( p, pFanin ) )
            return 0;
    return 1;
}

/**Function*************************************************************

  Synopsis    [Adds to the window nodes and leaves in the TFI of the roots.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkDontCareWinAddMissing( Odc_Man_t * p )
{
    Abc_Obj_t * pObj;
    int i;
    // set the leaves
    Abc_NtkIncrementTravId( p->pNode->pNtk );
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vLeaves, pObj, i )
        Abc_NodeSetTravIdCurrent( pObj );        
    // explore from the roots
    Vec_PtrClear( p->vBranches );
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vRoots, pObj, i )
        if ( !Abc_NtkDontCareWinAddMissing_rec( p, pObj ) )
            return 0;
    return 1;
}

/**Function*************************************************************

  Synopsis    [Computes window for the node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkDontCareWindow( Odc_Man_t * p )
{
    // mark the TFO of the collected nodes up to the given level (p->pNode->Level + p->nWinTfoMax)
    Abc_NtkDontCareWinSweepLeafTfo( p );
    // find the roots of the window
    Abc_NtkDontCareWinCollectRoots( p );
    if ( Vec_PtrSize(p->vRoots) == 1 && Vec_PtrEntry(p->vRoots, 0) == p->pNode )
    {
//        printf( "Empty window\n" );
        return 0;
    }
    // add the nodes in the TFI of the roots that are not yet in the window
    if ( !Abc_NtkDontCareWinAddMissing( p ) )
    {
//        printf( "Too many branches (%d)\n", Vec_PtrSize(p->vBranches) );
        return 0;
    }
    return 1;
}





/**Function*************************************************************

  Synopsis    [Performing hashing of two AIG Literals.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline unsigned Odc_HashKey( Odc_Lit_t iFan0, Odc_Lit_t iFan1, int TableSize ) 
{
    unsigned Key = 0;
    Key ^= Odc_Regular(iFan0) * 7937;
    Key ^= Odc_Regular(iFan1) * 2971;
    Key ^= Odc_IsComplement(iFan0) * 911;
    Key ^= Odc_IsComplement(iFan1) * 353;
    return Key % TableSize;
}

/**Function*************************************************************

  Synopsis    [Checks if the given name node already exists in the table.]

  Description []
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline Odc_Lit_t * Odc_HashLookup( Odc_Man_t * p, Odc_Lit_t iFan0, Odc_Lit_t iFan1 )
{
    Odc_Obj_t * pObj;
    Odc_Lit_t * pEntry;
    unsigned uHashKey;
    assert( iFan0 < iFan1 );
    // get the hash key for this node
    uHashKey = Odc_HashKey( iFan0, iFan1, p->nTableSize );
    // remember the spot in the hash table that will be used
    if ( p->pTable[uHashKey] == 0 )
        Vec_IntPush( p->vUsedSpots, uHashKey );
    // find the entry
    for ( pEntry = p->pTable + uHashKey; *pEntry; pEntry = &pObj->iNext )
    {
        pObj = Odc_Lit2Obj( p, *pEntry );
        if ( pObj->iFan0 == iFan0 && pObj->iFan1 == iFan1 )
            return pEntry;
    }
    return pEntry;
}

/**Function*************************************************************

  Synopsis    [Finds node by structural hashing or creates a new node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline Odc_Lit_t Odc_And( Odc_Man_t * p, Odc_Lit_t iFan0, Odc_Lit_t iFan1 )
{
    Odc_Obj_t * pObj;
    Odc_Lit_t * pEntry;
    unsigned uMask0, uMask1;
    int Temp;
    // consider trivial cases
    if ( iFan0 == iFan1 )
        return iFan0;
    if ( iFan0 == Odc_Not(iFan1) )
        return Odc_Const0();
    if ( Odc_Regular(iFan0) == Odc_Const1() )
        return iFan0 == Odc_Const1() ? iFan1 : Odc_Const0();
    if ( Odc_Regular(iFan1) == Odc_Const1() )
        return iFan1 == Odc_Const1() ? iFan0 : Odc_Const0();
    // canonicize the fanin order
    if ( iFan0 > iFan1 )
        Temp = iFan0, iFan0 = iFan1, iFan1 = Temp;
    // check if a node with these fanins exists
    pEntry = Odc_HashLookup( p, iFan0, iFan1 );
    if ( *pEntry )
        return *pEntry;
    // create a new node
    pObj = Odc_ObjNew( p );
    pObj->iFan0 = iFan0;
    pObj->iFan1 = iFan1;
    pObj->iNext = 0;
    pObj->TravId = 0;
    // set the mask
    uMask0 = Odc_Lit2Obj(p, Odc_Regular(iFan0))->uMask;
    uMask1 = Odc_Lit2Obj(p, Odc_Regular(iFan1))->uMask;
    pObj->uMask = uMask0 | uMask1;
    // add to the table
    *pEntry = Odc_Obj2Lit( p, pObj );
    return *pEntry;
}

