summaryrefslogtreecommitdiffstats
path: root/src/base/io/ioWriteList.c
blob: 71af7c53f3794bb94c57a2ff91ead71a52029a5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/**CFile****************************************************************

  FileName    [ioWriteList.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Command processing package.]

  Synopsis    [Procedures to write the graph structure of sequential AIG.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: ioWriteList.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "io.h"

/*
-------- Original Message --------
Subject: Re: abc release and retiming
Date:    Sun, 13 Nov 2005 20:31:18 -0500 (EST)
From:    Luca Carloni <luca@cs.columbia.edu>
To:      Alan Mishchenko <alanmi@eecs.berkeley.edu>

Alan,

My graph-representation file format is based on an adjacency list
representation and is indeed quite simple, in fact maybe too simple... I
used it in order to reason on relatively small weighed direct graphs. I
simply list all vertices, one per line and for each vertex "V_source" I
list all vertices that are "sinks" with respect to it, i.e. such that
there is a distinct arc between "V_source" and each of them (in
paranthesis I list the name of the edge and its weight (number of latency
on that path). For instance, if you look at the following graph, you have
that vertex "v_5" is connected to vertex "v_6" through a directed arc
called "v_5_to_v_6" whose latency is equal to 3, i.e. there are three
flip-flops on this arc. Still, notice that I sometime interpret the graph
also as the representation of a  LIS where each node corresponds to a
shell encapsulating a sequential core module (i.e. a module which does not
contain any combinational path between its inputs and its outputs). With
this representation an arc of latency 3 is interpreted as a wire where two
relay stations have been inserted in addition to the flip-flop terminating
the output of the core module.

Finally, notice that the name of the arc does not necessarily have to be
"v_5_to_v_6", but it could have been something like "arc_222" or "xyz" as
long as it is a unique name in the graph.

Thanks,
Luca

Example of graph representation
-----------------------------------------------------------------------------
v_5    >    v_6 ([v_5_to_v_6] = 3), v_12 ([v_5_to_v_12] = 2).
v_2    >    v_4 ([v_2_to_v_4] = 1), v_10_s0 ([v_2_to_v_10_s0] = 6), v_12 ([v_2_to_v_12] = 3).
v_9    >    v_10_s0 ([v_9_to_v_10_s0] = 5), v_12 ([v_9_to_v_12] = 2).
v_12    >    v_13 ([v_12_to_v_13] = 5).
v_13    >    v_14 ([v_13_to_v_14] = 1).
v_6    >    v_7 ([v_6_to_v_7] = 2).
v_4    >    v_5 ([v_4_to_v_5] = 2).
v_1    >    v_2 ([v_1_to_v_2] = 1).
v_7    >    v_8 ([v_7_to_v_8] = 2).
t    >    .
v_14    >    t ([v_14_to_t] = 1), v_5 ([v_14_to_v_5] = 1).
v_8    >    v_9 ([v_8_to_v_9] = 2).
s    >    v_1 ([s_to_v_1] = 1).
v_10_s0    >    v_10_s1 ([v_10_s0_to_v_10_s1] = 1).
v_10_s1    >    v_4 ([v_10_s1__v_4] = 1), v_8 ([v_10_s1__v_8] = 1).
-----------------------------------------------------------------------------
*/

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

static void Io_WriteListEdge( FILE * pFile, Abc_Obj_t * pObj );
static void Io_WriteListHost( FILE * pFile, Abc_Ntk_t * pNtk );

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Writes the adjacency list for a sequential AIG.]

  Description []
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Io_WriteList( Abc_Ntk_t * pNtk, char * pFileName, int fUseHost )
{
    FILE * pFile;
    Abc_Obj_t * pObj;
    int i;

//    assert( Abc_NtkIsSeq(pNtk)  );

    // start the output stream
    pFile = fopen( pFileName, "w" );
    if ( pFile == NULL )
    {
        fprintf( stdout, "Io_WriteList(): Cannot open the output file \"%s\".\n", pFileName );
        return;
    }

    fprintf( pFile, "# Adjacency list for sequential AIG \"%s\"\n", pNtk->pName );
    fprintf( pFile, "# written by ABC on %s\n", Extra_TimeStamp() );

    // write the constant node
    if ( Abc_ObjFanoutNum( Abc_AigConst1(pNtk) ) > 0 )
        Io_WriteListEdge( pFile, Abc_AigConst1(pNtk) );

    // write the PI edges
    Abc_NtkForEachPi( pNtk, pObj, i )
        Io_WriteListEdge( pFile, pObj );

    // write the internal nodes
    Abc_AigForEachAnd( pNtk, pObj, i )
        Io_WriteListEdge( pFile, pObj );

    // write the host node
    if ( fUseHost )
        Io_WriteListHost( pFile, pNtk );
    else
        Abc_NtkForEachPo( pNtk, pObj, i )
            Io_WriteListEdge( pFile, pObj );

    fprintf( pFile, "\n" );
    fclose( pFile );
}

/**Function*************************************************************

  Synopsis    [Writes the adjacency list for one edge in a sequential AIG.]

