1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
|
/**CFile****************************************************************
FileName [abcRr.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Redundancy removal.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcRr.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "base/abc/abc.h"
#include "proof/fraig/fraig.h"
#include "opt/sim/sim.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
typedef struct Abc_RRMan_t_ Abc_RRMan_t;
struct Abc_RRMan_t_
{
// the parameters
Abc_Ntk_t * pNtk; // the network
int nFaninLevels; // the number of fanin levels
int nFanoutLevels; // the number of fanout levels
// the node/fanin/fanout
Abc_Obj_t * pNode; // the node
Abc_Obj_t * pFanin; // the fanin
Abc_Obj_t * pFanout; // the fanout
// the intermediate cones
Vec_Ptr_t * vFaninLeaves; // the leaves of the fanin cone
Vec_Ptr_t * vFanoutRoots; // the roots of the fanout cone
// the window
Vec_Ptr_t * vLeaves; // the leaves of the window
Vec_Ptr_t * vCone; // the internal nodes of the window
Vec_Ptr_t * vRoots; // the roots of the window
Abc_Ntk_t * pWnd; // the window derived for the edge
// the miter
Abc_Ntk_t * pMiter; // the miter derived from the window
Prove_Params_t * pParams; // the miter proving parameters
// statistical variables
int nNodesOld; // the old number of nodes
int nLevelsOld; // the old number of levels
int nEdgesTried; // the number of nodes tried
int nEdgesRemoved; // the number of nodes proved
clock_t timeWindow; // the time to construct the window
clock_t timeMiter; // the time to construct the miter
clock_t timeProve; // the time to prove the miter
clock_t timeUpdate; // the network update time
clock_t timeTotal; // the total runtime
};
static Abc_RRMan_t * Abc_RRManStart();
static void Abc_RRManStop( Abc_RRMan_t * p );
static void Abc_RRManPrintStats( Abc_RRMan_t * p );
static void Abc_RRManClean( Abc_RRMan_t * p );
static int Abc_NtkRRProve( Abc_RRMan_t * p );
static int Abc_NtkRRUpdate( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, Abc_Obj_t * pFanin, Abc_Obj_t * pFanout );
static int Abc_NtkRRWindow( Abc_RRMan_t * p );
static int Abc_NtkRRTfi_int( Vec_Ptr_t * vLeaves, int LevelLimit );
static int Abc_NtkRRTfo_int( Vec_Ptr_t * vLeaves, Vec_Ptr_t * vRoots, int LevelLimit, Abc_Obj_t * pEdgeFanin, Abc_Obj_t * pEdgeFanout );
static int Abc_NtkRRTfo_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vRoots, int LevelLimit );
static void Abc_NtkRRTfi_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone, int LevelLimit );
static Abc_Ntk_t * Abc_NtkWindow( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone, Vec_Ptr_t * vRoots );
static void Abc_NtkRRSimulateStart( Abc_Ntk_t * pNtk );
static void Abc_NtkRRSimulateStop( Abc_Ntk_t * pNtk );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Removes stuck-at redundancies.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRR( Abc_Ntk_t * pNtk, int nFaninLevels, int nFanoutLevels, int fUseFanouts, int fVerbose )
{
ProgressBar * pProgress;
Abc_RRMan_t * p;
Abc_Obj_t * pNode, * pFanin, * pFanout;
int i, k, m, nNodes, RetValue;
