1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
/**CFile****************************************************************
FileName [abcSymm.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Computation of two-variable symmetries.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcSymm.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "base/abc/abc.h"
#include "opt/sim/sim.h"
#include "misc/extra/extraBdd.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static void Abc_NtkSymmetriesUsingBdds( Abc_Ntk_t * pNtk, int fNaive, int fReorder, int fVerbose );
static void Abc_NtkSymmetriesUsingSandS( Abc_Ntk_t * pNtk, int fVerbose );
static void Ntk_NetworkSymmsBdd( DdManager * dd, Abc_Ntk_t * pNtk, int fNaive, int fVerbose );
static void Ntk_NetworkSymmsPrint( Abc_Ntk_t * pNtk, Extra_SymmInfo_t * pSymms );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [The top level procedure to compute symmetries.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkSymmetries( Abc_Ntk_t * pNtk, int fUseBdds, int fNaive, int fReorder, int fVerbose )
{
if ( fUseBdds || fNaive )
Abc_NtkSymmetriesUsingBdds( pNtk, fNaive, fReorder, fVerbose );
else
Abc_NtkSymmetriesUsingSandS( pNtk, fVerbose );
}
/**Function*************************************************************
Synopsis [Symmetry computation using simulation and SAT.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkSymmetriesUsingSandS( Abc_Ntk_t * pNtk, int fVerbose )
{
// extern int Sim_ComputeTwoVarSymms( Abc_Ntk_t * pNtk, int fVerbose );
int nSymms = Sim_ComputeTwoVarSymms( pNtk, fVerbose );
printf( "The total number of symmetries is %d.\n", nSymms );
}
/**Function*************************************************************
Synopsis [Symmetry computation using BDDs (both naive and smart).]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkSymmetriesUsingBdds( Abc_Ntk_t * pNtk, int fNaive, int fReorder, int fVerbose )
{
DdManager * dd;
clock_t clk, clkBdd, clkSym;
int fGarbCollect = 1;
// compute the global functions
clk = clock();
dd = (DdManager *)Abc_NtkBuildGlobalBdds( pNtk, 10000000, 1, fReorder, fVerbose );
printf( "Shared BDD size = %d nodes.\n", Abc_NtkSizeOfGlobalBdds(pNtk) );
Cudd_AutodynDisable( dd );
if ( !fGarbCollect )
Cudd_DisableGarbageCollection( dd );
Cudd_zddVarsFromBddVars( dd, 2 );
clkBdd = clock() - clk;
// create the collapsed network
clk = clock();
Ntk_NetworkSymmsBdd( dd, pNtk, fNaive, fVerbose );
clkSym = clock() - clk;
// undo the global functions
Abc_NtkFreeGlobalBdds( pNtk, 1 );
printf( "Statistics of BDD-based symmetry detection:\n" );
printf( "Algorithm = %s. Reordering = %s. Garbage collection = %s.\n",
fNaive? "naive" : "fast", fReorder? "yes" : "no", fGarbCollect? "yes" : "no" );
ABC_PRT( "Constructing BDDs", clkBdd );
ABC_PRT( "Computing symms ", clkSym );
ABC_PRT( "TOTAL ", clkBdd + clkSym );
}
/**Function*************************************************************
Synopsis [Symmetry computation using BDDs (both naive and smart).]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ntk_NetworkSymmsBdd( DdManager * dd, Abc_Ntk_t * pNtk, int fNaive, int fVerbose )
{
Extra_SymmInfo_t * pSymms;
Abc_Obj_t * pNode;
DdNode * bFunc;
int nSymms = 0;
int nSupps = 0;
int i;
// compute symmetry info for each PO
Abc_NtkForEachCo( pNtk, pNode, i )
{
// bFunc = pNtk->vFuncsGlob->pArray[i];
bFunc = (DdNode *)Abc_ObjGlobalBdd( pNode );
nSupps += Cudd_SupportSize( dd, bFunc );
if ( Cudd_IsConstant(bFunc) )
continue;
if ( fNaive )
pSymms = Extra_SymmPairsComputeNaive( dd, bFunc );
else
pSymms = Extra_SymmPairsCompute( dd, bFunc );
nSymms += pSymms->nSymms;
if ( fVerbose )
{
printf( "Output %6s (%d): ", Abc_ObjName(pNode), pSymms->nSymms );
Ntk_NetworkSymmsPrint( pNtk, pSymms );
}
//Extra_SymmPairsPrint( pSymms );
Extra_SymmPairsDissolve( pSymms );
}
printf( "Total number of vars in functional supports = %8d.\n", nSupps );
printf( "Total number of two-variable symmetries = %8d.\n", nSymms );
}
/**Function*************************************************************
Synopsis [Printing symmetry groups from the symmetry data structure.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ntk_NetworkSymmsPrint( Abc_Ntk_t * pNtk, Extra_SymmInfo_t * pSymms )
{
char ** pInputNames;
int * pVarTaken;
int i, k, nVars, nSize, fStart;
// get variable names
nVars = Abc_NtkCiNum(pNtk);
pInputNames = Abc_NtkCollectCioNames( pNtk, 0 );
// alloc the array of marks
pVarTaken = ABC_ALLOC( int, nVars );
memset( pVarTaken, 0, sizeof(int) * nVars );
// print the groups
fStart = 1;
nSize = pSymms->nVars;
for ( i = 0; i < nSize; i++ )
{
// skip the variable already considered
if ( pVarTaken[i] )
continue;
// find all the vars symmetric with this one
for ( k = 0; k < nSize; k++ )
{
if ( k == i )
continue;
if ( pSymms->pSymms[i][k] == 0 )
continue;
// vars i and k are symmetric
assert( pVarTaken[k] == 0 );
// there is a new symmetry pair
if ( fStart == 1 )
{ // start a new symmetry class
fStart = 0;
printf( " { %s", pInputNames[ pSymms->pVars[i] ] );
// mark the var as taken
pVarTaken[i] = 1;
}
printf( " %s", pInputNames[ pSymms->pVars[k] ] );
// mark the var as taken
pVarTaken[k] = 1;
}
if ( fStart == 0 )
{
printf( " }" );
fStart = 1;
}
}
printf( "\n" );
ABC_FREE( pInputNames );
ABC_FREE( pVarTaken );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|