/**Function*************************************************************

  Synopsis    [Boolean OR.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline Odc_Lit_t Odc_Or( Odc_Man_t * p, Odc_Lit_t iFan0, Odc_Lit_t iFan1 )
{
    return Odc_Not( Odc_And(p, Odc_Not(iFan0), Odc_Not(iFan1)) );
}

/**Function*************************************************************

  Synopsis    [Boolean XOR.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline Odc_Lit_t Odc_Xor( Odc_Man_t * p, Odc_Lit_t iFan0, Odc_Lit_t iFan1 )
{
    return Odc_Or( p, Odc_And(p, iFan0, Odc_Not(iFan1)), Odc_And(p, Odc_Not(iFan0), iFan1) );
}





/**Function*************************************************************

  Synopsis    [Transfers the window into the AIG package.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void * Abc_NtkDontCareTransfer_rec( Odc_Man_t * p, Abc_Obj_t * pNode, Abc_Obj_t * pPivot )
{
    unsigned uData0, uData1;
    Odc_Lit_t uLit0, uLit1, uRes0, uRes1;
    assert( !Abc_ObjIsComplement(pNode) );
    // skip visited objects
    if ( Abc_NodeIsTravIdCurrent(pNode) )
        return pNode->pCopy;
    Abc_NodeSetTravIdCurrent(pNode);
    assert( Abc_ObjIsNode(pNode) );
    // consider the case when the node is the pivot
    if ( pNode == pPivot )
        return pNode->pCopy = (Abc_Obj_t *)(ABC_PTRUINT_T)((Odc_Const1() << 16) | Odc_Const0());
    // compute the cofactors
    uData0 = (unsigned)(ABC_PTRUINT_T)Abc_NtkDontCareTransfer_rec( p, Abc_ObjFanin0(pNode), pPivot );
    uData1 = (unsigned)(ABC_PTRUINT_T)Abc_NtkDontCareTransfer_rec( p, Abc_ObjFanin1(pNode), pPivot );
    // find the 0-cofactor
    uLit0 = Odc_NotCond( (Odc_Lit_t)(uData0 & 0xffff), Abc_ObjFaninC0(pNode) );
    uLit1 = Odc_NotCond( (Odc_Lit_t)(uData1 & 0xffff), Abc_ObjFaninC1(pNode) );
    uRes0 = Odc_And( p, uLit0, uLit1 );
    // find the 1-cofactor
    uLit0 = Odc_NotCond( (Odc_Lit_t)(uData0 >> 16), Abc_ObjFaninC0(pNode) );
    uLit1 = Odc_NotCond( (Odc_Lit_t)(uData1 >> 16), Abc_ObjFaninC1(pNode) );
    uRes1 = Odc_And( p, uLit0, uLit1 );
    // find the result
    return pNode->pCopy = (Abc_Obj_t *)(ABC_PTRUINT_T)((uRes1 << 16) | uRes0);
}

/**Function*************************************************************

  Synopsis    [Transfers the window into the AIG package.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkDontCareTransfer( Odc_Man_t * p )
{
    Abc_Obj_t * pObj;
    Odc_Lit_t uRes0, uRes1;
    Odc_Lit_t uLit;
    unsigned uData;
    int i;
    Abc_NtkIncrementTravId( p->pNode->pNtk );
    // set elementary variables at the leaves 
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vLeaves, pObj, i )
    {
        uLit = Odc_Var( p, i );
        pObj->pCopy = (Abc_Obj_t *)(ABC_PTRUINT_T)((uLit << 16) | uLit);
        Abc_NodeSetTravIdCurrent(pObj);
    }
    // set elementary variables at the branched 
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vBranches, pObj, i )
    {
        uLit = Odc_Var( p, i+p->nVarsMax );
        pObj->pCopy = (Abc_Obj_t *)(ABC_PTRUINT_T)((uLit << 16) | uLit);
        Abc_NodeSetTravIdCurrent(pObj);
    }
    // compute the AIG for the window
    p->iRoot = Odc_Const0();
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vRoots, pObj, i )
    {
        uData = (unsigned)(ABC_PTRUINT_T)Abc_NtkDontCareTransfer_rec( p, pObj, p->pNode );
        // get the cofactors
        uRes0 = uData & 0xffff;
        uRes1 = uData >> 16;
        // compute the miter
//        assert( uRes0 != uRes1 ); // may be false if the node is redundant w.r.t. this root
        uLit = Odc_Xor( p, uRes0, uRes1 );
        p->iRoot = Odc_Or( p, p->iRoot, uLit );
    }
    return 1;
}