clock_t clk, clkTotal = clock();
// start the manager
p = Abc_RRManStart();
p->pNtk = pNtk;
p->nFaninLevels = nFaninLevels;
p->nFanoutLevels = nFanoutLevels;
p->nNodesOld = Abc_NtkNodeNum(pNtk);
p->nLevelsOld = Abc_AigLevel(pNtk);
// remember latch values
// Abc_NtkForEachLatch( pNtk, pNode, i )
// pNode->pNext = pNode->pData;
// go through the nodes
Abc_NtkCleanCopy(pNtk);
nNodes = Abc_NtkObjNumMax(pNtk);
Abc_NtkRRSimulateStart(pNtk);
pProgress = Extra_ProgressBarStart( stdout, nNodes );
Abc_NtkForEachNode( pNtk, pNode, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
// stop if all nodes have been tried once
if ( i >= nNodes )
break;
// skip the constant node
// if ( Abc_NodeIsConst(pNode) )
// continue;
// skip persistant nodes
if ( Abc_NodeIsPersistant(pNode) )
continue;
// skip the nodes with many fanouts
if ( Abc_ObjFanoutNum(pNode) > 1000 )
continue;
// construct the window
if ( !fUseFanouts )
{
Abc_ObjForEachFanin( pNode, pFanin, k )
{
// skip the nodes with only one fanout (tree nodes)
if ( Abc_ObjFanoutNum(pFanin) == 1 )
continue;
/*
if ( pFanin->Id == 228 && pNode->Id == 2649 )
{
int k = 0;
}
*/
p->nEdgesTried++;
Abc_RRManClean( p );
p->pNode = pNode;
p->pFanin = pFanin;
p->pFanout = NULL;
clk = clock();
RetValue = Abc_NtkRRWindow( p );
p->timeWindow += clock() - clk;
if ( !RetValue )
continue;
/*
if ( pFanin->Id == 228 && pNode->Id == 2649 )
{
Abc_NtkShowAig( p->pWnd, 0 );
}
*/
clk = clock();
RetValue = Abc_NtkRRProve( p );
p->timeMiter += clock() - clk;
if ( !RetValue )
continue;
//printf( "%d -> %d (%d)\n", pFanin->Id, pNode->Id, k );
clk = clock();
Abc_NtkRRUpdate( pNtk, p->pNode, p->pFanin, p->pFanout );
p->timeUpdate += clock() - clk;
p->nEdgesRemoved++;
break;
}
continue;
}
// use the fanouts
Abc_ObjForEachFanin( pNode, pFanin, k )
Abc_ObjForEachFanout( pNode, pFanout, m )
{
// skip the nodes with only one fanout (tree nodes)
// if ( Abc_ObjFanoutNum(pFanin) == 1 && Abc_ObjFanoutNum(pNode) == 1 )
// continue;
p->nEdgesTried++;
Abc_RRManClean( p );
p->pNode = pNode;
p->pFanin = pFanin;
p->pFanout = pFanout;
clk = clock();
RetValue = Abc_NtkRRWindow( p );
p->timeWindow += clock() - clk;
if ( !RetValue )
continue;
clk = clock();
RetValue = Abc_NtkRRProve( p );
p->timeMiter += clock() - clk;
if ( !RetValue )
continue;
clk = clock();
Abc_NtkRRUpdate( pNtk, p->pNode, p->pFanin, p->pFanout );
p->timeUpdate += clock() - clk;
p->nEdgesRemoved++;
break;
}
}
Abc_NtkRRSimulateStop(pNtk);
Extra_ProgressBarStop( pProgress );
p->timeTotal = clock() - clkTotal;
if ( fVerbose )
Abc_RRManPrintStats( p );
Abc_RRManStop( p );
// restore latch values
// Abc_NtkForEachLatch( pNtk, pNode, i )
// pNode->pData = pNode->pNext, pNode->pNext = NULL;
// put the nodes into the DFS order and reassign their IDs
Abc_NtkReassignIds( pNtk );
Abc_NtkLevel( pNtk );
// check
if ( !Abc_NtkCheck( pNtk ) )
{
printf( "Abc_NtkRR: The network check has failed.\n" );
return 0;
}
return 1;
}
/**Function*************************************************************
Synopsis [Start the manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_RRMan_t * Abc_RRManStart()