  Description []
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Io_WriteListEdge( FILE * pFile, Abc_Obj_t * pObj )
{
    Abc_Obj_t * pFanout;
    int i;
    fprintf( pFile, "%-10s >    ", Abc_ObjName(pObj) );
    Abc_ObjForEachFanout( pObj, pFanout, i )
    {
        fprintf( pFile, " %s", Abc_ObjName(pFanout) );
        fprintf( pFile, " ([%s_to_", Abc_ObjName(pObj) );
//        fprintf( pFile, "%s] = %d)", Abc_ObjName(pFanout), Seq_ObjFanoutL(pObj, pFanout) );
        fprintf( pFile, "%s] = %d)", Abc_ObjName(pFanout), 0 );
        if ( i != Abc_ObjFanoutNum(pObj) - 1 )
            fprintf( pFile, "," );
    }
    fprintf( pFile, "." );
    fprintf( pFile, "\n" );
}

/**Function*************************************************************

  Synopsis    [Writes the adjacency list for one edge in a sequential AIG.]

  Description []
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Io_WriteListHost( FILE * pFile, Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pObj;
    int i;

    Abc_NtkForEachPo( pNtk, pObj, i )
    {
        fprintf( pFile, "%-10s >    ", Abc_ObjName(pObj) );
        fprintf( pFile, " %s ([%s_to_%s] = %d)", "HOST", Abc_ObjName(pObj), "HOST", 0 );
        fprintf( pFile, "." );
        fprintf( pFile, "\n" );
    }

    fprintf( pFile, "%-10s >    ", "HOST" );
    Abc_NtkForEachPi( pNtk, pObj, i )
    {
        fprintf( pFile, " %s", Abc_ObjName(pObj) );
        fprintf( pFile, " ([%s_to_%s] = %d)", "HOST", Abc_ObjName(pObj), 0 );
        if ( i != Abc_NtkPiNum(pNtk) - 1 )
            fprintf( pFile, "," );
    }
    fprintf( pFile, "." );
    fprintf( pFile, "\n" );
}


/**Function*************************************************************

  Synopsis    [Writes the adjacency list for a sequential AIG.]

  Description []
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Io_WriteCellNet( Abc_Ntk_t * pNtk, char * pFileName )
{
    FILE * pFile;
    Abc_Obj_t * pObj, * pFanout;
    int i, k;

    assert( Abc_NtkIsLogic(pNtk)  );

    // start the output stream
    pFile = fopen( pFileName, "w" );
    if ( pFile == NULL )
    {
        fprintf( stdout, "Io_WriteCellNet(): Cannot open the output file \"%s\".\n", pFileName );
        return;
    }

    fprintf( pFile, "# CellNet file for network \"%s\" written by ABC on %s\n", pNtk->pName, Extra_TimeStamp() );

    // the only tricky part with writing is handling latches:
    // each latch comes with (a) single-input latch-input node, (b) latch proper, (c) single-input latch-output node
    // we arbitrarily decide to use the interger ID of the latch-input node to represent the latch in the file
    // (this ID is used for both the cell and the net driven by that cell)

    // write the PIs
    Abc_NtkForEachPi( pNtk, pObj, i )
        fprintf( pFile, "cell %d is 0\n", pObj->Id );
    // write the POs
    Abc_NtkForEachPo( pNtk, pObj, i )
        fprintf( pFile, "cell %d is 1\n", pObj->Id );
    // write the latches (use the ID of latch input)
    Abc_NtkForEachLatch( pNtk, pObj, i )
        fprintf( pFile, "cell %d is 2\n", Abc_ObjFanin0(pObj)->Id );
    // write the logic nodes
    Abc_NtkForEachNode( pNtk, pObj, i )
        fprintf( pFile, "cell %d is %d\n", pObj->Id, 3+Abc_ObjFaninNum(pObj) );

    // write the nets driven by PIs
    Abc_NtkForEachPi( pNtk, pObj, i )
    {
        fprintf( pFile, "net %d  %d 0", pObj->Id, pObj->Id );
        Abc_ObjForEachFanout( pObj, pFanout, k )
            fprintf( pFile, "  %d %d", pFanout->Id, 1 + Abc_ObjFanoutFaninNum(pFanout, pObj) );
        fprintf( pFile, "\n" );
    }
    // write the nets driven by latches
    Abc_NtkForEachLatch( pNtk, pObj, i )
    {
        fprintf( pFile, "net %d  %d 0", Abc_ObjFanin0(pObj)->Id, Abc_ObjFanin0(pObj)->Id );
        pObj = Abc_ObjFanout0(pObj);
        Abc_ObjForEachFanout( pObj, pFanout, k )
            fprintf( pFile, "  %d %d", pFanout->Id, 1 + Abc_ObjFanoutFaninNum(pFanout, pObj) );
        fprintf( pFile, "\n" );
    }
    // write the nets driven by nodes
    Abc_NtkForEachNode( pNtk, pObj, i )
    {
        fprintf( pFile, "net %d  %d 0", pObj->Id, pObj->Id );
        Abc_ObjForEachFanout( pObj, pFanout, k )
            fprintf( pFile, "  %d %d", pFanout->Id, 1 + Abc_ObjFanoutFaninNum(pFanout, pObj) );
        fprintf( pFile, "\n" );
    }

    fprintf( pFile, "\n" );
    fclose( pFile );
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////