/**Function*************************************************************

  Synopsis    [Recursively computes the pair of cofactors.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
unsigned Abc_NtkDontCareCofactors_rec( Odc_Man_t * p, Odc_Lit_t Lit, unsigned uMask )
{
    Odc_Obj_t * pObj;
    unsigned uData0, uData1;
    Odc_Lit_t uLit0, uLit1, uRes0, uRes1;
    assert( !Odc_IsComplement(Lit) );
    // skip visited objects
    pObj = Odc_Lit2Obj( p, Lit );
    if ( Odc_ObjIsTravIdCurrent(p, pObj) )
        return pObj->uData;
    Odc_ObjSetTravIdCurrent(p, pObj);
    // skip objects out of the cone
    if ( (pObj->uMask & uMask) == 0 )
        return pObj->uData = ((Lit << 16) | Lit);
    // consider the case when the node is the var
    if ( pObj->uMask == uMask && Odc_IsTerm(p, Lit) )
        return pObj->uData = ((Odc_Const1() << 16) | Odc_Const0());
    // compute the cofactors
    uData0 = Abc_NtkDontCareCofactors_rec( p, Odc_ObjFanin0(pObj), uMask );
    uData1 = Abc_NtkDontCareCofactors_rec( p, Odc_ObjFanin1(pObj), uMask );
    // find the 0-cofactor
    uLit0 = Odc_NotCond( (Odc_Lit_t)(uData0 & 0xffff), Odc_ObjFaninC0(pObj) );
    uLit1 = Odc_NotCond( (Odc_Lit_t)(uData1 & 0xffff), Odc_ObjFaninC1(pObj) );
    uRes0 = Odc_And( p, uLit0, uLit1 );
    // find the 1-cofactor
    uLit0 = Odc_NotCond( (Odc_Lit_t)(uData0 >> 16), Odc_ObjFaninC0(pObj) );
    uLit1 = Odc_NotCond( (Odc_Lit_t)(uData1 >> 16), Odc_ObjFaninC1(pObj) );
    uRes1 = Odc_And( p, uLit0, uLit1 );
    // find the result
    return pObj->uData = ((uRes1 << 16) | uRes0);
}

/**Function*************************************************************

  Synopsis    [Quantifies the branch variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkDontCareQuantify( Odc_Man_t * p )
{   
    Odc_Lit_t uRes0, uRes1;
    unsigned uData;
    int i;
    assert( p->iRoot < 0xffff );
    assert( Vec_PtrSize(p->vBranches) <= 32 ); // the mask size
    for ( i = 0; i < Vec_PtrSize(p->vBranches); i++ )
    {
        // compute the cofactors w.r.t. this variable
        Odc_ManIncrementTravId( p );
        uData = Abc_NtkDontCareCofactors_rec( p, Odc_Regular(p->iRoot), (1 << i) );
        uRes0 = Odc_NotCond( (Odc_Lit_t)(uData & 0xffff), Odc_IsComplement(p->iRoot) );
        uRes1 = Odc_NotCond( (Odc_Lit_t)(uData >> 16),    Odc_IsComplement(p->iRoot) );
        // quantify this variable existentially
        p->iRoot = Odc_Or( p, uRes0, uRes1 );
        // check the limit
        if ( Odc_ObjNum(p) > ABC_DC_MAX_NODES/2 )
            return 0;
    }
    assert( p->nObjs <= p->nObjsAlloc );
    return 1;
}



/**Function*************************************************************

  Synopsis    [Set elementary truth tables for PIs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDontCareSimulateSetElem2( Odc_Man_t * p )
{
    unsigned * pData;
    int i, k;
    for ( k = 0; k < p->nVarsMax; k++ )
    {
        pData = Odc_ObjTruth( p, Odc_Var(p, k) );
        Abc_InfoClear( pData, p->nWords );
        for ( i = 0; i < p->nBits; i++ )
            if ( i & (1 << k) )
                pData[i>>5] |= (1 << (i&31));
    }
}