{
Abc_RRMan_t * p;
p = ABC_ALLOC( Abc_RRMan_t, 1 );
memset( p, 0, sizeof(Abc_RRMan_t) );
p->vFaninLeaves = Vec_PtrAlloc( 100 ); // the leaves of the fanin cone
p->vFanoutRoots = Vec_PtrAlloc( 100 ); // the roots of the fanout cone
p->vLeaves = Vec_PtrAlloc( 100 ); // the leaves of the window
p->vCone = Vec_PtrAlloc( 100 ); // the internal nodes of the window
p->vRoots = Vec_PtrAlloc( 100 ); // the roots of the window
p->pParams = ABC_ALLOC( Prove_Params_t, 1 );
memset( p->pParams, 0, sizeof(Prove_Params_t) );
Prove_ParamsSetDefault( p->pParams );
return p;
}
/**Function*************************************************************
Synopsis [Stop the manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_RRManStop( Abc_RRMan_t * p )
{
Abc_RRManClean( p );
Vec_PtrFree( p->vFaninLeaves );
Vec_PtrFree( p->vFanoutRoots );
Vec_PtrFree( p->vLeaves );
Vec_PtrFree( p->vCone );
Vec_PtrFree( p->vRoots );
ABC_FREE( p->pParams );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Stop the manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_RRManPrintStats( Abc_RRMan_t * p )
{
double Ratio = 100.0*(p->nNodesOld - Abc_NtkNodeNum(p->pNtk))/p->nNodesOld;
printf( "Redundancy removal statistics:\n" );
printf( "Edges tried = %6d.\n", p->nEdgesTried );
printf( "Edges removed = %6d. (%5.2f %%)\n", p->nEdgesRemoved, 100.0*p->nEdgesRemoved/p->nEdgesTried );
printf( "Node gain = %6d. (%5.2f %%)\n", p->nNodesOld - Abc_NtkNodeNum(p->pNtk), Ratio );
printf( "Level gain = %6d.\n", p->nLevelsOld - Abc_AigLevel(p->pNtk) );
ABC_PRT( "Windowing ", p->timeWindow );
ABC_PRT( "Miter ", p->timeMiter );
ABC_PRT( " Construct ", p->timeMiter - p->timeProve );
ABC_PRT( " Prove ", p->timeProve );
ABC_PRT( "Update ", p->timeUpdate );
ABC_PRT( "TOTAL ", p->timeTotal );
}
/**Function*************************************************************
Synopsis [Clean the manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_RRManClean( Abc_RRMan_t * p )
{
p->pNode = NULL;
p->pFanin = NULL;
p->pFanout = NULL;
Vec_PtrClear( p->vFaninLeaves );
Vec_PtrClear( p->vFanoutRoots );
Vec_PtrClear( p->vLeaves );
Vec_PtrClear( p->vCone );
Vec_PtrClear( p->vRoots );
if ( p->pWnd ) Abc_NtkDelete( p->pWnd );
if ( p->pMiter ) Abc_NtkDelete( p->pMiter );
p->pWnd = NULL;
p->pMiter = NULL;
}
/**Function*************************************************************
Synopsis [Returns 1 if the miter is constant 0.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRRProve( Abc_RRMan_t * p )
{
Abc_Ntk_t * pWndCopy;
int RetValue;
clock_t clk;
// Abc_NtkShowAig( p->pWnd, 0 );
pWndCopy = Abc_NtkDup( p->pWnd );
Abc_NtkRRUpdate( pWndCopy, p->pNode->pCopy->pCopy, p->pFanin->pCopy->pCopy, p->pFanout? p->pFanout->pCopy->pCopy : NULL );
if ( !Abc_NtkIsDfsOrdered(pWndCopy) )
Abc_NtkReassignIds(pWndCopy);
p->pMiter = Abc_NtkMiter( p->pWnd, pWndCopy, 1, 0, 0, 0 );
Abc_NtkDelete( pWndCopy );
clk = clock();
RetValue = Abc_NtkMiterProve( &p->pMiter, p->pParams );
p->timeProve += clock() - clk;
if ( RetValue == 1 )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Updates the network after redundancy removal.]
Description [This procedure assumes that non-control value of the fanin
was proved redundant. It is okay to concentrate on non-control values
because the control values can be seen as redundancy of the fanout edge.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRRUpdate( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, Abc_Obj_t * pFanin, Abc_Obj_t * pFanout )
{
Abc_Obj_t * pNodeNew, * pFanoutNew;
assert( pFanout == NULL );
assert( !Abc_ObjIsComplement(pNode) );
assert( !Abc_ObjIsComplement(pFanin) );
assert( !Abc_ObjIsComplement(pFanout) );
// find the node after redundancy removal
if ( pFanin == Abc_ObjFanin0(pNode) )
pNodeNew = Abc_ObjChild1(pNode);
else if ( pFanin == Abc_ObjFanin1(pNode) )
pNodeNew = Abc_ObjChild0(pNode);
else assert( 0 );
// replace
if ( pFanout == NULL )
{
Abc_AigReplace( (Abc_Aig_t *)pNtk->pManFunc, pNode, pNodeNew, 1 );
return 1;
}
// find the fanout after redundancy removal
if ( pNode == Abc_ObjFanin0(pFanout) )
pFanoutNew = Abc_AigAnd( (Abc_Aig_t *)pNtk->pManFunc, Abc_ObjNotCond(pNodeNew,Abc_ObjFaninC0(pFanout)), Abc_ObjChild1(pFanout) );
else if ( pNode == Abc_ObjFanin1(pFanout) )
pFanoutNew = Abc_AigAnd( (Abc_Aig_t *)pNtk->pManFunc, Abc_ObjNotCond(pNodeNew,Abc_ObjFaninC1(pFanout)), Abc_ObjChild0(pFanout) );
else assert( 0 );
// replace
Abc_AigReplace( (Abc_Aig_t *)pNtk->pManFunc, pFanout, pFanoutNew, 1 );
return 1;
}
/**Function*************************************************************
Synopsis [Constructs window for checking RR.]
Description [If the window (p->pWnd) with the given scope (p->nFaninLevels,
p->nFanoutLevels) cannot be constructed, returns 0. Otherwise, returns 1.
The levels are measured from the fanin node (pFanin) and the fanout node
(pEdgeFanout), respectively.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRRWindow( Abc_RRMan_t * p )
{
Abc_Obj_t * pObj, * pEdgeFanin, * pEdgeFanout;
int i, LevelMin, LevelMax, RetValue;
// get the edge
pEdgeFanout = p->pFanout? p->pFanout : p->pNode;
pEdgeFanin = p->pFanout? p->pNode : p->pFanin;
// get the minimum and maximum levels of the window
LevelMin = Abc_MaxInt( 0, ((int)p->pFanin->Level) - p->nFaninLevels );
LevelMax = (int)pEdgeFanout->Level + p->nFanoutLevels;
// start the TFI leaves with the fanin
Abc_NtkIncrementTravId( p->pNtk );
Abc_NodeSetTravIdCurrent( p->pFanin );
Vec_PtrPush( p->vFaninLeaves, p->pFanin );
// mark the TFI cone and collect the leaves down to the given level
while ( Abc_NtkRRTfi_int(p->vFaninLeaves, LevelMin) );
// mark the leaves with the new TravId
Abc_NtkIncrementTravId( p->pNtk );
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninLeaves, pObj, i )
Abc_NodeSetTravIdCurrent( pObj );
// traverse the TFO cone of the leaves (while skipping the edge)
// (a) mark the nodes in the cone using the current TravId
// (b) collect the nodes that have external fanouts into p->vFanoutRoots
while ( Abc_NtkRRTfo_int(p->vFaninLeaves, p->vFanoutRoots, LevelMax, pEdgeFanin, pEdgeFanout) );
// mark the fanout roots
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFanoutRoots, pObj, i )
pObj->fMarkA = 1;
// collect roots reachable from the fanout (p->vRoots)
RetValue = Abc_NtkRRTfo_rec( pEdgeFanout, p->vRoots, LevelMax + 1 );
// unmark the fanout roots
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFanoutRoots, pObj, i )
pObj->fMarkA = 0;