/**Function*************************************************************

  Synopsis    [Set elementary truth tables for PIs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDontCareSimulateSetElem( Odc_Man_t * p )
{
    unsigned * pData, * pData2;
    int k;
    for ( k = 0; k < p->nVarsMax; k++ )
    {
        pData = Odc_ObjTruth( p, Odc_Var(p, k) );
        pData2 = (unsigned *)Vec_PtrEntry( p->vTruthsElem, k );
        Abc_InfoCopy( pData, pData2, p->nWords );
    }
}

/**Function*************************************************************

  Synopsis    [Set random simulation words for PIs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDontCareSimulateSetRand( Odc_Man_t * p )
{
    unsigned * pData;
    int w, k, Number;
    for ( w = 0; w < p->nWords; w++ )
    {
        Number = rand();
        for ( k = 0; k < p->nVarsMax; k++ )
        {
            pData = Odc_ObjTruth( p, Odc_Var(p, k) );
            pData[w] = (Number & (1<<k)) ? ~0 : 0;
        }
    }
}

/**Function*************************************************************

  Synopsis    [Set random simulation words for PIs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkDontCareCountMintsWord( Odc_Man_t * p, unsigned * puTruth )
{
    int w, Counter = 0;
    for ( w = 0; w < p->nWords; w++ )
        if ( puTruth[w] )
            Counter++;
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Simulates one node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDontCareTruthOne( Odc_Man_t * p, Odc_Lit_t Lit )
{
    Odc_Obj_t * pObj;
    unsigned * pInfo, * pInfo1, * pInfo2;
    int k, fComp1, fComp2;
    assert( !Odc_IsComplement( Lit ) );
    assert( !Odc_IsTerm( p, Lit ) );
    // get the truth tables
    pObj   = Odc_Lit2Obj( p, Lit );
    pInfo  = Odc_ObjTruth( p, Lit );
    pInfo1 = Odc_ObjTruth( p, Odc_ObjFanin0(pObj) );
    pInfo2 = Odc_ObjTruth( p, Odc_ObjFanin1(pObj) );
    fComp1 = Odc_ObjFaninC0( pObj );
    fComp2 = Odc_ObjFaninC1( pObj );
    // simulate
    if ( fComp1 && fComp2 )
        for ( k = 0; k < p->nWords; k++ )
            pInfo[k] = ~pInfo1[k] & ~pInfo2[k];
    else if ( fComp1 && !fComp2 )
        for ( k = 0; k < p->nWords; k++ )
            pInfo[k] = ~pInfo1[k] &  pInfo2[k];
    else if ( !fComp1 && fComp2 )
        for ( k = 0; k < p->nWords; k++ )
            pInfo[k] =  pInfo1[k] & ~pInfo2[k];
    else // if ( fComp1 && fComp2 )
        for ( k = 0; k < p->nWords; k++ )
            pInfo[k] =  pInfo1[k] &  pInfo2[k];
}

/**Function*************************************************************

  Synopsis    [Computes the truth table.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDontCareSimulate_rec( Odc_Man_t * p, Odc_Lit_t Lit )
{
    Odc_Obj_t * pObj;
    assert( !Odc_IsComplement(Lit) );
    // skip terminals
    if ( Odc_IsTerm(p, Lit) )
        return;
    // skip visited objects
    pObj = Odc_Lit2Obj( p, Lit );
    if ( Odc_ObjIsTravIdCurrent(p, pObj) )
        return;
    Odc_ObjSetTravIdCurrent(p, pObj);
    // call recursively
    Abc_NtkDontCareSimulate_rec( p, Odc_ObjFanin0(pObj) );
    Abc_NtkDontCareSimulate_rec( p, Odc_ObjFanin1(pObj) );
    // construct the truth table
    Abc_NtkDontCareTruthOne( p, Lit );
}

/**Function*************************************************************

  Synopsis    [Computes the truth table of the care set.]