// return if the window is infeasible
if ( RetValue == 0 )
return 0;
// collect the DFS-ordered new cone (p->vCone) and new leaves (p->vLeaves)
// using the previous marks coming from the TFO cone
Abc_NtkIncrementTravId( p->pNtk );
Vec_PtrForEachEntry( Abc_Obj_t *, p->vRoots, pObj, i )
Abc_NtkRRTfi_rec( pObj, p->vLeaves, p->vCone, LevelMin );
// create a new network
p->pWnd = Abc_NtkWindow( p->pNtk, p->vLeaves, p->vCone, p->vRoots );
return 1;
}
/**Function*************************************************************
Synopsis [Marks the nodes in the TFI and collects their leaves.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRRTfi_int( Vec_Ptr_t * vLeaves, int LevelLimit )
{
Abc_Obj_t * pObj, * pNext;
int i, k, LevelMax, nSize;
assert( LevelLimit >= 0 );
// find the maximum level of leaves
LevelMax = 0;
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
if ( LevelMax < (int)pObj->Level )
LevelMax = pObj->Level;
// if the nodes are all PIs, LevelMax == 0
if ( LevelMax <= LevelLimit )
return 0;
// expand the nodes with the minimum level
nSize = Vec_PtrSize(vLeaves);
Vec_PtrForEachEntryStop( Abc_Obj_t *, vLeaves, pObj, i, nSize )
{
if ( LevelMax != (int)pObj->Level )
continue;
Abc_ObjForEachFanin( pObj, pNext, k )
{
if ( Abc_NodeIsTravIdCurrent(pNext) )
continue;
Abc_NodeSetTravIdCurrent( pNext );
Vec_PtrPush( vLeaves, pNext );
}
}
// remove old nodes (cannot remove a PI)
k = 0;
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
{
if ( LevelMax == (int)pObj->Level )
continue;
Vec_PtrWriteEntry( vLeaves, k++, pObj );
}
Vec_PtrShrink( vLeaves, k );
if ( Vec_PtrSize(vLeaves) > 2000 )
return 0;
return 1;
}
/**Function*************************************************************
Synopsis [Marks the nodes in the TFO and collects their roots.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRRTfo_int( Vec_Ptr_t * vLeaves, Vec_Ptr_t * vRoots, int LevelLimit, Abc_Obj_t * pEdgeFanin, Abc_Obj_t * pEdgeFanout )
{
Abc_Obj_t * pObj, * pNext;
int i, k, LevelMin, nSize, fObjIsRoot;
// find the minimum level of leaves
LevelMin = ABC_INFINITY;
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
if ( LevelMin > (int)pObj->Level )
LevelMin = pObj->Level;
// if the minimum level exceed the limit, we are done
if ( LevelMin > LevelLimit )
return 0;
// expand the nodes with the minimum level
nSize = Vec_PtrSize(vLeaves);
Vec_PtrForEachEntryStop( Abc_Obj_t *, vLeaves, pObj, i, nSize )
{
if ( LevelMin != (int)pObj->Level )
continue;
fObjIsRoot = 0;
Abc_ObjForEachFanout( pObj, pNext, k )
{
// check if the fanout is outside of the cone
if ( Abc_ObjIsCo(pNext) || pNext->Level > (unsigned)LevelLimit )
{
fObjIsRoot = 1;
continue;
}
// skip the edge under check
if ( pObj == pEdgeFanin && pNext == pEdgeFanout )
continue;
// skip the visited fanouts
if ( Abc_NodeIsTravIdCurrent(pNext) )
continue;
Abc_NodeSetTravIdCurrent( pNext );
Vec_PtrPush( vLeaves, pNext );
}
if ( fObjIsRoot )
Vec_PtrPush( vRoots, pObj );
}
// remove old nodes
k = 0;
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
{
if ( LevelMin == (int)pObj->Level )
continue;
Vec_PtrWriteEntry( vLeaves, k++, pObj );
}
Vec_PtrShrink( vLeaves, k );
if ( Vec_PtrSize(vLeaves) > 2000 )
return 0;
return 1;
}
/**Function*************************************************************
Synopsis [Collects the roots in the TFO of the node.]
Description [Note that this procedure can be improved by
marking and skipping the visited nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRRTfo_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vRoots, int LevelLimit )
{
Abc_Obj_t * pFanout;
int i;
// if we encountered a node outside of the TFO cone of the fanins, quit
if ( Abc_ObjIsCo(pNode) || pNode->Level > (unsigned)LevelLimit )
return 0;
// if we encountered a node on the boundary, add it to the roots
if ( pNode->fMarkA )
{
Vec_PtrPushUnique( vRoots, pNode );
return 1;
}
// mark the node with the current TravId (needed to have all internal nodes marked)
Abc_NodeSetTravIdCurrent( pNode );
// traverse the fanouts
Abc_ObjForEachFanout( pNode, pFanout, i )
if ( !Abc_NtkRRTfo_rec( pFanout, vRoots, LevelLimit ) )
return 0;
return 1;
}
/**Function*************************************************************
Synopsis [Collects the leaves and cone of the roots.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkRRTfi_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone, int LevelLimit )
{
Abc_Obj_t * pFanin;
int i;
// skip visited nodes
if ( Abc_NodeIsTravIdCurrent(pNode) )
return;
// add node to leaves if it is not in TFI cone of the leaves (marked before) or below the limit
if ( !Abc_NodeIsTravIdPrevious(pNode) || (int)pNode->Level <= LevelLimit )
{
Abc_NodeSetTravIdCurrent( pNode );
Vec_PtrPush( vLeaves, pNode );
return;
}
// mark the node as visited
Abc_NodeSetTravIdCurrent( pNode );
// call for the node's fanins
Abc_ObjForEachFanin( pNode, pFanin, i )
Abc_NtkRRTfi_rec( pFanin, vLeaves, vCone, LevelLimit );
// add the node to the cone in topological order
Vec_PtrPush( vCone, pNode );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkWindow( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone, Vec_Ptr_t * vRoots )
{
Abc_Ntk_t * pNtkNew;
Abc_Obj_t * pObj;
int fCheck = 1;
int i;
assert( Abc_NtkIsStrash(pNtk) );
// start the network
pNtkNew = Abc_NtkAlloc( pNtk->ntkType, pNtk->ntkFunc, 1 );
// duplicate the name and the spec
pNtkNew->pName = Extra_UtilStrsav( "temp" );
// map the constant nodes
Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);
// create and map the PIs
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
pObj->pCopy = Abc_NtkCreatePi(pNtkNew);
// copy the AND gates
Vec_PtrForEachEntry( Abc_Obj_t *, vCone, pObj, i )
pObj->pCopy = Abc_AigAnd( (Abc_Aig_t *)pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
// compare the number of nodes before and after
if ( Vec_PtrSize(vCone) != Abc_NtkNodeNum(pNtkNew) )
printf( "Warning: Structural hashing during windowing reduced %d nodes (this is a bug).\n",
Vec_PtrSize(vCone) - Abc_NtkNodeNum(pNtkNew) );
// create the POs
Vec_PtrForEachEntry( Abc_Obj_t *, vRoots, pObj, i )
{
assert( !Abc_ObjIsComplement(pObj->pCopy) );
Abc_ObjAddFanin( Abc_NtkCreatePo(pNtkNew), pObj->pCopy );
}
// add the PI/PO names
Abc_NtkAddDummyPiNames( pNtkNew );
Abc_NtkAddDummyPoNames( pNtkNew );
// check
if ( fCheck && !Abc_NtkCheck( pNtkNew ) )
{
printf( "Abc_NtkWindow: The network check has failed.\n" );
return NULL;
}
return pNtkNew;
}
/**Function*************************************************************
Synopsis [Starts simulation to detect non-redundant edges.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkRRSimulateStart( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pObj;