  Description [Returns the number of ones in the simulation info.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkDontCareSimulate( Odc_Man_t * p, unsigned * puTruth )
{
    Odc_ManIncrementTravId( p );
    Abc_NtkDontCareSimulate_rec( p, Odc_Regular(p->iRoot) );
    Abc_InfoCopy( puTruth, Odc_ObjTruth(p, Odc_Regular(p->iRoot)), p->nWords );
    if ( Odc_IsComplement(p->iRoot) )
        Abc_InfoNot( puTruth, p->nWords );
    return Extra_TruthCountOnes( puTruth, p->nVarsMax );
}

/**Function*************************************************************

  Synopsis    [Computes the truth table of the care set.]

  Description [Returns the number of ones in the simulation info.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkDontCareSimulateBefore( Odc_Man_t * p, unsigned * puTruth )
{
    int nIters = 2;
    int nRounds, Counter, r;
    // decide how many rounds to simulate
    nRounds = p->nBits / p->nWords;
    Counter = 0;
    for ( r = 0; r < nIters; r++ )
    {
        Abc_NtkDontCareSimulateSetRand( p );
        Abc_NtkDontCareSimulate( p, puTruth );
        Counter += Abc_NtkDontCareCountMintsWord( p, puTruth );
    }
    // normalize
    Counter = Counter * nRounds / nIters;
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Computes ODCs for the node in terms of the cut variables.]

  Description [Returns the number of don't care minterms in the truth table.
  In particular, this procedure returns 0 if there is no don't-cares.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkDontCareCompute( Odc_Man_t * p, Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, unsigned * puTruth )
{
    int nMints, RetValue;
    int clk, clkTotal = clock();

    p->nWins++;
    
    // set the parameters
    assert( !Abc_ObjIsComplement(pNode) );
    assert( Abc_ObjIsNode(pNode) );
    assert( Vec_PtrSize(vLeaves) <= p->nVarsMax );
    p->vLeaves = vLeaves;
    p->pNode = pNode;

    // compute the window
clk = clock();
    RetValue = Abc_NtkDontCareWindow( p );
p->timeWin += clock() - clk;
    if ( !RetValue )
    {
p->timeAbort += clock() - clkTotal;
        Abc_InfoFill( puTruth, p->nWords );
        p->nWinsEmpty++;        
        return 0;
    }

    if ( p->fVeryVerbose )
    {
        printf( " %5d : ", pNode->Id );
        printf( "Leaf = %2d ", Vec_PtrSize(p->vLeaves) );
        printf( "Root = %2d ", Vec_PtrSize(p->vRoots) );
        printf( "Bran = %2d ", Vec_PtrSize(p->vBranches) );
        printf( " |  " );
    }

    // transfer the window into the AIG package
clk = clock();
    Abc_NtkDontCareTransfer( p );
p->timeMiter += clock() - clk;

    // simulate to estimate the amount of don't-cares
clk = clock();
    nMints = Abc_NtkDontCareSimulateBefore( p, puTruth );
p->timeSim += clock() - clk;
    if ( p->fVeryVerbose )
    {
        printf( "AIG = %5d ", Odc_NodeNum(p) );
        printf( "%6.2f %%  ", 100.0 * (p->nBits - nMints) / p->nBits );
    }

    // if there is less then the given percentage of don't-cares, skip
    if ( 100.0 * (p->nBits - nMints) / p->nBits < 1.0 * p->nPercCutoff )
    {
p->timeAbort += clock() - clkTotal;
        if ( p->fVeryVerbose )
            printf( "Simulation cutoff.\n" );
        Abc_InfoFill( puTruth, p->nWords );
        p->nSimsEmpty++;
        return 0;
    }

    // quantify external variables
clk = clock();
    RetValue = Abc_NtkDontCareQuantify( p );
p->timeQuant += clock() - clk;
    if ( !RetValue )
    {
p->timeAbort += clock() - clkTotal;
        if ( p->fVeryVerbose )
            printf( "=== Overflow! ===\n" );
        Abc_InfoFill( puTruth, p->nWords );
        p->nQuantsOver++;
        return 0;
    }

    // get the truth table
clk = clock();
    Abc_NtkDontCareSimulateSetElem( p );
    nMints = Abc_NtkDontCareSimulate( p, puTruth );
p->timeTruth += clock() - clk;
    if ( p->fVeryVerbose )
    {
        printf( "AIG = %5d ", Odc_NodeNum(p) );
        printf( "%6.2f %%  ", 100.0 * (p->nBits - nMints) / p->nBits );
        printf( "\n" );
    }
p->timeTotal += clock() - clkTotal;
    p->nWinsFinish++;
    p->nTotalDcs += (int)(100.0 * (p->nBits - nMints) / p->nBits);
    return nMints;
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END