unsigned uData, uData0, uData1;
int i;
Abc_AigConst1(pNtk)->pData = (void *)~((unsigned)0);
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->pData = (void *)(ABC_PTRUINT_T)SIM_RANDOM_UNSIGNED;
Abc_NtkForEachNode( pNtk, pObj, i )
{
if ( i == 0 ) continue;
uData0 = (unsigned)(ABC_PTRUINT_T)Abc_ObjFanin0(pObj)->pData;
uData1 = (unsigned)(ABC_PTRUINT_T)Abc_ObjFanin1(pObj)->pData;
uData = Abc_ObjFaninC0(pObj)? ~uData0 : uData0;
uData &= Abc_ObjFaninC1(pObj)? ~uData1 : uData1;
assert( pObj->pData == NULL );
pObj->pData = (void *)(ABC_PTRUINT_T)uData;
}
}
/**Function*************************************************************
Synopsis [Stops simulation to detect non-redundant edges.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkRRSimulateStop( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pObj;
int i;
Abc_NtkForEachObj( pNtk, pObj, i )
pObj->pData = NULL;
}
static void Sim_TraverseNodes_rec( Abc_Obj_t * pRoot, Vec_Str_t * vTargets, Vec_Ptr_t * vNodes );
static void Sim_CollectNodes_rec( Abc_Obj_t * pRoot, Vec_Ptr_t * vField );
static void Sim_SimulateCollected( Vec_Str_t * vTargets, Vec_Ptr_t * vNodes, Vec_Ptr_t * vField );
/**Function*************************************************************
Synopsis [Simulation to detect non-redundant edges.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Str_t * Abc_NtkRRSimulate( Abc_Ntk_t * pNtk )
{
Vec_Ptr_t * vNodes, * vField;
Vec_Str_t * vTargets;
Abc_Obj_t * pObj;
unsigned uData, uData0, uData1;
int PrevCi, Phase, i, k;
// start the candidates
vTargets = Vec_StrStart( Abc_NtkObjNumMax(pNtk) + 1 );
Abc_NtkForEachNode( pNtk, pObj, i )
{
Phase = ((Abc_ObjFanoutNum(Abc_ObjFanin1(pObj)) > 1) << 1);
Phase |= (Abc_ObjFanoutNum(Abc_ObjFanin0(pObj)) > 1);
Vec_StrWriteEntry( vTargets, pObj->Id, (char)Phase );
}
// simulate patters and store them in copy
Abc_AigConst1(pNtk)->pCopy = (Abc_Obj_t *)~((unsigned)0);
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->pCopy = (Abc_Obj_t *)(ABC_PTRUINT_T)SIM_RANDOM_UNSIGNED;
Abc_NtkForEachNode( pNtk, pObj, i )
{
if ( i == 0 ) continue;
uData0 = (unsigned)(ABC_PTRUINT_T)Abc_ObjFanin0(pObj)->pData;
uData1 = (unsigned)(ABC_PTRUINT_T)Abc_ObjFanin1(pObj)->pData;
uData = Abc_ObjFaninC0(pObj)? ~uData0 : uData0;
uData &= Abc_ObjFaninC1(pObj)? ~uData1 : uData1;
pObj->pCopy = (Abc_Obj_t *)(ABC_PTRUINT_T)uData;
}
// store the result in data
Abc_NtkForEachCo( pNtk, pObj, i )
{
uData0 = (unsigned)(ABC_PTRUINT_T)Abc_ObjFanin0(pObj)->pData;
if ( Abc_ObjFaninC0(pObj) )
pObj->pData = (void *)(ABC_PTRUINT_T)~uData0;
else
pObj->pData = (void *)(ABC_PTRUINT_T)uData0;
}
// refine the candidates
for ( PrevCi = 0; PrevCi < Abc_NtkCiNum(pNtk); PrevCi = i )
{
vNodes = Vec_PtrAlloc( 10 );
Abc_NtkIncrementTravId( pNtk );
for ( i = PrevCi; i < Abc_NtkCiNum(pNtk); i++ )
{
Sim_TraverseNodes_rec( Abc_NtkCi(pNtk, i), vTargets, vNodes );
if ( Vec_PtrSize(vNodes) > 128 )
break;
}
// collect the marked nodes in the topological order
vField = Vec_PtrAlloc( 10 );
Abc_NtkIncrementTravId( pNtk );
Abc_NtkForEachCo( pNtk, pObj, k )
Sim_CollectNodes_rec( pObj, vField );
// simulate these nodes
Sim_SimulateCollected( vTargets, vNodes, vField );
// prepare for the next loop
Vec_PtrFree( vNodes );
}
// clean
Abc_NtkForEachObj( pNtk, pObj, i )
pObj->pData = NULL;
return vTargets;
}
/**Function*************************************************************
Synopsis [Collects nodes starting from the given node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_TraverseNodes_rec( Abc_Obj_t * pRoot, Vec_Str_t * vTargets, Vec_Ptr_t * vNodes )
{
Abc_Obj_t * pFanout;
char Entry;
int k;
if ( Abc_NodeIsTravIdCurrent(pRoot) )
return;
Abc_NodeSetTravIdCurrent( pRoot );
// save the reached targets
Entry = Vec_StrEntry(vTargets, pRoot->Id);
if ( Entry & 1 )
Vec_PtrPush( vNodes, Abc_ObjNot(pRoot) );
if ( Entry & 2 )
Vec_PtrPush( vNodes, pRoot );
// explore the fanouts
Abc_ObjForEachFanout( pRoot, pFanout, k )
Sim_TraverseNodes_rec( pFanout, vTargets, vNodes );
}
/**Function*************************************************************
Synopsis [Collects nodes starting from the given node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_CollectNodes_rec( Abc_Obj_t * pRoot, Vec_Ptr_t * vField )
{
Abc_Obj_t * pFanin;
int i;
if ( Abc_NodeIsTravIdCurrent(pRoot) )
return;
if ( !Abc_NodeIsTravIdPrevious(pRoot) )
return;
Abc_NodeSetTravIdCurrent( pRoot );
Abc_ObjForEachFanin( pRoot, pFanin, i )
Sim_CollectNodes_rec( pFanin, vField );
if ( !Abc_ObjIsCo(pRoot) )
pRoot->pData = (void *)(ABC_PTRUINT_T)Vec_PtrSize(vField);
Vec_PtrPush( vField, pRoot );
}
/**Function*************************************************************
Synopsis [Simulate the given nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sim_SimulateCollected( Vec_Str_t * vTargets, Vec_Ptr_t * vNodes, Vec_Ptr_t * vField )
{
Abc_Obj_t * pObj, * pFanin0, * pFanin1, * pDisproved;
Vec_Ptr_t * vSims;
unsigned * pUnsigned, * pUnsignedF;
int i, k, Phase, fCompl;
// get simulation info
vSims = Sim_UtilInfoAlloc( Vec_PtrSize(vField), Vec_PtrSize(vNodes), 0 );
// simulate the nodes
Vec_PtrForEachEntry( Abc_Obj_t *, vField, pObj, i )
{
if ( Abc_ObjIsCi(pObj) )
{
pUnsigned = (unsigned *)Vec_PtrEntry( vSims, i );
for ( k = 0; k < Vec_PtrSize(vNodes); k++ )
pUnsigned[k] = (unsigned)(ABC_PTRUINT_T)pObj->pCopy;
continue;
}
if ( Abc_ObjIsCo(pObj) )
{
pUnsigned = (unsigned *)Vec_PtrEntry( vSims, i );
pUnsignedF = (unsigned *)Vec_PtrEntry( vSims, (int)(ABC_PTRUINT_T)Abc_ObjFanin0(pObj)->pData );
if ( Abc_ObjFaninC0(pObj) )
for ( k = 0; k < Vec_PtrSize(vNodes); k++ )
pUnsigned[k] = ~pUnsignedF[k];
else
for ( k = 0; k < Vec_PtrSize(vNodes); k++ )
pUnsigned[k] = pUnsignedF[k];
// update targets
for ( k = 0; k < Vec_PtrSize(vNodes); k++ )
{
if ( pUnsigned[k] == (unsigned)(ABC_PTRUINT_T)pObj->pData )
continue;
pDisproved = (Abc_Obj_t *)Vec_PtrEntry( vNodes, k );
fCompl = Abc_ObjIsComplement(pDisproved);
pDisproved = Abc_ObjRegular(pDisproved);
Phase = Vec_StrEntry( vTargets, pDisproved->Id );
if ( fCompl )
Phase = (Phase & 2);
else
Phase = (Phase & 1);
Vec_StrWriteEntry( vTargets, pDisproved->Id, (char)Phase );
}
continue;
}
// simulate the node
pFanin0 = Abc_ObjFanin0(pObj);
pFanin1 = Abc_ObjFanin1(pObj);
}
}
/*
{
unsigned uData;
if ( pFanin == Abc_ObjFanin0(pNode) )
{
uData = (unsigned)Abc_ObjFanin1(pNode)->pData;
uData = Abc_ObjFaninC1(pNode)? ~uData : uData;
}
else if ( pFanin == Abc_ObjFanin1(pNode) )
{
uData = (unsigned)Abc_ObjFanin0(pNode)->pData;
uData = Abc_ObjFaninC0(pNode)? ~uData : uData;
}
uData ^= (unsigned)pNode->pData;
// Extra_PrintBinary( stdout, &uData, 32 ); printf( "\n" );
if ( Extra_WordCountOnes(uData) > 8 )
continue;
}
*/
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|